
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Inelastic Black Hole Scattering from Charged Scalar Amplitudes

Citation for published version:
O'Connell, D, Nicholson, I, Luna, A & White, CD 2018, 'Inelastic Black Hole Scattering from Charged Scalar
Amplitudes'  Journal of High Energy Physics. DOI: 10.1007/JHEP03(2018)044

Digital Object Identifier (DOI):
10.1007/JHEP03(2018)044

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
 Journal of High Energy Physics

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Jul. 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/159618128?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/JHEP03(2018)044
https://www.research.ed.ac.uk/portal/en/publications/inelastic-black-hole-scattering-from-charged-scalar-amplitudes(521d0e20-9f16-4daf-b520-913f4203911f).html


J
H
E
P
0
3
(
2
0
1
8
)
0
4
4

Published for SISSA by Springer

Received: January 18, 2018

Accepted: February 20, 2018

Published: March 8, 2018

Inelastic black hole scattering from charged scalar

amplitudes

Andrés Luna,a Isobel Nicholson,b,c Donal O’Connellb,c and Chris D. Whited

aSchool of Physics and Astronomy, University of Glasgow,

G12 8QQ, Scotland, U.K.
bHiggs Centre for Theoretical Physics, School of Physics and Astronomy,

The University of Edinburgh,

Edinburgh EH9 3JZ, Scotland, U.K.
cKavli Institute for Theoretical Physics, University of California,

Santa Barbara, CA 93106-4030, U.S.A.
dCentre for Research in String Theory, School of Physics and Astronomy,

Queen Mary University of London,

327 Mile End Road, London E1 4NS, U.K.

E-mail: a.luna-godoy.1@research.gla.ac.uk, i.nicholson@sms.ed.ac.uk,

donal@ph.ed.ac.uk, christopher.white@qmul.ac.uk

Abstract: We explain how the lowest-order classical gravitational radiation produced

during the inelastic scattering of two Schwarzschild black holes in General Relativity can

be obtained from a tree scattering amplitude in gauge theory coupled to scalar fields. The

gauge calculation is related to gravity through the double copy. We remove unwanted scalar

forces which can occur in the double copy by introducing a massless scalar in the gauge

theory, which is treated as a ghost in the link to gravity. We hope these methods are a step

towards a direct application of the double copy at higher orders in classical perturbation

theory, with the potential to greatly streamline gravity calculations for phenomenological

applications.

Keywords: Scattering Amplitudes, Black Holes, Classical Theories of Gravity

ArXiv ePrint: 1711.03901

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP03(2018)044

mailto:a.luna-godoy.1@research.gla.ac.uk
mailto:i.nicholson@sms.ed.ac.uk
mailto:donal@ph.ed.ac.uk
mailto:christopher.white@qmul.ac.uk
https://arxiv.org/abs/1711.03901
https://doi.org/10.1007/JHEP03(2018)044


J
H
E
P
0
3
(
2
0
1
8
)
0
4
4

Contents

1 Introduction 1

2 Review 3

2.1 Review of BCJ 3

2.2 Classical gravitational scattering 5

3 Charged scalar amplitudes 7

3.1 The scattering amplitude 8

3.2 Large mass expansion 10

4 Removing the dilaton 13

4.1 Double copy and massive amplitudes 13

4.2 Dilatons in diagrams 14

4.3 Example at four points 16

4.4 Inelastic scattering 17

4.5 Relation to classical field computation 18

5 Discussion and conclusions 19

1 Introduction

General Relativity is a spectacularly successful description of gravitational processes. It is

also celebrated for its great beauty. However, the perturbative expansion of the Einstein-

Hilbert Lagrangian about Minkowski space is a less well-beloved aspect of Einstein’s the-

ory. Because of the presence of the metric and its inverse, as well as the square root of

the determinant of the metric, the perturbative expansion contains an infinite number of

terms, each of which corresponds to a complicated Feynman rule. This complexity makes

calculation difficult.

Gradually we have realised that a surprising approach to gravitational perturbation

theory about Minkowski space has the potential to greatly improve this situation. The

basis of the idea goes back to the early days of string theory, when Kawai, Lewellen and

Tye (KLT) realised [1] that closed string amplitudes can be obtained from open string

amplitudes. In the field theory limit, this means that graviton scattering amplitudes may be

obtained from knowledge of gauge boson scattering amplitudes, and of the KLT relations.

One disadvantage of the KLT connection between gauge theory and gravity is that the

KLT relations themselves are quite complicated, especially for processes involving many

gravitons. They are also restricted to tree level scattering amplitudes, so that their appli-

cability to loop processes is necessarily indirect. Fortunately, another perspective on the
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connection between gauge theory and gravity, known as the Bern, Carrasco and Johansson

(BCJ) double copy, removes both of these disadvantages [2, 3]. The double copy is based

on a simple rearrangement of Yang-Mills amplitudes which has a distinctly group theoretic

feel. It also has an immediate application to loop diagrams.

To date, the double copy has been used primarily to understand the quantum structure

of gravity. But there is also considerably motivation to understand classical processes

in General Relativity to high precision. This motivation comes from future plans for

high precision gravitational wave observatories, such as LISA and the Einstein telescope.

Does the double copy provide a route to a refined understanding of radiative processes

involving black holes? In fact, scattering amplitudes have already been used to extract

information about the classical scattering processes in gravity. One direction is to determine

the effective potential between objects deduced from two-to-two amplitudes, which has

been studied in a series of remarkable papers which build on the full suite of amplitudes

tools [4–10], see also [11] for a recent pedagogical introduction. There is clearly great scope

for further work in this area [12].

However, the double copy is set up to compute graviton scattering amplitudes. Per-

haps it may be possible to directly compute the classical gravitational wave spectrum in a

scattering process directly from the double copy? Indeed, the situation seems to be very

positive. The structure of the double-copy is reflected in a class of solutions of the Einstein

equations, known as Kerr-Schild solutions. These simple, symmetric spacetimes are associ-

ated with similarly simple and symmetrical exact solutions of the Yang-Mills equations in

a classical manifestation of the double copy [13–20]. Similarly, perturbative spacetimes can

be constructed order-by-order in a manner which directly manifests the double copy [21].

But it was still a wonderful surprise to see genuine gravitational scattering, with the pro-

duction of gravitational radiation, emerge in a remarkably simple form from the double

copy as shown recently by Goldberger and Ridgway [22], see also [23].

