CARBON MEMBRANES DERIVED FROM POLYMER BLEND OF POLYETHERIMIDE AND POLYETHYLENE GLYCOL FOR GAS SEPARATION

WAN NURUL HUDA BINTI WAN ZAINAL

UNIVERSITI SAINS MALAYSIA 2015

CARBON MEMBRANES DERIVED FROM POLYMER BLEND OF POLYETHERIMIDE AND POLYETHYLENE GLYCOL FOR GAS SEPARATION

by

WAN NURUL HUDA BINTI WAN ZAINAL

Thesis submitted in fulfilment of the requirements

for the degree of

Doctor of Philosophy

November 2015

ACKNOWLEDGEMENTS

In the name of Allah, the Most Gracious and the Most Merciful.

Alhamdulillah, all praises to Allah for the strengths and His blessing in completing

this thesis. I am using this opportunity to express my deepest gratitude to my

supervisors, Associate Professor Dr. Mohd Azmier Ahmad, Associate Professor Dr.

Tan Soon Huat and Dr. Muhamad Nazri Murat, for their aspiring guidance,

invaluably constructive criticism, friendly advice and support during the last four

years.

I would like to express my appreciation to the Dean School of Chemical

Engineering, Deputy Dean (Research), lecturers and staffs for their support and help

towards my postgraduate affair. Indeed, their willingness in sharing ideas,

knowledge and skills are deeply appreciated. I am grateful to the Ministry of

Education for providing me scholarship through MyPhD and Universiti Sains

Malaysia for providing the USM Membrane Cluster Grant and Postgraduate

Research Grant Scheme.

Most importantly, none of this could have happened without the continued

support and encouragement from my family especially my parents, Mr. Wan Zainal

Wan Muhammad and Mrs. Saloma Husin, my siblings, aunt and my friends. To

those who indirectly contributed in this research, your kindness means a lot to me.

May Allah richly bless all of you.

Wan Nurul Huda binti Wan Zainal

November 2015

ii

TABLE OF CONTENTS

Ackn	nowledgements	ii
Table	e of Contents	iii
List	of Tables	х
List	of Figures	xii
List	of Plates	xviii
List	of Abbreviations	xix
List	of Symbols	xxii
Abstı	rak	XXV
Abst	ract	xxvii
СНА	PTER 1 - INTRODUCTION	
1.1	Gas Separation Technology	1
1.2	Membrane Technology for Gas Separation	3
1.3	Carbon Membrane for Gas Separation	6
1.4	Problem Statement	8
1.5	Research Objectives	11
1.6	Scope of the Study	12
1.7	Organization of the Thesis	13
СНА	PTER 2 – LITERATURE REVIEW	
2.1	Carbon Membrane	15
2 2	Gas Transport in Carbon Membrane	19

2.3	Precurso	or of Carbon M	embrane	24
2.4	Modific	ation of Carbo	n Membrane	30
	2.4.1	Partial Pyro	lyzed Membrane	30
	2.4.2	Polymer Pre	ecursor Modified-derived Carbon	32
		Membrane		
	2.4.3	Mixed Matr	ix Carbon Membrane	33
	2.4.4	Polymer Ble	end-derived Carbon Membrane	35
2.5	Support	ed Carbon Mer	mbrane	40
	2.5.1	Membrane	Support	40
	2.5.2	Precursor S	election	41
	2.5.3	Polymeric N	Membrane Preparation	41
	2.5.4	Pre-treatme	nt	42
	2.5.5	Carbonizati	on	43
		2.5.5 (a)	Carbonization Temperature	44
		2.5.5 (b)	Carbonization Heating Rate	49
		2.5.5 (c)	Carbonization Soaking Time	50
2.6	Membra	ne Aging and	Regeneration of Carbon Membrane	51
2.7	Gas Per	meation Perfor	mance of the Carbon Membrane	53
	2.7.1	Permeation	Temperature and Feed Pressure	53
	2.7.2	CO ₂ /CH ₄ Se	eparation	54
	2.7.3	CO ₂ /N ₂ Sep	aration	55
	2.7.4	O ₂ /N ₂ Separ	ration	57
	2.7.5	Robeson Plo	ot	58
2.8	Conclud	ling Remarks		60

CHAPTER 3 – MATERIALS AND METHODS

3.1	Material	S		62
3.2	Equipme	Equipment		
3.3	Preparat	ion of PEG/PEI Carbon Membr	anes	64
	3.3.1	Preparation of Membrane Su	pport	65
	3.3.2	Preparation of Al ₂ O ₃ Interme	diate Layer	66
	3.3.3	Preparation of Polymer Solut	ion	67
	3.3.4	Preparation of Supported	d PEG/PEI Car	rbon 68
		Membrane		
	3.3.5	Preparation of Unsupport	ed PEG/PEI Car	rbon 68
		Membrane		
3.4	Carboni	zation		68
3.5	Gas Pen	meability and Separation Studie	S	70
	3.5.1	Single Gas Permeability		70
		3.5.1 (a) Experimental Set	-up and Procedure	70
		3.5.1 (b) Single Gas Pe	rmeability and I	deal 72
		Selectivity Calcu	lations	
	3.5.2	Binary Gas Permeability and	Separation Studies	73
		3.5.2 (a) Experimental Set	-up and Procedure	73
		3.5.2 (b) Analysis with Ga	s Chromatography	75
		3.5.2 (c) Permeability	and Select	ivity 75
		Calculations		
3.6	Paramet	er Studies		76
	3.6.1	Effect of Different Polymer I	Blend Ratio	76

