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Abstract. The aim of this work is to discuss abnormality detection
and explanation challenges motivated by Medical Internet of Things.
First, any feature is a measurement taken by a sensor at a time moment,
so abnormality detection also becomes a sequential process. Second, an
anomaly detection process could not rely on having a large collection of
data records, but instead there is a knowledge provided by the experts.
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This work was initially motivated by some security challenges in Medical In-
ternet of Things (MIoT). An individual instance (data record) in this context
is presented as a sequence of measurements generated by multiple sensors. Ab-
normality of a record usually becomes a reason to produce an alert to doctors,
reporting a suspected critical health state of the patients. However, the task is
to separate a real health alarm from threats and vulnerabilities of the MIoT
system. The principal question is which of the measurements (features) are less
trustworthy than the others. The key assumption is that some knowledge of the
joint feature distribution is available before having the measurements. The in-
formation about feature dependencies may be extracted from data analysis or
obtain from experts. Involving experts in data analysis is very desirable. This is
discussed e.g. in [5] where a Bayesian causal network for diagnostic is provided
with elements of human feedback. Expert knowledge may also include some prior
knowledge collected from earlier research on different data sets (e.g. connection
between pulse pressure and coronary heart disease in [6]). Therefore, we assume
that prior knowledge comes in the form of elements of probabilistic model. It is
important to mention that we rely neither on collected historical data nor on reg-
ular quick feedback. The work [1] develops a feature-related anomaly explanation
approach providing user with information about the combination of dimensions
(an attribute subset) in which an outlier shows the greatest deviation. This might
suit our needs, but the solutions in [1] require a sufficient quantity of instances to
learn about normal and abnormal ones. In MIoT modelling, the features appear
to follow a sequential form, the output has to be updated on each step. This has
something in common with on-line machine learning [3], but we have to interpret
new measurements as features, not as instances. Sequential feature explanation
is also addressed in [2] but unlike our setting, the order of features is not fixed.
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1 Data and prior knowledge

Let the data record for a patient has the form D = (d1, . . . , dm) where dj is j-th
feature (measurement), m is the overall number of measurements. In general, j-th
feature is a measurement taken at time moment tj from a sensor sj ∈ {1, . . . , q}.

The prior information known from the experts can be of the following types:

1. Information about joint distribution of the features.
2. Information about exceptions: explainable deviations from typical behaviour

of the system. It may also include the recommended reaction:
– Ignoring: to continue without any change.
– Deleting: the feature(s) from the record.
– Closing: as a compromise, it may be used for training, but not consid-

ered as an abnormality.
– Correcting: to eliminate the contribution of an external factor.
– Switching to the new pattern, with deleting/closing of the prehistory.

Example. We propose that each sensor has its own stochastic schedule. The
distribution of the time between the measurements of a Sensor is exponential
with variance λ = 1 for Sensor 1, λ = 0.5 for Sensor 2. We assume that the data
record is the sum of two stochastic components. The first ‘proper’ one is related
to the measured values themselves generated by a natural multi-dimensional
Gaussian distribution. The second ‘noisy’ component reflects an influence of
Sensor 1 on Sensor 2. Let the joint distribution of measurements from Sensor 1
be Gaussian with mean 0, variance 1 and covariance e−t where t time between
the measurements. Similar parameters for Sensor 2 are 0, 1.5 and 1.5e−2t. The
covariance between a measurement of Sensor 1 and a measurement of Sensor 2
is −e−4t. If the last measurement of Sensor 1 was done in less than t1 = 0.5 time
then the measurement of Sensor 2 is enlarged by a random noisy component
distributed uniformly on [0, λ]. We assume that l0 = 0.1 ≤ λ ≤ 0.5 = l1.

Two types of exceptions are included into the model:

1. An individual exception: The noisy influence of Sensor 1 on Sensor 2 may
sometimes disappear (as if λ = 0).

2. A temporary shift: Assume that the time is measured in days, and the non-
integer part of the time stamp is below 0.5 at night. Within the time intervals
(0, 0.5), (1, 1.5) etc., λ may raise temporarily to its maximal value 0.5.

We use the following basic settings for simulation experiments:

1. Low noise: λ = 0.1 ended with a sensor fault at t = 15.
2. Medium noise: λ = 0.3 ended with a system fault at t = 15.
3. High noise: λ = 0.5 ended with a critical health state at t = 15.
4. Attack simulation (within-range negative shift) at a time point: λ = 0.3,

changed to λ = 0.1 at t = 15.
5. Attack simulation (out-of-range negative shift) at the origin, λ = 0.05.
6. Attack simulation (out-of-range positive shift) at the origin, λ = 0.6.

