BEHAVIOR OF SPANDREL BEAMS STRENGTHENED WITH STEEL FIBERS UNDER COMBINED LOADING

OMER FAROUK IBRAHEEM

UNIVERSITI SAINS MALAYSIA

2015

BEHAVIOR OF SPANDREL BEAMS STRENGTHENED WITH STEEL FIBERS UNDER COMBINED LOADING

By

OMER FAROUK IBRAHEEM

Thesis submitted in fulfillment of the requirements

for the degree of

Doctor of Philosophy

October 2015

KELAKUAN RASUK SPANDREL DIPERKUKUH DENGAN GENTIAN KELULI DI BAWAH BEBAN TERGABUNG

Oleh

OMER FAROUK IBRAHEEM

Tesis yang diserahkan untuk

memenuhi keperluan bagi ijazah

Doktor Falsafah

Oktober 2015

ACKNOWLEDGEMENT

In the name of Allah al Rahman al Raheem At the onset, Alhamdulillah, I would like to thank Allah SWT for his blessing and kindness in providing me this opportunity and strength to carry out this important research.

I wish to express my sincere appreciation and gratitude to my supervisor, **Professor Dr. Badorul Hisham bin Abu Bakar** for his encouragement, friendship and his guidance and continued support in completion of this work. I would also like to thank my co-supervisor **Dr. Izwan bin Johari**, for assisting me during my research.

I wish to express my appreciation to the staff of Structural and Material Lab, Mr. Mohd Fauzi Zulkefle, Mr. Shahril Izhan Md. Noor, Mr. Abdullah Md. Nanyan and Mr. Mad Fadzil Ali, and staffs at the Concrete Laboratory, School of Civil Engineering, Universiti Sains Malaysia for their co-operation during the course of this research.

I would like to thank the School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia for providing me necessary materials, facilities and technical assistance to conduct the laboratory work.

Lastly I would like to thank my family for their support, care and encouragement that provided to me until the compilation of my thesis.

My earnest thanks to each and every one who have directly or indirectly assisted me in this work.

TABLE OF CONTENTS

ACKNOWLEDGEMENT	Ι
TABLE OF CONTENTS	II
LIST OF TABLES	VIII
LIST OF FIGURES	IX
LIST OF SYMBOLS	XIX
ABSTRAK	XXI
ABSTRACT	XXIII

CHAPTER 1 - INTRODUCTION

1.1	Introduction	1
1.2	Problem statement	5
1.3	Objectives	6
1.4	Organization of the thesis	6

CHAPTER 2 - LITERATURE REVIEW

2.1	Introduction	8
2.2	Flanged beams under combined loading	8
2.3	Rectangular beams under pure torsion	11
2.4	Rectangular beams under combined loading	14
2.5	Fiber reinforced concrete beams under torsional loading	16

CHAPTER 3 - EXPERIMENTAL WORK

3.1		Introduction	29
3.2		Concrete dimensions and reinforcement	29
3.3		Materials	31
3.	3.1	Concrete	31
3.	3.2	Steel fibers	31
3.	3.3	Reinforcement steel	32
3.4		Design of concrete and steel fiber concrete	33
3.5		Formwork preparation	34
3.6		Mixing process	35
3.7		Pouring of concrete	36
3.8		Compressive and tensile strength of concrete mixture	37
3.9		Test setup	41
3.	9.1	Loading rig	42
3.	9.2	Supports	42
3.	9.3	Instrumentation	43
	3.9.3.1	Load cell	43
	3.9.3.2	Linear variable differential transformers (LVDTs)	43
	3.9.3.3	Strain measurements	45
	3.9.3.4	Crack detection	46

3.10	Full scale specimens testing procedure	47
3.11	Torque-bending-shear ratio	48
3.12	Stresses in concrete beam	48

CHAPTER 4 - EXPERIMENTAL RESULTS AND DISCUSSION

4.1	Introduction	53
4.2	Beam test results	53
4.3	Torsional behavior	55
4.3.1	Spandrel beams without reinforcement	56
4.3.2	Spandrel beams with longitudinal reinforcement	63
4.3.3	Spandrel beams with longitudinal and transverse reinforcement	70
4.4	Flexural behavior	78
4.4.1	Spandrel beams without reinforcement	78
4.4.2	Spandrel beams with longitudinal reinforcement	81
4.4.3	Spandrel beams with longitudinal and transverse reinforcement	85
4.5	Effect of steel reinforcement on spandrel beams	88
4.5.1	First cracking load	89
4.5.2	Maximum load	91
4.5.3	Ductility and toughness	93
4.6	Cracking pattern	96
4.6.1	Spandrel beams without reinforcement	97

