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texto finito, estat́ıstica.

Resumo A capacidade de efectuar pesquisas de sequências de ADN similares a out-
ras contidas numa sequência maior, tal como um cromossoma, tem um
papel muito importante no estudo de organismos e na posśıvel ligação en-
tre espécies diferentes.

Apesar da existência de várias técnicas e algoritmos, criados com o intuito
de realizar pesquisas de sequência, este problema ainda está aberto ao de-
senvolvimento de novas ferramentas que possibilitem melhorias em relação
a ferramentas já existentes.

Esta tese apresenta uma solução para pesquisa de sequências, baseada em
compressão de dados, ou, mais especificamente, em modelos de contexto
finito, obtendo uma medida de similaridade entre uma referência e um alvo.
O método usa uma abordagem com base em modelos de contexto finito para
obtenção de um modelo estat́ıstico da sequência de referência e obtenção
do número estimado de bits necessários para codificação da sequência alvo,
utilizando o modelo da referência.

Ao longo deste trabalho, estudámos o método descrito acima, utilizando,
inicialmente, condições controladas, e, por fim, fazendo um estudo de
regiões de ADN do genoma humano moderno, que não se encontram em
ADN ancestral (ou se encontram com elevado grau de dissimilaridade).





Keywords DNA, gene, chromosome, genome, human specific regions, sequence search,
data compression, similarity, information, finite-context models, statistics.

Abstract The ability to search similar DNA sequences with relation to a larger se-
quence, such as a chromosome, has a really important role in the study of
organisms and the possible connection between different species.

Even though several techniques and algorithms, created with the goal of
performing sequence searches, already exist, this problem is still open to the
development of new tools that exhibit improvements over currently existent
tools.

This thesis proposes a solution for sequence search, based on data com-
pression, or, specifically, finite-context models, by obtaining a measure of
similarity between a reference and a target. The method uses an approach
based on finite-context models for the creation of a statistical model of the
reference sequence and obtaining the estimated number of bits necessary
for the codification of the target sequence, using the reference model.

In this work we studied the above described method, using, initially, con-
trolled conditions, and, finally, conducting a study on DNA regions, belong-
ing to the modern human genome, that can not be found in ancient DNA
(or can only be found with high dissimilarity rate).
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CHAPTER 1

INTRODUCTION

Deoxyribonucleic acid (DNA) is the genetic material that contains the instructions needed
for the function and development of an organism.

In recent years, there has been a great increase in the amount of sequenced DNA, made
possible by the investments made in technology improvement and by the important role that
DNA study plays in understanding the past, present and future of organisms.

With the increase in the number of sequenced genomes, a problem has surfaced: the great
amount of data that needs to be stored. Data compression plays a crucial part in solving
this problem. By having ways of discarding redundant information it is possible to reduce
the size needed for storage, thus several methods for DNA compression have been proposed
throughout the years (see, for example, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).

The ability to locate and identify similar sequences of DNA is extremely important in
understanding, for example, the connections between different organisms and their common
traits, such as common ancestors. Different tools have been implemented with this goal
in mind, using different techniques and focusing on different DNA characteristics (see, for
example, [11, 12, 13, 14, 15, 16, 17]).

Given the inherent connection between data compression and the information content of a
string, could it be used to compare the information content of different sequences and locate
similarities? That is the main question this thesis aims to answer.

The work presented in this thesis is the result of studying a method based on data compres-
sion to locate and identify DNA sequences with some degree of similarity. Broadly speaking,
when a compression method is performed, one gets a metric regarding the compression rate
obtained. In this case, this metric is used as a measure of similarity between sequences,
enabling the ability to locate similar regions.
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1.1 Main contributions

The main goal of this work was to study, develop and evaluate the use of a compression
technique for DNA sequence search. As such, this work’s main contributions are:

• Implementation of an alignment-free [18] technique to localize DNA subsequences with
some degree of similarity, relatively to a large target sequence, using Finite-Context
Models.

• Implementation of a visualization software for result analysis.

• Presentation of detailed experimental results of a scientific application of the method
in:

– Synthetic data.

– Real data.

1.2 Thesis organization

This document is structurally divided into the following chapters:

• Chapter 2 provides introductory biological concepts as a basis for the presented work.

• Chapter 3 begins by presenting the concept of information theory as a basis for data
compression. It also presents an overview of data compression techniques, including
some applications/techniques in DNA sequence compression and, the main tool utilized
by the presented method, Finite-Context Models.

• Chapter 4 includes the method implementation and description.

• Chapter 5 contains the results of this work, firstly using synthetic sequences, comparing
some of the obtained results with another known method, then using real sequences,
either exact or homolog genes, and, finally, an application of the method to ancient
DNA.

• Chapter 6 presents some conclusions about the developed work and possible ideas for
future work.
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CHAPTER 2

BIOLOGICAL BACKGROUND

2.1 DNA Overview

Deoxyribonucleic acid, commonly known as DNA, is the genetic material of every organism
and contains all the necessary instructions for its function and development. It is mostly
located in the cell nucleus (nuclear DNA) but it can also be found in the mitochondria
(mitochondrial DNA or mtDNA) (in eukaryotes, such as humans and fungi; prokaryotes, such
as the bacteria and archaea groups, have DNA at the cytoplasm). DNA is also found in some
viruses. Figure 2.1 depicts a phylogenetic tree based on the proposal by Woese et al. [19],
where the separation of Bacteria, Archaea and Eukaryotes is clear.

Apart from the three domains, there are also viruses. Viruses have been defined as small
infectious agents, which only replicate inside the living cells of other organisms [20]. They can
infect all types of life forms and, in some cases, integrate the hostage genomes [21, 22, 23].
Their classification is still a controversial subject, as many believe that the discovery of the
giant DNA viruses, known as megavirus [24], should represent a fourth domain of life [25, 26].
Although they are associated with the death of other organisms, they are considered a major
factor in the increase of the genetic diversity of organisms [27].

DNA consists of two polynucleotide strands that spiral around each other forming a double
helix [28]. The nucleotides that compose a strand are formed of a sugar (deoxyribose), a phos-
phate and one of four bases (adenine, cytosine, guanine and thymine, typically represented by
A, C, G and T, respectively). These bases are joined together in pairs through an hydrogen
bond, with the possible pairings being between a purine and a pyrimidine (adenine-thymine
and cytosine-guanine). It is this base pairing that allows the two strands to connect. Figure
2.2 represents the double helix DNA structure.

Different combinations of bases and their order allows for the great diversity between
species and even within the same species. The sequences of nucleotides can be separated into
coding and non-coding regions, where the relevant information to protein production can be

3



Figure 2.1: A phylogenetic tree based on rRNA data, showing the separation between the
major branches (Bacteria, Archaea and Eukaryote). Source: wikipedia.org.

Figure 2.2: Double helix DNA structure. Source: wikipedia.org.

found in the coding regions. The process of unveiling DNA nucleotides is known as DNA
sequencing [29].

The sequences that contain the information related to protein production are referred to
as genes, with each gene consisting of parts that contain relevant information (exons) and
parts that do not directly code proteins (introns) [30]. The concept of exons and introns
only exists when referring to eukaryotes. Figure 2.3 represents the two main steps needed to
produce proteins from the DNA coding regions: transcription and translation.

In the transcription step, RNA (Ribonucleic Acid) is made from DNA. RNA is synthesized
in the nucleus and is similar to DNA, maintaining the use of bases, although, in RNA, no
thymine (T) is used, with uracil (U) replacing it. Each sequence of RNA corresponds to the
DNA sequence it was synthesized from.

Translation refers to the protein synthesis from the RNA sequence, following the genetic
code, which is the set of rules by which the information contained in the mRNA (messenger

4



Figure 2.3: From DNA to Proteins [31].

RNA) is translated into proteins.
Proteins are formed by linking amino acids in the order specified in the genetic material,

which is read in groups of three nucleotides, called codons [32]. Each codon specifies the next
amino acid to be added to the protein strand.

Table 2.1 represents the genetic code. Of the possible 64 codons (43) only 61 direct amino
acid incorporation into protein. The remaining three codons (UAA, UAG and UGA) are
called the stop codons, which are involved in the termination of translation. The start codon
(AUG) codes the amino acid methionine, and serves as a marker for the beginning of the
translation.

Despite the number of codons (64), only 20 common amino acids are present in proteins,
therefore, the same amino acid can be coded by up to six different codons, a property named
code degeneracy.

As mentioned previously, the process of unveiling the genomic information into digital
format is called sequencing. This process enables the possibility to analyze and study the
genetic data. However, sequencing is not perfect, as, currently, it is only possible to segment
fragments. As such, it is similar to finding the order and the content of a few pieces of a
huge puzzle, that we want to assemble and analyze. The pieces of the puzzle, specifically
tiny fragments of DNA (between 25 to 300 bases), might also contain several errors, and, as
such, the analysis of the genomic sequences needs to be performed with tools/methods that
are aware of such difficulties [33].
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UUG UCG UAG Stop codon UGG Tryptophan G

C

CUU CCU
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CAU
Histidine

CGU

Arginine

U
CUC CCC CAC CGC C
CUA CCA CAA

Glutamine
CGA A

CUG CCG CAG CGG G

A

AUU
Isoleucine

ACU

Threonine

AAU
Asparagine

AGU
Serine

U
AUC ACC AAC AGC C
AUA ACA AAA

Lysine
AGA

Arginine
A

AUG Methionine (*) ACG AAG AGG G

G

GUU

Valine

GCU

Alanine

GAU
Aspartic acid

GGU

Glycine

U
GUC GCC GAC GGC C
GUA GCA GAA

Glutamic acid
GGA A

GUG GCG GAG GGG G

Table 2.1: The genetic code table. Each codon is translated to an amino acid, with the
exception of the stop codons, but the same amino acid can be translated by up to six different
codons. (*) The AUG codon is translated to methionine, and is also the start codon.

