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Abstract

The Condorcet jury model with costless but informative signals about the
true state of the world predicts that the efficiency of group decision-making
increases unambiguously with the group size. However, if signal acquisition is
made an endogenous and costly decision, then rational voters have disincentives
to purchase information as the group size becomes larger. We investigate the
extent to which human subjects recognize this trade-off between better informa-
tion aggregation and greater incentives to free-ride in a laboratory experiment
where we vary the group size, the cost of information acquisition and the pre-
cision of signals. We find that the theory predicts well in the case of precise
signals. However, when signals are imprecise, free-riding incentives appear to
be much weaker as there is a pronounced tendency for subjects to over-acquire
information relative to equilibrium predictions. We rationalize the latter finding
using a quantal response equilibrium that allows for risk aversion.
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1 Introduction

Condorcet’s jury theorem (Condorcet 1785) asserts that if a group of individuals
have common preferences over some binary outcome (e.g., convicting the guilty or
acquitting the innocent) and are given independent and informative private signals
about the true state of the world (e.g., “guilt” or “innocence”) then, under majority
rule, the correct outcome is more likely to be achieved as the group size of voters is
increased. Feddersen and Pesendorfer (1997) have shown that this result is robust to
strategic or insincere voting, where voters may rationally vote against their private
information; even if voters vote strategically against their signals, they do so in an
optimal way so that information aggregation continues to improve as the group size
increases. An implication of these results for optimal voting mechanisms is that,
under the maintained assumptions, we can always make a voting mechanism better
by adding more voters. However, this result assumes that private signals about the
true but unknown state of the world are costless and exogenously provided.

In this paper we study the question of endogenous information aggregation in a
setting where voters must first independently decide whether to acquire a costly sig-
nal about the true state of the world prior to voting as a group whether to convict or
acquit under majority rule. In particular, we present results from a laboratory exper-
iment designed to explore how the number of players, the cost of information and the
informativeness of signals matter for information aggregation by juries or committees.
We believe that a laboratory experiment provides the best means of empirically eval-
uating the theory of voting and information aggregation with endogenous information
acquisition as the laboratory allows for firm control over the number of voters, the
costs and precision of information that voter receive as well as the incentives that
voters face, so that the theory can be properly tested.

The basic set-up of our experiment is the Condorcet jury model in which voters
have common preferences and must make a decision as a group about whether to
convict or acquit a defendant based on private, informative signals about whether
the defendant is guilty or innocent. A main focus of our study is how the size of the
group affects the probability that it makes the correct decision (henceforth referred to
as informational efficiency). Theory suggests that adding an additional individual (or
voter) to the group has two opposing effects. On the one hand, since the additional
individual’s signal is informative – it is more likely to be correct than incorrect – effi-
ciency will increase. We term this the information aggregation effect, and the content
of the various versions of the Condorcet Jury Theorem is that when voters are exoge-
nously endowed with private, independent but informative signals about the state of
the world, this effect ensures that arbitrarily large groups can reduce the likelihood
of error in the group decision without bound, thus improving informational efficiency.
However, when the acquisition of information (signals) is a costly choice, then as the
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group size increases, each individual has a lower incentive to acquire information.
This countervailing free-riding effect works to reduce informational efficiency. Thus,
when information is endogenously chosen and costly, the overall effect of group size on
informational efficiency depends on the tradeoff between the information aggregation
effect and the free riding effect. Persico (2004) and Koriyama and Szentes (2009)
show the existence of an upper bound on the optimal group size in Condorcet jury
environments with costly information acquisition.

These theoretical papers provide us with testable hypotheses that we evaluate in
our laboratory experiment. In particular, increases in the group size should result
in an increase in informational efficiency when information is informative and freely
available. However, if information acquisition is costly, informational efficiency should
only increase up to a certain group size before falling off and for large enough group
sizes, reaching the minimum efficiency level. Depending on the model parameteriza-
tion, all voters may have an incentive to acquire information up to a certain group
size, but beyond that group size rational voters play a mixed strategy with regard
to information acquisition, and for a large enough group sizes, rational voters should
refuse to acquire any information at all. Thus, the theory puts an upper bound on the
optimal group size and one purpose of our experiment is to determine whether this
upper bound really matters among the laboratory subjects who are asked to make
a decision about the purchase of costly information prior to voting. In addition to
increasing the group size, we also vary the cost of information acquisition and the
precision of the signal process.

To preview our results, we find that if signals are costly and noisy (but infor-
mative), the free-riding effect on information acquisition that is predicted to become
dominant as the group size increases is actually rather weak, so that the information
aggregation effect associated with a larger group size tends to dominate and thus
welfare is generally increasing with the group size, counter to theoretical predictions.
On the other hand, consistent with theoretical predictions, we find that if signals are
costly and perfectly informative, then there is a drop in welfare as the group size in-
creases in line with theoretical predictions. We then consider several explanations for
why the group size effect is not as strong in the noisy signal environment as compared
with the perfect signal environment.

Specifically, we first consider whether subjects might simply be coordinating on
asymmetric equilibria as opposed to the symmetric equilibria that we focus on. We
find, however, that these two different types of equilibria are not sufficiently distinct
from one another to provide a meaningful explanation. We then consider several
different behavioral explanations for our findings including 1) that subjects may ap-
proach the game in decision-theoretic rather than game-theoretic terms thereby ig-
noring free-riding considerations; 2) that behavior reflects noisy best responses so that
a quantal response rather than a Nash equilibrium is the appropriate benchmark for
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analysis and finally, 3) that subjects are risk averse with regard to uncertain money
payoffs (rather than risk neutral as the theory presumes), and this risk aversion leads
them to over-acquire information in the noisy signal environment. We conclude that
a quantal response equilibrium with risk averse preferences provides a compelling ex-
planation for why behavior departs from theoretical predictions in the noisy signal
environment.

The rest of the paper is organized as follows. Section 2 discusses related literature.
Section 3 presents the theoretical model and equilibrium predictions. Section 4 de-
scribes our experimental design and in section 5 we state our research hypotheses with
numerical predictions under the parameterizations used in the experiment. Section 6
presents our main experimental findings in comparison with theoretical explanations
and we also evaluate the various behavioral explanations for why, in certain treat-
ments, information acquisition departs from theoretical predictions. Finally, section
7 concludes with a summary of our main findings and some suggestions for future
research.

2 Related Literature

The theory of endogenous information acquisition in the Condorcet jury model be-
gins with Persico (2004) and Martinelli (2006). Persico (2004) observed that if agents
must first decide whether to acquire private noisy information that is then aggregated
to reach a collective decision, then the information acquisition decision is properly
viewed as a free-rider problem with the result that information acquisition will gen-
erally be less than the social optimum under a given voting rule. An implication of
this observation is that for any given signal precision and voting rule there will exist
an optimal committee size, and in contrast to the standard Condorcet Jury Theorem,
larger committees will not always be welfare-improving. Martinelli (2006, 2007) stud-
ies endogenous, costly and noisy information acquisition but considers the case where
the signal precision is the choice variable, with more precise signals being more costly.
Martinelli shows that if the marginal cost of the signal precision is zero at the lowest
level of precision, then voters acquire some information even in large electorates and
that the voting outcome can be (under certain assumptions) asymptotically efficient.
Mukhopadhaya (2003) and Koriyama and Szentes (2009) also explore the Condorcet
Jury model under endogenous information acquisition and show that larger than op-
timal committee sizes do lead to social welfare losses relative to smaller committee
sizes, but that these losses might not be so great. Gerardi and Yariv (2008) show that
the optimal voting mechanism is in general not ex-post efficient; distortions have to
be introduced to ensure that agents have incentives to acquire information. Oliveros
(2013) adds abstention and heterogeneity in intensity of preferences to Martinelli’s
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endogenous information choice setting and shows that those acquiring more precise
information do not necessarily abstain less often.

The first experimental studies of the Condorcet jury model all studied environ-
ments where informative signals were exogenously and freely provided to voters (there
was no information acquisition decision): Guarnaschelli et al. (2000), Ali et al. (2008),
Battaglini et al. (2010), Goeree and Yariv (2011), Bhattacharya, et al. (2014) and
Anderson et al. (2015). These studies focus on the extent of strategic versus sin-
cere voting under a variety of different conditions: different voting rules (majority or
unanimity), timing assumptions (simultaneous or sequential), committee durations
(ad hoc/one-shot or standing/extended), asymmetrically informed voters, preplay
communication, compulsory versus voluntary voting (abstention), and differential
costs associated with incorrect group decisions. More recent experimental studies
by Großer and Seebauer (2016) Elbittar et al. (2017) and Mechtenberg and Tyran
(2016) use the Condorcet jury model to explore the consequences of allowing endoge-
nous costly information acquisition prior to voting as we do in this paper.1 Großer
and Seebauer (2016) study costly information acquisition by groups of size 3 or 7
and focus on whether compulsory rather than voluntary voting (where abstention is
allowed), provides greater incentives for voters to acquire information (it does). Elbit-
tar et al. (2017) explore endogenous information acquisition under a voluntary voting
mechanism focusing on the extent to which the voting rule, majority or unanimity,
matters for information acquisition and participation in voting. Mechtenberg and
Tyran (2016) study costly information acquisition prior to voluntary voting (absten-
tion allowed) where voters can first petition to hold a vote or defer the decision to an
expert. They report that when subjects can first petition to hold a vote, information
acquisition is greater than when the vote is exogenously imposed. By contrast with
these three studies, we consider only the majority rule, compulsory voting setting (no
abstention) where we focus not only on the effect of changes in group size, but also on
changes in the cost of acquiring information (signals) about the true state of the world
as well as the precision of those signals. Our paper is the only one in this literature
to consider cases where subjects can acquire, at a fixed cost, noisy or perfect signals
of the true state of the world. Our design thus enables a more complete assessment
of the comparative statics implications of group size, information cost, and signal
precision for endogenous, costly information acquisition all under the simple majority
rule, compulsory voting mechanism.

1We only became aware of these other studies after we had begun working on this project.
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3 The Model

Our experiment implements the standard Condorcet Jury model with the addition
of an endogenous, costly information acquisition stage that takes place prior to the
voting stage as in Persico (2004) and Martinelli (2006, 2007). Within this environ-
ment, we consider the comparative statics implications of varying the information
acquisition cost, c, the group size, N , and the signal precision, x.

In all of our experimental settings (or “treatments”) a group consisting of an odd
number, N , of individuals faces a choice between two alternatives, labeled R (Red)
and B (Blue). The group’s choice is made in an election decided by majority rule,
that is, the alternative, R or B that receives more than N/2 votes is the group’s
decision. It is common knowledge among voters that there are two equally likely
states of nature, ρ and β, i.e., all voters have the common prior Pr[ρ] = Pr[β] = .5.
Alternative R is commonly known to be the better choice in state ρ while alternative
B is commonly known to be the better choice in state β. Specifically, in state ρ each
group member earns a payoff of M > 0 if R is the alternative chosen by the group
and 0 if B is the chosen alternative. In state β the payoffs from R and B are reversed.
Formally, we have:

U(R|ρ) = U(B|β) = M,

U(R|β) = U(B|ρ) = 0.

Prior to the voting decision, each individual may acquire a costly private signal
regarding the true, binary state of nature. This signal can take on one of two values,
either r or b. The probability of receiving a particular signal depends on the true
state of nature. Specifically, each subject choosing to acquire a signal receives a
conditionally independent signal where

Pr[r|ρ] = Pr[b|β] = x.

Voters who do not acquire a signal have no more information about the true state of
the world than the initial common prior that the two states are equally likely.

We suppose that 1/2 < x ≤ 1 so that signals are informative but possibly noisy.
More precisely we will consider cases where 1/2 < x < 1, so that the signal is noisy
but informative as well as cases where x = 1, and the signal (if purchased) is perfectly
informative. The latter case eliminates fundamental uncertainty about the true state
of the world so that the voter only faces strategic uncertainty as to the information
acquisition choices of other voters.

