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BEHAVIOR OF SPANDREL BEAMS STRENGTHENED WITH STEEL FIBERS 

UNDER COMBINED LOADING  

 

ABSTRACT 

 

Important concrete members are subjected to significant torsion accompanied by 

bending and shear. Until recent years, the design codes of reinforced concrete members 

assumed that the effects of torsion could be safely neglected due to high safety factors 

for shear and bending moment. Thus, members under combined loading were not treated 

with serious attention. However, this assumption cannot be applied anymore as torsion 

issues become common and play a significant role in structural members, such as 

spandrel beams. The spandrel beam, or the L-beam, lies on the perimeter of buildings. 

Any failure in spandrel beams can seriously damage slabs, beam-column connections, 

and punch concrete flat-plates. By incorporating steel fibers, it can enhance torsional 

behavior of spandrel beam under combined load in addition to the structural 

performance such as maximum load, ductility and cracking resistance. Steel fibers may 

provide resistance to combined loading as stirrups and longitudinal bars, this 

investigation is still scare and limited.  Moreover, a worldwide interest in utilizing fiber 

reinforced concrete structures for civil infrastructure applications has increased. This 

study presents the advantage of using steel fiber concrete in strengthening spandrel 

beams under different reinforcement and loading cases. An experimental investigation 

was conducted to assess the behavior of steel fiber reinforced concrete spandrel beams 

subjected to combined torsion, bending, and shear. A total of 18 spandrel beams were 
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