One disadvantage of the Goldberger-Ridgway calculation is the presence of unwanted

fields in the classical theory. In the double copy it is a simple fact that the graviton naturally

comes along with two extra fields: a scalar dilaton and an antisymmetric tensor known as

the axion. In any given calculation, we can hope to switch the dilaton and axion off, but

typically in the simplest cases they will be present. Indeed, in the simplest perturbative

construction of a spacetime containing a point-like singularity using the double copy [21],

the dilaton couples to the singularity with strength proportional to the gravitational mass

of the singularity. The spacetime is therefore a JNW naked singularity [24] rather than

the Schwarzschild solution. As a consequence, the objects scattering in the Goldberger-

Ridgway calculation were JNW singularities.

Another interesting aspect of reference [23] was how the authors implemented the

double copy. Rather than following the standard prescription from scattering amplitudes,

they replaced Yang-Mills colour factors with the kinematic part of the Yang-Mills three

point vertex. This is remarkable in view of the fact that it is well-known [25–37] that the

four point vertex in gauge theory is important for colour-kinematics to work in general.

The goal of this paper is to understand classical inelastic gravitational scattering from

the point of view of scattering amplitudes, given that it is in this context that the double
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copy has its most well-understood form. In particular, we will show how to obtain gravi-

tational radiation by copying a Yang-Mills amplitude. Working at lowest order, it is suffi-

cient to consider the scattering of a pair of scalar particles, which represent non-spinning

(Schwarzschild) black holes. We will show explicitly how the Goldberger-Ridgway approach

can be related to scattering amplitudes, and comment on a particular simplification which

occurs in the double copy in this specific context. Furthermore, the amplitude approach

can be used to remove the contribution of the dilaton. To this end, we build on the recent

work of Johansson and Ochirov [38], who obtained pure gravity as a double copy.

We hope that our results represent a step toward an application of the double copy

in more detailed calculations of gravitational phenomena. Evidently the double copy has

the capacity to determine genuine perturbations to the metric about Minkowski space

resulting from physical dynamical processes. The technical simplicity of the double copy

could greatly streamline the calculation of phenomenologically relevant quantities if it can

be applied to physically relevant processes.

The structure of our paper is as follows. In section 2 we recall salient details regarding

BCJ duality and the double copy, as well as reviewing the classical scattering calculations

of refs. [22]. In section 3 we show how these results can be reproduced using scattering

amplitudes, which will involve a detailed discussion of taking appropriate kinematic limits

to make this equivalence manifest. In section 4, we demonstrate explicitly how the dilaton

can be removed to generate results in pure gravity, building on the ideas of [38]. Finally,

we discuss our results and conclude in section 5.

2 Review

To keep the article self-contained, we open with a review of the BCJ story: colour-

kinematics duality and the double copy. We have also included a brief review of refer-

ence [23] which will be important for the remainder of the paper.

2.1 Review of BCJ

The essence of BCJ is an understanding of how gauge invariance works in the scattering

amplitudes of Yang-Mills theory. We can always choose to write these amplitudes as a sum

over Feynman-like diagrams with three-point vertices. If the set Γ contains all of these

diagrams with n external points, then the n-point amplitude is

A =
∑
i∈Γ

cini
di

, (2.1)

where di is the Feynman propagator denominator associated with graph i, while ci is the

Yang-Mills colour factor corresponding to the diagram and ni is the kinematic numerator

of the graph. Notice that only the kinematic numerator ni depends on the polarisations of

the particles. Let us choose one particle, say particle 1, and replace its polarisation vector

ε1 by its momentum p1. In that case gauge invariance requires that the amplitude A = 0.

However, it is not the case that all the numerators ni = 0. Rather, the identity A = 0

follows from a cancellation among the distinct diagrams. This is only possible because the

– 3 –



J
H
E
P
0
3
(
2
0
1
8
)
0
4
4

colour factors ci are not all independent. Instead, they obey Jacobi identities which arise

from pure group theory.

It is also the case that the ni are not all uniquely defined. Indeed, there is a large

space of numerators which have the property that (2.1) is a valid expression for the Yang-

Mills amplitude. The idea of BCJ is then to pick very special numerators which have the

property that whenever graphs α, β and γ are such that the colour factors satisfy a Jacobi

identity,

cα ± cβ ± cγ = 0, (2.2)

then the kinematic numerators satisfy the same identity,

nα ± nβ ± nγ = 0. (2.3)

Notice that we have allowed for the possibility that there may be positive and negative

signs in the Jacobi identity; whatever these signs are, they must be in common between

the colour and kinematic identities. We also require that the kinematic numerators satisfy

the same antisymmetries as the colour factors. These requirements are known as colour-

kinematics duality, because both colour and kinematics have the same algebraic properties.

The reason for making this choice is that we may now construct a new amplitude which

must be gauge invariant and local:

M =
∑
i∈Γ

nini
di

. (2.4)

Comparing to our previous gauge amplitude, we have replaced the colour factors ci with

a second copy of the kinematic numerators, ni. For this reason, equation (2.4) is known

as the double copy formula. The quantity M is gauge invariant because, if we replace the

polarisation vector ε1 with p1 in, say, the left ni factors, then M = 0. The identity must

follow from precisely the same algebra as in gauge invariance of the Yang-Mills amplitude.

Similarly we could replace the polarisation vector with the momentum in just the right

ni factor. Locality is assured because we have included precisely the correct Feynman

denominators for a local field theory. Therefore M is a scattering amplitude of some kind.

It is straightforward to see that M is an amplitude in a theory of gravity. To see this,

notice that for each particle, M is linear in the outer product εµi ε
ν
i of polarisation vectors.

We may decompose this outer product into irreducible representations of the little group.

The symmetric, traceless tensor is the polarisation tensor of a gravitational wave. Other

kinds of particles are present: the trace term in the tensor product decomposition corre-

sponds to a massless scalar particle which is known as the dilaton, while the antisymmetric

tensor is known as the axion. The presence of these states is a natural feature of the double

copy. Since in the double copy, the graviton, the axion and the dilaton all emerge from a

tensor product decomposition of one matrix, it is useful to give them a collective name: we

will refer to them as the product graviton.1

1The term fat graviton was used in ref. [21] for this quantity. Here we wish to avoid ambiguity due to a

similar term being used elsewhere in the literature.
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More generally, we can allow for two different choices of ni in the double copy, for

example numerators of different gauge theories:

M =
∑
i∈Γ

niñi
di

. (2.5)

In this way we can construct amplitudes corresponding to a variety of theories. There is

an active programme of research aimed at determining what kinds of gravitational theories

can be constructed from the double copy [40–48]. The construction of pure Einstein gravity

as a double copy, due to Johansson and Ochirov [38] is a particularly interesting case, and

it is one which will play a central role in the present paper.