4.6.2	Spandrel beams with longitudinal reinforcement	103
4.6.3	Spandrel beams with longitudinal and transverse reinforcement	110
4.7	Maximum crack width	116
4.8	Steel reinforcement and steel fibers effect on maximum crack width	126
4.9	Strain in concrete	129
4.10	Steel fibers as the alternative for transverse reinforcement	137
4.11	Summary	140

CHAPTER 5 - FINITE ELEMENT ANALYSIS

5.1	Introduction	142
5.2	Finite element modeling	142
5.2.1	Element types	144
5.2.1.1	SOLID65 element	144
5.2.1.2	LINK8 element	145
5.2.1.3	SOLID45 element	146
5.2.2	Material properties	146
5.2.2.1	Concrete	146
	concrete	140
5.2.2.2	Finite element parameters	140
5.2.2.2 5.2.2.3	Finite element parameters Steel reinforcement and structural steel	140 149 150
5.2.2.2 5.2.2.3 5.2.2.4	Finite element parameters Steel reinforcement and structural steel Steel reinforcement modeling	140 149 150 151

5.2.3	Element properties	154
5.2.4	Spandrel beam geometry	155
5.2.5	Meshing	156
5.2.6	Boundary conditions and loading	158
5.3	Load stepping and failure definition	160
5.4	Mesh density	160

CHAPTER 6 - FINITE ELEMENT RESULTS AND DISCUSSION

6.1	Introduction	163
6.2	Torque-twist plots	163
6.2.1	Plain concrete specimens	163
6.2.2	Fiber-reinforced specimens	169
6.3	Load-deflection plots	178
6.3.1	Plain concrete specimens	178
6.3.2	Fiber-reinforced specimens	182
6.4	Strain in concrete surface	191
6.4.1	Plain concrete specimens	191
6.4.2	Fiber-reinforced specimens	195
6.5	Concrete crack width	200
6.5.1	Plain concrete specimens	201
6.5.2	Fiber-reinforced specimens	204
6.6	Summary	210

CHAPTER 7 - CONCLUSIONS AND RECOMMENDATIONS

7.1	Summary	211
7.2	Conclusions for the experimental investigation	212
7.3	Conclusions for the finite element investigation	213
7.4	Recommendations for future research	213

REFERENCES		215
APPENDIX A	Tensile test of steel reinforcement	221
APPENDIX B	Concrete mix design	224
APPENDIX C	Photos of tested beams	230
APPENDIX D	Input data of finite element analysis	244
LIST OF PUBLICA	TIONS	286

LIST OF TABLES

Table 2.1	Summary of previous works	23
Table 3.1	Quantity of materials used in the production of fresh concrete	34
Table 3.2	Material properties of the tested beams	39
Table 4.1	Test results of the specimens	54
Table 4.2	Elastic stiffness, ductility and toughness of the tested specimens	55
Table 4.3	Improvements obtained after using steel fibers (%)	77
Table 5.1	Number of elements used for FE models	162
Table 6.1	Comparison of the FE model with the experimental data	190

LIST OF FIGURES

Figure 1.1	Spandrel beams under combined loading: (a) Beam-column- floor system, (b) Spandrel beam supporting cantilever slab, (c) Spandrel beam supporting cantilever beam, and (d) Spandrel beam and flat slab	2
Figure 2.1	Spandrel beam tested by Ragagopalan (1980)	9
Figure 3.1	Elevation, cross-sectional dimensions and steel reinforcement details of the tested beams: (a) Group I (b) Group II (c) Group III	30
Figure 3.2	Hooked-end steel fibers	32
Figure 3.3	Tensile test of \emptyset 12 mm steel bar (specimen No.1)	32
Figure 3.4	Tensile test of \emptyset 12 mm steel bar (specimen No.2)	33
Figure 3.5	Form and reinforcement of Group III beam	35
Figure 3.6	Concrete mixture for 1.5% steel fiber volume fraction	35
Figure 3.7	(a) Vibrating fiber concrete of Group II beam(b) Curing and finished surface of specimens	37
Figure 3.8	Cube compression test	38
Figure 3.9	Cylinder split-tensile test	39
Figure 3.10	Cube and cylinder samples for plain concrete	40
Figure 3.11	Cube and cylinder samples for fiber-reinforced concrete	40
Figure 3.12	Test setup with a specimen in place	41
Figure 3.13	Side view of the specimen	42
Figure 3.14	Applied vertical force, internal shear force, internal bending moment and internal torque	43

