

Edinburgh Research Explorer

The Research Software Engineer

Citation for published version:
Baxter, R, Chue Hong, N, Gorissen, D, Hetherington, J & Todorov, I 2012, 'The Research Software
Engineer' Digital Research 2012, Oxford, United Kingdom, 10/09/12 - 12/09/12, .

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Jul. 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/159618156?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.research.ed.ac.uk/portal/en/publications/the-research-software-engineer(e8416ad7-750f-442f-9b17-d812b9bb414d).html

1

The Research Software Engineer

Rob Baxter1, Neil Chue Hong1; Dirk Gorissen2; James Hetherington3; Ilian Todorov4
1

Software Sustainability Institute & University of Edinburgh;
2

University of Southampton;
3

UCL;
4

STFC Daresbury Laboratory

Background

Research is increasingly digital. Twenty-first century research has been characterised by the rise of digital
methods, the third and fourth paradigms of science – computational simulation and data-intensive research. In
their turn, these new approaches are both built on a common foundation – computer software.

Yet despite this increasing reliance on software in research, professional practices for developing research
software in academia lag far behind those in the commercial sector. Computational research tools are often
fragile, generally not sustainable or usable beyond the lifetime of a given project, and frequently unsuitable for
scrutiny. Those trained solely within academia often employ ad-hoc or casual development techniques.
Institutions miss out on opportunities to increase the impact of their research by producing robust software
deliverables that could be used and cited by their peers.

Computational work must reflect the committed attitude of experimentalists towards caring about precise,
professional, repeatable, meticulous work – no-one with the same casual attitude to experimental
instrumentation as many researchers have to code would be allowed anywhere near a lab. This is striking
considering how often research results now depend on software.

Software engineering professionals are trained in best practices, and in the best commercial institutions follow
a disciplined approach to the design, construction, testing and maintenance of software systems. Attempts to
leverage these skills within academia by employing contract programmers typically fail, due to otherwise
talented programmers lacking sufficient research experience and a necessary appreciation of the significant
cultural differences between business and academia. Software engineers that do have research experience and
good knowledge of the underlying domain are, however, in very short supply, due to the lack of appropriate
institutional homes and career progression paths for their work.

This paper provides a synthesis of discussions that took place during and after the 2012 Collaborations
Workshop organized by the Software Sustainability Institute in Oxford, UK.

The Research Software Engineer

Research institutions need individuals with a new professional designation – the research software engineer.
These individuals combine a professional attitude to the exercise of software engineering with a deep
understanding of research topics. They lead the design and construction of increasingly complex research
software systems, and play an important part in the co-design of research requirements, understanding and
addressing software engineering questions that arise in research planning.

To successfully and usefully apply software development skills in research, software engineers must be able to
understand the domain within which they work. Understanding research literature is a major part of the life of
the research software engineer. Scientific software developers primarily create software designs and code, but
remain an integral part of the research community, with authorship on research papers. Their work cannot be
simplified to that of a technician or a contract programmer as these engineers have roles closer to those of
researchers with a complementary skill set.

Research software engineers test their hypotheses and solutions for correctness by subjecting them to well-
defined test cases. They keep abreast of the cutting edge scientific methodologies in order to develop and
prove them worthwhile. They develop pedagogic skills to teach and train colleagues. They can write papers and
grant proposals, as well as technical reports and manuals. They keep abreast of relevant IT trends – numerical
algorithms, computer languages, analysis tools and hardware.

2

Although all research software engineers must combine deep background in science with strong software
development skills, there exists nevertheless a spectrum from those whose interests focus on software
development as a means to scientific ends, to those for whom the practice of scientific software development
is their primary focus. At the two ends of this spectrum, we see:

 the "Researcher-Developer" wants to be judged on their scientific output, is a researcher at heart,
however develops a lot of code due to the nature of their research. They would like recognition
comparable to a research paper for a software implementation taken up by others.

 the "Research Software Engineer" comes from a research background but is also a skilled software
developer, and relishes challenge of not just developing code to solve a problem but doing it well.
They want to be recognised for producing tools which others rely on for research.

Career Development

Research has changed enormously in the last 20 years, but career progression continues to be based on
“publication performance”, as measured by journal research papers. At the same time, software development
has diversified, becoming a well-defined profession with many sub-fields. This profession carries complex
intellectual demands, and commercial software engineers expect compensation and recognition appropriate to
their status as skilled professionals. Software engineers in academia must be able to achieve comparable
recognition and status to their academic and industrial colleagues.