2.1.1 Inverted complements

DNA sequences frequently have subsequences that are the reversed complements of other
subsequences that are also contained in the same sequence. Said subsequences are referred
to as inverted complements. A complemented sequence is the sequence formed by the com-
plemented bases of the original sequence, i.e. A↔ T and C ↔ G. A reversed sequence is, as
the name states, the original sequence in reverse. Considering, as an example, the sequence
“AGTAC”, the inverted complement is then “GTACT”.

In the scope of this thesis, inverted complements are an important occurrence, since genes
are often found as inverted complements, so, while performing a search, it can be beneficial
to apply this knowledge.

2.1.2 Three-base periodicity

As was previously mentioned, DNA contains coding and non-coding regions, with coding
regions being surrounded by non-coding regions and even having exons separated by introns,
effectively splitting up the sequence [34]. Figure 2.4 represents a sequence formed by exons
and introns.

Three-base periodicity [35] is a property of coding regions and, as such, it can be useful to
identify their location. This property can be seen as a preferential spacing between triplets
by distances of three, six, nine, etc. bases [36].

The periodicity suggests the existence of three different, but related, information sources
that drive a statistical model.
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Figure 2.4: Sequence split between exons (Ex) and introns (In).

Figure 2.5: The spectrum of a DNA sequence (human chromosome 22), showing the period
three (f = 1/3) [37].

Figure 2.5 illustrates the presence of the three-base periodicity in a DNA sequence (ob-
tained from the human chromosome 22). The sharp peak at frequency 1/3 is associated with
a period of length three.
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CHAPTER 3

DATA COMPRESSION

3.1 Information Theory

Before introducing data compression, it is interesting to start by understanding the con-
cept of information and relevant concepts about it. In 1948, Claude Shannon published the
article “A Mathematical Theory of Communication”, that stands as the founding work in the
field of Information Theory. Shannon attempted to develop ways of quantifying the amount of
information of a symbol or event without considering its meaning. He discovered the relation
between the logarithmic function and information, and showed that an event with probability
p has an amount of information equal to − logb p, denominated the self-information associated
with that event.

By analyzing the logarithmic function as plotted in Figure 3.1, it is evident that an event
with probability one leads to a value of information of zero; on the contrary, if the event has
a probability that approaches zero, it can be said that it holds an amount of information
approaching infinity. If b = 2, the information is measured in bits.

For data compression, there are two important principles to understand from this theory:
entropy and redundancy.

A simple definition of entropy states that it is a real non-negative number proportional to
the average minimum yes/no questions needed to get an answer to some given set of questions.
It can also be seen as a quantification of the average amount of information present in a certain
experiment.

Assuming an integer n between 1 and 32, how many yes/no questions are needed to find
the number n? Considering, as an example, that n = 27, we need five questions:

1. n ≤ 16 ? No;

2. 17 ≤ n ≤ 24 ? No;

3. 25 ≤ n ≤ 28 ? Yes;

9



Figure 3.1: Logarithmic function − log2(x), with x ∈ [0, 1].

4. 25 ≤ n ≤ 26 ? No;

5. n = 27 ? Yes;

The number of questions needed represents the number of times that 32 can be divided by
2, which is equivalent to 25 = 32 or log2 32 = 5, showing the relation and importance of
logarithms in information quantification.

Considering a random experiment X that can have N different values, each with a prob-
ability Pi, the average self-information, or entropy, of the random experiment is given by

H(X) = −
N∑
i=1

Pi logb Pi. (3.1)

Consider now two symbols A and B, and their associated event probabilities PA and PB

(with PA+PB = 1). Using Equation (3.1) and assuming equal probabilities (PA = PB = 0.5),
an entropy of one is obtained, which means that a minimum of one bit is needed to encode
each symbol.

Figure 3.2 shows the entropy of an experiment with two possible outcomes, in relation to
the probability of either outcome. It can be seen that the maximum value of entropy in this
experiment, which happens when the outcomes have equal probabilities, is also equal to one,
showing the lack of redundancy, i.e., the data can not be compressed.

Assume now the case of a biased coin, where the probabilities of each face are PA = 0.7
and PB = 0.3. Calculating the entropy, a value of H = 0.88 is obtained: on average, each
symbol can be encoded using 0.88 bits, which means that 100 coin tosses could be represented
with approximately 88 bits, i.e., there is redundancy.

Redundancy is then defined as

R =
∑
i

Pi li −
∑
i

−Pi log2 Pi, (3.2)
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Figure 3.2: Entropy of an experiment with two possible outcomes.

where li represents the bit length of the code used to replace each symbol when compressing
the data and

∑
i Pili represents the average code length (in the experiment above li = 1).

From this expression, it can be concluded that the redundancy is zero when the average code
length equals the entropy.

The redundancy can also be given by

R = log2(N)−
∑
i

−Pi log2(Pi), (3.3)

where N is the number of symbols.

3.2 Compression techniques

Compression is a technique that identifies and eliminates data redundancy, using a source
coding method called compressor. Compression can be either lossless or lossy. With lossless
compression, the compressed data can be decompressed to exactly their original values, since
it does not lose information. On the other hand, lossy compression allows for some loss of
information deemed nonessential, possibly making it impossible to obtain the exact original
value after decompression.

There are several compression techniques, but most fall under three categories: variable-
length coding, dictionary-based and arithmetic coding.

3.2.1 Variable-length coding

A variable-length code is a code that maps a source of symbols to a variable number of
bits, such as the Shannon-Fano [38], Huffman [39] and Golomb [40] codes. The mapping
of the source’s symbols is done with different bit lengths for different symbols, according to
their corresponding probabilities. The highest and lowest probability symbols are represented
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using the smallest and biggest bit length codes, respectively, which, if done correctly, leads
to compression.

Huffman coding is an optimum code [41] that serves as the basis for multiple applications,
from compression formats like GZIP and PKZIP (based on the DEFLATE algorithm [42]),
to image formats like JPEG [43]. Since Huffman codes are prefix-free (i.e., no code has, as
prefix, the code from a different symbol), they allow immediate decoding.

Figure 3.3 represents an example of a Huffman code, for a source that generates four
different symbols {a1, a2, a3, a4} with different probabilities P (a1) = 0.4, P (a2) = 0.35,
P (a3) = 0.2, P (a4) = 0.05. The codes corresponding to each symbol are shown in Table
3.1.

Figure 3.3: Huffman-coding example. Source: wikipedia.org.

Symbol Code

a1 0

a2 01

a3 110

a4 111

Table 3.1: Example of resulting codes using Huffman coding.

3.2.2 Dictionary-based compression

A dictionary-based compressor (also known as a substitutional compressor) operates mak-
ing use of a dictionary containing a set of strings, that can be static or dynamically built. As
data are scanned, the occurrences are substituted by references to previous occurrences al-
ready present in the dictionary. Nowadays, most dictionary-based compression techniques are
based on two methods, LZ77 [44] and LZ78 [45]. Although both methods use dictionary-based
compression, they work differently.

LZ77 exploits the fact that words/phrases are likely to be repeated within a text file. It
makes use of a sliding window, consisting of two portions (a search buffer and a look-ahead
buffer), to examine the input sequence. The search buffer contains a portion of the recently
encoded sequence while the look-ahead buffer contains the future portion to be encoded. The
algorithm searches the sliding window for the longest possible match with the beginning of
the look-ahead buffer, outputting, if possible, a pointer to the match. The output format
can be, for example, a triplet formed by an offset to the match, the length of the match and
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the next character to be encoded. An application of the LZ77 method can be found in gzip.
Figure 3.4 represents an example of the sliding window used and the output produced.

Figure 3.4: LZ77 sliding window and output.

The LZ78 method abandons the concept of a text window. It maintains an explicit
dictionary and outputs in the form of pairs formed by an index referring to the longest
matching dictionary entry and the first non-matching symbol. For each outputted pair, the
sequence is also added to the dictionary, so that it can be referred to later. Nowadays, LZW
[46], a variation of LZ78, is used, for example, in the GIF format. Figure 3.5 shows an example
of a dictionary and corresponding outputs.

Figure 3.5: LZ78 dictionary and output.

3.2.3 Arithmetic coding

Arithmetic coding is the basis of the most recent compressors [47, 48]. When compression
ratio is the main objective, arithmetic coding is arguably the most optimal entropy coding
technique, since it usually leads to better results than Huffman Coding, while also allowing
for a clear separation between modeling and coding [49]. The separation can be seen in Figure
3.6, while also showing the ability to use arithmetic coding with any statistical model.

Figure 3.6: Separation between modeling and coding in arithmetic coding.