Figure 3.15	LVDT locations on the specimen: (a) plan view (b) back view	44
Figure 3.16	Test setup, specimen and LVDT location	45
Figure 3.17	Strain gauge location on the specimen	46
Figure 3.18	Test set up, specimen and strain gauge location	46
Figure 3.19	Crack detection microscope	47
Figure 3.20	Stresses under pure bending, (a) principal stresses trajectories, (b) flexural and shear cracks, (c) stresses in beam cross-section	49
Figure 3.21	Stresses under pure torsion (a) principal stresses trajectories, (b) torsional cracks, (c) stresses in beam cross-section	51
Figure 4.1	Torque–twist curve for the beams in Group I at high T/M ratio	56
Figure 4.2	Torque–twist curve for the beams in Group I at low T/M ratio	56
Figure 4.3	Increase in cracking torque of Group I beams due to the use of steel fibers	58
Figure 4.4	Increase in maximum torque of Group I beams due to the use of steel fibers	59
Figure 4.5	Increase in elastic torsional stiffness of Group I beams due to the use of steel fibers	60
Figure 4.6	Increase in torsional ductility of Group I beams due to the use of steel fibers	61
Figure 4.7	Torsional toughness of Group I beams due to the use of steel fibers	62
Figure 4.8	Torque–twist curve for the beams in Group II at high T/M ratio	63
Figure 4.9	Torque–twist curve for the beams in Group II at low T/M ratio	63
Figure 4.10	Increase in cracking torque of Group II beams due to the use of steel fibers	66

Figure 4.11	Increase in maximum torque of Group II beams due to the use of steel fibers	
Figure 4.12	Increase in elastic torsional stiffness of Group II beams due to the use of steel fibers	68
Figure 4.13	Increase in torsional ductility of Group II beams due to the use of steel fibers	68
Figure 4.14	Increase in torsional toughness of Group II beams due to the use of steel fibers	69
Figure 4.15	Torque–twist curve for the beams in Group III at high T/M ratio	70
Figure 4.16	Torque–twist curve for the beams in Group III at low <i>T/M</i> ratio	71
Figure 4.17	Increase in cracking torque of Group III beams due to the use of steel fibers	72
Figure 4.18	Increase in maximum torque of Group III beams due to the use of steel fibers	73
Figure 4.19	Increase in elastic torsional stiffness of Group III beams due to the use of steel fibers	74
Figure 4.20	Increase in torsional ductility of Group III beams due to the use of steel fibers	75
Figure 4.21	Increase in torsional toughness of Group III beams due to the use of steel fibers	76
Figure 4.22	Load–deflection curve for the beams in Group I at high T/M ratio	78
Figure 4.23	Load–deflection curve for the beams in Group I at low T/M ratio	79
Figure 4.24	Increase of flexural ductility of Group I beams due to the use of steel fibers	80
Figure 4.25	Flexural toughness of Group I beams due to the use of steel fibers	80
Figure 4.26	Load–deflection curve for the beams in Group II at high T/M ratio	81

