CANDIDA ANTARTICA LIPASE B MEDIATED KINETIC RESOLUTION OF RACEMIC ACEBUTOLOL

by

MARIANI BINTI RAJIN

UNIVERSITI SAINS MALAYSIA

2015

CANDIDA ANTARTICA LIPASE B MEDIATED KINETIC RESOLUTION OF RACEMIC ACEBUTOLOL

by

MARIANI BINTI RAJIN

This thesis is submitted in fulfilment of the requirement for the degree of Doctor of Philosophy

October 2015

ACKNOWLEDGEMENT

Alhamdulillah. I am grateful towards Allah for giving me strength and guidance through my study.

First of all, I would like to convey my heartiest appreciation to both my supervisors, Prof. Dr. Azlina Harun @ Kamaruddin and Prof. Dr. Subhash Bhatia for their expert advice, prestigious guidance and supervision in the coordination of the research project till the completion of this thesis.

Thanks to all the lecturers, laboratory technicians, and support staff of School of Chemical Engineering USM for their assistance. On top of that, I would like to express my appreciation to all friends especially my laboratory-mate, for their support and encouragement.

Finally, would like to express my gratitude to my parents, Mr. Rajin Alip and Mrs. Mailin Duwat; my parents in law, Hj. Mat Midin Ya'ali and Mrs. Nursiah Satar; my supportive husband, Ustaz Mohd Norjefri Mat Midin; my beloved daughter, Khaulah Amsyar Mohd Norjefri, and all family members.

Only Allah can repay all of you. Thank you.

Mariani Rajin

October 2015

TABLE OF CONTENTS

Acknowledgement	ii
Table of Contents	iii
List of Tables	ix
List of Figures	xi
List of Symbols	XV
List of Abbreviations	xvi
Abstrak	xvii
Abstract	xix

CHAPTER 1 - INTRODUCTION

1.1	Chiral Drugs in Pharmaceutical Industries	1
1.2	Market Trends of Chiral Drugs	3
1.3	Chiral Switching	5
1.4	Current Status of Beta Blockers	6
1.5	Enzymes and Enzymatic Membrane Reactor in Resolution of Chiral Compound	9
1.6	Problem Statement	12
1.7	Process Description : Lipase Mediated Kinetic Resolution of Acebutolol	14
1.8	Research Objectives	16
1.9	Scope of Research	17
1.10	Thesis Organization	19

CHAPTER 2 - LITERATURE REVIEW

2.1	Current Technologies for Production of Beta Blockers	21
	2.1.1 Chromatography-based Separation	21
	2.1.2 Asymmetric Synthesis	25
	2.1.3 Kinetic Resolution	30
2.2	Application of Enzyme in Kinetic Resolution	30
	2.2.1 Kinetic Resolution for Beta Blockers	31
	2.2.2 Enantioselectivity of Enzyme	38
2.3	Enzyme Kinetics	40
	2.3.1 Enzyme Kinetic Mechanism	41
	2.3.2 Enzyme Inhibition	43
	2.3.3 Kinetic Studies for Transesterification	45
2.4.	Enzyme Thermodynamics	50
2.5	Enzymatic Membrane Reactor	56
	2.5.1 Membrane Characteristic for EMR	57
	2.5.2 Application of EMR in Chiral Drug Production	64
2.6	Experimental Design, Statistical Analysis and Optimization using Response surface Methodology	68
2.7	Conclusion Remarks	69