7. Attack simulation (wave shift) at the origin, variable noise: λ(t) = 0.3esin(t)
√
t.
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2 Testing for abnormalities

We consider a data record as anomalous if it is anomalous even for the best fitting
distribution of the distributions that agree with the prior knowledge. Therefore,
we split the task of anomaly detection into two stages: (2) estimating of the best
fitting distribution P̂ (in Bayesian or Maximum Likelihood sense); (2) testing
the data on agreement with this distribution.

The first testing question is whether any abnormality is caused by the last
measurement added to the system. The statistical test related to this particular
feature can be based on the residual i.e. the difference between the true value of
the last measurement and one expected from P̂ .

What we also need is some form of accumulation of abnormality reflected
in the sequential features. Therefore, we apply the second type of testing based
on the elements of machine learning and ranking: try to predict each measure-
ment from P and the remaining measurements, and to calculate the probabilistic
residuals i.e. p-values measuring how likely the true value of this feature looks
according to the predictive model, and to apply i.i.d. testing (in assumed way
of measurements we can expect them to be nearly i.i.d. in a normal situation).

There still may happen that none of P ∈ P fits the data at a satisfactory
level, but this is not explainable by abnormality of the last feature or a group of
them. Let us imagine that the knowledge is two-level: there exists a hard model
P and an extended model P. In that case, it is possible to compare best fitting

P̂ ∈ P with the best fitting P̂ ∈ P. The alert is produced if the difference in
fitting degree is essential.

Example (continued). Let λ̂ be the maximum likelihood solution. The
following cases may appear:

1. λ̂ < 0: we reduce this case to λ̂ = 0, and go the point 2.
2. 0 ≤ λ̂ < l0: the most likely parameter value is out of range; this may be a

possible reason for a special alert, if the ratio of likelihoods at λ̂ and l0 is
above the pre-selected threshold φ; otherwise we just reduce λ̂ to l0.

3. l0 ≤ λ̂ ≤ l1: we make further steps of analysis in assumption of this value;
4. l1 < λ̂: the most likely parameter value is out of range; this may be a possible

reason for a special alert, if the ratio of likelihoods at λ̂ and l1 is above the
pre-selected threshold φ; otherwise we just reduce λ̂ to l1.

Let D = (d1, . . . , dm) be the observed vector of measurements at a step m
(with ‘deleted’ ones). It is needed to calculate p-values:

pi = P̂{d̃ : δi(d̃) ≤ δi(di)|d1, . . . , di−1, di+1, . . . , dm}.

If pm < ε′1 (strict alarm level) we detect an individual measurement error.
Then, for each sensor i, we consider the sequence

(
pi1, . . . , p

i
mi

)
of measure-

ments from the sensor i. Let p̃i(h) (h = 1, . . . ,mi − 1) be the p-value produced

by Mann-Whitney-Wilcoxon ‘ranksum’ test on (pi1, . . . , p
i
h) and (pih+1, . . . , p

i
mi

).
The group error is reported if minh p̃

i
(h) < ε2.



4 Ilia Nouretdinov, Salaheddin Darwish, and Stephen Wolthusen

3 Explanation

The aim of explanation is to analyse the visible contradiction between the data
and the model. In our example, we assume that abnormal health state or system
fault is reflected as group error of more than one sensors, unlike a fault of one
of the sensors.

Example (continued). To check type 1 exception, exclude the latest mea-
surement from the ‘affected’ list (temporary set zk = 0), re-run the process of
anomaly detection and check whether the alert is reproduced. Type 2 can be
checked similarly: if error disappears if λ is changed to 0.5 for the same night.

The items in the following list are defined based on order of priority: each of
them is used only if none of the preceding ones is applicable.

– Normal work or detected exception.
Action for type 1 exception: ‘closing’ the latest feature.
For type 2 exception: ‘closing’ all ‘affected’ features from the same night.

– Measurement mistake. An individual error (strict alert).
Action: ‘deleting’ the measurement.

– Alarm A/B: health state or system fault. A group error for both sensors.
Action: ‘deleting’ the measurements after the earlier splitting point.

– Alarm C: sensor fault. A group error for only one of the sensors.
Action: ‘deleting’ the measurements of this sensor after the splitting point.

– Measurement mistake. An individual error (moderate alert).
Action: ‘closing’ the measurement.

– Special alert: information bias. A general shift.
Action: no immediate actions, just marking for investigation.