Arithmetic coding represents an entire message using a single code-word: a real number
between zero and one. As the message becomes longer, the interval needed to represent the
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message gets smaller and, therefore, a higher number of bits is needed to specify the interval.
Successive symbols of the message reduce the interval size, with higher probability symbols
leading to smaller size reductions and, consequentially, fewer bits being added to the message.

Consider an alphabet A, composed of four symbols (A = {A,B,C,D}), with fixed prob-
abilities:

P (A) = 0.1, P (B) = 0.3, P (C) = 0.2 andP (D) = 0.4.

Figure 3.7 shows a representation of the encoding process of the message “BCC”.

Figure 3.7: Arithmetic encoding of the string “BCC”, assuming static probabilities.

Encoding

For each symbol, the interval is divided according to the respective symbol probability, e.g.,
when the first symbol, B, is seen, the encoder narrows the interval to [0.1,0.4), which represents
the range allocated to this symbol, and divides this interval according to the probabilities of
all the symbols. This process is repeated until the end of the message, resulting in the interval
[0.244,0.256). The message can then be represented by any number contained in said interval;
for example, 0.25.

Decoding

Suppose that the decoder knows that the message is represented by the number 0.25.
Starting with the initial interval [0,1), the decoder can then deduce that the first symbol is
B, since 0.25 lies within the interval allocated to B. Decoding a message follows a similar
process as encoding, with the decoder finding the interval that contains the encoded message
and the respective symbol after each interval size reduction.

3.3 Finite-context model (FCM)

Consider a source of information, s, that outputs symbols belonging to a finite alphabet,
A, and a sequence xt = x1x2x3 . . . xt, that refers to the generated symbols at time t, as shown
in Figure 3.8.
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At any given time (or symbol), the finite-context model (FCM) assigns a probability
estimate to the symbols of the alphabet A. These estimates are calculated according to
a conditioning context of finite size, M , of past symbols (order-M FCM) [50, 51], ct =
xt−M+1, . . . , xt−1, xt. The total number of possible contexts of an order-M finite-context
model is, therefore, |A|M , which, in the scope of this thesis, is 4M , since |A| = 4 (referring to
the four DNA bases).

In the case of genomic sequences, high orders usually lead to higher compression rates,
although they require more time/computational resources.

Figure 3.8: Example of finite-context model: the probability of the next outcome, xt+1,
considering M = 5 last outcomes [52].

The probability of xt+1 is then obtained by

P (xt+1 = s| ct) =
nts + α∑

a∈A
nta + 4α

, (3.4)

where nts represents the number of past times that the symbol, s, has been generated after
the conditioning context, ct, and

∑
a∈A

nta is the total number of times that the same context

has appeared in the past. The parameter α is used to solve the problem of calculation of
zero probability events, that is, when it is the first time that a certain symbol has appeared,
which, with α = 0 would lead to a zero probability, even though it is still possible for the
symbol to occur. It is important to note that, generally, smaller values of alpha lead to better
compression results when high order models are used. This is due to the fact that, when one
decreases the value of alpha, the model is given a higher degree of certainty, since the impact
of alpha in the probability of the symbol is diminished and, consequently, the impact of the
conditioning context is increased. When combined with a higher order model, the resulting
model is more confident (due to the low alpha value) and stores more information (due to the
high order), which, in turn, leads to the aforementioned compression results.

FCMs are now easily translatable to tables that store the contexts, the number of times
said contexts appear and the number of times a symbol appears given each context.

Table 3.2 presents a simple example of how an order-5 model is usually implemented.
Each row presents the last five encoded symbols (context), the counter for each symbol and
the sum of all the counters (total number of times the context has appeared in the sequence).
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The counters are updated as each new symbol of the sequence is encoded. Considering that
the last encoded symbols were “ATAGA” (ct = “ATAGA”) it is then possible for the model
to obtain the following probability estimates:

P (A|ATAGA) = (1 + α)/(68 + 4α),

P (C|ATAGA) = (22 + α)/(68 + 4α),

P (G|ATAGA) = (31 + α)/(68 + 4α) and

P (T |ATAGA) = (14 + α)/(68 + 4α).

Context, ct ntA ntC ntG ntT
∑

a∈A(nta)

AAAAA 4 12 2 23 41

AAAAC 18 5 11 17 51
...

...
...

...
...

...

ATAGA 1 22 31 14 68
...

...
...

...
...

...

GCAGT 9 19 21 29 78
...

...
...

...
...

...

TTTTT 8 3 6 15 32

Table 3.2: Order-5 finite-context model example.

It is known that the information content of the symbol xt+1 is given by − log2 P (xt+1| ct)
[51, 50] so, for a DNA sequence of N bases, the average bitrate (entropy) is given by

HN = − 1

N

N−1∑
t=0

log2 P (xt+1 = s| ct) bpb, (3.5)

where “bpb” stands for “bits per base”.
Referring to the example presented in Table 3.2 and supposing that xt+1 (next symbol

to encode) is “C”, the model should now be updated with the new information. Table 3.3
represents the updated model.

It is important to note that the probability estimates of more probable events need less
bits to be encoded than in the case of equal probabilities (where two bits are needed), e.g.
P (G|ATAGA) ≈ 0.43 bits (considering α = 1).
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Context, ct ntA ntC ntG ntT
∑

a∈A(nta)

AAAAA 4 12 2 23 41

AAAAC 18 5 11 17 51
...

...
...

...
...

...

ATAGA 1 23 31 14 69
...

...
...

...
...

...

GCAGT 9 19 21 29 78
...

...
...

...
...

...

TTTTT 8 3 6 15 32

Table 3.3: Order-5 finite-context model update example.

3.4 Genomic sequence compression

The quantity of DNA sequenced from organisms has increased rapidly and with it the
need for compression, not only for storage purposes, but also for purposes of modeling and
obtaining information on the sequences. Mutual compressibility has revealed to be important
for discovering patterns of interest from genomes [53] and compression can be used as a good
measurement of the relation between sequences [54, 55].

Genomic sequence compression presents itself as a process that requires specific purpose
algorithms. This happens due to the characteristics of the sequences, such as the small
alphabet (4 nucleotides), inverted complements (see Subsections 2.1.1 and 4.1.2) and their
heterogeneous and non-stationary nature.

Genomic sequence compression falls mainly in two categories:

1. Individual compression;

2. Reference compression.

For detailed reviews on several methods and applications, see, for example, [56, 57].

3.4.1 Individual compression

Individual compression was firstly used as a way to decrease the space of transmitted data
over the Internet. Currently, it is used because of space constraints and efficiency in data
manipulations.

Commonly, there are a minimum of two different compression methods: one based on
Lempel-Ziv substitutional procedures [44] and the other supported by low-order FCM arith-
metic coding. As mentioned previously, substitutional procedures take advantage of repeated
regions by representing them with a reference to past occurrences. It is also able to reference
approximate repetitions, although, in this scenario, it is necessary to indicate the differences
between the two regions.

For most methods, the low-order FCM assumes a secondary function, with the substi-
tutional approach working as the main method. In the case of low performance by the
substitutional method, the region is then represented by a low-order FCM.
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The GeCo algorithm [58] uses a combination of context models of several orders for indi-
vidual compression, as well as reference compression. This method introduces the concept of
extended finite-context models (XFMCs), that allows for higher tolerance against substitution
errors. For more flexibility, the method employs cache-hashes in high order models. The
cache-hash uses a fixed hash function to simulate a specific structure, creating a middle point
between a dictionary and a probabilistic model, but only takes in consideration the last hash
entries in memory, in order to improve memory optimization.

The XM (eXpert Model) method [6], although also used for protein sequence compression,
can be employed as an individual compression method. The method encodes each symbol by
estimating the probability based on information obtained from the previous symbols. If the
symbol is identified as part of a repeat, the information from one or more previous occurrences
is used to determine the symbol’s probability distribution. The symbol is then encoded using
arithmetic encoding.

The DNAEnc3 method [5] introduces the use of several competing Markov models of dif-
ferent orders to obtain the probability distribution of the symbols, using them to obtain
compression. This method allows the usage of models of orders of up to sixteen, a better
handling of inverted repeats found in the sequences and provides probability estimates suited
to the wide range of context depths used.

3.4.2 Reference compression

Reference compression was developed as a consequence of the big increase of sequenced
genomes [59], with high redundancy characteristics, as well as the reduced costs of DNA
sequencing.

The improvements of sequencing technology greatly increase the performance of reference
compression [60]. With the DNA sequencing technologies improvements, it has become easier
and more efficient to increase the quantity of sequenced DNA and, therefore, the number of
available references. Consequently, better results can be achieved with reference compression.

The main idea of reference compression is taking advantage of similarities between the
target sequence and a reference sequence (or several) and then encoding the differences be-
tween them. Since the decompressor also has access to the reference sequences it leads to
very high compression rates [61].

GReEn (Genome Re-sequencing Encoding) [62] proposes the use of a probabilistic copy
model. This method estimates the probability distribution of each symbol in the target
sequence using either an adaptive model (the copy model), which assumes that the characters
of the target sequence are an exact copy of reference sequence, or a static model that relies
on the frequencies of the symbols in the target sequence. The adaptive model is the main
statistical model but, in situations in which the adaptive model fails, the static model is used
instead. The estimated probability distributions are then fed to an arithmetic encoder.