It is also worth emphasising that the double copy has an immediate extension to

loop amplitudes [3]. This fact has led to a wealth of progress in our understanding of

the structure of (super)gravity [49–62], most recently including the integrand of the five-

loop, four-point amplitude in maximal supergravity in four dimensions [63]. This last

achievement rested on a new general technique [64] for constructing appropriate numerators

which we anticipate will be very useful in the future. All-order evidence for the double

copy has been obtained in special kinematic limits [65–70].

The double copy rests on colour-kinematics duality, which hints at the existence of a

new kind of symmetry in gravity — a kinematic symmetry which controls the structure

of the kinematic numerators. This kinematic algebra remains mostly mysterious, except

in the context of the self-dual theory [71] and the nonlinear sigma model [72]. But in

spite of the slow progress in our understanding of the kinematic algebra, the double copy

provides a new way of understanding the symmetry structure of supergravity as following

from symmetries of Yang-Mills theory [73–79].

2.2 Classical gravitational scattering

In this section, we review the work of Goldberger and Ridgway [22], who computed the

gravitational radiation emitted during the inelastic scattering of two JNW singularities

using a method based on the double-copy. Thus, their computation began in the context of

gauge theory. Specifically, they considered classical, coloured point particles with positions

xi(τ) and colours cai (τ) and masses mi interacting through a gauge field Aaµ. If we denote

the coupling by g and let Fµν be the gauge field strength tensor, the classical equations

defining the system are

DµF aµν = g
∑
i

∫
dτcai (τ)

dxνi (τ)

dτ
δ(d)(x− xi(τ)), (2.6a)

mi
d2xµi (τ)

dτ2
= gF aµνcai (τ)

dxiν(τ)

dτ
, (2.6b)

dcai (τ)

dτ
= gfabc

dxµi
dτ

Abµ(xi(τ)) cci (τ). (2.6c)

When the scattering angle is small, one can solve these equations order-by-order in

perturbation theory. At zeroth order, the particles move on straight-line trajectories, with

– 5 –
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constant velocity vµi and constant colour:

xµi (τ) ' bµi + vµi τ, (2.7)

cai (τ) ' c(0)a
i . (2.8)

Interactions correct these expressions, leading to perturbative expansions of the positions,

the colours, and indeed of the field. We will indicate terms arising at the nth order of

perturbation theory with a superscript in brackets:

xµi (τ) = x
(0)µ
i (τ) + x

(1)µ
i (τ) + · · · , (2.9)

cai (τ) = c
(0)a
i + c

(1)a
i (τ) + · · · , (2.10)

Aaµ(x) = A(0)a
µ (x) +A(1)a

µ (x) + · · · . (2.11)

With this setup, it is a mechanical task to perturbatively solve the equations of motion

to any desired accuracy. We are interested in radiation emitted during a collision, which

requires us to compute A
(1)a
µ (x). The result is

k2A(1)aµ(k) = g3

∫
d−q1d

−q2δ
−(k−q1−q2)δ−(q1 ·v1)eiq1·b1δ−(q2 ·v2)eiq2·b2

×
{
c

(0)a
1

m1

c
(0)
1 ·c

(0)
2

k ·v1 q2
2

[
−v1 ·v2

(
qµ2−

k ·q2

k ·v1
vµ1

)
+k ·v1 v

µ
2−k ·v2 v

µ
1

]

+
ifabccb1c

c
2

q2
1q

2
2

[
2k ·v2 v

µ
1−v1 ·v2 q

µ
1 +v1 ·v2

q2
1

k ·v1
vµ1

]
+(1↔ 2)

}
. (2.12)

Of course, our main focus is not gauge radiation but rather the gravitational radiation

obtained via the double copy. Goldberger and Ridgway implemented the double copy as a

set of replacement rules:

c
(0)a
i → miv

µ
i , (2.13)

ifabc → 1

2
Γµνρ(q1, q2, q3). (2.14)

In the latter replacement, the quantity Γ is proportional to the Yang-Mills three point

amplitude, while the three momenta q1, q2 and q3 are momenta associated with the lines

with colours a, b and c. Specialising to the two particle case, the result is a perturbative

“product” graviton given by

k2H(1)µν(k) =− m1m2

8m
3(d−2)/2
pl

∫
d−q1d

−q2δ
−(k−q1−q2)δ−(q1 ·v1)eiq1·b1δ−(q2 ·v2)eiq2·b2[

v1 ·v2

q2
2 k ·v1

vν1

{
v1 ·v2

(
1

2
(q2−q1)µ− k ·q2

k ·v1
vµ1

)
+k ·v2 v

µ
1−k ·v1 v

µ
2

}
+

2k ·v2 v
ν
1−2k ·v1 v

ν
2 +v1 ·v2(q2−q1)ν

2q2
1q

2
2

(
2k ·v2 v

µ
1−v1 ·v2 q

µ
1 +

v1 ·v2 q
2
1

k ·v1
vµ1

)
+(1↔ 2)

]
. (2.15)
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It was demonstrated in reference [23], by direct calculation, that this product graviton

encodes the gravitational radiation emitted in the scattering of two JNW singularities.

For our purposes, it is helpful to exploit the symmetry in particles 1 and 2 to slightly

rewrite H(1)µν(k) in a manner which makes gauge invariance more manifest. To that end,

we introduce the vectors

Pµ12 ≡ k · v1 v
µ
2 − k · v2 v

µ
1 , (2.16a)

Qµ12 ≡ (q1 − q2)µ − q2
1

k · v1
vµ1 +

q2
2

k · v2
vµ2 , (2.16b)

which are gauge invariant in the sense that P12 ·k = 0 = Q12 ·k. The product graviton can

be written as

k2H(1)µν(k) =− m1m2

8m
3(d−2)/2
pl

∫
d−q1d

−q2δ
−(k−q1−q2)δ−(q1 ·v1)eiq1·b1δ−(q2 ·v2)eiq2·b2×

[
Pµ12P

ν
12

q2
1q

2
2

+
v1 ·v2

2q2
1q

2
2

(Qµ12P
ν
12+Qν12P

µ
12)+

(v1 ·v2)2

4

(
Qµ12Q

ν
12

q2
1q

2
2

− Pµ12P
ν
12

(k ·v1)2(k ·v2)2

)]
.

(2.17)

A number of questions arise from this calculation, such as:

1. Are the double-copy replacement rules in equations (2.13) the same as the BCJ rules,

or a replacement for them? What about colour-kinematics duality?

2. Can we find a straightforward mechanism for removing the dilaton pollution in the

calculation?