Given that x > 1/2, signal r is associated with state ρ while signal b is associated
with state β (we say that r is the correct signal in state ρ while b is the correct signal
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in state β). It can be easily checked that when the signal precision is symmetric and
the two priors are equal, the posterior probabilities that signals are matched with
the correct states are the same in both states and are given by the signal precision
parameter x:

Pr[ρ|r] = Pr[β|b] = x.

In our setting, each individual must decide whether or not to acquire a private
signal at a fixed cost of c > 0. If an individual acquires a private signal then her
payoff is U(A|ω) − c, where A is the group decision outcome and ω is the state of
nature (i.e., payoffs are either M −c or −c, depending on the correctness of the group
decision). If an individual does not acquire a private signal her payoffs are given by
U(A|ω).

Having specified the preferences and information structure of the model, we next
discuss the equilibrium strategies and outcomes for the voting games we study in
our experiment. We initially restrict attention to symmetric equilibria in weakly un-
dominated strategies as such equilibria would seem to be the most relevant given the
information that is available to subjects in our experiment and our use of anonymous
random matching to form groups (as detailed later in section 4). In particular, we re-
quire that in equilibrium (i) all voters of the same signal type play the same strategies
and (ii) no voter uses a weakly dominated strategy. We will discuss later the possibil-
ity that subjects coordinate on other asymmetric equilibria, but our design involves
a choice of parameters such that a symmetric equilibrium in weakly un-dominated
strategies always exists and this symmetric equilibrium is unique.

3.1 Symmetric Equilibrium Predictions

The strategy of a voter consists of three elements: (1) a probability σ of buying costly
information, (2) a probability vs of voting sincerely conditional on buying a signal
s ∈ {r, b}, and (3) a probability of voting for each alternative conditional on not
buying information.

Since we use a setting that is symmetric across alternatives (equal priors in favor
of either state, equal signal precision, x, in each state, and simple majority rule), we
focus on equilibria where voters vote for each alternative with equal probability if they
do not buy information. Moreover, it is easy to show that in any equilibrium, voters
must vote sincerely conditional on buying information, i.e., v∗

b = v∗
r = 1. Thus, in this

setting, the symmetric equilibrium is characterized by σ∗, the equilibrium probability
of information acquisition alone. In special cases, this probability may be 0 or 1,
i.e., we may have a pure strategy equilibrium. We will sometimes denote the pure
action of information acquisition (σ = 1) by σ1 and the pure action of not acquiring
information (σ = 0) by σ0. Our focus on symmetric equilibria, where voters with the
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same private information use the same strategy, follows the common practice in the
literature.

Under costly information acquisition, there may exist multiple equilibria (includ-
ing asymmetric equilibria) where individuals acquire information with positive prob-
ability (σ∗ > 0).2 As noted earlier, we always choose our parameter values such that
the voting game in our experiment has a unique symmetric equilibrium.

Given sincere voting conditional on information acquisition, the expected utility
from acquiring information is given by

U(σ1) =
M

2
{Pr[ρ|r] Pr[Piv|ρ] + Pr[β|b] Pr[Piv|β]}− c (1)

and the expected utility from not acquiring information is

U(σ0) =
M

2

{
1

2
Pr[Piv|ρ] +

1

2
Pr[Piv|β]

}
. (2)

Suppose the probability of information acquisition is σ ∈ [0, 1]. Then, the ex-ante
likelihood of a voter voting for the correct alternative is

zσ = xσ +
1

2
(1 − σ). (3)

Notice that we must have Pr[Piv|ρ] = Pr[Piv|β] = pσ (say). Therefore, we have

U(σ1) = Mxpσ − c
U(σ0) = M

2
pσ

}
where

pσ = Pr(Piv|ω) =

(
N − 1

N−1
2

)
[zσ(1 − zσ)]

N−1
2 . (4)

The information acquisition part of the strategy σ depends on the sign of U(σ1) −
U(σ0), which turns out to be a comparison of the net benefit of information acquisition
conditional on being pivotal with the normalized cost. In particular, σ∗ ≥ 0 if and
only if (

x − 1

2

)
pσ ≥ c

M
(5)

and σ∗ = 1 if the inequality is strict. Notice that the net benefit of information
acquisition is itself a function of σ.

2Since subjects are randomly matched to form a different group in each round of our experiment
(which will be explained in detail in the next section on experimental design), we doubt that subjects
could find a way to coordinate on play of an asymmetric equilibrium. However, we address the
question of whether our subjects coordinated on asymmetric equilibria later on in section 6.3.
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Again, the solution value σ∗ is then used for the calculation of informational
efficiency. It is given by the formula

W =
N∑

k=N+1
2

(
N

k

)
zk

σ(1 − zσ)
N−k. (6)

4 Experimental Design

We consider three main treatment variables: 1) the group size, N 2) the information
cost, c and (3) the signal precision, x. We adopt a between subjects experimental
design so that in each session, subjects only make decisions under a single set of the
three treatment variables.3

The experiment was computerized and was presented to subjects as an abstract
group decision-making task using neutral language that avoids any direct reference
to voting, elections, jury deliberation, etc., so as not to trigger some other possible
(non-theoretical) motivations for voting (e.g., civic duty, the sanction of peers, etc.).
A sample of the written instructions that were given to subjects and read aloud prior
to the start of each experimental session are provided in Appendix A.

Each session consisted of 2N inexperienced subjects and 25 rounds. At the start
of each of these 25 rounds, subjects were randomly and anonymously matched into
two groups of size N and this random formation of N -member groups at the start of
each round was made public knowledge in the written instructions.4 One of the two
groups of size N was randomly assigned to the red jar (state ρ) and the other was
assigned to the blue jar (state β), thus fixing the true state of nature for each group
and ensuring that we have an equal number of ρ and β states. No subject knew which
jar was assigned to her group. Subjects did know that it was equally likely that their
group was assigned to either the red or the blue jar at the start of each round, that
is, we took care to implement this common prior belief among the subjects.

Both the red and blue jars held 10 ball each. The red jar was known to contain a
fraction x of red balls (signal r) and a fraction 1− x of blue balls (signal b) while the
blue jar was known to contain a fraction x of blue balls and a fraction 1−x of red balls.
We fixed the signal precision at either x = 0.7 or at x = 1 in a given session, and these

3That is, in each session, the group size N , information cost c, and signal precision x, are fixed
over all rounds of the session.

4Following the terminology of Ali et al. (2008), we use an “ad hoc committee” design. Our
intention was to disrupt repeated game dynamics that could arise under the alternative fixed-match
“standing committee” design, which could enable coordination on asymmetric equilibria or other
collusive outcomes. Our random, ad hoc committee design is intended to make the symmetric
equilibrium predictions of the model as salient as possible.
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signal precisions were made public knowledge in the written instructions. We thus
implemented symmetric signal precisions so as to facilitate subjects’ understanding of
equilibrium strategies in the compound decision making environment that we study.
In addition, as we have previously noted, symmetric signal precisions rule out strategic
(insincere) voting under the majority rule compulsory voting mechanism that we
employed.

The sequence of moves in each round of our experiment was as follows. First,
each subject had to decide whether or not to pay the fixed and known per round cost,
c > 0, to draw a ball from the jar randomly assigned to her group for that round. If
a subject decided to pay the cost and draw a ball, this was then done virtually in our
computerized experiment; subjects clicked on one of 10 balls on their decision screen
and the color of their chosen ball was privately revealed to them. In each round and
for each subject, the assignment of colors to the 10 ball choices the subject faced were
made randomly according to whether the jar the subject was drawing from was the
red jar (in which case x percent of the balls were red and 1−x percent were blue) or
the blue jar (in which case x percent of the balls were blue and 1 − x percent were
red). While each subject observed the color of the ball she had drawn, she did not
observe the color of the balls drawn by any other subject or the color of the jar from
which she had drawn a ball. The group’s common and publicly known objective was
to correctly determine the jar, “red” or “blue”, that had been assigned to their group.

Subjects who chose not to draw a ball had to wait until other group members
(if any) finished drawing a ball. Subjects were seated at computer workstations
with privacy dividers so they could not observe the choices of other subjects. After
the information acquisition decision was made and any voters who had chosen to
acquire information had drawn their ball and observed its color, play proceeded to
making a choice between red or blue for the color of the group’s jar. All N subjects,
regardless of whether or not they chose to draw a ball, had to choose either red or
blue for their guess of the color of their group’s jar for that round, that is, voting
was compulsory and abstention was not allowed. The group’s decision, red or blue,
was then determined by majority rule. Ties were ruled out by the fact that the
group size, N , was always chosen to be an odd number so that a group’s decision via
majority rule was always unambiguously either red or blue. In our experiment we
considered several different group sizes, N ∈ {3, 7, 13}; signal precisions, x ∈ {.7, 1}
and information acquisition costs, c ∈ {5, 8, 25}. As we explain in the next section,
these choices for N were made so as to explore various equilibrium predictions of the
theory.

Payoffs in each round were determined as follows. First, at the start of each round,
each subject was endowed with c points, an amount equal to the treatment-specific
cost of acquiring information in each round. If the group’s decision via majority rule
turned out to be correct, i.e., the group’s decision was red (blue) and the jar assigned
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to that group was in fact the red (blue) jar, then each group member who chose
to acquire information prior to voting received 100 points for the round (M = 100),
while those group members who chose not acquire information prior to voting received
100 + c points for the round. If the group’s decision turned out to be incorrect, then
each group member who chose to acquire information prior to voting received 0 points
for the round, while those group members who did not acquire information prior to
voting received c points for the round. Thus, if a voter decided not to draw a ball
(i.e., buy information), then she kept her endowment of c points and also earned the
group-wide payoff in points as well, which depended on whether the group got the
decision correct (100 points) or incorrect (0 points). Note that our awarding of an
endowment of c points to each subject at the start of each round does not change any
of the equilibrium predictions and it avoids the possibility that subjects earn negative
payoffs in any round.5 We vary the magnitude of the information acquisition cost
c ∈ {5, 8, 25}; as we explain in the next section, these choices for c were made so as
to explore various equilibrium and behavioral hypotheses. The parameterization of
the payoff function (i.e., the value of M and c) was held constant across all rounds of
any given session (i.e., as noted above, we use a between-subjects design).

At the end of each round, after all choices had been made and payoffs determined,
subjects received feedback on the results of the round. If a subject had paid the cost
to buy a signal, she was reminded of the private signal (red or blue) that she received
prior to voting in the round. All subjects were reminded of their “choice” (i.e., their
vote) for red or blue for the color of their group’s jar for the round. Subjects were
then informed of the number of red and blue choices (votes) made by group members,
the group’s decision (red or blue) according to the majority rule, the true color of
their group’s jar for the round (red or blue) and whether their group’s decision was
“correct” or “incorrect”. Subjects were also informed of their payoff in points for
the round, which was one of four possible values: 0, c, 100 or 100 + c. Subjects
were further informed at the end of each round about the number of subjects in their
N -player group who did or did not choose to purchase information (a signal) prior to
making a choice (voting) for red or blue in that round.6

5Levine and Palfrey (2007) and Bhattacharya et al. (2014) use this same design.
6Theoretically speaking, such ex-post information on the number of group members acquiring/not

acquiring information prior to voting is irrelevant in our one-shot, random-matching (ad hoc com-
mittee) design. However, in an initial pilot experiment (not reported in this paper) where we
did not provide ex-post information on the number of voters acquiring information, we observed
over-acquisition of information relative to equilibrium predictions and so we thought it might be
behaviorally important (from a learning perspective) to provide such information, which we did in
all of the sessions reported on in this paper. As it turned out, information acquisition frequencies
remained higher than equilibrium predictions in many (but not all) of our experimental treatments
(as detailed below) even with the feedback we provided at the end of each round about the number
of group members acquiring/not acquiring information in that round.
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Following 25 rounds of play, the session was declared over. Subjects’ point totals
from all 25 rounds of play were converted into dollars at the fixed and known rate of
1 point = $0.01 and these dollar earnings were then paid to subjects in cash and in
private. In addition, subjects were awarded a $5 cash show-up payment.

