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MODEL HIBRID PEMETAAN TEORI RESONAN ADAPTIF KABUR 

DAN PEMBELAJARAN-Q UNTUK PENGELASAN CORAK 

ABSTRAK  

Pengelasan corak adalah salah satu isu utama dalam pelbagai tugas pencarian 

data. Dalam kajian ini, fokus penyelidikan tertumpu kepada reka bentuk dan 

pembinaan model hibrid yang menggabungkan rangkaian neural Teori Resonan 

Adaptif (ART) terselia dan model Pembelajaran Pengukuhan (RL) untuk pengelasan 

corak. Secara khususnya, rangkaian ARTMAP Kabur (FAM) dan Pembelajaran-Q 

dijadikan sebagai tulang belakang dalam merekabentuk dan membina model-model 

hibrid. Satu model QFAM baharu terlebih dahulu diperkenalkan bagi menambahbaik 

prestasi pengelasan rangkaian FAM. Strategi pruning dimasukkan bagi 

mengurangkan kekompleksan QFAM. Bagi mengatasi isu ketidak-telusan, Algoritma 

Genetik (GA) digunakan bagi mengekstrak hukum kabur if-then daripada QFAM. 

Model yang terhasil iaitu QFAM-GA, dapat memberi ramalan berserta dengan 

huraian dengan hanya menggunakan bilangan antisiden yang sedikit. Bagi 

menambahkan lagi kebolehtahanan model-model Q-FAM, penggunaan sistem agen-

pelbagai telah dicadangkan.  Hasilnya, model gugusan QFAM berasaskan agen 

dengan ukuran percaya dan kaedah rundingan baharu telah dicadangkan. Pelbagai 

jenis masalah tanda-aras telah digunakan bagi penilaian model-model gugusan dan 

individu berasaskan QFAM. Hasilnya telah dianalisa dan dibandingkan dengan FAM 

serta model-model yang dilaporkan dalam kajian terdahulu. Sebagai tambahan, dua 

daripada masalah dunia-nyata digunakan bagi menunjukkan kebolehan praktikal 

model hibrid. Keputusan akhir menunjukkan keberkesanan modul berasaskan QFAM 

dalam menerajui tugas-tugas pengelasan corak. 
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HYBRID MODELS OF FUZZY ARTMAP AND Q-LEARNING FOR 

PATTERN CLASSIFICATION 

ABSTRACT 

Pattern classification is one of the primary issues in various data mining 

tasks.  In this study, the main research focus is on the design and 

development of hybrid models, combining the supervised Adaptive 

Resonance Theory (ART) neural network and Reinforcement Learning (RL) 

models for pattern classification.  Specifically, the Fuzzy ARTMAP (FAM) 

network and Q-learning are adopted as the backbone for designing and 

developing the hybrid models.  A new QFAM model is first introduced to 

improve the classification performance of FAM network. A pruning strategy 

is incorporated to reduce the complexity of QFAM.  To overcome the 

opaqueness issue, a Genetic Algorithm (GA) is used to extract fuzzy if-then 

rules from QFAM. The resulting model, i.e. QFAM-GA, is able to provide 

predictions with explanations using only a few antecedents. To further 

improve the robustness of QFAM-based models, the notion of multi agent 

systems is employed.  As a result, an agent-based QFAM ensemble model 

with a new trust measurement and negotiation method is proposed. A variety 

of benchmark problems are used for evaluation of individual and ensemble 

QFAM-based models. The results are analyzed and compared with those 

from FAM as well as other models reported in the literature.  In addition, two 

real-world problems are used to demonstrate the practicality of the hybrid 

models.  The outcomes indicate the effectiveness of QFAM-based models in 

tackling pattern classification tasks. 
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1 CHAPTER 1  

INTRODUCTION 

1.1 Background of the study 

It is generally recognized that pattern recognition is a basic function of human 

cognition (Wang, 2008). Since the last few decades, human’s brain has attracted 

great attention in both experimental and theoretical aspects. The results have 

demonstrated that the brain has a tremendous parallel architecture that contains many 

individual neurons with synapses (interconnections). Human’s brain can easily 

understand a particular situation, recognize face or speech, and also is able to receive 

patterns from sensing organs and convert them into helpful information to make  

decisions (Cenggoro et al., 2014). Indeed, humans encounter plenty of recognition 

tasks daily and make the corresponding decisions unconsciously. By exploiting the 

technology of digital computers and developing the necessary machine learning and 

artificial intelligence algorithms, it is now possible to utilize computers to mimic the 

performance of human’s brain. As a result, many investigations have been conducted 

to tackle pattern recognition problems.  

To solve pattern recognition problems by using a computerized system, it is 

essential to have appropriate algorithms that are able to exploit proper features from 

received information or data to recognize patterns. In general, there are four main 

stages in developing a pattern recognition system. They are  (Rosenfeld & Wechsler, 

2000): (i) Data Acquisition and Collection, (ii) Feature Extraction and 

Representation, (iii) Similarity Detection and Pattern Classification, and (iv) 

Performance Evaluation. 
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Over the years, many methodologies have been proposed for pattern 

classification. Statistical methods are one of the earliest methodologies for pattern 

classification. These include the  discriminatory analysis proposed by Fisher (1936) 

and Rao (1948). Bayesian decision theorem is another statistical method that has 

been extensively used to tackle pattern classification problems (Devijver & Kittler, 

1982; Duda & Hart, 1973). Nevertheless, statistical methods are inefficient in  

handling contextual or structural information of patterns, as explained by Pal and Pal 

(2002). Syntactic techniques, which are related to the theory of formal languages, 

have been suggested to overcome this problem (Hopcroft & Ullman, 1979). 