To address these questions, we find it convenient to reformulate the black hole scattering

calculation as a scattering amplitude.

3 Charged scalar amplitudes

Our aim is to recast the emission of gravitational radiation from a pair of scattering par-

ticles, in terms of a scattering amplitude calculation. Amplitudes have the advantage that

the application of the double copy is well-established, as is the possibility of removing

unwanted dilaton contributions. To this end, we must first decide what scattering ampli-

tude to calculate. We will begin in Yang-Mills theory, given that we wish to obtain the

gravity result using the double copy. The simplest possible candidate is then a five-point

amplitude, corresponding to the incoming / outgoing particles, plus an additional gluon,

as shown in figure 1. The scattering particles themselves, however, need not be gluons.

Ultimately, our gravity calculation will describe the scattering of astrophysical objects (e.g.

black holes) of arbitrary spin. Thus, we must add additional matter to our pure Yang-Mills

theory, whose spin is directly related to the spin of the objects whose scattering we wish

to study. Given that our main motivation is to illustrate the double copy and removal of

the dilaton, we will restrict ourselves to scalar scattering particles in what follows.
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Figure 1. Two particle scattering with the production of radiation. This is the basic structure of

diagrams we will be interested in. Note that time is on the vertical axis.

The masses of our two incoming particles need not be the same, so we will consider a

gauge field Aaµ coupled to two different massive scalars Φi transforming in representations

Ri of the gauge group. The Lagrangian is simply

L = −1

2
trFµνFµν +

∑
i

[
(DµΦi)

†(DµΦi)−m2
i |Φ|2

]
. (3.1)

A discussion of how the double copy works in this kind of situation can be found in [38, 39].

The double copy of our five point gauge amplitude will be an amplitude in a theory con-

taining gravity, a dilaton, an axion, and the scalar fields.2

The goal is to reproduce a lowest order calculation in classical field theory. Since we

aim for a classical result, you might think that it is obvious that we should only compute

tree diagrams: after all, it is standard lore that loops are quantum corrections! However,

this is not quite accurate. We will indeed compute a tree diagram, but the justification is

that we wish for a lowest order result in classical field theory. Loops are relevant for higher

orders in the classical limit when massive particles are present [80].

3.1 The scattering amplitude

We have argued that the calculation of interest should be a tree five-point amplitude. This

is a very straightforward calculation using Feynman diagrams. There are a total of seven

Feynman diagrams, two of which involve four point vertices. Thus there are five cubic

diagrams, shown in figure 2, whose corresponding colour factors are

cA = (T a1 · T b1 )T b2 , (3.2a)

cB = (T b1 · T a1 )T b2 , (3.2b)

cC = fabcT b1T
c
2 , (3.2c)

cD = T b1 (T a2 · T b2 ), (3.2d)

cE = T b1 (T b2 · T a2 ). (3.2e)

2If any of the representations Ri, say R1 were to be the adjoint, it may be appropriate to include vector

states in the double copy built up from one gauge field times one Φ1. However in this case we may choose the

representations at will and avoid these unwanted states. We thank Radu Roiban for discussions on this point.
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p1 p2

p2 � q2kp1 � q1

(a) Diagram A

p1 p2

p2 � q2

k

p1 � q1

(b) Diagram B

p1 p2

p2 � q2kp1 � q1

(c) Diagram C

p1 p2

p2 � q2kp1 � q1

(d) Diagram D

p1 p2

p2 � q2

k

p1 � q1

(e) Diagram E

Figure 2. The five cubic diagrams for inelastic scalar scattering with gluon production in gauge

theory, where time runs vertically.

The notation T a1 ·T b1 indicates a matrix contraction of the group generators in representation

R1; cA is an element of the tensor product space R1 ⊗R2.

The total amplitude may then be written as

A =
nAcA
dA

+
nBcB
dB

+
nCcC
dC

+
nDcD
dD

+
nEcE
dE

, (3.3)

where the kinematic numerators ni and the propagators di can be obtained by computing

the seven Feynman diagrams, and assigning terms from the four point vertices to cubic

diagrams according to their colour factors. Working in Feynman gauge,3 the explicit results

for the numerators are:

nA = (2p1 + q2) · (2p2 − q2) ε · (2p1 + 2q2)− (2p1 · q2 + q2
2) ε · (2p2 − q2), (3.4a)

nB = (2p1 − k − q1) · (2p2 − q2) 2ε · p1 + 2p1 · k ε · (2p2 − q2), (3.4b)

nC = (2p1 − q1)µ(2p2 − q2)ρ [(k + q2)µηνρ + (q1 − q2)νηρµ − (k + q1)ρηµν ] εν , (3.4c)

nD = (2p1 − q1) · (2p2 + q1) ε · (2p2 + 2q1)− (2p2 · q1 + q2
1) ε · (2p1 − q1), (3.4d)

nE = (2p1 − q1) · (2p2 − k − q2) 2ε · p2 + 2p2 · k ε · (2p1 − q1). (3.4e)

Notice that the symmetry of the situation requires that nD is simply equal to nA with

particles 1 and 2 interchanged; similarly nE can be obtained from nB.

The propagators are straightforward to compute, yielding

dA = (2p1 · q2 + q2
2) q2

2, (3.5a)

dB = −2p1 · k q2
2, (3.5b)

dC = q2
1 q

2
2, (3.5c)

dD = (2p2 · q1 + q2
1) q2

1, (3.5d)

dE = −2p2 · k q2
1. (3.5e)

3As they will not be relevant for our discussion, we omit factors of i and couplings in our Feynman rules.
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Once again, symmetry relates dA to dD and dB to dE . From now on, we will exploit this

symmetry and omit the explicit expressions for diagrams D and E.

Before we construct the double copy, we must ensure that our numerators satisfy

colour-kinematics duality; if they do not, we will need to modify them appropriately. In

the case at hand, the colour factors satisfy precisely two identities:

cA − cB = cC ; cD − cE = cC . (3.6)

Therefore, we can construct a new gauge invariant amplitude via the double copy

M =
nAnA
dA

+
nBnB
dB

+
nCnC
dC

+
nDnD
dD

+
nEnE
dE

, (3.7)

if the kinematic numerators satisfy

nA − nB = −nC ; nE − nD = −nC . (3.8)

In fact, no modification is necessary for this five-point tree level case: the kinematic iden-

tities (3.8) hold immediately in Feynman gauge, as a direct calculation using the list of

numerators in equation (3.4) shows [39]. This favourable situation is not expected to hold

in general (i.e. for higher point amplitudes).

