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PENGESANAN KECACATAN DAN PENGELASAN WAFER SOLAR 

SILIKON DENGAN MENGGUNAKAN KAEDAH PENGIMEJAN NIR DAN 

SEGMENTASI NIBLACK YANG DITAMBAHBAIK 

 

ABSTRAK 

Menghasilkan tenaga yang boleh diperbaharui berkuantiti tinggi memerlukan 

kecekapan yang tinggi dalam fabrikasi produk wafer silikon, yang juga merupakan 

komponen asas panel solar. Oleh yang demikian, pemeriksaan kualiti yang tinggi 

untuk wafer solar semasa proses pengeluaran sangat penting. Dalam tesis ini, sistem 

pengesanan kecacatan yang cekap dan automatik menggunakan strategi  pengelasan 

dan kelompok termaju  telah dicadangkan. Dalam  kajian ini, satu  skema mesin 

penglihatan  untuk mengesan keretakan mikro dan kecacatan-kecacatan yang lain 

dalam pembuatan polihabluran dan mono kristal wafer solar dicadangkan dan 

dibangunkan. Pemeriksaan retak mikro sangat mencabar kerana kecacatan ini sangat 

kecil dan tidak boleh dilihat dengan mata kasar. Kewujudan struktur heterogenus 

yang lain dalam wafer solar seperti bahan-bahan kasar dan kawasan gelap 

menjadikan pemeriksaan lebih mencabar. Dalam tesis ini, sebuah inspektor retak 

mikro yang mengandungi pencahayaan inframerah yang dekat dan algoritma 

segmentasi Niblack yang diperbaharui telah dicadangkan. Keputusan emperikal dan 

visual menunjukkan ketepatan dan prestasi yang lebih baik dari segi angka merit 

Pratt dan kaedah penilaian yang lain berbanding dengan formula pengambangan 

Niblack yang sedia ada. Keputusan angka merit (FOM), ketepatan (ACC), pekali 

kesamaan dadu (DSC) dan sensitiviti yang masing-masingnya sentiasa lebih tinggi 

daripada 0.871, 99.35 %, 99.68 %, dan 99.75 % bagi imej-imej dalam kajian ini. 

Sementara itu, satu set deskriptor bersepadanan dengan penerangan ciri-ciri bentuk 

Fourier eliptik, diekstrak bagi setiap kecacatan yang telah dikesan, dan dinilai bagi 



xvi 
 

setiap kluster bagi tujuan pengelompokan dan pengelasan. Pengelasan 

menggabungkan analisis ciri keamatan kecacatan, penggunaan tanpa pengawasan 

kelompok purata-k dan pelbagai kelas algoritma SVM. Kaedah-kaedah ini telah 

digunakan untuk pengesanan, pengelompokan dan klasifikasi imej wafer solar 

polihabluran, bersepadanan  dengan kecacatan seperti keretakan mikro, kekotoran, 

dan cap jari. Keputusan kajian menunjukkan bahawa kaedah purata-k dan 

penklasifikasi SVM mampu mengelompok dengan tepat kecacatan-kecacatan 

tersebut  dengan ketepatan, indeks Rand, dan Bayang indeks dengan nilai purata 

masing-masing sebanyak 99.8 %, 99.788 %, dan 98.43 %. 
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DEFECT DETECTION AND CLASSIFICATION OF SILICON SOLAR 

WAFER FEATURING NIR IMAGING AND IMPROVED NIBLACK 

SEGMENTATION 

 

ABSTRACT 

Producing a high yield of renewable energy requires a high efficiency in 

product fabrication of silicon wafers, which is the basic building component of solar 

panels. For this reason, the high quality inspection of solar wafers during the 

procedures of production is very important.  In this thesis, an automatic and efficient 

defect detection system, utilising advanced classification and clustering strategies are 

proposed. In this study a machine vision scheme for detecting micro-cracks and other 

defects in polycrystalline and monocrystalline solar wafer manufacturing is proposed 

and developed. Micro-crack inspection is very challenging, because this type of 

defect is very small and completely invisible to the naked eye. The presence of other 

heterogeneous structures in solar wafers like grainy materials and dark regions 

further complicates the problem. In this study an efficient micro-crack inspector 

comprising near infrared illumination and an improved Niblack segmentation 

algorithm is proposed.  Empirical and visual results demonstrate that the proposed 

solutions are competitive when compared to existing Niblack thresholding formulas 

and other standard methods, and achieve better precision and performance in terms 

of Pratt’s figure of merit and other evaluation methods. Result in a figure of merit 