Treatment Conditions No. of No. of Subjects No. of Rounds
N c x Sessions per Session per Session
3 5 0.7 4 6 25
3 8 0.7 4 6 25
3 25 0.7 4 6 25
7 5 0.7 4 14 25
7 8 0.7 4 14 25
13 8 0.7 4 26 25
3 8 1.0 4 6 25
7 8 1.0 4 14 25

Table 1: Characteristics of Experimental Sessions

Table 1 summarizes our experimental design, which consists of 32 voting sessions
involving 368 subjects. Subjects were recruited from the undergraduate population
of the University of Pittsburgh and the experiment was conducted in the Pittsburgh
Experimental Economics Laboratory using Willow, a Python framework for experi-
mental economics.7 No subject was allowed to participate in more than one session of
this experiment. Total earnings including the $5 show-up payment averaged around
$24 per subject for a 1 hour experiment.

5 Research Hypotheses

Table 2 shows symmetric equilibrium predictions for various combinations of our three
treatment parameters: N , c and x. Note that we did not conduct sessions for all of
the treatment combinations shown in Table 2 as budget constraints prevented such
an exhaustive exercise. The predictions of the treatments for which we did collect
experimental data are indicated in boldface type in Table 2; other predictions from
alternative parameterizations of the model shown in non-boldface type are given for
reference purposes only and serve to justify the model parameterizations (treatments)
that we did choose to run in the laboratory.8

7The program we used to conduct the experiment reported in this paper is available upon request.
8For example, as Table 2 reveals, when x = 0.7, as N increases from 3 to 7 to 13, efficiency (w∗)

more rapidly declines to the minimal level of 0.5 as c is increased from 5 to 8 and to as high as 25.
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x=0.7 N = 3 N = 7 N = 13
σ∗ w∗ σ∗ w∗ σ∗ w∗

5 1 0.784 0.6693 0.773 0 0.5
8 1 0.784 0 0.5 0 0.5

25 0 0.5 0 0.5 0 0.5
x=1 N = 3 N = 7 N = 13

σ∗ w∗ σ∗ w∗ σ∗ w∗

c = 5 0.8944 0.992 0.5621 0.955 0.356 0.912
8 0.825 0.978 0.447 0.902 0.2359 0.810

Notes: σ∗ indicates the equilibrium rate of information acquisi-
tion and w∗ indicates equilibrium (informational) efficiency.

Table 2: Symmetric Equilibrium Predictions

Based on the equilibrium predictions shown in Table 2, we formulate three research
hypotheses concerning the effect of our three treatment variables on the frequency
of information acquisition (and hence on the frequency of a group’s making correct
decisions - the informational efficiency of group decision-making always moves in the
same direction as the rate of information acquisition, as Table 2 reveals).

H1. Group size effect: For any fixed (positive) information cost and
signal precision (c, x) ∈ {5, 8, 25} × {0.7, 1}, the frequency of information
acquisition, σ∗, decreases toward zero or remains at zero as we increase
the group size from N = 3 to N = 7 to N = 13.

To see the free riding effect, notice that for any given σ, x and c, as N increases,
the pivot probability pσ, (4), decreases, leading to a drop in the benefit of information
acquisition (left hand side of inequality (5)). The two competing effects of changing
group size on efficiency are easy to see from expression (6). On the one hand, the free
riding effect depresses the equilibrium value of σ (and therefore zσ), which depresses
W if N were held constant. On the other hand, the information aggregation effect
predicts that, for any strictly positive σ (and therefore, zσ > 1

2
), an increase in N

raises W . While these effects work in opposite directions, notice that for any c, x and
σ, for a large enough N , the pivot probability, pσ, will eventually be small enough
that the benefit of information acquisition is lower than the cost. Thus, for a large
enough group size, the free riding effect dominates so that σ∗ = 0, and, as a result,
the likelihood of a correct decision is no better than the prior so that W = 0.5.

Thus, there is less reason to study variations in c for large enough N , e.g., N = 13.
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H2. Cost effect: For any fixed group size and signal precision (N, x) ∈
{3, 7, 13}×{0.7, 1}, the frequency of information acquisition, σ∗, remains con-
stant or decreases toward zero as we increase the information acquisition
cost from c = 5 to c = 8 to c = 25.

The effect of information cost is straightforward: the higher is the cost of infor-
mation acquisition, the less likely are individuals to acquire information, a prediction
that follows directly from expression (5). In the case where N = 3, a cost of c = 8
is the highest (integer) value for which all N players rationally acquire information
in the symmetric equilibrium of the majority rule voting game. Thus we chose to
compare the case of c = 8 with the case of c = 5. Note that for the cost effect we
have data for two cases: 1) N = 3 and x = 0.7, where we vary c from 5 to 8, and
2) N = 7 and x = 0.7 where we also vary c from 5 to 8. We further note that there
might be some salience issue. For example, theoretically speaking, with x = 0.7, an
information cost of c = 8 should be large enough to dissuade voters from acquiring
any information when N is sufficiently large, 7 or higher. Behaviorally speaking,
subjects may feel that such a cost level (8 points) is not sufficiently large compared
with the benefit level from a correct group decision (100 points), and therefore they
may continue to acquire information with a positive frequency. For this reason we
also explore a very large cost of c = 25 in the N = 3 and x = 0.7 treatment. This
large, c = 25, information cost treatment was also added to address the extent to
which players perceive they are playing a game with others, as we discuss in further
detail later in section 6.4.1.

H3. Signal precision effect: For a given group size and information cost
(N, c) ∈ {3, 7, 13} × {5, 8, 25}, the frequency of information acquisition can
either decrease or increase with an increase in the signal precision from
x = 0.7 to x = 1.

As we increase the signal precision, there are again two effects that work against
each other. On the one hand, a more precise signal will induce individuals to invest
in information with a higher frequency holding the pivot probability constant. More
precisely, fixing pσ, an increase in x increases the left hand side of the inequality
in expression (5) making information acquisition more likely. On the other hand, a
better quality of information makes an individual’s vote less likely to be pivotal since
those who have acquired the more precise signal are now more likely to vote for the
correct alternative. More precisely, from expression (3), an increase in x results in
an increase in zσ and from expression (4), an increase in zσ leads to a decrease in
pσ, which from (5) makes information acquisition less likely. Overall, whether voters
acquire information with a higher or lower frequency in equilibrium will depend on
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which of these two effects is dominant. Note that if subjects are purely decision-
theoretic and don’t fully understand the strategic interactions associated with the
collective decision problem, then only the first effect is at play and the frequency
of information acquisition should increase with an increase in the signal precision.
However, if subjects do reason game-theoretically, then the equilibrium consequence
of a more precise signal is a lower frequency of information acquisition in small groups,
e.g., N = 3, but a higher frequency of information acquisition in larger groups, e.g.,
N = 7 – see Table 2 for the precise predictions. For the signal precision effect, we
have data for two cases: 1) N = 3, c = 8 and x = 0.7 or x = 1 and 2) N = 7, c = 8
and x = 0.7 or x = 1.

6 Experimental Results

We discuss our experimental findings at both the aggregate and the individual level.
We then consider the possibility that subjects coordinated on asymmetric equilibria
and we conclude with an analysis of several behavioral explanations for our findings.

6.1 Aggregate Data

Table 3 reports on the average frequencies of information acquisition and informa-
tional efficiency in each of the four sessions of each treatment combination (x, N, c) as
well as over all sessions of each treatment. Using the data reported in this table, we
first address the group size effect, [H1]. Fixing x = 0.7 and c = 0.5, Table 3 reveals
that the mean frequency of information acquisition increases as N is increased from 3
to 7, rising from .695 to .767 but this difference is not statistically significant according
to non-parametric Mann-Whitney tests using the session-level averages (p > 0.10).9

By contrast, the theory predicts a movement in the opposite direction from a fre-
quency of information acquisition of 1 to .669 as N is increased from 3 to 7. Next,
keeping x = 0.7 but now fixing c at a higher value, c = 8, Table 3 indicates that the
mean frequency of information acquisition decreases slightly as N is increased from
3 to 7 to 13, from .582 to .514 to .463, respectively. These differences are again not
statistically significant according to pairwise tests (p > 0.10). Nevertheless, for the
c = 8 treatment, the observed decline in the mean frequency of information acqui-
sition as N is increased is consistent with the theory, though the magnitude of the
acquisition frequencies departs substantially from theoretical predictions: the theory
predicts that the frequency of information acquisition declines from 1 when N = 3 to
0 when N is 7 or 13.

9Unless otherwise noted, in what follows, reported p-values are from non-parametric Mann-
Whitney tests using independent session-level averages.
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Treatment Session Number Overall Theoretical
Conditions Variable 1 2 3 4 Average Prediction

x = 0.7, N = 3, c = 5 σ̂ 0.547 0.760 0.640 0.833 0.695 1.000
ŵ 0.620 0.760 0.700 0.660 0.685 0.784

x = 0.7, N = 3, c = 8 σ̂ 0.600 0.353 0.740 0.633 0.582 1.000
ŵ 0.680 0.620 0.660 0.620 0.645 0.784

x = 0.7, N = 3, c = 25 σ̂ 0.340 0.087 0.240 0.420 0.272 0.000
ŵ 0.540 0.480 0.520 0.700 0.560 0.500

x = 0.7, N = 7, c = 5 σ̂ 0.640 0.826 0.746 0.857 0.767 0.669
ŵ 0.760 0.800 0.860 0.840 0.815 0.773

x = 0.7, N = 7, c = 8 σ̂ 0.340 0.751 0.360 0.603 0.514 0.000
ŵ 0.580 0.820 0.700 0.740 0.710 0.500

x = 0.7, N = 13, c = 8 σ̂ 0.442 0.617 0.388 0.406 0.463 0.000
ŵ 0.700 0.820 0.780 0.740 0.760 0.500

x = 1, N = 3, c = 8 σ̂ 0.887 0.833 0.707 0.833 0.815 0.825
ŵ 1.000 1.000 0.960 1.000 0.990 0.978

x = 1, N = 7, c = 8 σ̂ 0.514 0.529 0.646 0.537 0.556 0.447
ŵ 0.920 0.940 0.980 0.960 0.950 0.902

Notes: σ̂ indicates the observed frequency of information acquisition and ŵ indicates
the observed informational efficiency.

Table 3: Information Acquisition and Efficiency by Treatment: Averages Over All Rounds
of Each Experimental Session and Over All Sessions of Each Treatment

Remarkably, as Table 3 further reveals, support for the group size effect is much
more clearly evident when signals are perfectly precise, i.e., in the case where x = 1.
Fixing x = 1 and c = 8, the mean frequency of information acquisition drops sig-
nificantly from .815 when N = 3 to .556 when N = 7 (p < 0.02). The theoretical
prediction is that the frequency of information acquisition is .825 when N = 3 and
falls to .447 when N = 7. Using a two-sided Wilcoxon sign rank test on session-level
observations we cannot reject the null hypothesis that the frequency of information
acquisition in the x = 1, N = 3, c = 8 treatment differs from the theoretical predic-
tion (p = 0.46), though we can marginally reject this same null hypothesis for the
corresponding N = 7 treatment (p = 0.07). Hence, in the x = 1 case, not only do the
experimental data reflect the group size effect, but in addition, the mean frequencies
of information acquisition are close to or insignificantly different from the theoretical
predictions for both group sizes N = 3 and N = 7. This finding may obtain because
when x = 1 we have strictly interior predictions for σ∗ whereas when x = 0.7, we have
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mostly boundary predictions, either 0 or 1.10 In addition or alternatively, the elimi-
nation of noise in the signal may have enabled subjects to understand the free-riding
effect more clearly, a conjecture that we address more fully in the next section.