In view of the success of the double copy, we now have an expression, equation (3.7),

for a scattering amplitude in a gravitational theory. The motivation to construct this

amplitude was to compare it to classical gravitational scattering: let us now see whether

we have been successful.

3.2 Large mass expansion

In the previous section, we calculated an amplitude corresponding to the scattering of

two scalar particles, accompanied by the emission of gravitational radiation. We would

now like to compare this to the classical scattering results in the Goldberger-Ridgway

approach of refs. [22, 23], reviewed here in section 2.2, and it is not immediately clear

how the two calculations are related. There are two issues to be considered. The first is

what constitutes classical scattering. Generally accepted wisdom dictates that tree-level

diagrams correspond to classical physics, and loop diagrams provide quantum corrections.

However, there are subtleties in this argument, as discussed in detail in ref. [80], whose

conclusion is that loop integrals do indeed have a classical component. To see why, one

may consider the Lagrangian of our theory with explicit factors of ~ reinstated:

L = −1

2
trFµνFµν +

[∑
i

(DµΦi)
†(DµΦi)−

m2
i

~2
|Φ|2

]
, (3.9)

where Dµ = ∂µ + igAµ/~. In any given amplitude, factors of ~ will occur associated with

the couplings and with the masses. Our amplitude is homogeneous in the couplings, but

not in the masses, so to take the classical limit we should treat the mass mi as large. This

is the source of classical corrections from both tree and loop diagrams [80].4 Here, we are

4Note that the fact that classical corrections can come from either tree or loop diagrams also follows

from the need for infrared singularities to cancel between real and virtual graphs [81–83].
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requiring resolvable radiation in the final state, and studying the lowest order Feynman

diagrams for this to occur. Thus, we do not need to add loop corrections to reproduce the

results of section 2.2.

The second issue in relating the amplitude and equation of motion approaches is the

fact that the latter approach includes an expansion in the deflections of the scattering parti-

cles. There are thus two separate expansion parameters in principle: the coupling constant

g, and the momentum transfer between the scattering particles and the radiated graviton,

which measures the degree of deflection. As argued in reference [22], these expansions are

correlated, in that the degree of deflection increases with each order of the coupling. In

our amplitude calculation, we therefore need to identify the relevant expansion parameter

that isolates this behaviour.

In fact, this idea already exists in the literature. In particular, refs. [84, 85] concerned

the classification of radiation in both gauge theory and gravity, up to and including “next-

to-soft” terms in a systematic expansion in the radiated momentum. The authors developed

a physical picture (based on the worldline formalism in quantum field theory [86–88]), in

which the propagators for the scattering particles are replaced by quantum mechanical

(first-quantised) path integrals. These path integrals can be calculated perturbatively,

which corresponds to a sum over the scattering particle trajectories, and thus the possible

deflections of the particles. Furthermore, the expansion of each path integral was achieved

by rescaling particle momenta according to pµ → λpµ, before expanding in inverse power

of λ. This is precisely the large mass expansion alluded to above.

To extract the large masses, we will express the momenta of the incoming particles in

terms of proper velocities, so pµi = miv
µ
i . Then it is clear that the on-shell requirement for

the incoming states translates to the statement that v2
i = 1. But we must also require that

the outgoing states are on-shell, so

(pi − qi)2 = m2
i − 2mivi · qi + q2

i = m2
i (3.10)

⇒ 2mivi · qi = q2
i . (3.11)

This equality is necessary to keep our amplitude on shell, so it is important to respect it

scrupulously while performing the large mass expansion. Thus we treat the quantity vi · qi
as of order 1/m.

It will be useful to introduce some notation to keep track of various terms in the large

mass expansion. The dominant terms in the list, equation (3.4), of our numerators is of

order m3, and there are subleading corrections of order m2 and lower. We will indicate

this by writing ni = n
(3)
i + n

(2)
i + · · · . The dominant terms in the numerators are

n
(3)
A = 8m2

1m2 v1 · v2 ε · v1, (3.12a)

n
(3)
B = 8m2

1m2 v1 · v2 ε · v1, (3.12b)

n
(3)
C = 0. (3.12c)
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We similarly expand the propagators di in powers of the masses. They become

dA = (2p1 · q2 + q2
2) q2

2 = 2m1 v1 · k q2
2 +O(1/m), (3.13a)

dB = −2p1 · k q2
2 = −2m1 v1 · k q2

2, (3.13b)

dC = q2
1 q

2
2. (3.13c)

We write these as di = d
(1)
i + d

(0)
i + · · · .

At leading order in large masses, there is a considerable simplification. Since n
(3)
A = n

(3)
B

and n
(3)
D = n

(3)
E to this order, while d

(1)
A = −d(1)

B and d
(1)
D = −d(1)

E , it is easy to see that the

dominant term in the gravitational amplitude vanishes. We need to go one order deeper

in the large mass expansion to find anything interesting.

Straightforward Taylor expansions of the exact numerators in equation (3.4) lead to

the next order corrections

n
(2)
A = 8m1m2 v1 · v2 ε · q2 − 4m1m2 v1 · q2 ε · v2 − 4m2

1 ε · v1 v1 · q2, (3.14a)

n
(2)
B = 4m1m2 (v1 · k ε · v2 − ε · v1 v2 · k − ε · v1 v2 · q1)− 4m2

1 ε · v1 v1 · q2, (3.14b)

n
(2)
C = 8m1m2 (v1 · q2 ε · v2 + q1 · ε v1 · v2 − v2 · q1 v1 · ε) . (3.14c)

Meanwhile the corrections to the full propagators in equation (3.5) are

d
(0)
A = q2

2 − q2
1, (3.15a)

d
(0)
B = 0, (3.15b)

d
(0)
C = dC = q2

1q
2
2. (3.15c)

In terms of these quantities, the full gravitational amplitude is

Mcl =−(n
(3)
A )2

(d
(1)
A )2

d
(0)
A +2

n
(3)
A (n

(2)
A −n

(2)
B )

d
(1)
A

+
(n

(2)
C )2

d
(0)
C

− (n
(3)
D )2

(d
(1)
D )2

d
(0)
D +2

n
(3)
D (n

(2)
D −n

(2)
E )

d
(1)
D

. (3.16)

Notice that each term has a net four powers of mass. We have also written Mcl to indi-

cate that this quantity is a classical limit of the tree amplitude. After some algebra, the

amplitude can be expressed in terms of the gauge-invariant P and Q vectors defined in

equation (2.16). The result is

Mcl = 16m2
1m

2
2 εµεν

[
4
Pµ12P

ν
12

q2
1q

2
2

+ 2
v1 · v2

q2
1q

2
2

(Qµ12P
ν
12 +Qν12P

µ
12)

+(v1 · v2)2

(
Qµ12Q

ν
12

q2
1q

2
2

− Pµ12P
ν
12

(k · v1)2(k · v2)2

)]
. (3.17)

It is instructive to compare this scattering amplitude against the expression, equa-

tion (2.17), for the classical radiation emitted during scattering. Evidently these quantities

are closely related: the classical result of equation (2.17) is an integral over the scattering

amplitude in the large mass region, times certain factors.