The training required to be an effective research software engineer takes at least a decade. Individuals will
typically complete a research training programme through PhD and postdoc, and also complete an
equivalently-demanding training programme in software development, often involving time spent in a
commercial software development company.

At present there is no progression path within academic institutions for such individuals. An inability to
progress beyond PDRA makes talented developers leave. This is a major loss to research institutions of skills
investment made to gain expertise in both research and software development.

This absence of a career path is due to the lack of recognition and appreciation of the output of software
development work in the academic system of assessment, which measures success only through published
peer-reviewed publications. The Science Code Manifesto [http://sciencecodemanifesto.org/], whose founding
signatories include Peter Norvig, Joseph Jackson, and Victoria Stodden, talks about this explicitly:

“Software is an essential research product, and the effort to produce, maintain, adapt, and
curate code must be recognized. Software stands among other vital scientific contributions
besides published papers. “

Funding Research Software Development

Until recently, software development in academia has been viewed as an uninteresting means of achieving
interesting research. Research Councils have had no funding policy for software development and
sustainability, which has led to the need to disguise such development in grant proposals. Software
development has been carried out in a cash-starved environment, where journeyman software developers
migrate from one project to another, taking their vital software knowledge with them. Often when a research
project ends, so does the work of maintaining the software.

Development focuses on meeting the minimum requirements of a specific scientific research case, rather than
investing in software that is generic, robust and reusable. Without other research projects as future
stakeholders, Principal Investigators can only extend the life of their software by extending the life of their
project through grant renewals. All of this means that it is challenging to produce reusable software that can
last beyond the scope of any one project. Some software projects stop, freeze or move overseas, leading to
irreplaceable losses of the institutional memory embodied in research software developers expertise and
experience.

These problems stem from the necessarily high price to pay for proper software development and support, the
muddy clarity of IP and ownership of software, and the limited understanding of how to benchmark software

http://sciencecodemanifesto.org/
http://sciencecodemanifesto.org/
http://sciencecodemanifesto.org/
http://sciencecodemanifesto.org/
http://sciencecodemanifesto.org/
http://sciencecodemanifesto.org/

3

developers’ skills. We feel that the role of the research software engineer should be explicitly recognised in
calls for funding proposals, and should be explicitly valued as researcher-equivalent. It is worth pointing out the
obvious fact that a PRDA salary is much less than that of a commercial software developer.

The demand for software development has risen, but the availability of scientific software developers has not,
due to deficiencies in long-term planning and succession policies. Millions of pounds are spent annually on
computational infrastructure in UK academia – we would argue that expenditure on individuals capable of
producing quality research software could have a greater return on investment.

Signs of Change

Elements of a new best practice are beginning to emerge, elements which we hope form the beginnings of a
remedy for these issues. In an effort to encourage these green shoots, we highlight a few here.

Some software development and related services have been supported by the Research Councils under
programmes such as the CCPs, e-Minerals and e-Science, and initiatives like the Software Sustainability
Institute. Funding has been provided by EPSRC to support applications via the CCPs; to software development
via HEA (Daresbury Laboratory); to software HPC optimisation via distributed computational and software
engineering (dCSE) projects serviced by NAG Ltd; and to “next generation” software codes in a number of
recent calls. The BBSRC tools and resources development fund has established both the demand and an
effective funding model for software development in the life sciences. This year EPSRC announced software
development fellowships, which are a vital step towards allowing researchers with a significant software focus
to build their careers.

On the university side, there has been some positive activity: computational science and engineering has been
established as an MSc course by the EPCC and recognised as a different subject from computer science. HPC
and parallel programming training courses are now widespread and are regular events for PhD students in
natural sciences. A number of universities such as University College London and the University of Bristol are
creating software development groups with the intent to assist researchers across departments to design, build
and maintain high quality in-house software.

Recommendations

All these strategic initiatives are, of course, to be welcomed, and the authors note the encouraging progress
made in recent years in addressing some of the issues we highlight. However, more needs to be done to help
embed the necessary culture change across the UK academia and research institutions. We have three key
recommendations:

 The REF allows for recognition of software deliverables through its system for impact measurement. In
practice, however, this depends on the decisions of individual panels. REF panels should be given clear
guidance on the importance of weighing software as a "first class" research output.

 Research software engineers are a new role in academic institutions. Institutions and funding panels
should recognise the value of this role in funding research proposals and in providing career
progression and succession for such individuals.

 All researchers must be exposed to best practices in software development. The fundamentals of good
software engineering should form part of every researcher's basic training.

As Henry Ford said: “culture eats strategy for breakfast”. We feel the time is right to accelerate the necessary
cultural changes by recognising explicitly the new role of the research software engineer.