Figure 4.27	Load–deflection curve for the beams in Group II at low T/M ratio	82
Figure 4.28	Increase in flexural ductility of Group II beams due to the use of steel fibers	83
Figure 4.29	Increase in flexural toughness of Group II beams due to the use of steel fibers	85
Figure 4.30	Load–deflection curve for the beams in Group III at high T/M ratio	86
Figure 4.31	Load–deflection curve for the beams in Group III at low T/M ratio	86
Figure 4.32	Increase in flexural ductility of Group III beams due to the use of steel fibers	87
Figure 4.33	Increase in flexural toughness of Group III beams due to the use of steel fibers	88
Figure 4.34	First cracking load values for spandrel beams at high T/M ratio	89
Figure 4.35	First cracking load values for spandrel beams at low T/M ratio	89
Figure 4.36	Maximum load values for spandrel beams at high T/M ratio	91
Figure 4.37	Maximum load values for spandrel beams at low T/M ratio	92
Figure 4.38	Torsional ductility values for spandrel beams at high T/M ratio	93
Figure 4.39	Torsional toughness values for spandrel beams at high T/M ratio	94
Figure 4.40	Flexural ductility values for spandrel beams at low T/M ratio	95
Figure 4.41	Flexural toughness values for spandrel beams at low T/M ratio	96
Figure 4.42	Faces of spandrel beam	97
Figure 4.43	Crack pattern in beam P0-545	98
Figure 4.44	Crack pattern in beam P0-145	98

Figure 4.45	Crack pattern in beam P1-545	100
Figure 4.46	Crack pattern in beam P1.5-545	100
Figure 4.47	Crack pattern in beam P1-145	102
Figure 4.48	Crack pattern in beam P1.5-145	102
Figure 4.49	Crack pattern in beam L0-545	103
Figure 4.50	Crack pattern in beam L0-145	105
Figure 4.51	Crack pattern in beam L1-545	106
Figure 4.52	Crack pattern in beam L1.5-545	107
Figure 4.53	Crack pattern in beam L1-145	108
Figure 4.54	Crack pattern in beam L1.5-145	109
Figure 4.55	Crack pattern in beam S0-545	110
Figure 4.56	Crack pattern in beam S0-145	111
Figure 4.57	Crack pattern in beam S1-545	113
Figure 4.58	Crack pattern in beam S1.5-545	115
Figure 4.59	Crack pattern in beam S1-145	115
Figure 4.60	Crack pattern in beam S1.5-145	116
Figure 4.61	Torque vs maximum crack width curve of beams in Group I at high T/M ratio	117
Figure 4.62	Load vs maximum crack width curve of beams in Group I at low T/M ratio	118
Figure 4.63	Torque vs maximum crack width curve of the back face of beams in Group II at high <i>T/M</i> ratio	119
Figure 4.64	Torque vs maximum crack width curve of the flange face of beams in Group II at high T/M ratio	119

Figure 4.65	Torque vs maximum crack width curve of the top face of beams in Group II at high T/M ratio	120
Figure 4.66	Load vs maximum crack width curve of the back face of beams in Group II at low T/M ratio	121
Figure 4.67	Load vs maximum crack width curve of the flange face of beams in Group II at low <i>T/M</i> ratio	122
Figure 4.68	Torque vs maximum crack width curve of the back face of beams in Group III at high <i>T/M</i> ratio	123
Figure 4.69	Torque vs maximum crack width curve of the flange face of beams in Group III at high <i>T/M</i> ratio	123
Figure 4.70	Torque vs maximum crack width curve of the top face of beams in Group III at high <i>T/M</i> ratio	124
Figure 4.71	Load vs maximum crack width curve of the back face of beams in Group III at low T/M ratio	125
Figure 4.72	Load vs maximum crack width curve of the flange face of beams in Group III at low <i>T/M</i> ratio	125
Figure 4.73	Load vs steel fiber content at different crack widths under high T/M ratio	126
Figure 4.74	Load vs steel fiber content at different crack widths under low T/M ratio	128
Figure 4.75	Torque vs strain curve for beams in Group II under high T/M ratio (flexural strain)	130
Figure 4.76	Torque vs strain curve for beams in Group II under high T/M ratio (diagonal strain)	131
Figure 4.77	Strain vs maximum crack width relation for beams in Group II under high <i>T/M</i> ratio	132
Figure 4.78	Torque vs strain curve for beams in Group II under low T/M ratio (flexural strain)	132
Figure 4.79	Torque vs strain curve for beams in Group II under low T/M ratio (diagonal strain)	133