At this stage, it is also instructive to look at how decision accuracy correlates with
group size in the experimental data and compare that with theoretical predictions.
For noisy signals (x = 0.7) and c = 5 as N increases from 3 to 7, Nash equilibrium
predicts a marginal drop in efficiency from 78% to 77%. However, the experimental
data show a statistically significant (p < 0.03) increase in efficiency from 68.5% to
81.5%. For x = 0.7 and c = 8, efficiency is supposed to be 78.4% at N = 3 and then
drop to the minimal level (50%) for N = 7 and N = 13. However, in the experimental
data, the efficiency increases from 64.5% to 71% to 76% as N increases from 3 to 7
to 13. Moreover, the change in efficiency from N = 3 to N = 13 is statistically
significant (p < 0.03).11 When signals are noisy, the free riding effect is weak enough
that in general, it is dominated by the information aggregation effect in sharp contrast
to theoretical predictions. On the other hand, when signals are perfectly informative,
free riding is strong enough in the laboratory that efficiency drops with the group
size in accordance with theoretical predictions. For x = 1 and c = 8, as N increases
from 3 to 7, efficiency drops from 99% to 95%, which is very close to the theoretically
predicted drop from 97.8% to 90%, and this drop is moderately significant (p < 0.06).

We next turn to the information cost effect [H2]. Fixing x = 0.7 and N = 3, Table
3 reveals that an increase in the cost of acquiring information from c = 5 to 8 results
in a decrease in the frequency of information acquisition from .695 to .582, but this
decrease is not statistically significant (p > 0.10). However, as we further increase
the cost to c = 25 holding x = 0.7 and N = 3 constant, the frequency of information
purchase drops more dramatically to .272 and this drop is statistically significant
(p < 0.03 in the comparison of c = 8 vs. c = 25). Fixing x = 0.7, and N = 7, an
increase in the cost of acquiring information from c = 5 to 8 results in a decrease
in the frequency of information acquisition from .767 to .514 - theory predicts a fall
from .669 to 0 - and this decrease is marginally significant (p = 0.08).

Finally, we consider the signal precision effect [H3]. Fixing N = 3 and c = 8,
Table 3 reveals that an increase in the signal precision from x = 0.7 to 1 results in
an increase in the mean frequency of information acquisition from .582 to .815 and
this difference is statistically significant (p = 0.04). The theoretical prediction, by
contrast, is for a decrease from 1 to .825. On the other hand, fixing N = 7 and
c = 8, an increase in the signal precision from x = 0.7 to 1 results in a slight increase
in the frequency of information acquisition from .514 to .556. This difference is not

10These boundary predictions cannot be assessed using simple statistical tests as the boundary
frequency values of 0 or 1 can never be exceeded.

11However, the differences in efficiency from N = 3 to N = 7 and from N = 7 to N = 13 are not
statistically significant (p ≥ 0.10 for both comparisons).
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statistically significant (p > 0.10). Still, the observed increase is consistent with the
theoretical prediction, which calls for an increase in information acquisition from 0 to
.447 as x is increased from 0.7 to 1. While play is close to Nash equilibrium predictions
when x = 1, behavior is far away from equilibrium predictions when x = 0.7 (there is
under-acquisition of information in the N = 3 case and over-acquisition of information
in the N = 7 case), and it is the latter deviations that are responsible for the observed
deviations from the signal precision effect (H3).

Treatment Conditions Variable 1st 13 rds 2nd 12 rds Overall Prediction
x = 0.7, N = 3, c = 5 σ̂ 0.715 > 0.674 0.695 1.000

ŵ 0.664 < 0.708 0.685 0.784
x = 0.7, N = 3, c = 8 σ̂ 0.590 > 0.573 0.582 1.000

ŵ 0.606 <∗∗ 0.688 0.645 0.784
x = 0.7, N = 3, c = 25 σ̂ 0.276 > 0.267 0.272 0.000

ŵ 0.519 < 0.604 0.560 0.500
x = 0.7, N = 7, c = 5 σ̂ 0.768 > 0.766 0.767 0.669

ŵ 0.779 < 0.854 0.815 0.773
x = 0.7, N = 7, c = 8 σ̂ 0.523 > 0.503 0.514 0.000

ŵ 0.692 < 0.729 0.710 0.500
x = 0.7, N = 13, c = 8 σ̂ 0.473 > 0.452 0.463 0.000

ŵ 0.789 > 0.729 0.760 0.500
x = 1, N = 3, c = 8 σ̂ 0.817 > 0.813 0.815 0.825

ŵ 1.000 > 0.979 0.990 0.978
x = 1, N = 7, c = 8 σ̂ 0.584 > 0.527 0.556 0.447

ŵ 0.952 > 0.948 0.950 0.902

Notes: σ̂ indicates the observed frequency of information acquisition and ŵ indicates
observed (informational) efficiency. ∗∗∗, ∗∗, and ∗ indicate significance at the 1%, 5%,
and 10% levels, respectively.

Table 4: Information Acquisition and Efficiency Over Time. Averages from All Sessions
of a Given Treatment: First 13 Rounds, Second 12 Rounds and Overall (All 25 rounds)

Table 4 reports on the average frequencies of information acquisition and efficiency
over the first 13 rounds versus the final 12 rounds of each treatment (using data from
all sessions) in an effort to assess whether there is any evidence for learning over
time. In particular, we examined whether there was a significant upward, “<”, or
downward, “>” trend in the overall mean frequencies of information acquisition or
informational efficiency in the first 13 rounds as compared with the last 12 rounds. As
Table 4 reveals, the evidence for learning is weak; there is a very slight decrease in the
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mean frequencies of information acquisition (σ̂) from the first to the second half of all
sessions. Sometimes this decrease is in the direction of equilibrium prediction, i.e., in
treatments (x, N, c) ∈ {(0.7, 3, 25), (0.7, 7, 5), (0.7, 7, 8), (0.7, 13, 8), (1, 7, 8)} while in
other instances it is not, i.e., in treatments (x, N, c) ∈ {(0.7, 3, 5), (0.7, 3, 8), (1, 3, 8)}.
However, none of these decreases in the frequency of information acquisition are
statistically significant using Mann Whitney tests on session-level averages. Despite
the slight decrease in the mean frequency of information acquisition, the mean level
of informational efficiency is, in most treatments, increasing slightly from the first
to the second half of sessions, though with a single exception, these trends are also
statistically insignificant. Overall, we conclude that the evidence for learning is weak.

Summarizing, using session level means, we find that the experimental evidence
departs from the precise point predictions of the theory and there is mixed support for
the theory’s comparative statics predictions as identified in our Hypotheses H1-H3.
The theory appears to perform best in terms of the match between point predictions
and the experimental data in the case where x = 1 so that signals are perfectly
informative. We next turn to exploring individual subject behavior in some detail so
as to determine whether our aggregate data analysis (using session-level means) may
be masking any larger behavioral differences across treatment conditions.

6.2 Individual Behavior

Figure 1 shows cumulative distributions of the frequency of information acquisition
over all 25 rounds of our experiment using pooled data from various combinations of
treatments where the signal precision is fixed at x = 0.7. Figure ?? shows the same
type of cumulative frequency distributions for various combinations of treatments
where the signal precision is either x = 0.7 or x = 1. In these figures, the left-most
intercept of the cumulative frequency indicates the percentage of subjects who never
chose to purchase information, 0 of 25 rounds.

Consider first the case where the signal precision is fixed at x = 0.7. When c = 5,
the upper left panel of Figure 1 reveals that the cumulative frequency of information
purchase when N = 7 stochastically dominates the cumulative frequency of informa-
tion purchase when N = 3, which is completely opposite to theoretical predictions.
By contrast, when c = 8, as shown in the upper right panel of Figure 1, an increase
in group size largely follows the comparative statics prediction that information ac-
quisition decreases as the group size gets larger. Indeed, for this case, the cumulative
frequency of information purchase when N = 3 stochastically dominates the cumu-
lative frequency of information purchase when N = 13. The bottom two panels of
Figure 1 confirm that the individual distributions follow the comparative statics pre-
diction that, holding N and x constant, increases in information cost, c, are associated
with less information acquisition for groups of size N = 3 and N = 7 respectively (we
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Figure 1: Distribution of the Individual Frequencies of Information Acquisition over
All 25 Rounds, x = 0.7

administered only one cost level c = 8 for the larger group size N = 13). Indeed, for
the N = 7 case we see clearly that the cumulative frequency of information acqui-
sition when c = 5 stochastically dominates the cumulative frequency of information
acquisition when c = 8.

The cumulative frequency distributions shown in Figure ?? enable us to examine
the effect of changes in the signal precision and/or the group size on information
acquisition. Here we fix c = 8 as this is the only cost that we considered in treatments
where x = 1. We find that, consistent with the theory, when x = 1 there is more
information acquisition when N = 3 than when N = 7, as seen in the upper right
panel of Figure ??. However, we also find that the comparative statics predictions
of the theory concerning variations in the signal precision are not clearly found in
our data for either groups of size N = 3 or N = 7. As the upper and bottom left
panels of Figure ?? show, the frequency of information acquisition generally increases
as we increase the level of the signal precision from x = 0.7 to x = 1, though this
is more clearly evident in the case where N = 3 than in the case where N = 7.
However, according to the theory, an increase in signal precision sometimes implies
a decrease in the equilibrium frequency of information acquisition (e.g., from 1.00
to 0.825 when N = 3 and c = 8) and sometimes an increase (e.g., from 0.00 to
0.447 when N = 7 and c = 8), again as a consequence of competition between the
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Figure 2: Comparison of Individual Distributions across Different Signal Precisions

information aggregation effect and the free-riding effect. Our finding that increases
in signal precision generally lead to greater frequencies of information acquisition (for
fixed N and c) suggests that our data may be better explained by decision-theoretic
(as opposed to game-theoretic) considerations. From a decision-theoretic perspective,
if N and c are held constant, then as the quality of information improves, it becomes
more desirable to acquire such information. The proportion of subjects who behave
according to this decision-theoretic approach should be large enough to sway the
overall results in their favor while the game-theoretic reasoning is so subtle here that
strategic (game-theoretic) subjects may fail to grasp such incentives. We will address
this issue further in section 6.4.1.

In addition to non-parametric tests, we have also conducted a parametric analysis
of individual information acquisition decisions. Specifically, we report on a random
effects probit regression of subjects’ binary decision to buy or not buy information
(buy=1, not buy=0) in every round of our experiment using pooled data from all
sessions of all treatments with standard errors clustered at the session level. Table 5
reports on results from several different regression model specifications.

In these regressions, “perfect” is a dummy variable set to 1 if x = 1 and 0 other-
wise (x = 0.7); “round” is the round number, 1,2,...,25; N is the group size, c is the
information cost; “successlag1” is a dummy variable set to 1 if the subject’s group cor-
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rectly guessed the jar assigned to it in the last round and 0 otherwise; “pctuniflag1”
denotes the percent of the subject’s group who did not buy information (were unin-
formed) last round (recall that this information was revealed at to all group members
at the end of each round); “perfXpctuniflag1” is an interaction variable, perfect ×
pctuniflag1; “perXsuccesslag1” is another interaction variable, perfect × successlag1;
“succXpctuniflag1” is another interaction variable, successlag1 × pctuniflag1; and
“perfXsuccXpctuniflag1” is a three-way interaction variable, perfect × successlag1 ×
pctuniflag1. Note that the baseline model, where perfect = 0, is the x = .7 case.