CHAPTER 3 - MATERIALS AND METHOD

3.1	Materials and Chemicals	71	l

3.2	Equipment and Facilities	74
3.3	Kinetic Resolution of Racemic Acebutolol in Batch Mode	74
	3.3.1 Screening of Parameters for Kinetic Resolution of Acebutolol	75
	3.3.1(a) Type of Enzyme	75
	3.3.1(b) Type of Reaction Medium	75
	3.3.1(c) Type of Acyl Agent	76
	3.3.2 Effect of Reaction Parameters on the Kinetic Resolution of Racemic Acebutolol	76
	3.3.2(a) Effect of Enzyme Loading	76
	3.3.2(b) Effect of Substrate Concentration	77
	3.3.2(c) Effect of Acyl Agent Concentration	77
	3.3.2(d) Effect of Temperature	77
3.4	Utilization of Response Surface Methodology for Kinetic	78
	Resolution of Racemic Acebutolol in Batch Mode Reactor	
	3.4.1 Analysis of Data	79
	3.4.2 Optimization of Reaction Parameters	79
3.5	Thermodynamic Studies of Lipase in Batch Mode Kinetic Resolution of Acebutolol	79
3.6	Kinetic Resolution of Racemic Acebutolol in Enzymatic Membrane Reactor	81
	3.6.1 Enzymatic Membrane Reactor Assembly and Setup	81
	3.6.2 Preparation of Buffer Solution	84
	3.6.3 Preparation of Lipase Solution	84
	3.6.4 Enzyme Immobilization	85
	3.6.5 Membrane Cleaning and Regeneration	86

3.6.6 Operation of EMR with Immobilized Lipase for Kinetic	87
Resolution of Racemic Acebutolol	
3.6.7 Study of Reaction Parameters for Kinetic Resolution of Acebutolol in EMR	87
3.6.7(a) Effect of Enzyme Loading	88
3.6.7(b) Effect of Substrate and Acyl Agent	88
3.6.7(c) Effect of Operating Temperature	89
3.6.7(d) Effect of Aqueous Buffer pH	89
3.6.7(e) Effect of Organic Phase Flow Rate	89
3.6.7(f) Effect of Transmembrane Pressure (TMP)	90
Enzyme Kinetic Studies	90
3.7.1 Determination of Initial Rate of Reaction	90
3.7.2 Determination of Kinetic Parameters	91
Analytical Methods	94
3.8.1 Protein Measurement by BCA Protein Assay	94
3.8.2 HPLC analysis	95
	 3.6.6 Operation of EMR with Immobilized Lipase for Kinetic Resolution of Racemic Acebutolol 3.6.7 Study of Reaction Parameters for Kinetic Resolution of Acebutolol in EMR 3.6.7(a) Effect of Enzyme Loading 3.6.7(b) Effect of Substrate and Acyl Agent 3.6.7(c) Effect of Operating Temperature 3.6.7(c) Effect of Aqueous Buffer pH 3.6.7(e) Effect of Organic Phase Flow Rate 3.6.7(f) Effect of Transmembrane Pressure (TMP) Enzyme Kinetic Studies 3.7.1 Determination of Initial Rate of Reaction 3.7.2 Determination of Kinetic Parameters Analytical Methods 3.8.1 Protein Measurement by BCA Protein Assay 3.8.2 HPLC analysis

CHAPTER 4 - RESULTS AND DISCUSSIONS

4.1	Analytical Result	97
4.2	Reproducibility of Experimental Data	99
4.3	Kinetic Resolution of Racemic Acebutolol in Batch Mode	99
	4.3.1 Screening of parameter	100
	4.3.1(a) Effects of Lipase Type	100
	4.3.1(b) Effects of Reaction Medium	102
	4.3.1(c) Effects of Different Type of Acyl Agent	104

	4.3.2 Effects of Reaction Parameters on the Kinetic Resolution of Racemic Acebutolol	106
	4.3.2(a) Effects of Enzyme Loading	106
	4.3.2(b) Effects of Substrate Concentration	108
	4.3.2(c) Effects of Acyl Agent Concentration	109
	4.3.2(d) Effects of Temperature	110
4.4	Analysis and Optimization of Kinetic Resolution of Racemic Acebutolol in Batch mode Using Response Surface Methodology	110
	4.4.1 Data Analysis	113
	4.4.1(a) Data Diagnostic	115
	4.4.1(b) Effect of Single Variable on Overall Conversion of Acebutolol	117
	4.4.1(c) Interaction Between Process Variables in Batch Mode Kinetic Resolution of Racemic Acebutolol	118
	4.4.2 Optimization of Process Variable	124
4.5	Thermodynamic Studies of Lipase in Batch Mode Enzymatic Kinetic Resolution of Acebutolol	125
	4.5.1 Effect of Temperature on the Initial Reaction Rate	126
	4.5.2 Thermodynamic Properties of CALB in Kinetic Resolution of Acebutolol	127
4.6	Kinetic Resolution of Racemic Acebutolol in Enzymatic Membrane Reactor	132
	4.6.1 Effects of Enzyme Loading	132
	4.6.2 Effects of Substrate and Acyl Agent concentration	134
	4.6.3 Effects of Operating Temperature	136
	4.6.4 Effects of Aqueous Buffer pH	138