4 Experiments and evaluation

Scenarios 1–7 follow Sec.1. The measurement mistakes and exceptions of types
1–2 are imputed at arbitrary moments (8, 18-19, 32, 39-41, 49, 54, 52). We
are modelling mistakes leading to out-of-range or rare measurements with big
absolute values: 1 for Sensor 1 and 2 for Sensor 2 as examples.

In Tab.1, we apply the methodology of untrustworthy measurement detec-
tion to the data records created in 7 scenarios. The star mark (*) in the table
means the setting is selected for graphical representation in Fig. 1–3. For mea-
surements mistakes, the evaluation criterion is the number of recognised vs.
missed measurement mistakes. For group errors, we observe quickness of re-
action: how many steps passed before an alert was produced. The change point
is t = 15 (step 44) for scenarios 1–4, and the origin (step 1) in scenarios 5–7.
In scenarios 1–4 we consider any alert as an evidence of reaction, while in 5–7
we are waiting for an alert of the proper type (’special alert’). Also, we have
taken a note (in brackets) of the number of produced special alerts, and the
amount of false alerts reported without any real causes. For true alerts, we
check accuracy of explanation. For a measurement mistake and we calculate
the number of examples with this (correct) explanation (+) vs. the others (-).
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Sc. φ = 10, ε2 = 0.05 1.Meas.error 2.Group error 3. False 4.Explanation
ε1 ε′1 +/- delay alerts accuracy

1 0.001 0.001 -10 -6 -8 N/A; gr+(S1)
0.05 0.01 +4/-6 -4 -7 +3/-1; gr±(S2)

2 (*) 0.001 0.001 +4/-6 0 -11 +4; gr-(MM)
0.05 0.01 +2/-8 -4 -13 +1/-1; gr-(S2)

3 0.001 0.001 +6/-4 0 -11 +4/-2; gr-(MM)
0.05 0.01 +2/-8 0 -13 -1/-1; gr-(S1)

4 (*) 0.001 0.001 +4/-6 0 -11 +4; gr-(MM)
0.05 0.01 +4/-6 -4 -13 +2/-2; gr-(S2)

5 0.001 0.001 -10 -11(2) -8 N/A
0.05 0.01 +4/-6 -11(1) -10 +3/-1

6 0.001 0.001 +4/-6 -11(9) -6 +1/-3
0.05 0.01 +4/-6 -11(17) -12 +1/-3

7 0.001 0.001 +2/-8 -11(3) -9 +2
(*) 0.05 0.01 +4/-6 -11(6) -9 +2/-2

Table 1. Effectiveness of the algorithms

An explanation of a group mistake may be correctly(+) or wrongly(-) assigned
to one of the types: sensor fault; health state; global mistake. We consider it as
partially right (±) if a sensor fault is recognised with a wrong sensor.

In our experiments, only a part of measurement mistakes is recognisable but
this may be due to insufficient amount of data for analysis. Typically, some
amount of collected features is needed for sensitivity of measurement mistake.
On the other hand, elimination of suspicious measurement mistakes is useful
for better detection of group errors. Group errors are recognised in some of
scenarios/settings as individual measurement mistakes. This may hopefully be
resolved by using extra ‘strict’ significance level for individual mistake. Group
errors are likely to be recognised in this setting. However, detection of the exact
cause appears to be harder; the easiest one for recognition is ‘positive shift’.

5 Conclusion

In this work, we shed light on the problem of untrustworthy measurement de-
tection motivated by MIoT. The proposed solution is based on its interpretation
as a form of anomaly detection and explanation. We take into account spe-
cific challenges: lack of reliable historical data and feedback, working only with
the general experts’ knowledge and one actual record, sequential addition of
features. We have validated the approach using a synthetic data sample that
includes imputed scenarios of measurement mistakes, exceptions, faults and at-
tacks. It appears that individual mistakes are hardly recognisable at first steps
of the work, but improves with growth of the amount of collected measurements.
The group errors are quickly recognisable by statistical analysis, but detection
of the exact cause may be not so easy. The reaction of the system attacks (global
errors) to intentional attacks is promising. The prior task for the future work
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Fig. 1. Scenario 2: S1-2 fault

Fig. 2. Scenario 4: Late shift (decrease)

Fig. 3. Scenario 7: Early shift (wave)
The markers on these figures mean: a star is for an imputed measurement mistake;

a square is for a produced alert (measurement mistake if no lines are attached); one
oblique vertical line crossing the square is for sensor fault alert; two oblique vertical
lines are for system fault or healthy state alert; a horizontal line is for a special alert.

may be developing some kind watermarking as in [4], with elements of active
learning in investigation.
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