(FOM), accuracy (ACC), dice similarity coefficient (DSC), and sensitivity were 

consistently higher than 0.871, 99.35 %, 99.68 %, and 99.75 %, respectively, for all 

images tested in this study. Meanwhile, a set of descriptors corresponding to Elliptic 

Fourier Features shape description is extracted for each defect and is evaluated for 
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each cluster to use for clustering and classification part. The classification combines 

the analysis of defect intensity features, the application of unsupervised k-mean 

clustering and multi-class SVM algorithms. The methods have been applied for 

detecting, clustering and classification polycrystalline solar wafer images, 

corresponding to defects such as micro cracks, stain, and fingerprints.  Results 

indicate that the k-mean and SVM classifier can accurately cluster the defects with 

accuracy, Rand index, and Silhouette index averaging at 99.8 %, 99.788 %, and 

98.43 %, respectively. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

The increasing demand for renewable energy has led to the growth in the 

production of solar cells and wafers. Naturally, there has also been an increase in silicon 

wafer production, which forms the basic building component of many solar panels. 

According to the statistics published by the Silicon Manufacturer Groups, the world-

wide shipments of solar wafers achieved a record high of 2,587 millions square inches 

shipped in the second quarter of 2014 (Calif, 2014). Depending on the materials used in 

the manufacturing, solar wafers and cells can be divided into two major types. They are 

(i) monocrystalline wafers, which are utilized in the manufacture of integrated circuits 

and transistors, and (ii) polycrystalline silicon wafers, which are commonly utilized in 

solar power and semiconductor industries (Sparenberg, 2009). In industrial applications, 

polycrystalline wafers are the preferred material in the production of solar wafers due to 

lower manufacturing costs (Tsai et al., 2010; Belyaev et al., 2006). However, the 

imperfection of manufacturing processes has led to a substantial reduction in production 

yields. Around 5 %-10 % of the total numbers of wafers produced are defective, which 

in turn causes energy wastage due to increases production costs (Chiou et al., 2011; 

Rupnowski & Sopori, 2009). Thus, one of the most important procedures in the 

production of solar wafers is the inspection defects. Chief among these defects are 

micro-cracks, which contribute to stress fractures and thus equipment down time. The 

problem is very challenging because this type of defect is very small and completely 

invisible to the naked eye, which is formed inside the solar wafer and can only be 

visualised electronically or sensed mechanically. Depending on its size, the micro-cracks 
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can be categorised into two groups. The first group comprises micro-cracks with sizes 

less than 30 𝜇𝑚, while the second group comprises those at bigger than 30 𝜇𝑚 in size 

(Chiou et al., 2011; Israil et al., 2013). Moreover, the presence of other heterogeneities 

in the solar wafer, such as grainy material or broken metal fingers, can cause the wafer 

images to be highly textured with a densely heterogeneous background when visualised 

electronically. The low contrast between intact and defective pixels further complicates 

the problem. Traditionally, the near infrared (NIR) spectrum has been used for the 

purpose of imaging, since this type of radiation is transparent to most of the materials 

which make-up solar wafers. Compared to other imaging techniques, NIR offers 

advantages in terms of high accuracy, good sensitivity and faster response time (Israil et 

al., 2013). However, NIR imaging requires very powerful and advanced image 

processing techniques, since the image that it produces usually contains many artefacts. 

Examples of polycrystalline solar wafer images, which include an intact sample 

and several other samples that possess such imperfections as micro cracks, stains, and 

fingerprints, are shown in Figure 1.1. In reality there are other types of defects in solar 

wafers products but the common defects as micro crack, fingerprint and stain are shown 

in this figure. In order to solve this kind of multi-class problem found within 

photovoltaic industry, several methods have been used. 
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(a)                                        (b)                                 (c)                                 (d) 

Figure 1.1: Examples of polycrystalline solar wafer imagesDataset 1: (a) is an intact or 

good sample, (b) is a micro crack sample; (c) a defective sample that includes 

fingerprint, and (d) is defected by a stain. In (b) and (d), the locations of micro-crack and 

stain are indicated by arrows. 