	4.6.5 Effects of Organic Flow Rate	140
	4.6.6 Effects of Transmembrane Pressure (TMP)	141
4.7	Enzyme Kinetic Studies	143
	4.7.1 Kinetic Parameters of Free Lipase in Batch Mode	143
	4.7.2 Kinetic Parameters of Immobilized Lipase in EMR	148
4.8	Comparison between Free and Immobilize CALB Lipase Performance for Kinetic Resolution of Racemic Acebutolol	152

CHAPTER 5 - CONCLUSIONS AND RECOMMENDATIONS

5.1	Conclusions	156
5.2	Recommendations for Future Work	159

160

REFERENCES

APPENDICES

LIST OF TABLES

Page

Table 1.1	Global chiral drug sales from year 2000 to 2005	5
Table 1.2	Current status of the most frequently used beta blockers	8
Table 1.3	Enzymatic catalytic system with different operation	12
Table 2.1	Resolution of beta blockers by HPLC	22
Table 2.2	Asymmetric synthesis of beta blockers using various type of raw materials	27
Table 2.3	Enzymatic transesterification of racemic alcohol	33
Table 2.4	Type of reversible inhibition	44
Table 2.5	Type of inhibitor compound	45
Table 2.6	Kinetic mechanism and constant for transeterification and esterification of various bi-substrate reaction	47
Table 2.7	Application of EMR in chiral drugs resolution	66
Table 3.1	List of chemicals	72
Table 3.2	List of equipments	74
Table 3.3	Level of process variable chosen for this study	78
Table 3.4	Specifications of Pall hollow fiber membrane used for EMR	81
Table 3.5	Operating mode of membrane reactor system	86
Table 4.1	Reproducibility of the experimental data	99
Table 4.2	Effects of lipase source on kinetic resolution of racemic acebutolol	100
Table 4.3	Effects of reaction medium on kinetic resolution of racemic acebutolol	103

Table 4.4	The parameters range for kinetic resolution of racemic acebutolol in batch reactor	112
Table 4.5	The experimental data for kinetic resolution of racemic acebutolol in batch mode	114
Table 4.6	ANOVA Summary Statistic of Model Fit for overall conversion of acebutolol	115
Table 4.7	ANOVA for regression model equation	118
Table 4.8	The preset goal for the numerical optimization	
Table 4.9	Optimum condition for kinetic resolution of racemic acebutolol suggested by RSM	125
Table 4.10	Half life of <i>Candida antartica</i> B lipase as a function of temperature	131
Table 4.11	Kinetics constant obtained for transesterification of acebutolol with vinyl acetate using CALB lipase in batch mode	147
Table 4.12	Kinetics constant obtained for transesterification of acebutolol with vinyl acetate using CALB lipase in EMR	149
Table 4.13	Summarized data from batch and EMR studies	153
Table 4.14	Kinetics parameters of free and immobilized CALB employed in kinetic resolution of racemic acebutolol	155