To fully reconcile the classical calculation with the scattering amplitude in the large

mass expansion, we need to bear in mind that, classically, the particles are associated with
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p1

k

p1 � k

Figure 3. The three point interaction involving the massive gauge particle.

given states in position-space. We can write these as superpositions of momentum-space

states as follows:

|ψi〉 =

∫
d−qi δ
−(vi · qi)eiqi·(bi−x)|qi〉, (3.18)

where |qi〉 is a momentum eigenstate of the scalar field Φi. Working in the rest-frame of

this particle, where vi = (1, 0, 0, 0), we can write the state as

|ψi〉 =

∫
d3qi

(2π)3
e−iqi·(bi−x)|qi〉, (3.19)

which can be recognised as simply the wavefunction of a particle localised at the three-

dimensional position x = bi.

4 Removing the dilaton

The theory obtained via the double copy of pure Yang-Mills theory is gravity, coupled to

a dilaton and an antisymmetric tensor, the axion. So far, we have been investigating a

slightly different case: the double copy of Yang-Mills theory coupled to a massive scalar.

In the double copy, we will therefore obtain gravity; a massless scalar dilaton; a massless

axion; and a massive scalar particle. The graviton, dilaton and axion combine to make a

single product graviton Hµν , and we must remove the scalar degrees of freedom in order to

obtain pure General Relativity. Given that all of our solutions for Hµν will be manifestly

symmetric in the indices µ and ν, the axion never appears in what follows. However, we

must still construct a procedure for removing the dilaton. We begin by investigating how

the dilaton couples to the massive scalar particles in the scattering process.

4.1 Double copy and massive amplitudes

It is straightforward to construct three-point scattering amplitudes involving the massive

particle. In the gauge theory, there is only the three point amplitude shown in figure 3,

corresponding to a gauge field interacting with the scalar current.

The amplitude corresponding to this diagram is simply

A = 2 p1 · ε T1, (4.1)
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where ε is the polarisation vector associated with the vector particle. Notice that the

requirement that all three external states are on-shell requires that p1 · k = 0.

Now we pass to the double-copied theory; we choose the polarisation vector in the

second copy to be ε̃. The amplitude is

M = 4 p1 · ε p1 · ε̃. (4.2)

To determine how the massive particle couples to the dilaton, axion and graviton, we

decompose the outer product of polarisation vectors into irreducible representations of the

little group associated with the massless momentum k,

εµε̃ν =
1

2

(
εµε̃ν + εν ε̃µ − 2

d− 2
ε · ε̃ ηµνlg

)
︸ ︷︷ ︸

graviton

+
1

2

(
εµε̃ν − εν ε̃µ

)
︸ ︷︷ ︸

axion

+

(
ε · ε̃
d− 2

ηµνlg

)
︸ ︷︷ ︸

dilaton

, (4.3)

where

ηµνlg = ηµν −
kµqν + kνqµ

k · q , (4.4)

and q is a choice of gauge satisfying q · q = 0. The symmetry of M under interchanging ε

and ε̃ projects the antisymmetric tensor, corresponding to the axion, out. Meanwhile, the

graviton and dilaton components of M are

Mgraviton = 4pµ1p
ν
1eµν , (4.5)

Mdilaton =
4

d− 2
m2

1, (4.6)

where eµν is the traceless, symmetric polarisation tensor of the graviton.

A key point is that in the massive case m1 6= 0, there is a coupling between the massless

dilaton and the massive scalar field. Correspondingly, a dilaton propagates in intermediate

states in the five point amplitude we discussed previously in section 3. Classically, the

massive particles interact through a massless scalar force in addition to the gravitational

force. While this is a natural feature of the double copy, it is desirable to be able to turn off

this coupling to the dilaton: indeed, any application of the double copy to physical black

hole scattering requires some means of disentangling contributions from dilatons. So let

us now face this issue: how can we simply remove the dilaton diagrams from the double

copy process?

4.2 Dilatons in diagrams

It is generally straightforward to identify the contributions of particular substates in scat-

tering amplitudes by looking at their cuts or factorisation channels. In the present case,

we already know how the dilaton appears in the five point amplitude. It is convenient to

consider two categories of diagram involving the dilaton: those with external dilatons, for

example the diagrams in figure 4, and those without any external dilatons. Examples of

diagrams in this second class are shown in figure 5. Of course dilatons may be present as

virtual states in both categories.
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Figure 4. Diagrams with dilatons radiated into the final state. The dilaton is represented by the

double dashed line, while the graviton is the double wavy line.

Figure 5. Types of diagram with only intermediate, virtual, dilaton states.

The first class of diagram, with dilatons in the final state, is trivial to deal with. We

simply project our amplitude onto the traceless symmetric component by hand by replacing

εµε̃ν → eµν . In doing so, we have thrown away the dilaton polarisation tensor which is the

trace term present in the tensor decomposition of the outer product of polarisation vectors,

equation (4.3). This replacement explicitly forces the external state to be a graviton, rather

than a dilaton — thus removing all diagrams in our first category. But this procedure does

not remove the diagrams in our second category, in which virtual dilatons may be present.

A few methods for removing virtual dilatons suggest themselves. The first method,

advocated in [21], is to insert a projector onto graviton states at vertices in which the

massive scalar line may interact with a dilaton. A second, related, option is to insert a

projector on the intermediate lines. But there is also a third option which is very simple to

implement. We observe that the dilaton is a scalar particle propagating in the double copy.

It is possible to remove such scalar particles by introducing a ghost: another scalar particle

in the double copy, but where the double copy is defined by introducing a negative sign

any time this particle appears. This method has been used in the context of the double

copy by Johansson and Ochirov [38] to obtain pure gravity as a double copy.