 

In the recent years, there has been an increasing trend in the use of machine 

vision in the manufacturing sectors and industry. This includes methods used to supply 

imaging-based automatic inspection and analysis for applications such as automatic 

inspection, process control, and robot guidance in industry. Typical tasks of machine 

vision in the industrial vision inspection system include: image acquisition, image 

processing, feature extraction, and decision making (Malamas et al., 2003). The use of 

machine vision in industrial automation provides a better solution, as it helps to increase 

productivity and quality through consistent, accurate and fast inspection. However, due 

to the lack of image processing and artificial intelligence algorithms which are suitable 

andaccurate in solving the inspection tasks involved, the inspection and grading 

processes continue to be manual or semi-manual efforts (Anwar, 2014). Inevitably, the 

problem of detecting defects in solar wafer also exhibit similar circumstances. 

Conventionally, the solar wafers consist of invisible and visible defects. The main 

defects as the invisible defects are micro-cracks and the visible defects are stains, 
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fingerprints. Because of the increasing of using solar cells and wafer applications, even 

the defects that do not directly link to reliability issues such as water mark and surface 

stain, fingerprint are detected and considered as fail or secondary grade of cells for the 

solar cell and wafer buyers. Those defects are visually inspected by operators. However, 

the inconsistent inspection results caused by human error make the fully automatic 

optical inspection solution become essential equipment for crystalline cell and wafer 

products (Chroma, 2015). 

Therefore, there is a research prospective, specifically in the field of machine 

vision, to solve the problem of micro-cracks and the detection of other defects and 

classifications in solar wafers. Motivated by this need, this thesis presents the methods 

and techniques for detecting defects in the images of polycrystalline and monocrystalline 

solar wafers. This study integrates an image-processing and machine-learning platform 

toward an application in invisible and visible defect inspection and classification. It 

addresses image processing techniques based on an adaptive Niblack filter and its 

application in solar wafer images. Additionally, this work examines the EFD method for 

feature extraction. Furthermore, machine learning and classification based on 

unsupervised clustering is investigated. For the sake of completeness this work also 

examines the classification based on multiclass supervised support vector machines 

(SVM). 

1.2 Problem Statement 

Among the tests that need to be carried out on solar wafers includes the 

inspection of micro-cracks and other defects such as stains and fingerprint. In an effort 

to reduce the cost of production, manufacturers are making increasingly thinner solar 

wafers. Though cheaper to produce, such products suffer from a serious drawback, in 



5 

 

that they are relatively more fragile and hence easily broken if not handled properly. 

Moreover, the thinner the wafer, the greater the chances of forming micro-cracks and 

other defects. On average, about 5 to 10 percent of solar wafers tend to break during 

production (Rupnowski & Sopori, 2009). It is important that these micro-cracks and 

other defects are detected and extracted as early as possible to minimise machine 

outages or other complications resulting from processing defected samples, especially 

during assembly or packaging. 

There are various methods which can be used in the detection of micro-cracks 

and other defects.  Among them are Radiant Heat Thermography (RHT) (Devitt et al., 

1992; Pilla et al., 2002), eddy currents (Johnson & Esquivel, 2006; Zenzingera et al., 

2007), dye inspection (Zenzingera et al., 2007), the ultrasonic method (Reber & Beller, 

2003), the Scanning Acoustic Microscopy Method (SAM) (Knauss et al., 1995; Connor 

et al., 1998), Resonance Ultrasonic Vibration (RUV) (Dallas et al., 2008; Polupan, & 

Ostapenko, 2006), optical transmission  (Ko et al., 2013; Abdelhamid et al., 2014), 

Photo Luminescence  (PL) (Chiou et al., 2011; Trupke et al., 2006a; Trupke et al., 

2006), Electro Luminescence  (EL) (Takahashi et al., 2006; Dreckschmidt et al., 2007; 

Tsai et al., 2012; Anwar & Abdullah, 2014), and infrared thermography (Pilla et al., 

2002). 

Some of these methods, especially infrared thermography and RHT, are less 

popular because of their limited capability in distinguishing micro-cracks from other 

textures in a solar wafer image. Meanwhile, methods like dye mapping and RUV have 

limited use because they can potentially damage the sample during inspection.  

In contrast, EL does not suffer from the same problems as mechanical methods, 

since it is a completely non-destructive inspection technique. However, this method 
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