LIST OF FIGURES

Figure 1.1	The hypothetical interaction between the two enantiomers of a chiral drugs and its binding site	3
Figure 1.2	Structural similarity of (S)-propranolol and (S)-propafenone	7
Figure 1.3	Chemical structures of acebutolol	8
Figure 1.4	General types of membrane reactor	
Figure 1.5	Schematic diagram for typical reactor types catalyzed by enzymes	
Figure 1.6	Lipase mediated kinetic resolution of racemic acebutolol in batch reactor	15
Figure 1.7	Lipase mediated kinetic resolution of racemic acebutolol in enzymatic membrane reactor	16
Figure 2.1	Classical kinetic resolution	30
Figure 2.2	Plot of the enantiomeric excess of the remaining substrate as a function of conversion for various E values	40
Figure 2.3	Plot of the enantiomeric excess of the reactive enantiomer as a function of conversion for various <i>E</i> values	40
Figure 2.4	Ordered Sequential Bi Bi Mechanism	41
Figure 2.5	Ping Pong Bi Bi Mechanism	42
Figure 2.6	Schematic diagram and transport mechanism of biphasic EMR	61
Figure 2.7	Enzymatic membrane reactors with enzyme immobilized using different method	63
Figure 3.1	Experiment flow chart	73

Figure 3.2	Schematic diagram of the enzymatic membrane reactor for	82
	kinetic resolution of racemic acebutolol	
Figure 3.3	Flow direction of a single membrane fiber	86
Figure 4.1	HPLC chromatogram of racemic acebutolol	
Figure 4.2	HPLC chromatogram of (R)- acebutolol	
Figure 4.3	Effects of acyl agent type on the conversion of acebutolol	
Figure 4.4	Effects of enzyme loading on the conversion of acebutolol	
Figure 4.5	Effects of substrate concentration on the conversion of acebutolol	108
Figure 4.6	Effects of vinyl acetate concentration on the conversion of acebutolol	109
Figure 4.7	Effects of reaction temperature on the conversion of acebutolol	111
Figure 4.8	Normal probability plot of the studentized residual for overall conversion of acebutolol	116
Figure 4.9	Studentized residuals versus predicted values	117
Figure 4.10a	Response contour plot for the interaction between enzyme loading and substrate concentration	120
Figure 4.10b	Response surface plot for the for the interaction between enzyme loading and substrate concentration	120
Figure 4.11a	Response contour plot for the interaction between substrate concentration and acyl donor concentration	122
Figure 4.11b	Response surface plot for the interaction between substrate concentration and acyl donor concentration	122

Figure 4.12a	Response contour plot for the interaction between enzyme loading and acyl donor concentration	123
Figure 4.12b	Response surface plot for the interaction between enzyme loading and acyl donor concentration	124
Figure 4.13	Initial reaction rate versus temperature for kinetic resolution of racemic acebutolol	127
Figure 4.14	Arrhenius plot for the estimation of thermodynamic properties	128
Figure 4.15	Semilog plot of deactivation of Candida antartica lipase B	130
Figure 4.16	Logarithm of k_d/T versus 1/T for thermodynamic parameters determination	131
Figure 4.17	Effect of enzyme loading on the conversion of racemic acebutolol	133
Figure 4.18	Effect of acebutolol concentration on the conversion of racemic acebutolol	135
Figure 4.19	Effect of vinyl acetate concentration on the conversion of racemic acebutolol	136
Figure 4.20	Effect of operating temperature on the conversion of racemic acebutolol	137
Figure 4.21	Effect of aqueous buffer pH on the conversion of racemic acebutolol	139
Figure 4.22	Effect of organic flow rate on the conversion of racemic acebutolol	141
Figure 4.23	Effect of transmembrane pressure on the conversion of racemic acebutolol	142

- Figure 4.24 Lineweaver-Burk double reciprocal plot of transesterification 144 reaction in batch reactor for variation in vinyl acetate concentration at five fixed concentration of acebutolol.
- Figure 4.25 Lineweaver-Burk double reciprocal plot of transesterification 145 reaction in batch reactor for variation in acebutolol concentration at three fixed concentration of vinyl acetate
- Figure 4.26 Lineweaver-Burk double reciprocal plot of transesterification 148 reaction in EMR for variation in vinyl acetate concentration at five fixed concentration of acebutolol
- Figure 4.27 Lineweaver-Burk double reciprocal plot of transesterification 149 reaction in EMR for variation in acebutolol concentration at three fixed concentration of vinyl acetate.
- Figure 4.28 Comparisons of experimental and simulated rates 151