Dependent var: buy info (1) (2) (3) (4)

constant 5.316∗∗∗ 4.630∗∗∗ 4.791∗∗∗ 4.860∗∗∗

(10.76) (9.35) (9.45) (9.63)

perfect 0.914∗ 0.881 0.678 4.336∗∗∗

(2.50) (1.82) (1.40) (3.33)

round -0.019∗∗∗ -0.019∗∗∗ -0.019∗∗∗ -0.019∗∗∗

(-5.53) (-5.49) (-5.47) (-5.61)

N -0.229∗∗∗ -0.208∗∗∗ -0.221∗∗∗ -0.220∗∗∗

(-5.34) (-5.04) (-5.11) (-5.27)

c -0.269∗∗∗ -0.194∗∗∗ -0.239∗∗∗ -0.250∗∗∗

(-8.91) (-6.89) (-8.20) (-8.47)

successlag1 -0.245∗∗∗ -0.205∗∗ 0.212 0.290
(-3.99) (-3.24) (1.37) (1.86)

pctuniflag1 -0.238 -0.496∗∗ 0.0166 0.115
(-1.52) (-2.77) (0.07) (0.46)

succXpctuniflag1 -0.799∗∗ -0.950∗∗∗

(-2.96) (-3.46)

perfXsuccesslag1 -0.495∗ -0.312 -4.077∗∗

(-2.00) (-1.23) (-3.22)

perfXpctuniflag1 0.795∗ 1.042∗∗ -3.747∗

(2.09) (2.68) (-2.29)

perfXsuccXpctuniflag1 5.077∗∗

(3.03)

Observations 9200 9200 9200 9200
Notes: t statistics in parentheses. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001

Table 5: Random Effects Probit Analysis of Buy Decisions, Data From All Sessions

Table 5 reveals that across all four specifications, increases in N and c yield
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statistically significant decreases in the probability of buying information, which is
consistent with the group size effect, hypothesis H1, and the cost effect, hypothesis
H2. While we did not find such strong evidence for these hypotheses in the treatment-
by-treatment pairwise comparisons using non-parametric tests (especially in the case
of noisy signals) as reported on in the previous section, using the pooled data set and
a random effects probit regression analysis, we find stronger qualitative support for
these two hypotheses.

Consider next the effect of the two feedback variables, successlag1 and pctuni-
flag1; theory is silent on the effect of these lagged variables on decisions to acquire
information since the model being tested is a one-shot, static model. We include
these two feedback variables because they serve as proxies for incentives to free ride.
The number of uninformed voters in the last round directly reveals the extent of free
riding in that round. Whether a player’s group achieved success last round is also an
inducement to free ride for an individual in the sense that, if the group members play
similarly this round, the outcome is again likely to be a success even if the individual
free rides (so long as the individual was not pivotal in the last round). Overall, as
revealed in regression specifications 1-2, we find that individuals are less likely to
buy information this round if they were 1) in a group that experienced a success last
round (successlag1=1) or 2) the greater was the percentage of group members who
did not buy information and were thus uninformed last round, indicating that these
proxies for free riding incentives have some predictive power. However, as the last two
regression specifications in Table 5 make clear, the impact of these lagged outcome
variables on information acquisition decisions clearly depends on whether interaction
effects are allowed and whether information was perfect or not. In specifications 3-4,
for the baseline case of imperfect information (perfect=0 or x = 0.7), the coefficient
estimates on successlag1 and pctuniflag1 are not significantly different from zero; only
the interaction variable, succXpctuniflag1 leads to a significant decrease in the like-
lihood of buying information. However, allowing for all possible interaction effects
as in specification 4, we see that in the case of perfect information, both the lagged
success rate and the lagged percentage of uninformed voters work to depress the like-
lihood of buying information, as evidenced by the significantly negative coefficients on
the perfXsuccesslag1 and perfXpctuniflag1 interaction variables. We interpret these
differences as indicating that incentives for free riding are much stronger for subjects
in the perfect information case as compared with the imperfect information case.12

These findings provide some explanation for why behavior in the perfect information

12The significantly positive coefficient on the three–way interaction variable, perfXsuccXpctuni-
flag1, is a little puzzling. However, one interpretation may be that players in the perfect information
treatment are willing to free ride up to some point, but if they experience a success with a low per-
centage of informed voters, they rightly attribute that outcome to luck, and increase their willingness
to buy information in the subsequent round.
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case was found to be closer to the symmetric Nash equilibrium predictions than in
the imperfect information case.

6.3 Asymmetric Equilibria

Thus far, we have considered the extent to which our experimental data might be
rationalized by the unique symmetric equilibrium of the theory as described in section
3.1, i.e., by an equilibrium in which two voters with the same private information use
the same strategy. This restriction is justified by the fact that coordinating on an
asymmetric profile of strategies should be difficult in our experiment given our random
and anonymous matching of subjects into groups of size N in every round.

In this section we consider a different natural restriction on the set of equilibrium
strategies that leads to asymmetric voting strategies in some cases. Specifically, we
now require equilibrium strategies to satisfy two criteria : first, each subject’s strategy
with respect to information acquisition should be pure, i.e., σ∗

i ∈ {0, 1}, and second,
the voting part of their strategy should be symmetric across alternatives. In this
setting, it is easy to establish that those who acquire information (σ∗

i = 1) must
vote according to their signal, while those who do not acquire information (σ∗

i = 0)
must vote randomly. Thus, equilibrium under this new set of restrictions is simply
characterized by the number of voters who acquire information and vote sincerely
represented by k∗ ∈ {0, 1, ...N}. The other N − k∗ voters set σ∗ = 0 and vote
randomly. If k∗ = 0 or k∗ = N , the equilibrium strategies are type-symmetric, but if
0 < k∗ < N , we have an asymmetric equilibrium.13

In order to characterize the (potentially asymmetric) equilibrium with a pure
information acquisition strategy, consider the profile where k out of N voters acquire
information (and vote sincerely) and the remaining N−k do not (and vote randomly)
and denote the probability of a tie under such a profile by p(k, N).14

Remark 1 In the environment (x, N, c), there is an equilibrium where k∗ voters ac-
quire information (and vote sincerely) and N − k∗ do not (and vote randomly) if and

13We consider only asymmetric equilibria of this type. A complete characterization of asymmetric
equilibria for our model is beyond the scope of this paper.

14The formula for p(k, N) is:

p(k, N) =

⎧⎨
⎩

∑N−1
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]
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Notice that for a fixed N , p(k, N) is strictly decreasing in k.

23



only if

p(k∗ − 1, N − 1) ≥ c

M
(
x − 1

2

) ≥ p(k∗, N − 1) (7)

Moreover, the value of k∗ that satisfies the above condition is unique.

See Appendix B for a proof.
In environments where the symmetric equilibrium value for σ∗ is strictly inte-

rior, i.e., σ∗ ∈ (0, 1), pure information acquisition strategies induce asymmetric
equilibria with the property that k∗

N
approximates (but can differ from) σ∗.15 To

explore whether these asymmetric equilibria might better explain our experimen-
tal data, we focus on the three cases where there are interior symmetric equilib-
ria (x, N, c) = {(.7, 7, 5), (1, 3, 8), (1, 7, 8)} where the ratios k∗/N are: 5/7 = .71,
2/3 = 0.67 and 3/7 = 0.43, respectively, and the corresponding values for σ∗ are
0.67, 0.83, and .045, respectively. It is interesting to note that the equilibrium k∗ is
that value of k which produces a search frequency k∗

N
closest to σ∗ in every case. We

first verified that in these three cases, the uninformed are voting randomly while the
informed are voting sincerely according to their private signals.16

We next perform a simple check of whether voters best respond to some proxy for
the threshold value, k∗, the number of voters who are expected to acquire information
in an asymmetric equilibrium. The proxy we use is the number of voters among the
other N−1, who had acquired information in the last round, k−i

t−1. In our experiment,
subjects received feedback at the end of each round as to how many in their group of
size N acquired information in that round. Thus, if k−i

t−1 voters acquired information
last round and are again expected to do so in the current round, then a subject’s best
response is to buy information if k−i

t−1 < k∗ and not buy information if k−i
t−1 ≥ k∗. One

would therefore expect the probability of information acquisition to be decreasing
in k−i

t−1 − k∗. We test this prediction for the three environments where we have
interior solutions for k∗ using again a random effects probit regression analysis of
individual decisions to buy information with standard errors clustered on session level
observations. Here, each regression uses only data from one of the three treatments
with interior asymmetric equilibria. The only explanatory variable, in addition to
a constant term, is the difference variable, k−i

t−1 − k∗, where k∗ is determined by
treatment conditions: k∗ = 5, 2, 3 for the (x, N, c) treatments (.7, 7, 5), (1, 3, 8),
(1, 7, 8), respectively. The results are reported in Table 6.

15In environments where the symmetric equilibrium values for σ∗ are corner solutions, i.e., σ∗ ∈
{0, 1}, k∗/N will also be symmetric and correspond to the same corner solution (as in 5 of our 8
treatments), so we don’t focus on these cases.

16Using data from all sessions of all treatments, we find that the null hypothesis that uninformed
voters randomize between R and B cannot be rejected (p > .05). Among informed voters, sincere
voting (voting according to the signal received) is close to or equals 100 percent in each treatment
of our experimental treatments.
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Dependent var: buy info (1) (2) (3)
(x, N, c) = (.7, 7, 5) (1, 3, 8) (1, 7, 8)

Constant 2.663∗∗∗ 1.646∗∗∗ 2.764∗∗

(7.21) (3.65) (2.98)

k−i
t−1 − 5 -0.0987

(-1.09)

k−i
t−1 − 2 -0.597

(-1.09)

k−i
t−1 − 3 -0.129∗

(-2.54)

Observations 1400 600 1400
Notes: t statistics in parentheses. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001

Table 6: Regression Evidence on Best Response Play According to Asymmetric Equi-
librium Predictions. Three Treatments with Interior Asymmetric Equilibria.

The regression results reported in Table 6 confirm the negative relationship be-
tween the difference variable k−i

t−1−k∗ and information acquisition decisions in each of
the three treatments. However, the coefficient on this difference variable is only sig-
nificantly negative for the treatment (x, N, c) = (1, 7, 8) (column 3) involving perfect
signals, where the difference between k∗

N
and the symmetric equilibrium prediction σ∗

is the smallest of the three cases examined. Given this very small difference, it seems
likely that the significantly negative coefficient in this case simply reflects players
playing a best response to the symmetric equilibrium prediction, especially since we
have already found evidence that behavior in the x = 1 treatments is very close to
symmetric equilibrium predictions. We conclude that there is not much support for
the notion that our data are better rationalized by this class of asymmetric equilibria,
which, for most of our treatments, coincide with the unique symmetric equilibrium.
Having considered the explanatory power of both symmetric and asymmetric equilib-
rium predictions, we next turn to examining some behavioral models in an attempt
to further rationalize our experimental data.
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6.4 Behavioral Models

As we have seen, in some of our experimental treatments subjects under-acquire
information relative to the symmetric Nash equilibrium prediction, e.g., the case
where N = 3, c = 8 and x = 0.7. On the other hand, we often see that with
a single change of a treatment variable we move from under- to over-acquisition of
information as for example in the case where N = 7, c = 8 and x = 0.7. In this section
we present several possible explanations for the observed over- or under-acquisition
of information in our experimental data.