We will therefore introduce a new massless scalar state in our gauge theory. We can

constrain how the new scalar behaves by requiring that it removes the coupling between

our massive scalar and the dilaton in the double copy. In particular, the ghost must remove

the diagrams in figure 5. We will therefore assume that the ghost couples to two massive

scalars, and that the ghost is charged under the gauge symmetry, transforming in the
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(a) Gauge boson mediator (b) Ghost mediator

Figure 6. Four point scattering in the extended gauge theory of equation (4.7).

adjoint representation. The Lagrangian of the theory is

L = −1

2
trFµνF

µν + trDµχDµχ+
∑
i

[
(DµΦi)

†DµΦi −m2
iΦ
†
iΦi − 2XmiΦ

†
iχΦi

]
, (4.7)

where χ is the adjoint ghost, and X is a coupling to be determined.5

4.3 Example at four points

To see how the procedure works in the simplest case, we turn to elastic two-particle scat-

tering. We will determine the amplitude for two massive scalar particles scattering off one

another in General Relativity from the double copy. Beginning in gauge theory, there are

only two diagrams to compute, as shown in figure 6.

We denote the incoming momenta by p1 and p2 and let the momentum transfer be

q. As we will treat the gauge and ghost mediator cases slightly differently, we present the

contributions separately; they are

Agauge =
4p1 · p2 + q2

q2
T1 · T2, (4.8)

Aghost = X2 4m1m2

q2
T1 · T2. (4.9)

At this order, colour-kinematics duality is trivial so the double copy is immediate. We define

the double copy for the ghost by inserting a sign, so that the gravitational amplitude is

M =
1

q2

[
(4p1 · p2 + q2)2 −X4(4m1m2)2

]
. (4.10)

Now, on the factorisation channel where q2 = 0, the quantity q2M must factorize into a

product of three point amplitudes, summed over intermediate helicities. We find

q2M−−−→
q2→0

(4p1 · p2)2 −X4(4m1m2)2 (4.11)

= 8pµ1p
µ′

1 p
ν
2p
ν′
2

[
ηµνηµ′ν′ + ηµν′ηµ′ν − 2X4ηµµ′ηνν′

]
. (4.12)

5The factor of mi in the coupling is inserted so that X is dimensionless, and using the knowledge from

equation (4.6) that the dilaton couples to mass.
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In General Relativity, the quantity in square brackets in the last line must be equal to the

de Donder projector

Pµµ′ νν′ =

[
ηµνηµ′ν′ + ηµν′ηµ′ν −

2

d− 2
ηµµ′ηνν′

]
, (4.13)

up to pure gauge terms. We therefore conclude that

X4 =
1

d− 2
. (4.14)

4.4 Inelastic scattering

Our next task is to re-compute the five-point scattering amplitude in gauge theory, includ-

ing the new state. It is convenient to use the same cubic topologies as presented in figure 2.

The contributions to the amplitude due to the presence of the χ are given by

Aghost =
cAn

′
A

dA
+
cBn

′
B

dB
+
cCn

′
C

dC
+
cDn

′
D

dD
+
cEn

′
E

dE
. (4.15)

A straightforward calculation yields the new terms in the numerators n′A, n
′
B and n′C . These

new terms are

n′A = 4m1m2X
2 2ε · (p1 + q2), (4.16a)

n′B = 4m1m2X
2 2ε · p1, (4.16b)

n′C = −4m1m2X
2 ε · (q1 − q2). (4.16c)

The numerators to n′D and n′E can be obtained by swapping the particle labels 1 and 2 in

n′A and n′B as before. It is easy to see that the these numerators satisfy the relation

n′A − n′B = n′C , (4.17)

so that colour-kinematics duality is satisfied, and we can construct the double copy as

before. The contribution of the new state to the amplitude is

Mscalar =
n′An

′
A

dA
+
n′Bn

′
B

dB
+
n′Cn

′
C

dC
+
n′Dn

′
D

dD
+
n′En

′
E

dE
. (4.18)

Inserting the explicit expressions, and replacing the product of polarisation vectors εµεν by

the traceless symmetric graviton polarisation tensor eµν to remove final state dilatons, we

find the explicit amplitude

Mscalar,cl = 16m2
1m

2
2 eµν

[
1

d− 2

(
Qµ12Q

ν
12

q2
1q

2
2

− Pµ12P
ν
12

(k · v1)2(k · v2)2

)]
, (4.19)

where we used the value of X, equation (4.14), determined at four points, and we have

performed a large mass expansion. The Einstein gravity amplitude is then easily obtained

by subtracting the scalar contributions from the gravitational amplitude computed in the

previous section. This is

MGR =Mcl −Mscalar,cl, (4.20)
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where Mcl is defined as in equation (3.17). The Einstein gravity amplitude takes the

explicit form

MGR = 16m2
1m

2
2 eµν

[
4
Pµ12P

ν
12

q2
1q

2
2

+ 2
v1 · v2

q2
1q

2
2

(Qµ12P
ν
12 +Qν12P

µ
12)

+

(
(v1 · v2)2 − 1

d− 2

)(
Qµ12Q

ν
12

q2
1q

2
2

− Pµ12P
ν
12

(k · v1)2(k · v2)2

)]
. (4.21)

The classical graviton associated with this amplitude can therefore be taken to be

k2h(1)µν(k) = − m1m2

8m
3(d−2)/2
pl

∫
d−q1d

−q2δ
−(k − q1 − q2)δ−(q1 · v1)eiq1·b1δ−(q2 · v2)eiq2·b2×[

Pµ12P
ν
12

q2
1q

2
2

+
v1 · v2

2q2
1q

2
2

(Qµ12P
ν
12 +Qν12P

µ
12) +

1

4

(
(v1 · v2)2 − 1

d− 2

)
×(

Qµ12Q
ν
12

q2
1q

2
2

− Pµ12P
ν
12

(k · v1)2(k · v2)2

)]
, (4.22)

up to pure gauge terms. We have checked that this result is accurate by comparison with a

far more complicated direct computation in General Relativity coupled to point particles.