LIST OF SYMBOLS

[S _{ace}]	Initial concentration of the acebutolol
[S _{va}]	Initial concentration of the vinyl acetate
C_o	Initial concentration of racemic acebutolol
C_R	Concentration of R-acebutolol
C_S	Concentration of S-acebutolol
C_t	Concentration of racemic acebutolol at t
Ε	Enantiomeric ratio
E_d	Deactivation energy
Ee_p	Enantiomeric excess of product
ee _s	Enantiomeric excess of substrate
h	Planck's constant
k_b	Boltzmann constant
<i>k</i> _d	Deactivation constant
K _{Iace}	Dissociation constant for acebutolol
K _{Iva}	Dissociation constant for vinyl acetate
K _{Mace}	Michaelis Constant for acebutolol
K _{Mva}	Michaelis Constant for vinyl acetate
R	Universal Gas Constant
Vi	Reaction velocity
V _{max}	Maximum reaction velocity
X	Conversion
ΔS	Entropy
ΔH	Entalphy

LIST OF ABBREVIATIONS

ANOVA	Analysis of variance
CALB	Candida antarctica B lipase
CCD	Central composite design
CCL	Candida cylindracea lipase
CRL	Candida rugosa lipase
DMF	Dimethylformamide
DMSO	Dimethylsulfoxide
EMR	Enzymatic membrane reactor
FCCD	Face centered central composite design
HPLC	High performance liquid chromatography
L	Liter
mg	Milligram
mM	Milimolar
PAN	Polyacrynitrile
PCL	Pseudomonas cepacia lipase
PFL	Pseudomonas fluorescens lipase
PSL	Pseudomonas species lipase
rpm	Rotation per minute
RSM	Response surface methodology
THF	Tetrahydrofuran
TPM	Transmembrane pressure
UF	Ultrafiltration

RESOLUSI KINETIK TERHADAP RASEMIK ACEBUTOLOL MENGGUNAKAN PERANTARAAN LIPASE *CANDIDA ANTARTICA* B

ABSTRAK

Asebutolol masih lagi dipasarkan dalam bentuk rasemik sehingga kini. Kecenderungan terhadap penghasilan enantiomer tunggal bagi ubat-ubatan berbentuk kiral adalah didorong oleh beberapa faktor antaranya kesan yang berbeza daripada enantiomer tersebut, permintaan dalam pasaran yang semakin meningkat, juga peraturan yang semakin ketat terhadap pengeluaran ubat-ubatan tersebut. Oleh itu, resolusi kinetik terhadap rasemik asebutolol dikaji menggunakan perantaraan lipase dalam reaktor kelompok dan reaktor membran berenzim. Kaedah sambutan permukaan dengan rekabentuk central composite design (CCD) digunakan untuk analisis data bagi reaktor kelompok. Faktor yang dikaji adalah merangkumi jumlah enzim, kepekatan substrat dan penderma asil dan suhu tindakbalas. Kajian mendapati bahawa tindabalas di dalam reaktor kelompok ini mencapai optimum dengan 320 mg enzim, 50 mM kepekatan Asebutolol, 140 mM kepekatan vinil asetat and suhu 40 °C, memberikan kadar pertukaran sebanyak 46% dengan nilai E dan ees masing-masing 15 and 73%. Tenaga pengaktifan dan penyahtabii bagi enzim di dalam reaktor kelompok dalam kajian ini dianggarkan masing-masing sebanyak 39.63 kJ/mol dan 54.90 kJ/mol. Pemalar pendeaktifan k_d meningkat sebanyak 0.012-0.031 per jam dengan peningkatan suhu daripada 45 °C ke 60 °C. Nilai entalpi adalah 52.12 kJ/mol.K dan entropi adalah -0.18 kJ/mol.K. Berdasarkan dapatan daripada tindak balas di dalam reaktor kelompok, resolusi kinetik Acebutolol telah berjaya dilakukan di dalam reaktor membran berenzim. Kesan jumlah enzim, kepekatan substrat dan