Figure 4.80	Strain vs maximum crack width relation for beams in Group II under low T/M ratio	134
Figure 4.81	Torque vs strain curve for beams in Group III under high T/M ratio (flexural strain)	135
Figure 4.82	Torque vs strain curve for beams in Group III under high T/M ratio (diagonal strain)	135
Figure 4.83	Torque vs strain curve for beams in Group III under low T/M ratio (flexural strain)	136
Figure 4.84	Torque vs strain curve for beams in Group III under low T/M ratio (diagonal strain)	136
Figure 4.85	Strain vs maximum crack width relation for beams in Group III under low T/M ratio	137
Figure 4.86	Replacement of steel fibers instead of stirrups for specimens under high T/M ratio	138
Figure 4.87	Replacement of steel fibers instead of stirrups for specimens under low T/M ratio	139
Figure 5.1	Finite element procedure	143
Figure 5.2	SOLID65 concrete element	145
Figure 5.3	LINK8 3D spar element	145
Figure 5.4	SOLID45 element	146
Figure 5.5	Stress-strain curve for 40 MPa concrete (Vecchio and Collins 1986)	147
Figure 5.6	Compressive uniaxial stress–strain curve for concrete used by Kachlakev et al. (2001)	147
Figure 5.7	Concrete stress-strain model in compression (ANSYS CivilFEM 2009)	148
Figure 5.8	Stress–strain model for concrete in tension (ANSYS CivilFEM 2009)	149

Figure 5.9	Stress–strain relationship for reinforcement and structural steel (ANSYS CivilFEM 2009)	151
Figure 5.10	Models for reinforcement in reinforced concrete (Tavarez 2001): (a) discrete (b) embedded and (c) smeared	152
Figure 5.11	Spandrel beam volumes: (a) full size, (b) half size	156
Figure 5.12	Finite element mesh of concrete	157
Figure 5.13	Finite element mesh of steel reinforcement	157
Figure 5.14	Meshing model of spandrel beam, loading arm and support	158
Figure 5.15	Boundary condition for the plane of symmetry	159
Figure 5.16	Line support and load	160
Figure 5.17	Load–deflection curve for beam S0-145 at different mesh densities	161
Figure 5.18	Mesh density effect on mid-span deflection	162
Figure 6.1	Torque-twist curve for beam P0-545	164
Figure 6.2	Torque-twist curve for beam P0-145	164
Figure 6.3	Torque-twist curve for beam L0-545	166
Figure 6.4	Torque-twist curve for beam L0-145	167
Figure 6.5	Torque-twist curve for beam S0-545	168
Figure 6.6	Torque-twist curve for beam S0-145	169
Figure 6.7	Torque-twist curve for beam P1-545	170
Figure 6.8	Torque-twist curve for beam P1.5-545	170
Figure 6.9	Torque-twist curve for beam L1-545	171
Figure 6.10	Torque-twist curve for beam L1.5-545	172
Figure 6.11	Torque-twist curve for beam L1-145	173

Figure 6.12	Torque-twist curve for beam L1.5-145	174
Figure 6.13	Torque-twist curve for beam S1-545	174
Figure 6.14	Torque-twist curve for beam S1.5-545	176
Figure 6.15	Torque-twist curve for beam S1-145	177
Figure 6.16	Torque-twist curve for beam S1.5-145	178
Figure 6.17	Load–deflection curve for beam P0-545	179
Figure 6.18	Load–deflection curve for beam P0-145	179
Figure 6.19	Load–deflection curve for beam L0-545	180
Figure 6.20	Load–deflection curve for beam L0-145	181
Figure 6.21	Load–deflection curve for beam S0-545	181
Figure 6.22	Load–deflection curve for beam S0-145	182
Figure 6.23	Load–deflection curve for beam P1-145	183
Figure 6.24	Load–deflection curve for beam P1.5-145	183
Figure 6.25	Load–deflection curve for beam L1-545	184
Figure 6.26	Load–deflection curve for beam L1.5-545	184
Figure 6.27	Load–deflection curve for beam L1-145	186
Figure 6.28	Load–deflection curve for beam L1.5-145	186
Figure 6.29	Load–deflection curve for beam S1-545	187
Figure 6.30	Load–deflection curve for beam S1.5-545	188
Figure 6.31	Load–deflection curve for beam S1-145	189
Figure 6.32	Load–deflection curve for beam S1.5-145	189
Figure 6.33	Load-strain curve for beam L0-545 (diagonal strain)	192

