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RESOLUSI KINETIK TERHADAP RASEMIK ACEBUTOLOL

MENGGUNAKAN PERANTARAAN LIPASE CANDIDA ANTARTICA B

ABSTRAK

Asebutolol masih lagi dipasarkan dalam bentuk rasemik sehingga kini.

Kecenderungan terhadap penghasilan enantiomer tunggal bagi ubat-ubatan berbentuk

kiral adalah didorong oleh beberapa faktor antaranya kesan yang berbeza daripada

enantiomer tersebut, permintaan dalam pasaran yang semakin meningkat, juga

peraturan yang semakin ketat terhadap pengeluaran ubat-ubatan tersebut. Oleh itu,

resolusi kinetik terhadap rasemik asebutolol dikaji menggunakan perantaraan lipase

dalam reaktor kelompok dan reaktor membran berenzim. Kaedah sambutan

permukaan dengan rekabentuk central composite design (CCD) digunakan untuk

analisis data bagi reaktor kelompok. Faktor yang dikaji adalah merangkumi jumlah

enzim, kepekatan substrat dan penderma asil dan suhu tindakbalas. Kajian mendapati

bahawa tindabalas di dalam reaktor kelompok ini mencapai optimum dengan 320 mg

enzim, 50 mM kepekatan Asebutolol, 140 mM kepekatan vinil asetat and suhu 40 oC,

memberikan kadar pertukaran sebanyak 46% dengan nilai E dan ees masing-masing

15 and 73%. Tenaga pengaktifan dan penyahtabii bagi enzim di dalam reaktor

kelompok dalam kajian ini dianggarkan masing-masing sebanyak 39.63 kJ/mol dan

54.90 kJ/mol. Pemalar pendeaktifan kd meningkat sebanyak 0.012-0.031 per jam

dengan peningkatan suhu daripada 45 oC ke 60 oC. Nilai entalpi adalah 52.12

kJ/mol.K dan entropi adalah -0.18 kJ/mol.K. Berdasarkan dapatan daripada tindak

balas di dalam reaktor kelompok, resolusi kinetik Acebutolol telah berjaya dilakukan

di dalam reaktor membran berenzim. Kesan jumlah enzim, kepekatan substrat dan
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penderma asil, pH larutan penimbal, suhu tindakbalas, kadar aliran fasa organik dan

tekanan transmembran. Tindakbalas di dalam reaktor membran berenzim mencapai

nilai optimum pada pH 7, 40 oC dan TMP 6 psi, dengan kadar aliran fasa organik

sebanyak 40 ml/min. Ia memberikan nilai pertukaran 40%, E sebanyak 23 dan ees

sebanyak 84%. Tindakbalas enzim di dalam reaktor kelompok dan reaktor membran

berenzim kedua-duanya mematuhi mekanisme Ping Pong Bi Bi. Parameter kinetik

untuk enzim bebas di dalam reaktor kelompok adalah seperti berikut: KMace =8.53

mM, KMva =5.19 mM, dan Vmax =1.18 mM/h. Manakala parameter kinetik untuk

enzim tersekatgerak di dalam reaktor membran berenzim adalah seperti berikut;

Kmace app = 2.13 mM, KMvaapp = 1.23 mM dan Vmax app =2.33 mM/h. Nilai pemalar

perencat pula adalah KIace=10.72 mM, KIva,= 3.71 mM, KIace app = 11.56 mM dan KIva

app=3.89 mM. Prestasi CALB di dalam kedua-dua jenis reaktor telah dibandingkan.

Enzim tersekatgerak di dalam reaktor membran berenzim memberikan kapasiti

tindak balas yang lebih tinggi, kestabilan terma yang lebih baik, afiniti yang lebih

tinggi kepada substrat dan juga menunjukkan rintangan tinggi terhadap kesan

perencat berbanding enzim bebas di dalam reaktor kelompok. Kelebihan enzim

tersekatgerak dilihat amat berpotensi untuk diaplikasikan dalam industri penghasilan

enantiomer tunggal, terutamanya penyekat beta dalam masa terdekat.
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CANDIDA ANTARTICA LIPASE B  MEDIATED KINETIC RESOLUTION

OF RACEMIC ACEBUTOLOL

ABSTRACT

Acebutotol is still available in racemic form. The increasing preference for single or

pure enantiomer of chiral drugs is  driven mainly by the different effects of the

enantiomers, the high market demand and the guidelines issued by regulatory

authorities. Therefore, the kinetic resolution of racemic acebutolol is studied in batch

and enzymatic membrane reactor. The response surface methodology based on

central composite design (CCD) was employed for optimization and analysis of

kinetic resolution of racemic acebutolol  in a batch reactor. The process variables

which were taken into account include; enzyme loading, substrate concentration, acyl

donor concentration and temperature. The optimum conditions were found to be  320

mg of enzyme loading, with  acebutolol concentration of 50 mM, vinyl acetate

concentration of  140 mM and temperature at 40 oC, giving the overall conversion of

46.6%. The value of enantioselectivity E and enantiomeric excess of the substrate ees

were found to be 15 and 73%, respectively. Lipase activation and deactivation

energy was estimated to be 39.63 kJ/mol and 54.90 kJ/mol, respectively.