penderma asil, pH larutan penimbal, suhu tindakbalas, kadar aliran fasa organik dan tekanan transmembran. Tindakbalas di dalam reaktor membran berenzim mencapai nilai optimum pada pH 7, 40 °C dan TMP 6 psi, dengan kadar aliran fasa organik sebanyak 40 ml/min. Ia memberikan nilai pertukaran 40%, E sebanyak 23 dan ee_s sebanyak 84%. Tindakbalas enzim di dalam reaktor kelompok dan reaktor membran berenzim kedua-duanya mematuhi mekanisme Ping Pong Bi Bi. Parameter kinetik untuk enzim bebas di dalam reaktor kelompok adalah seperti berikut: $K_{Mace} = 8.53$ mM, K_{Mva} =5.19 mM, dan V_{max} =1.18 mM/h. Manakala parameter kinetik untuk enzim tersekatgerak di dalam reaktor membran berenzim adalah seperti berikut; $K_{mace\ app} = 2.13$ mM, $K_{Mvaapp} = 1.23$ mM dan $V_{max\ app} = 2.33$ mM/h. Nilai pemalar perencat pula adalah K_{Iace} =10.72 mM, K_{Iva} = 3.71 mM, $K_{Iace app}$ = 11.56 mM dan K_{Iva} _{app}=3.89 mM. Prestasi CALB di dalam kedua-dua jenis reaktor telah dibandingkan. Enzim tersekatgerak di dalam reaktor membran berenzim memberikan kapasiti tindak balas yang lebih tinggi, kestabilan terma yang lebih baik, afiniti yang lebih tinggi kepada substrat dan juga menunjukkan rintangan tinggi terhadap kesan perencat berbanding enzim bebas di dalam reaktor kelompok. Kelebihan enzim tersekatgerak dilihat amat berpotensi untuk diaplikasikan dalam industri penghasilan enantiomer tunggal, terutamanya penyekat beta dalam masa terdekat.

CANDIDA ANTARTICA LIPASE B MEDIATED KINETIC RESOLUTION OF RACEMIC ACEBUTOLOL

ABSTRACT

Acebutotol is still available in racemic form. The increasing preference for single or pure enantiomer of chiral drugs is driven mainly by the different effects of the enantiomers, the high market demand and the guidelines issued by regulatory authorities. Therefore, the kinetic resolution of racemic acebutolol is studied in batch and enzymatic membrane reactor. The response surface methodology based on central composite design (CCD) was employed for optimization and analysis of kinetic resolution of racemic acebutolol in a batch reactor. The process variables which were taken into account include; enzyme loading, substrate concentration, acyl donor concentration and temperature. The optimum conditions were found to be 320 mg of enzyme loading, with acebutolol concentration of 50 mM, vinyl acetate concentration of 140 mM and temperature at 40 °C, giving the overall conversion of 46.6%. The value of enantioselectivity E and enantiomeric excess of the substrate ee_s were found to be 15 and 73%, respectively. Lipase activation and deactivation energy was estimated to be 39.63 kJ/mol and 54.90 kJ/mol, respectively. Denaturation constant, k_d was increasing from 0.012-0.031 h⁻¹ with the increasing temperature from 45 0 C to 60 0 C. The value of enthalpy and entropy for free *Candida* antartica lipase B were 52.12 kJ/mol.K and -0.18 kJ/mol.K, respectively. Based on the finding from the batch reaction, kinetic resolution of acebutolol has been successfully conducted in enzymatic membrane reactor (EMR). The effects of enzyme loading, substrate and acyl donor concentration, pH of buffer solution,

reaction temperature, and organic phase flow rates, and transmembrane pressure (TMP) were investigated. The optimum operating conditions for the lipase-catalyzed kinetic resolution in an EMR system were pH 7, 40 °C and TMP of 6 psi at organic flow rate of 40 ml/min. This condition gave 40% overall conversion, enentioselectivity of 23 and ee_s of 84%. The reaction kinetic was found to obey the Ping Pong Bi Bi mechanisms for both free and immobilized lipase from Candida antartica B. The kinetic parameters for the free lipase were: $K_{Mace} = 8.53$ mM, K_{Mva} =5.19 mM, and V_{max} =1.18 mM/h. The apparent kinetic parameters for the immobilized lipase were: $K_{mace app} = 2.13 \text{ mM}$, $K_{Mvaapp} = 1.23 \text{ mM}$ and $V_{max app} = 2.33$ mM/h. The kinetics of kinetic resolution accounted for both substrates inhibitions. The inhibition constants were given by $K_{Iace}=10.72$ mM, $K_{Iva}=3.71$ mM, $K_{Iace app}=$ 11.56 mM and $K_{Iva app}$ =3.89 mM. The performance of free and immobilized CALB were compared. The immobilized lipase in EMR gave higher reaction capacity, better thermal stability, higher affinity to the substrates and exhibited higher resistance towards the inhibition effect. The advantages of immobilized enzyme makes it possible for economical industrial production of chiral drugs, particularly beta blockers in the near future.