Figure 6.34	Load-strain curve for beam L0-145 (flexural strain)	193
Figure 6.35	Load-strain curve for beam S0-545 (diagonal strain)	194
Figure 6.36	Load-strain curve for beam S0-145 (flexural strain)	194
Figure 6.37	Load-strain curve for beam L1-545 (diagonal strain)	195
Figure 6.38	Load-strain curve for beam L1.5-545 (diagonal strain)	196
Figure 6.39	Load-strain curve for beam L1-145 (flexural strain)	196
Figure 6.40	Load-strain curve for beam L1.5-145 (flexural strain)	197
Figure 6.41	Load-strain curve for beam S1-545 (diagonal strain)	198
Figure 6.42	Load-strain curve for beam S1.5-545 (diagonal strain)	198
Figure 6.43	Load-strain curve for beam S1-145 (flexural strain)	199
Figure 6.44	Load-strain curve for beam S1.5-145 (flexural strain)	199
Figure 6.45	Load-maximum crack width curve for beam L0-545	201
Figure 6.46	Load-maximum crack width curve for beam L0-145	202
Figure 6.47	Load-maximum crack width curve for beam S0-545	203
Figure 6.48	Load-maximum crack width curve for beam S0-145	203
Figure 6.49	Load-maximum crack width curve for beam L1-545	204
Figure 6.50	Load-maximum crack width curve for beam L1.5-545	205
Figure 6.51	Load-maximum crack width curve for beam L1-145	206
Figure 6.52	Load-maximum crack width curve for beam L1.5-145	207
Figure 6.53	Load-maximum crack width curve for beam S1-545	207
Figure 6.54	Load–maximum crack width curve for beam S1.5-545	208
Figure 6.55	Load–maximum crack width curve for beam S1-145	209
Figure 6.56	Load–maximum crack width curve for beam S1.5-145	210

LIST OF SYMBOLS

- A_e = Cross-sectional area of a concrete element
- A_f = Area of the link8 element representing fiber
- d_f = Diameter of steel fiber
- e = Eccentricity of the applied load
- f_c = Ultimate uniaxial compressive strength
- f_t = Ultimate uniaxial tensile strength of the concrete
- l_f = Length of steel fiber
- N_f = Number of fibers per unit cross section area
- P_{cr} = Cracking vertical load
- P_{max} = Maximum vertical load
- S_{rm} = Average spacing
- T_c = Stiffness multiplier constant
- T_{cr} = Cracking torsional moment
- T_{max} = Maximum torsional moment
- V_f = Volume fraction of steel fibers
- w_k = Maximum crack width
- β_t = Shear transfer coefficient
- η_0 = Orientation factor
- θ_{cr} = Angle of twist at mid span under cracking load

- θ_{max} = Angle of twist at mid span under maximum load
- \emptyset = Bar diameter
- Δ_{cr} = Vertical deflection at mid span under cracking load
- Δ_{max} = Vertical deflection at mid span under maximum load
- ε_{rm} = Strain in steel
- ρ_r = Effective reinforcement ratio

BEHAVIOR OF SPANDREL BEAMS STRENGTHENED WITH STEEL FIBERS UNDER COMBINED LOADING

ABSTRACT

Important concrete members are subjected to significant torsion accompanied by bending and shear. Until recent years, the design codes of reinforced concrete members assumed that the effects of torsion could be safely neglected due to high safety factors for shear and bending moment. Thus, members under combined loading were not treated with serious attention. However, this assumption cannot be applied anymore as torsion issues become common and play a significant role in structural members, such as spandrel beams. The spandrel beam, or the L-beam, lies on the perimeter of buildings. Any failure in spandrel beams can seriously damage slabs, beam-column connections, and punch concrete flat-plates. By incorporating steel fibers, it can enhance torsional behavior of spandrel beam under combined load in addition to the structural performance such as maximum load, ductility and cracking resistance. Steel fibers may provide resistance to combined loading as stirrups and longitudinal bars, this investigation is still scare and limited. Moreover, a worldwide interest in utilizing fiber reinforced concrete structures for civil infrastructure applications has increased. This study presents the advantage of using steel fiber concrete in strengthening spandrel beams under different reinforcement and loading cases. An experimental investigation was conducted to assess the behavior of steel fiber reinforced concrete spandrel beams subjected to combined torsion, bending, and shear. A total of 18 spandrel beams were