Nevertheless, syntactic technique does not perform well in the presence of noisy data  

(Pal & Pal, 2002). 

Computational intelligence (CI) (Bezdek, 1992; Marks, 1993) is another 

useful methodology that has been widely applied to solving a variety of applications, 

e.g. biomedical (Shi & Eberhart, 1998; Yang et al., 2007), mobile robotics (Wang, 

2002), healthcare (Tejima, 2003), Web (Zhang, 2005), games (Lucas, 2009), 

business (Haider & Nishat, 2009), power system (Venayagamoorthy, 2009), control 

(Wilamowski, 2010), and wireless (Iram et al., 2011).  CI has also been extensively 

employed to tackle pattern classification problems. Generally, CI contains 

evolutionary algorithms (EAs), Fuzzy Systems (FSs), artificial neural networks 

(ANNs), and synthesis of these three models with each other and/or other 

conventional methods  (Shi & Eberhart, 1998; Rutkowski, 2008).  The focus of this 

research is on ANNs and other complementary learning methodologies, which 

include reinforcement learning (RL) and multi-agent system (MAS), for designing 

and developing efficient and effective pattern classification systems. 
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In the following sections, a definition of and an introduction to CI are 

presented. Then, an introduction to RL is provided. The motivations for developing 

hybrid ANNs and combining them into a MAS are described. The research scope and 

objectives are presented. Finally, an overview of the thesis organization is given at 

the end of the chapter. 

1.2 Computational Intelligence 

In this information era, besides the dramatic growth of computer 

technologies, researchers have designed and developed various intelligent systems 

that are able to mimic human’s behaviours. Analysing the collected data samples and 

translating them into useful information and subsequently making appropriate 

decisions is one of the major challenges. To cope with such problems, CI-based 

models have been devised to operate as useful systems with “humanlike” problem-

solving capabilities (Rutkowski, 2008). A  definition of CI is provided by Bezdek 

(1994), is as follows: 

“A system is computationally intelligent when it deals only 

with numerical (low-level) data, has pattern recognition 

component, and does not use knowledge in artificial intelligence 

(AI) sense.” 

Another definition of CI is described by Fogel (1995), is as follows: 

 “These technologies of neural, fuzzy, and evolutionary 

systems were brought together under the rubric of computational 

intelligence, a relatively new trend offered to generally describe 



4 

 

methods of computation that can be used to adapt solutions to new 

problems and do not rely on explicit human knowledge.” 

FSs, EAs, and ANNs are a number of paradigms  under the umbrella of CI 

(Rutkowski, 2008).  While CI-based systems have been successfully used to solve 

problems in different domains, which include medicine (Schizas, 1997), power 

systems (Pahwa et al., 2003), biological systems (Wu et al., 2007), web design (Liu, 

Khudkhudia, & Ming, 2008), games (Lucas, 2009), business (Wu, 2010), computer 

security (Perez et al., 2010), education (Venayagamoorthy, 2010), as well as 

industrial systems (Sariyildiz et al., 2013), each CI paradigm has its advantages and 

limitations. As such, hybrid CI models, which consist of two or more CI paradigms, 

have been introduced to harness the merits of the constituents. 

An ANN can be viewed as a mathematical model that processes information 

based on the principle of a biological neural network (Cenggoro et al., 2014). Since 

the inception of the first mathematical model of an artificial neuron by McCulloch 

and Pitts (1947, 1943), many different ANN architectures have been proposed, e.g. 

Multi-Layered Perceptron (MLP) (Rumelhart et al., 1986),  Radial Basis Function 

(RBF) (Moody & Darken, 1989). A detailed review on ANNs is given in Chapter 2. 

1.3 Reinforcement Learning (RL) 

RL  (Barto & Sutton, 1998) is a methodology that learns from experience by 

interacting with the environment. It is a semi-supervised learning method that has 

advantages over supervised learning methods under certain conditions. Unlike 

supervised learning whereby the target output for each input sample is clearly 
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known, only minimal information that indicates the appropriateness of the response 

pertaining to an input sample is available in RL. As such, it does not require detailed 

knowledge of the target output. There are two main advantages of RL.  Firstly, it has 

the capability of learning on-line in a search-control-learn mode based on previous 

experiences (Lee et al., 1998). Secondly, it is an effective method when there is little 

knowledge about what and how to perform a  task (Gullapalli, 1990). 

RL has been extensively applied as an effective feedback mechanism to 

tackle control and decision making problems. Among various successful RL 

applications include cart-pole balancing (Barto et al., 1983), Backgammon game 

(Tesauro, 1994), and elevator dispatching problem (Barto & Crites, 1996). RL has  

also been used to improve the performance of many classifiers (Likas & Blekas, 

1996; Likas, 2001; Quah et al., 2005). However, RL is not free from limitations, e.g. 

the exponential growth of its state-space owing to the curse of dimensionality (Lin & 

Lee, 1994). Such problems have attracted many researchers to work on RL. 

1.4 Problems and Motivations  

Many methods  have been proposed to solve pattern classification problems, 

e.g. k-nearest neighbour (Cover & Hart, 1967), naive Bayes classifier (Domingos & 

Pazzani, 1997), decision tree (Friedl & Brodley, 1997), Support Vector Machine 

(SVM) (Vapnik, 1995), Artificial Neural Networks (ANNs) (Venkatesan & 

Balamurugan, 2001). Among them, ANNs have been used as a useful learning model 

for solving pattern classification tasks (Zhang, 2000), with the capability of handling 

non-linear as well as noisy data collected from real-world environments.  
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