6.4.1 Decision-theoretic rather than strategic thinking

Suppose that subjects under-weight or dismiss completely the strategic interaction
that is involved in the collective action voting game. As an extreme case, let us
suppose that subjects perceive the game to be one where N = 1 and so in effect, they
are lone decision-makers and thus they always view themselves as being pivotal.17

If N = 1, then it is rational to acquire information at the fixed cost c so long as
M(x − 1/2) ≥ c (this follows from expression (5) with pσ = 1) and to not acquire
information otherwise. In our parameterization, we have M = 100. Thus for our
x = 0.7 treatment, it becomes rational to acquire information if c ≤ 20, while for
our x = 1 treatment it is rational to acquire information so long as c ≤ 50.18 These
cost thresholds are satisfied for all of our treatments, with the sole exception of
the x = 0.7, c = 25 treatment, and indeed, that is why we chose to implement
that particular treatment. In that treatment, both the decision-theoretic and game-
theoretic incentives are perfectly aligned and so one might expect that subjects would
never acquire information in that setting. Note that while the characterization of
subjects as decision theorists can explain over–acquisition of information in our x =
0.7 treatments with c < 20 it cannot explain under–acquisition of information as in
the N = 3, x = 0.7 treatments where c = 5 or c = 8. More generally we note that
over- or under-acquisition of information may be an unavoidable finding in settings
where the equilibrium point predictions of the theory imply, respectively, 0 and 100
percent frequencies of information acquisition, as is indeed the case in several of our
treatments.

17This assumption finds some support in Duffy and Tavits (2008) who elicited the beliefs of voters
prior to their participation in an experimental voting game and found that many voters greatly
overestimated the pivotality of their voting choice, though such miss-perceptions tended to decrease
with experience.

18Hence for fixed c, information acquisition becomes more attractive as x increases, as discussed
at the end of section 6.2.
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Treatment Type 1st 13 rds 2nd 12 rds Overall
NB 0.167 < 0.250 0.167

x = 0.7, N = 3, c = 5 S 0.250 > 0.125 0.250
AB 0.583 < 0.625 0.583
NB 0.167 < 0.292 0.167

x = 0.7, N = 3, c = 8 S 0.416 >∗ 0.250 0.416
AB 0.417 < 0.458 0.417
NB 0.500 < 0.542 0.458

x = 0.7, N = 3, c = 25 S 0.375 > 0.292 0.417
AB 0.125 < 0.166 0.125
NB 0.107 < 0.143 0.107

x = 0.7, N = 7, c = 5 S 0.232 > 0.161 0.232
AB 0.661 < 0.696 0.661
NB 0.286 < 0.393 0.286

x = 0.7, N = 7, c = 8 S 0.321 > 0.178 0.321
AB 0.393 < 0.429 0.393
NB 0.317 < 0.366 0.298

x = 0.7, N = 13, c = 8 S 0.375 > 0.317 0.423
AB 0.308 < 0.317 0.279
NB 0.125 = 0.125 0.125

x = 1, N = 3, c = 8 S 0.083 = 0.083 0.083
AB 0.792 = 0.792 0.792
NB 0.179 < 0.250 0.143

x = 1, N = 7, c = 8 S 0.393 > 0.304 0.428
AB 0.428 < 0.446 0.429

Notes: NB refers to subjects who never buy information over the
sample period, S, to subjects who switch between buying and not
buying information (at least once) over the sample period, and AB, to
subjects who always buy information over the sample period. ∗∗∗, ∗∗,
and ∗ indicate significance at the 1%, 5%, and 10% levels, respectively.

Table 7: Proportions of Different Subject Types Over Time: Averages
from All Sessions of a Given Treatment: First 13 Rounds, Second 12
Rounds and Overall (All 25 rounds)

In an effort to address the extent to which subjects might be ignoring strategic
considerations and acting as decision-theorists, we classified each subject based on
their information acquisition decisions. Specifically, we classified each subject ac-
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cording to one of three distinct types: 1) those who never buy (NB) information; 2)
those who switch (S) at least once between buying and not buying information; and
3) those who always buy (AB) information. Table 7 shows the proportion of subjects
who fall into these three classifications for each treatment condition (x, N, c) over all
25 rounds (Overall) as well as for the first 13 and last 12 rounds. Using the latter two
measures, we examined whether there was an trend upward, “<”, downward “>”, or
no change, “=”, in the proportions of a given type from the first to the second half
of a session and we further tested the significance of any trend changes using Mann
Whitney tests on session-level averages.

A general observation from Table 7 is that the proportion of switching (S) types
declines as subjects gain experience, while the proportion of pure strategy, NB and
AB types grows over time though these differences are, with a single exception, not
statistically significant. Further, the growth in NB types is generally greater than the
growth in AB types, and this finding explains why information acquisition declines
slightly from the first to the second half of sessions as reported earlier in Table 4.

Regarding comparative statics predictions, let us first focus on the x = 0.7, c = 8
treatments. In this case, the share of AB-types in the population steadily decreases
from 41.7 percent to 39.3 percent to 27.9 percent as we increase N from 3 to 7 to 13,
respectively. The declines from N=3 to N=7 or from N=7 to N=13 are not statistically
significant according to Mann-Whitney tests on session level data, (p > 0.10 for both
tests). The game-theoretic equilibrium prediction is for 100 percent AB-types when
N = 3 and a drop-off to 0 percent AB-types (and 100 percent NB-types) when N = 7
or N = 13. By contrast, the decision-theoretic prediction is for 100 percent AB-types
in all three of these treatments. The steady but more gradual decline in AB-types
as N is increased as reported in Table 7 suggests that decision costs, as opposed to
strategic, group-size considerations alone may be playing a role in the behavior of
some of our AB-type subjects.

Consider next the case where x = 0.7 and N = 7 and c is varied from 5 to 8. The
game-theoretic equilibrium prediction is that subjects should acquire information on
average 66.9 percent of the time when c = 5, but should never acquire information
when c = 8. By contrast, the decision-theoretic prediction again calls for 100 percent
AB-types in both of these treatments as c is always less than 20. Table 7 reveals
that there is indeed a much larger percentage of AB-types when c = 5 (66.1 percent)
than when c = 8 (39.3 percent) and this difference is statistically significant (p <
0.05) though the percentage of AB-types remains strictly greater than 0 in violation
of game-theoretic equilibrium prediction but consistent with the notion that some
subjects may be acting as decision-theorists.

Similarly, in the case where x = 0.7 and N = 3, we see a steady decline in the fre-
quency of AB-types as the cost, c, increases from 5 to 8 to 25, however, only the latter
decline in AB types as c increases from 8 to 25 is statistically significant (p = 0.052).
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This finding on type differences helps us to understand an earlier finding in connection
with Table 3, where fixing x = 0.7 and N = 3, we found a statistically insignificant
decrease in the frequency of information acquisition as c was increased from 5 to 8
but a statistically significant drop in the frequency of information acquisition as c was
further increased from 8 to 25. However, these results remain inconsistent with the
pure game-theoretic prediction of 100 percent AB-types when c = 5 or c = 8 and a
decline to 0 percent AB-types when c = 25. Note that in the last case, the decision-
theoretic model predictions coincide with the game-theoretic equilibrium predictions,
and so there are also inconsistencies with using the decision-theoretic approach to
characterize subject behavior; in particular, when c = 25, the observed frequency
of AB types is not 0, as both the game theoretic equilibrium and decision-theoretic
models predict.

Finally, consider the case where x = 1 and c = 8. In this case, the game–theoretic
equilibrium predictions are closer to matching the distribution of subject types than
the decision-theoretic predictions. In particular, when N = 3, the game-theoretic
equilibrium prediction is for 82.5 percent of subjects to acquire information, while
when N = 7 the prediction is for 44.7 percent of subjects to acquire information. The
decision-theoretic prediction is for all subjects to acquire information in both of these
treatments as c is always less than 50. Table 7 reveals that the frequency of AB-
types falls from 79.2 percent when N = 3 to 42.9 percent when N = 7 (a statistically
significant decrease, p = 0.017) instead of remaining constant at 100 percent as would
be consistent with the decision-theoretic approach.

Summarizing, the evidence on individual behavior suggests that when x < 1, the
player population could be characterized as a mixture of game-theoretic and decision-
theoretic player types; decision-theoretic reasoning can account for over-acquisition
of information in all but one of our treatments (the one where c = 25), though not
under–acquisition of information as is often observed in our treatments where N = 3.
By contrast, when x = 1, the distribution of player types is more closely aligned with
game-theoretic equilibrium predictions as opposed to decision-theoretic predictions.
The latter finding suggests that subjects may compensate for the greater noise in the
imperfect signal (x = 0.7) treatments and the associated strategic uncertainty about
the information held by others by ignoring strategic considerations altogether and
acting more like decision-theorists.

6.4.2 Quantal response equilibrium

A second possible explanation for why the frequency of information acquisition is
at odds with theoretical predictions is that the experimental environment in which
voters are operating is a noisy one and so the appropriate way to model behavior
is using a noisy best response function that conditions on the actual distribution
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of subjects’ decisions and allows subjects to make mistakes. The idea of finding
equilibria that comprise mutual best responses to the empirical distribution of actual
and possibly noisy behavior, as opposed to the theoretical ideal has been formalized
as the concept of a quantal response equilibrium (QRE) by McKelvey and Palfrey
(1995). In this section we estimate the QRE predictions for information acquisition
using our experimental data and we compare these with the observed frequencies of
information acquisition as well as with the Nash equilibrium predictions.

In the QRE model, we calculate the information acquisition choice probabilities as
quantal response functions of the expected payoffs. Given the slope λ of the logistic
quantal response function, the information acquisition choice strategy of a subject
can be written as:

σ(λ) =
1

1 + exp[−λ{U(σ1) − U(σ0)}] (8)

where, as before, σ1 means “acquire information,” while σ0 means “do not acquire
information.” Here, λ is understood to measure the “degree of rationality” of the
subjects, with λ = 0 corresponding to random information acquisition choice behavior
as in that case, σ(λ = 0) = 1

2
. As λ → ∞, the QRE estimates of σ(λ) converge to

the rational choice predictions of the model.
The likelihood function we maximize is given by:

L(λ) = σ(λ)σ1 [1 − σ(λ)]σ0 (9)

In all instances, we use pooled data from all sessions of a single treatment condition,
(x, N, c) in maximizing the above likelihood function. We focus on the x = 0.7 treat-
ments only since the noisy signal setting is where we observe the greatest departure
of the experimental data from theoretical predictions.19

In addition to treatment-by-treatment estimations, we also estimate a quantal
response parameter λp using pooled data from all sessions of all treatments where
x < 1. In that case, we maximize the following likelihood function

L(λp) =
∏

j

σ(λp)
σj
1 [1 − σ(λp)]

σj
0 (10)

where the index j runs through all treatments; i.e., each index j represents a fixed
treatment of (x, N, c). The results of our maximum likelihood estimation are reported
in Table 8.

The QRE estimates for the individual treatments, (σ̂), generally provide a good fit
to the observed frequencies of information acquisition (Observed) and thus a means of

19QRE estimates for the x = 1 case are available from the authors on request.
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Precision Group Size Cost λ̂ σ̂ λ̂p σ̂p Observed Predicted
x = 0.7 N = 3 c = 5 9.7 0.694 3.3 0.573 0.695 1

c = 8 11.3 0.582 3.3 0.526 0.582 1
c = 25 3.3 0.269 3.3 0.269 0.272 0

N = 7 c = 5 ∞ 0.669 3.3 0.508 0.767 0.669
c = 8 0 0.500 3.3 0.461 0.514 0

N = 13 c = 8 1.7 0.463 3.3 0.431 0.463 0

Notes: λ̂ and σ̂ are estimated for each treatment with fixed (x, N, c) while λ̂p

and σ̂p are estimated using pooled data from all x = 0.7 treatments. The mean
squared error (MSE) between the pooled estimates and the experimental data is
found to be 0.01479.

Table 8: Quantal Response Equilibrium: Maximum Likelihood Estimates

rationalizing our experimental data as the play of noisy best responses by the subjects
in our experiment. Note in particular, that the QRE approach, unlike the view of
subjects as decision-theorists, can account for both the over-acquisition of information
and the under-acquisition of information that is observed in our experiment; for
example the under-acquisition of information in the N = 3, x = 0.7 treatments
where c = 5 or c = 8. The pooled QRE estimates σ̂p provide a slightly poorer fit
to the observed information acquisition choice frequencies but nevertheless continue
to capture the observed variations in information acquisition (above and below the
equilibrium predictions) across all of our different treatments. We note that the mean
squared error (MSE) between the pooled estimates and the observed frequencies of
information acquisition is 0.0148, indicating a very good fit.20 We note further that
the pooled rationality parameter estimate, λ̂p = 3.3, indicates a rather low level of
overall game theoretic rationality by the subjects in our experiment.