The iDoComp algorithm [63] is composed of three main steps. In the first step, called
mapping generation, the goal is to create the parsing of the target sequence relative to the
reference sequence, which can be seen as a sequence of substrings of the reference that, when
concatenated, yield the target sequence. The second step, named post-processing of the
mapping, tries to find consecutive matches that can be merged together and converted into
an approximate match, leading to a reduction in the number of matches, and, consequently,
the size of the mapping. Finally, the third step, named entropy encoder, further compresses
the mapping and generates the compressed file.
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The GRS method [8] is based on the diff utility from UNIX. The algorithm locates the
longest subsequences that are similar in the reference and the target sequences, calculates a
similarity measure and, if it is larger than an identified threshold, compresses the differences
between the reference and target sequences using Huffman encoding. In the cases in which
the similarity rate does not reach the threshold, the sequences are divided into smaller parts
and the process is repeated using the new, smaller pieces.

The GDC 2 method [9], which is an improved version of GDC [64], uses two-level LZSS

factoring [65] to encode the sequences as a list of matches and literals, having the advantage
over GDC since it considers short matches after some longer ones.

3.5 Kolmogorov Complexity: the lower bound of compression

In 1965, Kolmogorov defined three different approaches for the problem of defining a
complexity measure of a string: combinatorial, probabilistic and algorithmic [66]. The last on
is known today as the Kolmogorov complexity. Specifically, the Kolmogorov complexity of x,
K(x), is given as the length of the shortest binary program that computes x on a universal
computer (such as a universal Turing machine [67]) and then stops. However, this measure
of Kolmogorov complexity is not computable, so it needs to be approximated using other
computable measures [68, 69], namely a compressor.

One of the important problems that can be formulated using Kolmogorov theory is the
definition of similarity, i.e., the information distance between objects. For example, on [70], it
was proposed a similarity metric based on an information distance [71], defined as the length
of the shortest binary program that is needed to transform strings A and B into each other.
This distance depends on the Kolmogorov complexity of both strings, K(A) and K(B), and
the conditional complexities, such as K(A|B), i.e., the complexity of A when B is known.

According to [70], a compression algorithm needs to be normal [72] in order to be used
to compute the normalized compression distance.

The concept of complexity measure provides an important applicability in the study of
the functions of DNA, comparative analysis of organisms [73], genomic evolution and others
[74, 75], through the use of DNA complexity profiles.

The main idea of this work is to approximate the Kolmogorov complexity of a string given
a different string [76], filter and visualize the low complexity regions.
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CHAPTER 4

COMPRESSION BASED SEQUENCE
SEARCH

In this chapter, we propose a computational method (NET-ASAR), based on data compres-
sion, to search for a reference sequence in a target sequence.

The proposed method stands on finite-context models (FCMs). The main premise is that,
by creating a statistical model of the reference sequence, and using said model to compute
the entropy of each base (in bits) belonging to the target sequence, it should be possible
to observe higher compression rates when the reference sequence, or a sequence with some
degree of similarity, is present on the target.

The method stands on two main steps:

1. Modeling – A set of FCMs are loaded with the information of the reference sequence
that, when concluded, are kept fixed until the end.

2. Entropy calculation – Using the previously loaded models of the reference, the entropy
of each base of the target sequence is calculated using Equations (3.4) and (3.5).

Figure 4.1 represents the proposed method in a simplified manner and its main steps. The
output is an ordered stream of bits per base (bpb), which can then be used to get a visual
representation of the search result.

Two tools were developed in order to test the method. The first corresponds to the
practical implementation of the method (NET-ASAR-map) and the second allows for easy vi-
sualization of results and, if requested, extraction of the regions that fall below a defined
threshold (NET-ASAR-visual).
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Figure 4.1: Simplified diagram of the proposed method.

4.1 The method

4.1.1 Three-state model

DNA coding regions have, as was mentioned earlier, an intrinsic property called three-
base periodicity. In order to explore this property, the proposed method is implemented with
a three-state model. This model differs from the model presented in Subsection 3.3 by the
inclusion of three different states that are selected periodically and each state is comprised of
a single finite-context model. Figure 4.2 shows a representation of the model.

By using this model, the probabilities not only depend on M but also on (tmod 3), which
is used for state selection. The probability estimator is then given by

P (xt+1 = s| ct) =
in

t
s + α∑

a∈A
inta + 4α

, i = tmod 3. (4.1)

It is easy to see the resemblance between Equation (4.1) and Equation (3.4), since a
three-state model is inherently the combination of three different FCMs.

4.1.2 Inverted complements

When searching for a reference sequence, it is possible for it to be present in the target but
as an inverted complement (see Subsection 2.1.1). In [52] the authors include the inverted
complement of the context and complement of the symbol to encode when updating the
counters of the model, so, in reality, the model will be updated twice for each symbol to
encode. Taking into account the fact that a three-state model is being used, a new approach
is needed, since the synchronization of states and bases cannot be assured in both cases
(sequence/symbol and inverted complement sequence/complemented symbol).

The solution presented includes the usage of three extra states (corresponding to one extra
FCM) that account for inverted complements. When encoding a new symbol, the model is
updated as presented in Subsection 3.3 but, at the same time, the model referring to the
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Note: In the scope of this thesis the block named “Encoder” is not
used, as only the probability estimates are required.

Figure 4.2: Three-state model. The probability of the next outcome xt+1 is conditioned by
the context depth, M , and (tmod 3).

inverted complements is updated considering a conditioning context that equals the inverted
complement of the original and the symbol to encode will be the complemented symbol located
at xt−M (immediately before the context).

The modeling can then be visualized as a sliding window of size M , where two different
models are updated taking into account their three states. Considering the sequence presented
in Figure 4.2 as the start of a reference sequence and ignoring the first two symbols (“GA”),
we can assert that the modeling process is just starting (all model counters are set to zero).
Figure 4.3 presents the corresponding sequence that will be considered when updating the
model related to inverted complements.

Table 4.1 and Table 4.2 present the counters updated in both models when encoding the
first symbol. Only the first state (State 0) is presented, since it is the only one with counters
different from 0.

Context, ct ntA ntC ntG ntT
∑

a∈A(nta)

AAAAA 0 0 0 0 0
...

...
...

...
...

...

ATAGA 0 1 0 0 1
...

...
...

...
...

...

TCTAT 0 0 0 0 0
...

...
...

...
...

...

TTTTT 0 0 0 0 0

Table 4.1: State 0 of order 5 FCM.
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Figure 4.3: Three-state model related to inverted complements.

Context, ct ntA ntC ntG ntT
∑

a∈A(nta)

AAAAA 0 0 0 0 0
...

...
...

...
...

...

ATAGA 0 0 0 0 0
...

...
...

...
...

...

TCTAT 0 0 0 1 1
...

...
...

...
...

...

TTTTT 0 0 0 0 0

Table 4.2: State 0 of order 5 FCM for inverted complements.

4.1.3 Data models application

To proceed with the actual sequence search, it is necessary to calculate the entropy of
each symbol, a, of the target sequence using Equation (3.5), knowing that the probability
estimates are calculated using Equation (3.4), where each value of nts and

∑
a∈A

nta is obtained

by consulting the models created previously.

When searching in large sequences (e.g., chromosomes), it is important to remember
that most information stored refers to non-coding regions, which may not carry three-base
periodicity and do not necessarily have lengths multiples of three. Therefore, it can not be
assumed that the states have the correct offset, i.e., that the three-base periodicity is not
broken between exons. Since the modeling of the reference sequence always begins in state
zero, a synchronization between the states is required, and, therefore, each base has to be
modeled in the same state, in both reference and target.
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Figure 4.4 shows an example in which the reference sequence is found in the target se-
quence, but preceded by an exon with two bases (represented as N). It can be clearly seen
that, although the sequence is present in the target, the bases of the reference are represented
in different states (highlighted in red), which would lead to wrong results.

Figure 4.4: State synchronization error.

In order to overcome this issue, the calculations are performed three times for each model,
in a way that the entropy of each symbol is obtained as the minimum of the entropy calculated
using each different state, since, ideally, a lower entropy translates to the presence of the
reference sequence, or a subsequence of the reference.

In reality, when inverted complements are included, the entropy of each symbol is given
by

HN = min(HN i , HNinv i), with i = 0, 1, 2, (4.2)

where HN i and HNinv i represent the entropies of a base, calculated with the three states of
“normal” and inverted models, respectively. It is evident that the entropy of each base refers
to the minimum of six calculated entropies (when inverted complements are included in the
search). Figure 4.5 presents hypothetic outputs from the six created FCMs and the resulting
final output.

Consider now, as an example, the sequences “GATT” and “CTAGGATTCG”, that are
the reference and target sequences, respectively. For simplicity purposes consider, as well,
that the reference sequence is being modeled using a single FCM of context size two (M = 2),
and using α = 1/2. Table 4.3 represents the model of the reference sequence.

Context, ct ntA ntC ntG ntT
∑

a∈A(nta)

AA 0 0 1 0 1

AG 1 0 0 0 1

GA 0 0 0 1 1

AT 0 0 0 1 1

Table 4.3: Model of a reference sequence.

Notice the context “AA”, which is used as a way to include the first symbol in the
modeling.