4.5 Relation to classical field computation

Given that our treatment was motivated by the computation performed by Goldberger and

Ridgway, it is fair to ask if the method we employed to remove the dilaton can also be

implemented in their framework. We will consider an analogue of the classical gauge theory

equations (2.6) for a ghost field χ that couples to the classical coloured point particles as

well as the gluons. The equations defining the contributions from the ghost to the deflection

of the colour charged point particles are

∂2χa =
∑
i

2Xgmi

∫
dτcai (τ)δ(d)(x− xi(τ)), (4.23a)

mi
d2xµi (τ)

dτ2
= 2Xgmi∂

µχa(xi(τ))cai (τ) + · · · , (4.23b)

dcai (τ)

dτ
= 2Xgmif

abcχb(xi(τ)) cci (τ) + · · · , (4.23c)

where the dots indicate deflections in position and colour due to gravity. We can perform

now an analogous computation to the one used to get equation (2.12). This will yield the

contributions to the gluon field due to the presence of the ghost field χ, and it takes the

explicit form

k2A(1)aµ(k)
∣∣∣
ghost

= g3

∫
d−q1d

−q2

q2
2

δ−(k − q1 − q2)δ−(q1 · v1)eiq1·b1δ−(q2 · v2)eiq2·b2

× 2m12m2X
2 1

k · p1

[
ifabcc

(0)b
2 c

(0)c
1 pµ1 + c

(0)a
1 c

(0)
1 · c

(0)
2

(
qµ2 +

pµ1
k · p1

k · q2

)
− ifabcc(0)b

2 c
(0)c
1

(qµ1 − qµ2 )

q2
1

k · p1

]
+ (1↔ 2). (4.24)
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If we consider the leading terms in a large mass expansion of the ghost contributions to

the scattering amplitude in equation (4.15):

cAn
′
A

dA
→ 4m1m2X

2cA

(
ε · p1

p1 · k
+
ε · q2

p1 · k
+
ε · p1 q2 · k

(p1 · k)2

)
(4.25)

cBn
′
B

dB
→ −4m1m2X

2cB
ε · p1

p1 · k
(4.26)

cCn
′
C

dC
→ −4m1m2X

2cC
ε · (q1 − q2)

q2
1q

2
2

, (4.27)

it is easy to see that the equations (4.25) and (4.26) combine to yield the first terms of

equation (4.24), while the contributions from equation (4.27) are directly responsible for the

final line of equation (4.24). Thus we see that we can indeed remove the dilaton pollution,

this time completely within the framework of classical perturbation theory.

This result shows a direct link between a classical computation similar to that of

refs. [22, 23] and an amplitude, so we may ask if the double copy (scalar) scattering am-

plitude from equation (4.19) can be obtained using a set of replacements similar to those

proposed in [22]:

c
(0)a
i → miv

µ
i , (4.28)

ifabc → 1

2
Γµνρ(q1, q2, q3). (4.29)

It is not difficult to see that such double copy rules will not land on the amplitude from

equation (4.19). Instead, it is the set of replacements

c
(0)a
1 c

(0)
1 · c

(0)
2 → 2m12m2X

2pµ1 , (4.30)

ifabcc
(0)b
2 c

(0)c
1 → 2m12m2X

2 1

2
(qµ1 − qµ2 ), (4.31)

that one needs to obtain the desired amplitude. Of course, this is because the process we

are considering now depends on the dynamics of the ghost field, and so it should be no

surprise that the replacement in equation (4.31) involves the ghost-gluon vertex instead of

the three gluon vertex of equation (4.29). Nevertheless, this highlights one advantage of

the scattering amplitudes: when they are available, it is straightforward to take the double

copy. But in situations where scattering amplitudes are not available, it could well be that

developing these replacement rules, and supplementing them by some notion of colour-

kinematics duality, could allow the double copy to access entirely new physical regimes.

5 Discussion and conclusions

We hope this work represents a step towards using the double copy as a tool for understand-

ing the classical physics of General Relativity. Future gravitational wave observatories,

such as LISA or the Einstein telescope, will operate at higher precision, so the demand for

understanding the finest details of gravity will become more pressing. Since precision has

always been a driving force in the study of scattering amplitudes, it is natural to investigate

whether amplitudes methods have relevance for precision General Relativity.
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We began by reformulating the leading perturbative term in the inelastic gravitational

scattering of two singularities as a tree scattering amplitude, following Goldberger and

Ridgway’s double-copy based calculation. This reformulation allowed us to analyze the

factorisation structure of the calculation, and to identify one method of removing the

dilaton field which was present in the original calculation. We did so by introducing a new

scalar field in the gauge theory which is double-copied to gravity. This scalar is treated as a

ghost, in a manner similar to Johansson and Ochirov’s construction [38] of loop amplitudes

in pure gravity. However, we have not shown that our method will work at higher orders.

Indeed it is likely that there will be issues, since ghosts built from double copies of scalars

(rather than double copies of spinors) encounter problems at two loops [38]. Our attitude is

that an understanding of how best to remove the dilaton will depend on how one computes

higher order corrections to the classical scattering process, which we leave for future work.

An interesting feature of Goldberger and Ridgway’s work was an unusual implemen-

tation of the double copy, equation (2.13). Essentially, they replaced the colour structure

constants by the kinematic Yang-Mills three point vertex, and the colour factors by the mo-

menta. This is a little puzzling, because one would expect that some work should be done

to synchronise the colour and kinematic structure in the calculation. In our amplitude-

based approach, the standard BCJ replacement of colour factors by kinematic numerators

was available. But we also encountered a simplification: colour-kinematics duality holds for

free (in Feynman gauge.) This simplification is most unlikely to pertain to higher orders, so

we anticipate that the replacements Goldberger and Ridgway performed will at least need

to be supplemented by some kind of colour-kinematics duality condition in more general

cases. On a related note, it was satisfying to see a version of the Goldberger-Ridgway

replacement appear in the context of our scalar double copy, equation (4.31). It could well

be that in situations where scattering amplitudes are unavailable, a version of the double

copy based on these kinds of replacement rules could still work. This may allow the double

copy to be used in entirely new ways.

We believe that there is considerable scope for further work on applying the double copy

in the context of classical General Relativity. There is obvious motivation to pursue this

work to higher orders in perturbation theory, in the cases of elastic and inelastic scattering.

It will also be important to determine how to handle the angular momentum of a black

hole. In this work, we were insensitive to black hole spin, but higher order corrections

will probe this aspect. One issue that is likely to arise is another kind of unwanted state

propagating in the double copy: the axion. The axion cannot couple to a spinless point

particle, but when a non-trivial spin vector is present a coupling exists. Therefore it is

likely to be necessary to remove propagating axions; this is an issue which has already

been addressed in loop calculations [38]. This could be an additional complication, but

nevertheless it is worth noticing recent, encouraging, progress in capturing spin effects in

classical GR [10, 89].

Finally, our goal has been to develop the double copy as a tool to simplify perturbation

theory in General Relativity. But the double copy is not the only new idea for simplifying

GR. It could be that a better approach [90–92] is to design a new Lagrangian for GR, equiv-

alent to the Einstein-Hilbert Lagrangian, but exhibiting a simpler perturbative expansion.
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This may lead to a simpler algorithm for determining precision gravitational effects. Such

a procedure still has the double copy at its heart, however, and thus we expect the double

copy to play a key role in gravitational perturbation theory in the coming years.
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