Denaturation constant, kd was increasing from 0.012-0.031 h-1 with the increasing

temperature from 45 0C to 60 0C. The value of enthalpy and entropy for free Candida

antartica lipase B were 52.12 kJ/mol.K and -0.18 kJ/mol.K, respectively. Based on

the finding from the batch reaction, kinetic resolution of acebutolol has been

successfully conducted in enzymatic membrane reactor (EMR). The effects of

enzyme loading, substrate and acyl donor concentration, pH of buffer solution,



xx

reaction temperature, and organic phase flow rates,  and transmembrane pressure

(TMP) were investigated. The optimum operating conditions for the lipase-catalyzed

kinetic resolution in an EMR system were pH 7, 40 oC and TMP of 6 psi at organic

flow rate of 40 ml/min. This condition gave 40% overall conversion,

enentioselectivity of 23 and ees of 84%. The reaction kinetic was found to obey the

Ping Pong Bi Bi mechanisms for both free and immobilized lipase from Candida

antartica B . The kinetic parameters for the free lipase were: KMace =8.53 mM, KMva

=5.19 mM, and Vmax =1.18 mM/h. The apparent kinetic parameters for the

immobilized lipase were: Kmace app = 2.13 mM, KMvaapp = 1.23 mM and Vmax app =2.33

mM/h. The kinetics of kinetic resolution accounted for both substrates inhibitions.

The inhibition constants were given by KIace=10.72 mM, KIva,= 3.71 mM, KIace app =

11.56 mM and KIva app=3.89 mM. The performance of free and immobilized CALB

were compared. The immobilized lipase in EMR gave higher reaction capacity,

better thermal stability, higher affinity to the substrates and exhibited higher

resistance towards the inhibition effect. The advantages of  immobilized enzyme

makes it possible for economical industrial production of chiral drugs, particularly

beta blockers  in the near future.
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CHAPTER 1

INTRODUCTION

1.1 Chiral Drugs in Pharmaceutical Industries

The word chiral is derived from the greek word cheir, meaning hand, to

describe the handedness of the molecule. An object is said to be chiral if its two

mirror image forms are not superimposable in the three dimension. The opposite of

chiral is achiral (Morris, 2002).

A pair of stereoisomers that are non-superimposable mirror images of one

another is called enantiomer. They have different three dimension configurations.

Whereas, the mixture of two enantiomers in equal portion is referred to as a

racemate. Enantiomers can be named by different methods. For example, prefixes

(R) and (S) can be used for right hand and left hand enantiomers, respectively. The

other methods are by using (+) and (-) or D and L (Sheldon, 1993). This general

prefix applies to all bioactive substances including pharmaceutical compounds

(Sheldon, 1996).

In an achiral environment, the enantiomers of chiral drugs show similar

physical and chemical properties. Both enantiomers have identical  molecular

weight, solubility and melting point. However, in a chiral environment, the chemical

and pharmacologic behaviors of the enantiomers may be differ (Somogyi, 2004;

Caldwell, 2001). Drugs work by binding to the specific biological sites (or drug

binding sites), such as proteins (receptors, enzymes), nucleic acids (DNA and RNA)

and biomembranes (phospholipids and glycolipids) present in the body.
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Our body, which consists of numerous homochiral compound interacts with

racemic drugs differently and metabolize each enantiomer by separate pathways, thus

generate different pharmacological activity. One enantiomer may produce the desired

healing effects, while the other may be inactive or produce undesired effects. In

pharmacology, the active enantiomer is known as eutomer, while the inactive

enantiomer is referred as distomer (Nguyen et al., 2006 and Shafaati, 2007).

Figure 1.1 illustrates the molecular mechanism of chiral pharmacology and

toxicity, which is highly affected by the interaction between a chiral drug and its

chiral binding site. As shown in the figure, the portion of the drug labeled as A, B

and C. Meanwhile, a, b and c represent the region of the binding site. In order to have

its desired therapeutic effect, A, B, and C must interact with the corresponding a, b,

and c. The three dimensional structure of the eutomer can be aligned with the binding

site in order to allow A to interact with a, B to interact with b, and C to interact with

c. On the other hand, for the distomer, no matter how it is rotated in space, it failed to

bind to its corresponding binding sites simultaneously. As a result, it fails to exert a

desirable effect. In a few cases, the distomer interacts with an unusual binding site

leading to undesirable biological effects (McConathy and Owens, 2003).
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Figure 1.1 : The hypothetical interaction between the two enantiomers of a chiral
drugs and its binding site (McConathy and Owens, 2003; and Vadya, 2011)

1.2 Market Trends of Chiral Drugs

Recently, much attention on the development of chiral  drugs has been

growing rapidly due to the increased awareness in stereochemistry of drugs.  Strict

regulation has been defined by the Food and Drug Administration (FDA).  In order to

patent a new racemic drug, full profiles for both enantiomers as well as the racemic

mixture of the chiral drug has to be documented separately. The information in the

document should provide pharmacological and pharmacokinetic properties of the

new patented drug  (Maier et al., 2001, Viegas et al ., 2007a, Cho et al., 2002).

From the economic point of view, chiral drugs continue to make a significant

contribution to the global pharmaceutical markets. Earlier in 1997, about 50% of the

top 500 drugs are marketed as single enantiomer (Stinson 1998; and Maier et al.,
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