With the obtained model, it is now possible to perform the calculations needed to obtain
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Figure 4.5: Entropies from six different states and final output, obtained as the minimum of
the six (calculated at each base index).

the individual entropies of each base of the target sequence:

H(C|AA) = (0 + 0.5)/(1 + 4× 0.5) = 2.585 bits

H(T |AC) = (0 + 0.5)/(0 + 4× 0.5) = 2 bits

. . .

H(G|AG) = (0 + 0.5)/(1 + 4× 0.5) = 2.585 bits

H(A|GG) = (0 + 0.5)/(0 + 4× 0.5) = 2 bits

H(T |GA) = (1 + 0.5)/(1 + 4× 0.5) = 1 bit

H(T |AT ) = (1 + 0.5)/(1 + 4× 0.5) = 1 bit

. . .

When looking at the calculated entropies, there is a clear drop in the bits needed to
encode some of the bases of the target sequence, which indicates the presence of the reference
sequence.

Although the needed bits are lower, this can only be said for two bases, with the first two
bases of the reference sequence not being identified. This can be explained by the similarity
between context size and reference sequence length, two and four, respectively, which, for the
most part, should not be a problem when using the method with full DNA sequences (given
the greater length of both the reference and target sequences).
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4.1.4 Auxiliary tools

Given the nature of the obtained results, it becomes extremely useful to visualize them in
a clear way, such as a graph of bits per base along the target sequence’s bases.

The developed tool for result visualization (NET-ASAR-visual) takes the results previously
filtered, a threshold, the segmented regions that fall below said threshold, and creates a
graph. In this graph, the bits per base along the sequence are plotted, and a highlight of the
segmented regions (regions below the threshold) is presented at the top of the plot.

The obtained subsequences are then extracted, if requested, from the original sequence
and stored in files for further analysis.

The graph construction and subsequences extraction is achieved with the creation of
different Bash scripts, a GNUplot script and tools available on the GOOSE toolkit[77].

Filtering

Although the filtering tool used during this work was implemented previously and is a
part of the GOOSE toolkit, it is important to understand the parameters used.

The filtering is done using a sliding low-pass filter window, specifically, a Hamming win-
dow.

The parameters of the filter tool used in the presented work are the window size and
the number of bases discarded. The number of discarded bases refers to the bases that are
removed from the output, between each entry, i.e., if 20 bases are discarded it means that,
when a filtered value is outputted, the next 20 bases are discarded and the next value is kept.

4.2 Implementation

NET-ASAR was implemented in the C++ language, using the FCMs with unordered maps,
found in the C++ Standard Library (std). A class was created in order to contain all variables
and methods necessary for the algorithm.

For compiling, it was used the g++ compiler, present in Ubuntu (version 16.04) and the
C++14 Standard.

The class that implements the FCMs can be reviewed in Listing 4.1. A structure named
values is also included because, although it is not directly a part of the class, it is still
necessary for the implementation of the class.

The method has been made publicly available, under GPLv3 license, at https://github.
com/manuelgaspar/NET-ASAR.

struct values

{

int val [5];

};

class modelClass

{

private:

const int context;

std:: string initialContext;
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public:

const int alSize;

const double alpha;

modelClass(int cont , double alpha_ );

std:: unordered_map <std::string ,values > pMap [3];

int getContext ();

std:: string getInitialContext ();

};

Listing 4.1: Finite-Context Model class header.

The implemented class has its own members: variables and methods. With the exception
of context size and the initial context, all the word variables were set to public, since they
need to be accessed regularly. The created variables are:

• values - a structure containing only an array of integers of size 5. This array will be
used to store the counts, where val[0], val[1], val[2], val[3] refer to ’A’,’C’,’G’,’T’,
respectively, and val[4] stores the count regarding the context.

• context - an integer that stores the size of the context, M .

• initialContext - a string that stores the initial context. The importance of this
variable is evident when thinking of the first base to be encoded, since it does not have
any context, one needs to be created, which, in this case will be a string with the symbol
“A” repeated M times.

• alSize - an integer in which the alphabet size is stored so it can be used in the calcu-
lations. When the class is initialized this variable is automatically initialized with the
value 4.

• alpha - a double that stores the value of alpha used in Equation (4.1).

• pMap - an array of std::unordered maps. This variable is the most important variable
of the class, since it is in this array that the models are stored. Note that the array is of
size 3, referring to the 3 states of the model. Each map stores combinations of strings
(keys) and values.

In regards to methods, the class contains the following:

• modelClass(cont, alpha) - constructor that stores the context size on the variable
context, the alpha value in variable alpha, initializes the alphabet size (alSize) and
creates the string initialContext with the specifications mention earlier.

• getContext() - returns the context size. It can be used to assert that the same context
size is used throughout the algorithm.

• getInitialContext() - returns the string initialContext. It is used later on when
the models are being created and when the calculations are made.

After the model class implementation, the main algorithm was implemented. It follows
the next general steps when performing a typical search:
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1. Using an std::ifstream to iterate through the reference sequence, base by base, the
three-state models are created. While looping through the sequence and updating the
corresponding counters, the contexts are updated by removing its first character and
adding the previous base, in order to be used in the next iteration. It is worth noting
that if the symbol does not belong to the alphabet used (i.e. nts /∈ A,C,G, T ), the
counters remain with the same value.

2. Iterating through the target sequence, base by base, the probability estimates are now
calculated for each base using equations 3.4 and 3.5. This loop is performed three
times in the interest of obtaining the probability estimates for each symbol with the
three states. The minimum values of entropy obtained from the states are stored in a
std::vector<double>.

3. Finally, the calculated values are then outputted to std::cout.
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CHAPTER 5

RESULTS

5.1 Synthetic Sequences

In order to properly test NET-ASAR, it is important to start in a way that allows full control
of the test conditions. For this reason, two synthetic sequences, both composed of randomly
generated subsequences, were created:

• Sequence A, which contains a gene1 repeated throughout its length, with different sub-
stitution mutation rates and orientation;

• Sequence B, that contains small sequences extracted from the gene1, with varying de-
grees and types of mutation.

The gene is placed in the sequences, so that the previously mentioned DNA characteristics
are taken into account when performing the search.

The synthetic sequences are represented in Figures 5.1 and 5.2, where the main rectangle
represents the sequence and in red are represented the positions of the added gene information.

Table 5.1 shows the position, mutation (substitution) percentage and orientation of the
gene in sequence A.

1Auxin transport protein (BIG), found in Arabidopsis thaliana
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Figure 5.1: Graphical representation of the synthetic sequence A.

Sequence number Location Orientation Substitution mutation (%)

1 1.000.001 Normal 0

2 2.017.805 Normal 1

3 3.035.609 Normal 2

4 4.053.413 Normal 3

5 5.071.217 Normal 4

6 6.089.021 Normal 5

7 7.106.825 Inverted Complement 0

Table 5.1: Gene subsequences characteristics of the synthetic sequence A.

Table 5.2 presents the characteristics of the used gene subsequences, such as the position
it occupies in sequence B, the location in the gene and the degree of mutations (substitution
and deletion).

Figure 5.2: Graphical representation of the synthetic sequence B.

In order to validate the results, the search was also performed using BLAST (Basic Local
Alignment Search Tool) [78], specifically, BLAST 2 Sequences [79], which is a BLAST-based
tool for aligning two protein or nucleotide sequences. BLAST is an alignment algorithm that
can detect sequence similarity between a query sequence and sequences within a database or
library. In this particular case, the algorithm is used to find similarities between the gene and
the synthetic sequence.

The comparison between methods was only performed using sequence B, since we felt that
it would present a bigger challenge for both methods.

32



Sequence number Location Location in gene
Mutation (%)

Substitution Deletion

1 200.001 0-100 2 3

2 300.098 100-232 3 2

3 400.229 400-500 5 5

4 500.326 11600-12000 5 10

5 600.680 15400-17000 5 15

Table 5.2: Gene subsequences characteristics of the synthetic sequence B.

5.1.1 Results

Figure 5.3 portrays the result obtained, using a context size of 12. Highlighted in red are
the regions of the sequence that, when compressed with the reference sequence models, have
an entropy lower than the threshold of 0.6 bits.

The choice of the threshold was made in a manner that allows for all the regions to be
highlighted. This means that, if the chosen threshold would be, for example, 0.4 bits, the
sixth region would not be highlighted, although, in this case, all the regions can easily be
identified by the inverted peaks.

Figure 5.3: Identification of the reference gene BIG in the synthetic sequence A. Obtained
with a context size of 12, a threshold of 0.6 and filtering with window size 200 and discarding
20 bases for each one kept.

Table 5.3 presents the positions highlighted by the method. In some cases, the segmented
regions presented are the grouping of several small regions, found close together. The locations
are represented this way, because, for some of the regions, the zones below the threshold are
divided into several smaller subregions, i.e., in those regions we can find small variations in
bits per base, which can lead to values above the threshold, followed by more values below
the threshold.

Comparing Table 5.1 and Table 5.3, it is clear that the method has obtained the correct
regions with a slight difference in the region position. The obtained difference can be explained
by a combination of the mutations applied to the gene and filter used, since, when filtering,
it is conceivable that lower entropy values are being filtered out, and, consequently, affecting
the read positions.