6.4.3 Risk aversion

A third possible explanation for why information acquisition decisions are at odds
with theoretical predictions is that we have assumed that agents are risk neutral with
regard to uncertain money earnings. This assumption can be relaxed by allowing
agents to be risk averse with respect to uncertain monetary payoffs. In our context,

20The MSE is calculated by summing the squared errors between observed information acquisition
frequencies and the QRE estimates using the pooled data over all treatments, and then dividing the
resulting sum of squares by the number of included treatments; MSE =

∑
j(σo − σ̂p)2/6, where j

represents each treatment with fixed (x, N, c), σo is an observation in our data, and σ̂p is an estimate
from the pooled data from all treatments.
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risk aversion is equivalent to the marginal cost of information acquisition depending
on the voting outcome: the subject perceives this marginal cost to be lower if the
group decision is correct.

For convenience of exposition, in this section we assume that a voter’s monetary
payoff, m, takes the value 1 or 0 if she acquires information (depending on whether
the group decision is correct or incorrect), and respectively, takes the value 1 + c or c
if she does not. We further assume that the money amount, m, earned by a subject
leads to a utility, u(m). The risk-neutral case which has been studied in the main
section of the paper is the special case where u(m) = m. We model risk aversion with
the assumption that u(·) satisfies u′ > 0 and u′′ < 0 for all m > 0. To capture our
present parameterization, we assume that the utility function is CARA, i.e.,

u(m) =
1 − exp(−αm)

1 − exp(−α)
,

where α > 0 is the parameter that captures the extent of risk aversion. In the limit,
the α = 0 case captures risk neutral behavior.21 We now turn to the question of how
the optimal behavior of a risk-averse subject may differ from that of a risk neutral
one.

As before, a strategy consists of two elements: the probability of information
acquisition, σ, and the probability of sincere voting vs conditional on obtaining signal
s ∈ {r, b}. It is easy to establish that risk averse agents vote sincerely in equilibrium,
i.e., v∗

b = v∗
r = 1. We continue to assume that R and B are picked with equal

probability in the absence of a signal. Thus, the information acquisition probability,
σ, is what determines equilibrium behavior.

Under risk-neutrality, a voter has to focus only on the pivotal event pσ, given by
equation (4). However, with more general utility functions, voters have to take into
account both pivotal and non-pivotal events. Conditioning on the other N −1 voters’
votes not ending up in a tie, the probability of a correct decision is

qσ =
N−1∑

k=N+1
2

(
N − 1

k

)
zk

σ(1 − zσ)
N−1−k,

where zσ is the probability of a random voter voting in favor of the correct alternative,
and is given by equation (3).

The respective expected utilities from acquisition and non-acquisition of informa-

21The denominator allows us to normalize u(0) = 0 and u(1) = 1 for all α, just like the risk-neutral
case.
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tion are now given by

U(σ1) = [u(1) − u(0)] [pσx + (1 − pσ)qσ] + u(0)

U(σ0) = [u(1 + c) − u(c)]

[
pσ

1

2
+ (1 − pσ)qσ

]
+ u(c)

If there is some σ∗ ∈ (0, 1) for which U(σ1) = U(σ0), then σ∗ is an equilibrium.
Otherwise, we have a corner solution in the usual way.

At this stage, it is useful to study how the net benefit from acquisition of infor-
mation U(σ1) − U(σ0) depends on the extent of risk aversion, as captured by the
parameter α in the CARA specification of the utility function. In doing so, we keep
the belief (pσ, qσ) about others’ strategies fixed.

The net benefit of information acquisition, U(σ1) − U(σ0), can be written as

{
[u(1) − u(0)] [pσx + (1 − pσ)qσ] − [u(1 + c) − u(c)]

[
pσ

1

2
+ (1 − pσ)qσ

]}

−{u(c) − u(0)} (11)

When u(m) = m, we have [u(1) − u(0)] = [u(1 + c) − u(c)] = 1. It is easy to check
that the first term of (11) now reduces to pσ

(
x− 1

2

)
and the second term reduces to

c, giving us condition (5) in section 3.1.
If we allow risk aversion, there are two opposing effects on incentives to acquire

information. First, for any α > 0, the marginal gain in utility from obtaining the
correct group decision is higher when information is acquired than when it is not:

u(1) − u(0) > u(1 + c) − u(c).

Moreover, this difference in marginal gains increases with α, raising the first term in
the expression (11). On the other hand, as a subject becomes more risk averse, she
values more the cost saved by not acquiring information in the event of a wrong group
decision, i.e., the second term also increases in α. Typically, the first effect dominates
for lower values of α and the second effect dominates for higher values of α. As a
result, U(σ1)− U(σ0) will typically first increase and then decrease with increases in
the degree of risk aversion α. Therefore, it is in general unclear whether risk aversion
leads to more or less information acquisition. Importantly for our purposes, risk
aversion may help to explain why we sometimes observe too much and sometimes too
little information acquisition compared with risk neutrality.

To explore the extent to which risk-aversion might help to explain our experimental
findings, we build upon the QRE model of the previous section 6.4.2, and add to it
the normalized CARA utility function, u(m) = 1−exp[−αm]

1−exp[−α]
in place of the risk neutral
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u(m) = m assumption.22 Using this CARA specification for u(·), we estimate the
information acquisition choice strategy of a subject using the logistic specification:

σ(α, λ) =
1

1 + exp[−λ{U(σ1; α) − U(σ0; α)}]
where U(·; α) is understood to be calculated as expected utility based on the above
risk-averse preference u(m). We then maximize the likelihood function,

L(α, λ) = σ(α, λ)σ1 [1 − σ(α, λ)]σ0 (12)

using the data from each treatment, (x, N, c). As before, we also maximize

L(αp, λp) =
∏

j

σ(αp, λp)
σj
1 [1 − σ(αp, λp)]

σj
0 (13)

using the pooled data from all of our treatments where x < 1.23 The results from max-
imum likelihood estimation of the QRE model with CARA preferences are reported
in Table 9. The top part of this table reports the unpooled, treatment-by-treatment
estimation results while the bottom part reports the pooled estimation results.

The estimates using the pooled data indicate some improvement in the fit of the
QRE model with risk aversion relative to the model that assumes risk neutral prefer-
ences. In particular, we note that the mean squared error (MSE) for the QRE with
CARA preferences is slightly smaller, MSE=0.0126 (vs. 0.0148 for the risk neutral
case) by incorporating the additional risk-aversion parameter α into the model. While
the absolute change in the MSE is not very large, the percentage decrease in the MSE
from including risk aversion, 14.94%, is considerable. We further note that the pooled
rationality parameter estimate, λ̂p = 9, is now higher than that found for the QRE

model without risk aversion (where λ̂p = 3.3).
Finally, we note that the estimates of the risk aversion parameter, α̂, are generally

quite plausible with the pooled estimate, α̂p = 1.1, indicating a moderate degree of
risk aversion among our subjects. Nevertheless, as it turns out the allowance for some
amount of risk aversion yields a significantly better fit of the QRE model to the exper-
imental data. In particular, according to a likelihood ratio (LR) test, the difference
between the unrestricted QRE model which allows for risk–averse preferences and the
restricted QRE model with risk-neutral preferences (α = 0) is highly significant (LR
Stat = −2 ln l = 54.81 � χ2

.001 = 10.83 with d.f. = 1).24 Thus we can easily reject
the null hypothesis (H0) that the subjects’ preferences are risk-neutral (p < 0.001).

22See also Goeree et al. (2002, 2003).
23Again, estimates for the x = 1 treatments are available upon request.
24The degree of freedom is one here as we have only one restriction on risk-aversion parameter

that α = 0.
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Precision Group Size Cost λ̂ α̂ σ̂ Observed Predicted1 Predicted3
x = 0.7 N = 3 c = 5 28 3.1 0.695 0.695 1 1

c = 8 59 2.4 0.582 0.582 0.999 1
c = 25 7 0.3 0.272 0.272 0 0

N = 7 c = 5 180 1.7 0.767 0.767 0.969 0.669
c = 8 1 1.2 0.500 0.514 0 0

N = 13 c = 8 4 3 0.463 0.463 0 0

Precision Group Size Cost λ̂p α̂p σ̂p Observed Predicted2 Predicted3
x = 0.7 N = 3 c = 5 9 1.1 0.602 0.695 1 1

c = 8 9 1.1 0.541 0.582 1 1
c = 25 9 1.1 0.233 0.272 0 0

N = 7 c = 5 9 1.1 0.522 0.767 0.996 0.669
c = 8 9 1.1 0.464 0.514 0 0

N = 13 c = 8 9 1.1 0.432 0.463 0 0

Notes: λ̂, α̂ and σ̂ are estimated for each treatment with fixed (x, N, c) while λ̂p, α̂p

and σ̂p are estimated using pooled data from all x = 0.7 treatments. The MSE between
the pooled estimates and the experimental data is found to be 0.01258. Predicted1
is the Nash equilibria with treatment-specific risk-aversion parameter α̂; Predicted2 is
the Nash equilibria with pooled risk-aversion parameter α̂p; and Predicted3 is the Nash
equilibria with risk-neutral preferences (α = 0).

Table 9: Quantal Response Equilibrium with Risk-Aversion: Maximum Likelihood Esti-
mates

Summarizing, of the three behavioral models we have considered in section 6.4,
the QRE model with risk averse preferences with respect to uncertain money amounts
is the one that can best rationalize our experimental finding of both over- and under-
acquisition of costly information prior to voting.25

25In an earlier draft, we also considered a fourth behavioral model of subjective beliefs equilibrium
(SBE) due to Elbittar et al. (2017). That model supposes that some fraction of voters hold biased
prior beliefs about the true state of the world that depart from the correct 0.5 prior. We found that
we could only apply this model to cases where x = .7, since in the perfect information case (x = 1),
biased prior beliefs don’t matter for posterior. For the x = 0.7 case we found that the SBE estimates
provided a fit to the data that was better than QRE model but not as good as the QRE model with
risk aversion.
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7 Conclusion

We have designed and reported on an experiment examining the effects of group size,
information cost and signal precision on information acquisition decisions made prior
to committee or jury voting decisions. Our experiment, building upon the work of
others, is the first to systematically explore the comparative statics implications of
changes in group size, information cost and signal precision for information acquisition
and efficiency under a compulsory, majority rule voting mechanism. A comparison
of the behavior of subjects in our experimental setting with the comparative statics
predictions of the theory is important for understanding the extent to which sub-
jects appreciate the tradeoff between better information aggregation (from greater
information acquisition) and information free-riding that the theory emphasizes.

Our experimental findings suggest that there is mixed support for the comparative
statics predictions of the rational choice theory of endogenous information acquisition
and voting. In particular, when signals are noisy (x = 0.7), there is only weak evidence
for a group size effect where the frequency of information acquisition decreases as the
group size increases due to the eventual dominance of the free-riding effect over the
information aggregation effect. However, when signals are precise (x = 1) there is
strong evidence for a group size effect; we conjecture that subjects better comprehend
the free-riding problems of larger group sizes when signals are precise as compared
with when they are imprecise. With regard to the effect of information cost, we
find that higher costs reduce the frequency of information acquisition just as rational
choice theory predicts, but we do not observe the often sharp, corner solution point
predictions of the theory, e.g., where σ∗ goes from 1 to 0 as the information cost, c,
is steadily increased.