CHAPTER 1

INTRODUCTION

1.1 Chiral Drugs in Pharmaceutical Industries

The word chiral is derived from the greek word *cheir*, meaning hand, to describe the handedness of the molecule. An object is said to be chiral if its two mirror image forms are not superimposable in the three dimension. The opposite of chiral is achiral (Morris, 2002).

A pair of stereoisomers that are non-superimposable mirror images of one another is called enantiomer. They have different three dimension configurations. Whereas, the mixture of two enantiomers in equal portion is referred to as a racemate. Enantiomers can be named by different methods. For example, prefixes (R) and (S) can be used for right hand and left hand enantiomers, respectively. The other methods are by using (+) and (-) or D and L (Sheldon, 1993). This general prefix applies to all bioactive substances including pharmaceutical compounds (Sheldon, 1996).

In an achiral environment, the enantiomers of chiral drugs show similar physical and chemical properties. Both enantiomers have identical molecular weight, solubility and melting point. However, in a chiral environment, the chemical and pharmacologic behaviors of the enantiomers may be differ (Somogyi, 2004; Caldwell, 2001). Drugs work by binding to the specific biological sites (or drug binding sites), such as proteins (receptors, enzymes), nucleic acids (DNA and RNA) and biomembranes (phospholipids and glycolipids) present in the body. Our body, which consists of numerous homochiral compound interacts with racemic drugs differently and metabolize each enantiomer by separate pathways, thus generate different pharmacological activity. One enantiomer may produce the desired healing effects, while the other may be inactive or produce undesired effects. In pharmacology, the active enantiomer is known as eutomer, while the inactive enantiomer is referred as distomer (Nguyen *et al.*, 2006 and Shafaati, 2007).

Figure 1.1 illustrates the molecular mechanism of chiral pharmacology and toxicity, which is highly affected by the interaction between a chiral drug and its chiral binding site. As shown in the figure, the portion of the drug labeled as A, B and C. Meanwhile, a, b and c represent the region of the binding site. In order to have its desired therapeutic effect, A, B, and C must interact with the corresponding a, b, and c. The three dimensional structure of the eutomer can be aligned with the binding site in order to allow A to interact with a, B to interact with b, and C to interact with c. On the other hand, for the distomer, no matter how it is rotated in space, it failed to bind to its corresponding binding sites simultaneously. As a result, it fails to exert a desirable effect. In a few cases, the distomer interacts with an unusual binding site leading to undesirable biological effects (McConathy and Owens, 2003).

Figure 1.1 : The hypothetical interaction between the two enantiomers of a chiral drugs and its binding site (McConathy and Owens, 2003; and Vadya, 2011)

1.2 Market Trends of Chiral Drugs

Recently, much attention on the development of chiral drugs has been growing rapidly due to the increased awareness in stereochemistry of drugs. Strict regulation has been defined by the Food and Drug Administration (FDA). In order to patent a new racemic drug, full profiles for both enantiomers as well as the racemic mixture of the chiral drug has to be documented separately. The information in the document should provide pharmacological and pharmacokinetic properties of the new patented drug (Maier *et al.*, 2001, Viegas *et al.*, 2007a, Cho *et al.*, 2002).

From the economic point of view, chiral drugs continue to make a significant contribution to the global pharmaceutical markets. Earlier in 1997, about 50% of the top 500 drugs are marketed as single enantiomer (Stinson 1998; and Maier *et al.*,