Figure 5.4 shows the graph obtained when using sequence B as the target and the BIG
gene as the reference sequence.
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Sequence number Location

1 1000062-1017744

2 2017890-2035404

3 3035886-3053337

4 4054470-4069317

5 5072403-5086851

6 6093423-6099954

7 7106904-7124565

Table 5.3: Detected regions position using a threshold of 0.6 in synthetic sequence A.

Using a threshold of 1.4 bits, leads to the highlighted regions in red, which correspond to
the regions displayed in Table 5.4.

Figure 5.4: Identification of the reference gene BIG in the synthetic sequence B. Obtained
with a context size of 12, a threshold of 1.4 and filtering with window size 75 and discarding
20 bases for each one kept.

Sequence number Location

1 200025-200067

2 300111-300216

3 400281-400302

4 500367-500430

5 600726-600747

Table 5.4: Detected regions position using a threshold of 1.4 in synthetic sequence B.

Figure 5.4 exhibits, again, the ability, of the proposed method, to detect the regions, even
when only small and mutated subsequences are present in the target sequence. Once again,
the highlighted regions are not in exact agreement with the real positions. Note, that in some
regions, by changing the used threshold, this difference can be reduced.

Consider now the results presented in Figure 5.5, which correspond to the previous search
performed using BLAST [78].

A close analysis reveals that the BLAST algorithm was not able to detect all the regions,
with subsequence number 1, located near the base of index 200.000 (see Figure 5.2), not
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being detected, while the remaining four subsequences are correctly identified. Given the
characteristics of the sequence, it is plausible that, by adjusting some of the parameters, the
BLAST method could identify all the regions.

Figure 5.5: Search performed with BLAST in synthetic sequence B, using BIG gene as a
query.

The results here presented demonstrate the proposed method’s ability to detect and local-
ize the presence of exact or approximate subsequences. The proposed method shows promising
characteristics, when compared to a proven algorithm, as it was able to detect more regions
than BLAST, although using more computational resources.

5.2 Real Sequences

Having evaluated the method using synthetic sequences, it should now be tested using less
controlled condition, since, by using real sequences, it is expected that some regions of the
reference sequence are repeated throughout the target, due to, for example, high repetition
areas.

Firstly, results for exact gene search will be presented, by using, as target, the chromosome
in which the gene (reference) is known to be present.

Secondly, the search is performed using target sequences that contain homolog genes.

5.2.1 Exact Gene Search

Table 5.5 shows the genes used for the exact gene search, as well as their location in the
organism. The target sequence is, as previously mentioned, the chromosome containing each
gene.

Gene Organism Chromosome Location

AT4G16162 Arabidopsis thaliana 4 9159105-9161614

jmj2 Schizosaccharomyces pombe 1 1804548-1806797

Slc4a2 Mus musculus 5 24423761-24440947

Table 5.5: Genes used as a reference and their respective organism/location.

Figures 5.6, 5.7 and 5.8 show the obtained plots by NET-ASAR, with the highlighted regions.
In Table 5.6 can be found a compacted view of the resulting regions and the parameters used
for each search.

The obtained results are in accordance with the results obtained in Section 5.1.1, with
each highlighted region differing slightly from the exact gene location.
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Figure 5.6: Identification of the reference gene AT4G16162 in the chromosome 4 of Arabidop-
sis thaliana.

Figure 5.7: Identification of the reference gene jmj2 in the chromosome 1 of Schizosaccha-
romyces pombe.

It is also interesting to observe the influence of the target sequence size. Chromosome 4
of Arabidopsis thaliana, chromosome 1 of Schizosaccharomyces pombe and chromosome 5 of
Mus musculus have different sizes of approximately 18.6M, 5.6M and 151.8M (in number of
bases), respectively. Looking at the presented plots, it is evident that, with the increase in
size, the results are more prone to false positives, requiring further analysis of the regions.

Given the possibility of false positives, one can establish that the choice of context size,
data filtering parameters, threshold and, to a certain extent, the α used in Equation (4.1),
can impact the final results.
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Figure 5.8: Identification of the reference gene Slc4a2 in the chromosome 5 of Mus musculus.

Gene Location Context size Threshold
Filtering

Window size Discard

AT4G16162 9159507-9161229 18 0.1 500 20

jmj2 1804950-1806420 18 0.1 500 20

Slc4a2 24424155-24440556 18 0.1 500 20

Table 5.6: Location of the identified regions using NET-ASAR and the parameters used in the
process.

Figure 5.9 shows the results obtained using different parameters and their effect. It was
performed using a context size of 8, a filtering window of size 250, discard size of 20 and a
threshold of 0.2.

Table 5.7 presents the highlighted regions referring to Figure 5.9 and the minimum value
obtained in the region (inverted peak minimum). Of the three regions, only the second
(highlighted) corresponds to the gene, with the remaining two (first and third) being false
positives. Note the difference in length between the three, and how the highlighted region
corresponding to the gene is the longest, by over four orders of magnitude.

When extracting the false positive regions and analyzing their contents it can be viewed
that both are high pattern repetition regions (mostly “CA”, in this particular case). Since
the reference sequence contains an area with the same pattern repetition, albeit in a smaller
number of repetitions, it translates to the obtained false positives.

Figure 5.9: Identification of the reference gene Slc4a2 in the chromosome 5 of Mus musculus
using different parameters.
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Subsequence Location Length Minimum entropy

1 20978685-20979168 483 0.089

2 24423924-24440766 16842 0.084

3 63413070-63413217 147 0.192

Table 5.7: Location and length of the identified regions in chromosome 5 of Mus musculus
with reference gene Slc4a2. The parameters used were a context size of 8, a threshold of
0.2, and filtering with window size 250 and discarding 20 bases. The highlighted subsequence
refers to the region in which the gene can be found.

When the search is performed on exact matches between reference and target sequences,
i.e., the reference sequence is a subsequence of the target sequence (as the previously presented
examples), using high order models provides better outcomes, but when lower context sizes
are used the results need to be analyzed with extra care.

5.2.2 Homolog genes

As was previously mentioned, the proposed method was tested using homolog genes.

Homology is, usually, associated with evolution, so, when referring to homolog genes, it
is referring to similar genes that are present in different organisms that share a common
ancestor.

Knowing this similarity between sequences, NET-ASAR can be tested using slightly different
sequences by searching a reference gene in a target chromosome of a different organism, in
which a homolog gene of the reference is present.

Table 5.8 presents the reference sequences (genes) and the corresponding target sequences
(chromosomes). Three different genes were used as a reference, all extracted from the Homo
sapiens genome, with each gene being used as a reference for different target chromosomes.
When available in the NCBI databases [80], it is also presented the DNA Identity percentage,
between the reference gene and the homolog gene present in the target sequence.

Reference Sequence Target Sequence
DNA Identity (%)

Organism Gene Organism Chromosome

Homo Sapiens

MYO3A
Gorilla gorilla 10 –
Pan troglodytes 10 99.3

SPATA45
Macaca mulatta 1 96.6
Pan troglodytes 1 99.0

SYT1

Canis lupus familiaris 15 92.7
Gorilla gorilla 12 –
Pongo abelii 12 –

Pan troglodytes 12 99.7

Table 5.8: Reference genes used and corresponding target chromosome(s).
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Results for gene MYO3A

Target organism
Results Parameters used

Location Figure Filtering Context IR2

Gorilla gorilla 28940121-29114736 5.10a -d 20 -w 2000 13 Yes

Pan troglodytes 26822607-27110853 5.10b -d 20 -w 1000 13 Yes

Table 5.9: Location of identified regions by NET-ASAR, with reference gene MYO3A in different
organisms and parameters used for the identification.

(a) Chromosome 10 of Gorilla gorilla.

(b) Chromosome 10 of Pan troglodytes.

Figure 5.10: Identification of homolog reference gene MYO3A in different target organisms.

2Include inverted repeats in the search
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Results for gene SPATA45

Target organism
Results Parameters used

Location Figure Filtering Context IR

Macaca mulatta 153695703-153699378 5.11a -d 20 -w 2000 13 Yes

Pan troglodytes 191790081-191792874 5.11b -d 20 -w 2000 13 Yes

Table 5.10: Location of identified regions by NET-ASAR, with reference gene SPATA45 in
different organisms and parameters used for the identification. The parameters -d and -w
refer to the number of discarded bases for each base kept and the filtering window size,
respectively.

(a) Chromosome 1 of Macaca mulatta.

(b) Chromosome 1 of Pan troglodytes.

Figure 5.11: Identification of homolog reference gene SPATA45 in different target organisms.
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Results for gene SYT1

Target organism
Results Parameters used

Location(s) Figure Filtering Context IR

Canis lupus familiaris Table 5.12 5.12 -d 20 -w 500 13 No

Gorilla gorilla Table 5.13 5.13 -d 20 -w 1000 13 Yes

Pongo abelii Table 5.14 5.14 -d 20 -w 1000 13 No

Pan troglodytes 81263994-81862452 5.15 -d 20 -w 1000 13 No

Table 5.11: Location of identified regions byNET-ASAR, with reference gene SYT1 in different
organisms and parameters used for the identification. The parameters -d and -w refer to the
number of discarded bases for each base kept and the filtering window size, respectively.