We observe that in most of our treatments, subjects are over-investing in costly in-
formation, hence the extent of free-riding is not as large as predicted and consequently,
efficiency is not decreasing so rapidly with increases in the group size. Many subjects
appear to be ignoring strategic considerations and acting as lone decision-theorists as
evidenced by the significant percentages of subjects who always buy information in all
25 rounds, even in settings where in the rational choice equilibrium, no voter should
buy information in any round. If subjects incorrectly perceive the setting to be one
where N = 1, then it can be rational to buy information whenever M(x − 1/2) ≥ c,
a condition that holds in most of our treatments thus enabling a decision-theoretic
rationale for always acquiring information. We conducted one treatment where the
information cost was very large so that the inequality did not hold. In that treatment
we found the lowest mean level of information acquisition across all of our treat-
ments, 27.17%, but this frequency of information acquisition was still greater than
the game-theoretic and decision-theoretic prediction of zero information acquisition.

The characterization of some subjects as decision theorists can explain over-
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acquisition of information, but it cannot explain the under-acquisition of information
that we sometimes also observe, e.g., in our N = 3, x = 0.7 treatments. To explain
both patterns of behavior with regard to information choices, we first considered a
noisy best response or quantal response equilibrium analysis which is generally useful
in explaining the more gradual changes in subject behavior relative to the sharp point
predictions of rational choice theory. Using the QRE approach we find that we can
successfully account for the phenomena of both over- and under-acquisition of infor-
mation across all of our experimental treatments albeit with a rather low rationality
parameter estimate for λ. We further show how augmenting the QRE approach to
allow for risk averse voters can aid in rationalizing both over- and under-acquisition
of information relative to the theoretical equilibrium predictions that assume risk
neutral agents. When we allow for risk averse subjects in our QRE estimation, we
find that this unrestricted model fits the data better than does the restricted model
allowing for risk neutral subjects only. We also find a modest improvement in the
mean squared error between the observed information acquisition frequencies and the
QRE estimates allowing for risk aversion and we find confirmatory evidence that our
experimental subjects are modestly risk averse.

Our experiment considers only the case of compulsory, majority rule voting with
symmetric signal precisions and relatively small group sizes. We think that a promis-
ing direction for future research on group size and cost effects on endogenous infor-
mation acquisition would be to consider larger information costs or larger group sizes
(e.g., as in an internet-based voting experiment) especially in settings with perfectly
precise signals, as the x = 1 setting is the one where we have found the closest cor-
respondence between the theory and the experimental findings. It would also be of
interest to adapt the model so that subjects could purchase more precise signals at
a higher cost. Finally, it would be of interest to study endogenous information ac-
quisition in the case where voters can freely communicate with one another following
the information acquisition stage and receipt of any signals, but prior to voting, in
which case free-riding considerations might become even more pronounced relative
to the no-communication environment that we study in this paper. We leave these
extensions to future research.

37



References

Ali, S.N., Goeree, J.K., Kartik, N., Palfrey, T.R., 2008. Information aggregation in
standing and ad hoc committees. Amer. Econ. Rev. 98, 181-186.

Anderson, L.R., Holt, C.A., Sieberg, K.K., Oldham, A.L., 2015. An experimental
study of jury voting behavior, in: Schofield, N., Caballero, G.(Eds.), The Polit-
ical Economy of Governance: Institutions, Political Performance and Elections.
Springer, Berlin, pp. 157-178.

Battaglini, M., Morton, R.B., Palfrey, T.R., 2010. The swing voter’s curse in the
laboratory. Rev. Econ. Stud. 77, 61-89.

Bhattacharya, S., Duffy, J., Kim, S., 2014. Compulsory versus voluntary voting: an
experimental study. Games Econ. Behav. 84, 111-131.

Condorcet, M., 1785. Essai sur l’application de l’analyse la probabilité des décisions
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Appendix A: Experimental Instructions

In this Appendix we provide the instructions used in the N = 7, c = 5, x = 0.7
treatment of our experiment. Instructions for the other treatments are similar.

Instructions

Welcome to this experiment in the economics of decision-making. Funding for this
experiment has been provided by the National Science Foundation. We ask that you
not talk with one another for the duration of today’s session.

For your participation in today’s session you will be paid in cash at the end of the
experiment. Different participants may earn different amounts of money. The amount
you earn depends partly on your decisions, partly on the decisions of others, and partly
on chance. Thus it is important that you listen carefully and fully understand these
instructions before we begin. There will be a short comprehension quiz following the
reading of these instructions which you will all need to complete before we can begin
the experimental session.

The experiment will make use of the computer workstations, and all interaction
among you will take place through these computers. You will interact anonymously
with one another and your data records will be stored only by your ID number; your
name or the names of other participants will not be revealed at any time during
today’s session or in any write-up of the findings from this experiment.

Today’s session will involve 14 subjects and 25 rounds of a decision-making task.
In each round you will view some information and make a decision. Your decision
together with the decisions of others determine the amount of points you earn each
round. Your dollar earnings are determined by multiplying your total points from all
25 rounds by a conversion rate. In this experiment, each point is worth 1 cent, so
100 points = $1. Following completion of the 25th round, you will be paid your total
dollar earnings plus a show-up fee of $5.00. Everyone will be paid in private, and you
are under no obligation to tell others how much you earned.

Specific details

At the start of each and every round, you will be randomly assigned to one of two
groups, the R (Red) group or the B (Blue) group. Each group will consist of 7
members. All assignments of the 14 subjects to the two groups of size 7 at the start
of each round are equally likely. Neither you nor any other member of your group or
the other group will be informed of whether they are assigned to the R or B groups
until the end of the round.
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Imagine that there are two “jars”, which we call the red jar and the blue jar. Each
jar contains 10 balls; the red jar contains 7 red balls and 3 blue balls while the blue
jar contains 7 blue balls and 3 red balls. The red jar is always assigned to the R (Red)
group and the blue jar is always assigned to the B (Blue) group. However, recall that
you do not know which group (Red or Blue) you have been assigned to; that is, you
don’t know the true color of your group’s jar. Furthermore, your assignment to the
R or B group is randomly determined at the start of every round.

To help you determine the jar that has been assigned to your group for the round,
you and each member of your group can decide whether or not you want to indepen-
dently choose one ball from your group’s jar and privately observe the color of that
ball. You face this decision on the first decision screen for each round where you are
asked: Do you want to draw a ball? If you click on no, then you can get additional
points as will be explained in detail below, however, in that case you will not have
any more information about the jar that has been assigned to your group; all you will
know is that there is a 50 percent chance your group is assigned to the red jar and
a 50 percent chance your group is assigned to the blue jar. If you click on yes, then
you will be shown 10 different balls that you can choose. The balls are numbered
1 to 10. You must then click on one of the 10 balls. When you are satisfied with
your choice click the OK button. After doing so you will be privately informed of the
color of that ball. You will not be informed about whether other members of your
group chose to select a ball, or how many members of your group chose to select a
ball (until the end of the round), nor will they learn whether you chose to select a
ball. You will also not be told the color of the balls drawn by any other members
of your group who chose to draw balls, nor will they learn the color of the ball you
chose, and it is possible for members of your group to draw the same ball as you do
or any of the other 9 balls as well. Each member in your group who chooses to draw
a ball selects one ball on their own and only observes the color of his/her own ball.
However, all members of your group (Red or Blue), if they decide to choose a ball,
will choose a ball from the same jar that contains the same number of red and blue
balls. Recall again that if you are choosing a ball from the red jar, that jar contains
7 red balls and 3 blue balls while if you are choosing a ball from the blue jar, that jar
contains 7 blue balls and 3 red balls.

After all group members have decided whether or not to draw a ball and those
choosing to draw a ball have chosen their ball and observed its color, all group mem-
bers will face a second decision screen where they will be asked to make a choice
about the color of the jar that has been assigned to their group. Specifically, all
group members, regardless of whether or not they have chosen to draw a ball, will
face a choice between RED or BLUE for the color of the jar that has been assigned to
their group. Those who chose to draw a ball will be reminded on this second decision
screen of the color of the ball they have drawn. But all group members, even those
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who did not choose to draw a ball must choose whether the jar assigned to their group
is BLUE or RED by clicking on either the blue or the red buttons.

Your group’s decision depends on the individual member decisions. Your 7-
member group’s decision is RED if 4 or more of the members of your group (a
majority) choose RED and your group’s decision is BLUE otherwise, that is, if 4
or more of your group members (a majority) choose BLUE.

Suppose you selected to draw a ball (and selected RED or BLUE). If your group’s
decision (via majority rule) is the same as the true color of the jar that is assigned
to your group, then the group decision is CORRECT, and you and every member
of your group earns 100 points from the group’s correct decision. If your group’s
decision is different from the true color of your group’s jar, then the group decision
is INCORRECT, and you and every member of your group will earn 0 points from
the group’s incorrect decision.

Suppose you selected not to draw a ball. Then you get an additional 5 points for
the round. In other words, if your group’s decision is the same as the true color of
the jar that is assigned to your group, then you will earn 105 points from the group’s
correct decision. If your group’s decision is different from the true color of your
group’s jar, then you will earn 5 points from the group’s incorrect decision. Thus,
by choosing to draw a ball to be further informed of the true color of the jar that is
assigned to your group, you give up an additional 5 points for the round.

If the final (25th) round has not yet been played, then at the start of each new
round you will again be randomly assigned to one of two groups of size 7. One
group, Group R, will be assigned to the red jar and the other group, Group B will be
assigned to the blue jar. Again, no one will know to which group or jar they have been
assigned. Each group member will have the opportunity to privately decide whether
or not to draw a new ball from your group’s jar and observe its color (your decision to
draw a ball in the previous round doesn’t affect your decision for the current round),
and then to choose between BLUE or RED. In other words, the group you are in will
change from round to round.

Following completion of the final, 25th round, your points earned from all 25
rounds will be converted into cash at the rate of 1 point = 1 cent. You will be paid
these total earnings together with your $5 show-up payment in cash and in private.

Questions?

Now is the time for questions? If you have a question about any aspect of these
instructions, please raise your hand and an experimenter will answer your question
in private.
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Quiz

Before we start today’s experiment we ask you to answer the following quiz questions
that are intended to check your comprehension of the instructions. The numbers
in these quiz questions are illustrative; the actual numbers in the experiment may
be quite different. Before starting the experiment we will review each participant’s
answers. If there are any incorrect answers we will go over the relevant part of the
instructions again.

1. I will be assigned to the same group, R or B in every round. Circle one:
True False.

2. I must draw a ball from my group’s jar in every round. Circle one: True
False.

3. If you decide to draw a ball from your group’s jar and the color of the ball
you have actually drawn is red, then the color of your group’s jar is also red.
Circle one: True False.

4. The red jar contains red balls and blue balls. The blue jar contains
red balls and blue balls.

5. Consider the following scenario in a round. 4 members of your group choose
RED.

a. What is your group’s decision?

b. If the jar of balls your group was drawing from was in fact the RED jar
and if you have drawn a ball from the jar, how many points do you earn?

c. If the jar of balls your group was drawing from was in fact the BLUE jar
and if you have drawn a ball from the jar, how many points do you earn?

d. If the jar of balls your group was drawing from was in fact the RED jar
and if you have not drawn a ball from the jar, how many points do you
earn?

e. If the jar of balls your group was drawing from was in fact the BLUE jar
and if you have not drawn a ball from the jar, how many points do you
earn?
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Appendix B: Proof of Remark 1

Proof. To see why, note that from condition (7), it is optimal to (not to) acquire
information if the pivot probability is greater (less) than c

M(x− 1
2)

. In a candidate

equilibrium where k∗ voters acquire information and N − k∗ do not, the pivot prob-
ability faced by a voter who acquires information is p(k∗ − 1, N − 1) and that faced
by one who does not acquire information is p(k∗, N − 1). Finally, strict monotonicity
of p(k, N) in its first argument guarantees the uniqueness of k∗.
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