Figure 5.12: Identification of homolog reference gene SYT1 in chromosome 15 of Canis lupus
familiaris.

Subsequence Location Length Minimum entropy

1 22039962-22040235 273 0.911

2 23082843-23082927 84 0.98

3 40416096-40416306 210 0.888

4 54298188-54298482 294 0.845

Table 5.12: Identified regions and their length with reference gene SYT1 in chromosome 15
of Canis lupus familiaris. The highlighted subsequence refers to the location of the homolog
gene of SYT1.
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Figure 5.13: Identification of homolog reference gene SYT1 in chromosome 12 of Gorilla
gorilla.

Subsequence Location Length Minimum entropy

1 70287861-70289352 1491 0.264

2 78213051-78792252 579201 0.185

3 96019434-96019938 504 0.273

Table 5.13: Identified regions and their length with reference gene SYT1 in chromosome 12
of Gorilla gorilla. The highlighted subsequence refers to the location of the homolog gene of
SYT1.

Figure 5.14: Identification of homolog reference gene SYT1 in chromosome 12 of Pongo abelii.
.

Subsequence Location Length Minimum entropy

1 29004864-29006439 1575 0.705

2 31780287-31781022 735 0.765

3 41625675:41626095 420 0.785

4 57980328:57981231 903 0.758

5 59733219:59734290 1071 0.753

6 64945776:64946868 1092 0.743

7 79383885-79978458 594573 0.644

Table 5.14: Identified regions and their length with reference gene SYT1 in chromosome 12
of Pongo abelii. The highlighted subsequence refers to the location of the homolog gene of
SYT1.
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Figure 5.15: Identification of homolog reference gene SYT1 in chromosome 12 of Pan
troglodytes.

Analyzing the figures presented, it can be said that NET-ASAR is able to identify and
localize similar sequences, such as homolog genes.

Although the method locates the reference sequences, it is also evident that it is necessary
to analyze the graphs and located regions. The extra analysis is extremely important, because
several factors can affect the ability to correctly differentiate between positives and false
positives, such as the degree of similarity between the reference and the target, the length of
the reference sequence and the parameters used.

When using NET-ASAR with highly similar sequences, the identified regions are easily
recognizable, as seen in, for example, Figures 5.10b and 5.15, which have an identity of 99.3%
and 99.7%, respectively.

Taking into account the size of the reference sequence, it can be said that NET-ASAR

provides clearer results when using smaller references, as seen in Figure 5.11, as the reference
gene SPATA45 is, approximately, 17.5k bases long, in contrast with MYO3A (∼278.5k) and
SYT1 (∼588.0k). This occurrence can be viewed as a consequence of the decrease in size of
the FCMs created, i.e., the number of entries of the models is smaller, and, potentially, even
leading to fewer contexts represented in the model.

Considering the case of the reference gene SYT1, which is the biggest gene of the three
tested, it is clear that the occurrence of false positives is more likely, as can be seen in Figures
5.13 and 5.14. Since several regions are identified, a closer look is necessary. Tables 5.13 and
5.14 present the regions detected in Gorilla gorilla and Pongo abelii, respectively. Comparing
the regions, it is clear that, in both tables, one of the subsequences refers to a positive result,
while the rest are false positives, since their length is extremely bigger.

Inspecting, now, Figure 5.12, it is visible the effect of a lower identity (92.7%), combined
with the large reference gene. If one were to simply take the information from Table 5.12,
such as the length of the sequences and the minimum value entropy they reach, it would
be easy to make the assumption that the reference gene is present on subsequence 4, as it
is the biggest while having a lower entropy minimum. However, when the subsequences are
extracted, we are able to deduce what subsequence corresponds to the correct location of a
similar sequence to the reference (subsequence 1, as highlighted in the table) and that the
remaining three are false positives, caused by low complexity/high repetition regions.

Overall, the reference homolog genes were identified by the method, even though some
sequences can not be identified automatically and require some extra analysis in order to
differentiate positives and false positives.
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5.3 Application to ancient DNA

Having assessed the method’s capability of identifying reference sequences, with a certain
similarity in relation to a region of a target sequence, using known conditions, with either
synthetic or real sequences, the method can be used for scientific research purposes.

Using CHESTER [81, 82], several modern human specific regions were found. Modern human
specific regions are DNA sequences that are unique or share high dissimilarity rates to close
species, such as evolutionary regions.

The human specific regions detected were obtained when comparing the modern human
genome to a Neanderthal [83] and a Denisovan high coverage [84] genomes, simultaneously,
using a Bloom filter with a size of 64 GB (m = 549, 755, 813, 888), k-mer size of 30 for
the mapping (CHESTER-map), a window size of 101, threshold of 0.5 for the filtering and
segmenting (CHESTER-filter). Therefore, the detected regions are regions that can be found
in the modern human genome, but not on the Neanderthal and Denisovan genomes (or are
found with high dissimilarity rates).

After having identified the modern human specific regions, NET-ASAR was used to detect
and locate them in three modern target organisms: Pan troglodytes, Gorilla gorilla and Pongo
abelii.

Since the number of detected regions was high, it would take too much time and resources
to process every region. For this reason, only some of the regions were used, which we have
selected based on a minimum length of 600 bases and presence of identified genes. This
decision has left us with 31 regions, which can be found in Table 5.15. For each region, it can
be seen the chromosome of the modern human genome in which the regions can be found,
the designated name (used for referring each region, when needed), their location and length
and the symbol and type of the gene found in the region.

The genes located in the regions are:

• DPPA2 upstream binding RNA (344595);

• zinc finger protein 385D (79750) - a candidate gene for reading disability and language
impairment [85];

• fibroblast growth factor 12 (2257) - silencing of this gene showed significant inhibition
in activity of tumor cell proliferation, colony formation, and cell migration. The gene
has a potential role in esophageal squamous cell carcinoma [86];

• pyroglutamylated RFamide peptide receptor (84109) - possible new candidate involved
in the etiology of late-onset Alzheimers disease [87];

• follistatin like 4 (23105) - has been associated with coronary heart disease. In white
Cardiovascular Health Study participants was nominally associated with increased risk
of stroke [88];

• uncharacterized LOC105378113 (105378113);

• contactin associated protein like 2 (26047) - variants have been associated with mul-
tiple neuropsychiatric conditions such as schizophrenia, autism spectrum disorder and
intellectual disability. Animal studies indicate a role for CNTNAP2 in axon guidance,
dendritic arborization and synaptogenesis. [89, 90];
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• STEAP2 antisense RNA 1 (100874100) - the STEAP2 gene’s expression may be a crucial
molecule in driving the invasive ability of prostate cancer cells [91];

• glutamate rich 1 (157697) - might be involved in the development/progression of Pan-
creatic ductal adenocarcinoma [92];

• uncharacterized LOC105379389 (105379389);

• MRGPRG antisense RNA 1 (283303);

• uncharacterized LOC105376678 (105376678);

• deleted in lymphocytic leukemia 1 (non-protein coding) (10301) - is involved in many
solid tumours and haematological malignancies. May in part function as a tumor sup-
pressor gene and confer chemoimmunotherapy resistance in children and adolescents
with Burkitt lymphoma [93, 94];

• ATPase phospholipid transporting 10A (putative) (57194) - exogenous expression alters
the lipid composition at the plasma membrane, which may in turn cause a delay in cell
spreading and a change in cell morphology [95];

• thrombospondin type 1 domain containing 4 (79875) - may play key roles in tumorige-
nesis and development of esophageal carcinoma involved in cell cycle and Endocytosis
[96];

• uncharacterized LOC107985161 (107985161);

• uncharacterized LOC105373032 (105373032);

• Kruppel like factor 8 (11279) - plays a key role in cancer progression and serves impor-
tant roles in tumorigenesis and tumor progression [97, 98];

• testis expressed 11 (56159) - is mutated in infertile men with non-obstructive azoosper-
mia. Mutations in this gene, including frameshift and splicing acceptor site mutations,
cause infertility in 1% of azoospermic men [99];

• acyl-CoA synthetase long chain family member 4 (2182) - dysregulation is related to
a great number of malignant tumors. This gene is overexpressed in hepatocellular
carcinoma, and it will be a new potential therapeutic target for hepatocellular carcinoma
as an independent adverse prognostic parameter [100].

It is worth noting that all searches were performed using a context size of 12, with a
filtering window of 300 bases and discarding 20 bases for each base kept.

The condensed results of the searches performed are presented in Table 5.16. Each region
was used as reference with the three target organisms and the table displays whether or not
a similar sequence was found in the target. If the located region has an identified gene in
the NCBI databases [80] its name is presented in the cell. When the located region does
not include an identified region, only a check mark is visible. BLASTn, which is optimized for
somewhat similar sequences, was also used to search the regions in the Nucleotide collection
database and, when the region was found in the same chromosome and organism, the identity
between the sequences is presented in the table.

45



Chromosome Region name Location Length
Gene

Symbol Type

3
3.1 107319672-107320868 1197 DUBR ncRNA
3.2 21683672-21684352 681 ZNF385D Protein coding
3.3 192172364-192173020 657 FGF12 Protein coding

4
4.1 121361770-121362434 665

QRFPR Protein coding
4.2 121363572-121364296 725

5 5.1 133539196-133539844 649 FSTL4 Protein coding

6 6.1 165316348-165316952 605 LOC105378113 ncRNA

7
7.1 148376510-148378764 2255 CNTNAP2 Protein coding
7.2 90182022-90182656 635 STEAP2-AS1 ncRNA

8

8.1 645828-648476 2649
ERICH1 Protein coding8.2 644534-645682 1149

8.3 648580-649256 677
8.4 40918766-40919602 837

LOC105379389 ncRNA
8.5 40920586-40921294 709

11
11.1 3218640-3219772 1133

MRGPRG-AS1 ncRNA
11.2 3221100-3221836 737

12
12.1 9485332-9486410 1079

LOC105376678 Protein coding12.2 9486714-9487424 711
12.3 9484530-9485204 675

13
13.1 50495764-50497414 1651

DLEU1 ncRNA
13.2 50497566-50498464 899

15
15.1 25686522-25687228 707 ATP10A Protein coding
15.2 71589672-71590344 673 THSD4 Protein coding

18 18.1 21157810-21158606 797 LOC107985161 ncRNA

22 22.1 38899876-38900934 1059 LOC105373032 ncRNA

X

X.1 56151436-56152988 1553
KLF8 Protein codingX.2 56142228-56143754 1527

X.3 56149828-56150760 933
X.4 70721052-70721808 757 TEX11 Protein coding
X.5 109658306-109658958 653

ACSL4 Protein coding
X.6 109654002-109654994 993

Table 5.15: Modern human specific regions, compared to a Neanderthal and a Denisovan
genomes, used in this work. The chromosome and location refer to the modern human
genome the regions belong to. Each region is referred to throughout the work with the
presented name. The gene shown indicates the gene symbol and type in which the region is
found.
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Region name
Target organism

Pan troglodytes Gorilla gorilla Pongo abelii
NET-ASAR BLAST NET-ASAR BLAST NET-ASAR BLAST

3.1 X(LOC460568) X X X X X

3.2 X(ZNF385D) X X(ZNF385D) X X(ZNF385D) X

3.3 X(FGF12) X X(FGF12) X X(FGF12) X

4.1 X(QRFPR) X X(QRFPR) X X X

4.2 X(QRFPR) X X(QRFPR) X X(QRFPR) X

5.1 X(FSTL4) X X(FSTL4) X X(FSTL4) X

6.1 X X X X X X

7.1 X(CNTNAP2) 100% X(CNTNAP2) X X(CNTNAP2) X

7.2 X 100% X2(STEAP1B) X X 96%

8.1 X(ERICH1) X X(ERICH1) X X(LOC100445203) X

8.2 X(ERICH1) 90% X(ERICH1) X X(LOC100445203) X

8.3 X(ERICH1) X X(ERICH1) X X(LOC100445203) X

8.4 X X X(LOC109027985) X X X

8.5 X X X(LOC109027985) X X X

11.1 X(LOC100615982) 99% X 96% X 97%

11.2 X(LOC100615982) 97% X X X X

12.1 X1(LOC104001461) X X X X X

12.2 X1 X X X X X

12.3 X1(LOC104001461) X X X X X

13.1 X X X X X X

13.2 X X X X X X

15.1 X(ATP10A) X X(ATP10A) X X(ATP10A) X

15.2 X(THSD4) X X(THSD4) X X(LOC100434337) X

18.1 X X X X X X

22.1 X X X X X(LOC103888973) X

X.1 X(LOC107971107) X X X X X

X.2 X(LOC107971107) X X X X X

X.3 X(LOC107971107) X X X X X

X.4 X(TEX11) 99% X(TEX11) X X(TEX11) X

X.5 X(ACSL4) 99% X(ACSL4) X X(ACSL4) X

X.6 X(ACSL4) 99% X(ACSL4) X X(ACSL4) X

Table 5.16: Condensed results of the search using NET-ASAR with the modern human specific
regions as a reference and different organisms as target. A check mark means that a similar
region was located in the target. If the detected region is contained in an identified gene it
is presented in the cell. The results marked with 1 and 2 refer to results with more than
one identified region, with only the identified gene being presented. The search results using
BLASTn are presented, when positive results were obtained, through the identity between the
sequences.
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Given the great number of plots (93) that result from the searches performed, we have
opted to only focus on a few selected ones. All the plots are available at https://github.

com/manuelgaspar/NET-ASAR.
Looking at the condensed results presented in Table 5.16, it is clear that every region was

identified in the three organisms, with exception of region 4.1 in Pongo abelii.
Figure 5.16 presents the plot referring to the identification of the region 4.1 in chromosome

4 of Pongo abelii.
If one were to use a threshold of, for example, 1.8, then several regions would be identified

as similar to the reference sequence. Despite this, we have found that the difference of entropy
between those regions and the average entropy of the target is too small to deduce the presence
of the reference, even though it reveals that some target regions have some similarity with
the reference.

Figure 5.16: Identification of reference region 4.1 in chromosome 4 of Pongo abelii.

Figure 5.17 displays the plots obtained with the regions 12.1, 12.2 and 12.3 as reference
and chromosome 12 of Pan troglodytes as target (marked in Table 5.16 with 1). The three
references were located in the target in a common location, which does not contain any
identified gene, but with references 12.1 and 12.3 (Figures 5.17a and 5.17c, respectively) we
located an extra region, in which the gene LOC104001461 can be found. The assumption
can be made that some degree of similarity exists between only some regions of the reference
gene (LOC105376678 ) and the identified gene (LOC104001461 ), since the location is not
identified when using region 12.2 as a reference.

Figure 5.18 shows the plot obtained when using region 7.2 as reference and chromosome
7 of Gorilla gorilla as the target (marked with 2 in Table 5.16).

By analyzing the plot, two different highlighted regions can be seen, with the first having
an identified gene (STEAP1B) while the second does not. As was mentioned in the previous
sections, it could be a result of a low complexity region, which, in this region, is not the case.
A possible explanation is that the region found has a high degree of similarity in relation to
the reference region, due to the presence of a homolog. The first highlighted region, where
the gene STEAP1B can be found, may lead to a positive result, since both genes belong to
the same gene family (STEAP).
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(a) 12.1.

(b) 12.2.

(c) 12.3.

Figure 5.17: Identification of reference regions 12.1, 12.2 and 12.3 in target chromosome 12
of Pan troglodytes.

Figure 5.18: Identification of reference region 7.2 in chromosome 7 of Gorilla gorilla.
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5.3.1 Final Remarks

If one were to only take into account the evolution tree and the known similarities between
humans and remaining Hominoidea, it would be easy to assume that the modern human
specific regions are only present in the modern human genome. However, from the searches
performed in this section, we have found that the modern human specific regions were present
in three close species (Pan troglodytes, Gorilla gorilla and Pongo abelii).

The potential of NET-ASAR is also apparent, since it was able to identify most of the
regions, while the BLAST algorithm was only able to locate the regions in the database in 11
of the 93 searches.

Due to the somewhat unexpected nature of the results obtained in this section, we feel
that further studies are warranted.

Although it falls slightly out of scope of this thesis, we propose three possible justifications
for the obtained results:

• The regions can have high genomic variation, which can contain substantial postmortem
degradation [101] and high substitution mutation rates (caused by PCR amplification)
[102].

• Throughout time, it is possible that microorganisms affect the host macro organism,
so, considering that the genomes are from organisms that did not coexist (the reference
genomes are from present days specimens), they might have been affected differently
[103]. External factors, such as the introduction of agriculture, can also have an effect
[104].

• There is genetic variation between individuals of the same species [105, 106], and, as
such, the fact that the ancient DNA was sequenced from a single individual, leads to
low diversity in the sequenced genomes. On the contrary, the reference genomes were
sequenced from specimens found today, while being sequenced from several individuals,
making them a better model of the whole species genome.
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CHAPTER 6

CONCLUSIONS AND FUTURE
WORK

The research presented in this thesis had as main goal the development of an alignment-
free technique to locate DNA subsequences with some degree of similarity, relative to a larger
target sequence, using Finite-Context Models.

By taking advantage of some characteristics of DNA, the method, based on data compres-
sion, was implemented and tested under different conditions, providing positive outcomes.

One of the facts to take into account is that, while the method can provide correct results,
it also demands a high degree of familiarity with the method’s usage. Since the process cannot
be completely automated, the user is required to determine the correct parameters, such as
context size and filtering, needed for each search. The choice must be made having in mind
the characteristics of both the reference and target sequences. It should also be noted that,
even though the results of some given search can be satisfactory, the user should also analyze
the identified regions closely, as false positives are a possibility.

We have located modern human specific regions, with relation to a Neanderthal and a
Denisovan high coverage genomes, in the genomes of different closely related species of the
modern human, using the developed tool, which also serves as a proof of concept for possible
scientific applications.

In regards to the application with ancient DNA, we consider that further study is required
to fully understand the justification for the obtained results. Since that study was not the
main objective of this work we have only presented three possible justifications (although not
supported by deep examination).

In future work, regarding the tool, it would be beneficial to improve the algorithm, as it
is demanding in terms of execution time and computational resources (when comparing to
some methods). Furthermore, it could be developed a way of automating the tool, in order to
easily adapt to different conditions, by selecting the more suitable parameters automatically.
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