	3.6.2	Parameter Studies in Carbonization Process	77
		3.6.2 (a) Effect of Carbonization Temperature	77
		3.6.2 (b) Effect of Carbonization Heating Rate	77
		3.6.2 (c) Effect of Carbonization Soaking Time	78
	3.6.3	Parameter Studies in Single Gas Permeability Test	78
3.7	Carbon N	Membranes Characterization	78
	3.7 (a)	Thermal Gravimetric Analysis	79
	3.7 (b)	Fourier Transform Infra-Red	79
	3.7 (c)	Scanning Electron Microscopy	80
	3.7 (d)	X-ray Diffraction	80
	3.7 (e)	Elemental Analysis	81
	3.7 (f)	Atomic Force Microscopy	81
	3.7 (g)	N ₂ Adsorption-Desorption	81
3.8	Regenera	ation of the Carbon Membrane	82
3.9	Micropo	re Size Estimation Model	82
	3.9.1	Model Assumption	83
	3.9.2	Model Development	83
СНАР	PTER 4 – R	RESULTS AND DISCUSSIONS	
4.1	Modifica	ation of Alumina Support with Al ₂ O ₃ Intermediate	87
	Layer		
	4.1 (a)	N ₂ Adsorption-Desorption Analysis of Al ₂ O ₃	89
		Intermediate Layer	

	4.1 (b)	Surface M	Morphology of Al ₂ O ₃ Intermediate Layer	90
		and Alum	ina Support	
	4.1 (c)	Gas Perme	eation Performance of Alumina Support	91
4.2	Effect of	Polymer Ble	end Ratio and Carbonization Parameters on	92
	Carbon N	Membranes I	Performance and Structure	
	4.2.1	Effect of I	Different Polymer Blend Ratio	92
		4.2.1 (a)	Thermal Gravimetric	92
		4.2.1 (b)	Surface Morphology	95
		4.2.1 (c)	N ₂ Adsorption-Desorption	97
		4.2.1 (d)	Single Gas Permeation Performance and	98
			Ideal Selectivity	
	4.2.2	Effect of (Carbonization Temperature	104
		4.2.2 (a)	Microstructure of Carbon Membrane	104
		4.2.2 (b)	Surface Chemistry of Carbon Membrane	106
		4.2.2 (c)	Surface Morphology of Carbon	108
			Membrane	
		4.2.2 (d)	Single Gas Permeation Performance and	111
			Ideal Selectivity	
	4.2.3	Effect of C	Carbonization Heating Rate	119
		4.2.3 (a)	Microstructure of Carbon Membrane	119
		4.2.3 (b)	Surface Morphology of the Carbon	121
			Membrane	
		4.2.3 (c)	Single Gas Permeation Performance and	122
			Ideal Selectivity	

	4.2.4	Effect of C	Carbonizatio	n Soaking Tim	e		129
		4.2.4 (a)	Surface	Morphology	of	Carbon	129
			Membrane	•			
		4.2.4 (b)	Single Gas	s Permeation Pe	erform	ance and	131
			Ideal Selec	etivity			
4.3	Characte	rizations and	l Gas Separa	tion Performan	ce of P	PEG/PEI-	137
	650-R1-2	2h Carbon M	Iembrane				
	4.3.1	Characteri	ization				137
		4.3.1 (a)	Elemental	Analysis			137
		4.3.1 (b)	N ₂ Adsorp	tion-Desorption	n		138
		4.3.1 (c)	Surface	Гороgraphy (Atomi	c Force	139
			Microscop	y)			
	4.3.2	Compariso	on of Perme	ation Performa	ince o	f Carbon	141
		Membrane	es				
	4.3.3	Effect of l	Permeation (Conditions on C	Gas Pe	rmeation	142
		Performan	nce				
		4.3.3 (a)	Effect of P	Permeation Ten	nperati	ıre	142
		4.3.3 (b)	Effect of F	eed Pressure			145
4.4	Binary G	as Permeabi	ility of PEG/	PEI Carbon M	embra	ne	146
4.5	Effect of	Membrane	Aging				150
4.6	Micropo	re Size Estin	nation				154
СНАР	PTER 5 – C	CONCLUSIO	ONS AND R	ECOMMEND	ATIO]	NS	
5.1	Conclusi	ons					156

5.2	Recommendations	157
REFERENCES		159
APPE	ENDICES	
LIST	OF PUBLICATIONS	

LIST OF TABLES

		Page
Table 2.1	Molecular dimensions and molecular weight of gas	22
	penetrants	
Table 2.2	Carbon membranes derived from various polymer	28
	precursors	
Table 2.3	Mixed matrix carbon membranes	34
Table 2.4	Carbon membranes derived from polymer blend	37
	precursor	
Table 2.5	Carbonization temperatures studied in the preparation	46
	of the supported carbon membranes	
Table 3.1	List of chemicals used for the research	63
Table 3.2	List of gases	63
Table 3.3	List of equipment	64
Table 3.4	Operating conditions of the gas chromatography	75
Table 3.5	Preparation of the polymer precursor at different PEG	77
	compositions	
Table 3.6	List of equipment used for the characterization	79
Table 4.1	Single gas permeability of the alumina support	92
Table 4.2	Surface area and micropore volume of PEI and	98
	PEG/PEI carbon membranes	
Table 4.3	Functional groups observed in the FTIR spectra of the	108
	PEG1/PEI film and carbon membranes	

Table 4.4	Results of the elemental analysis of the PEI and	138
	PEG/PEI precursors and carbon membranes	
Table 4.5	Comparison of the permeation performance of the	141
	carbon membranes	
Table 4.6	Comparison of gas transport properties between single	147
	and binary gas for CO ₂ /CH ₄ separation	
Table 4.7	Comparison of gas transport properties between single	147
	and binary gas for CO ₂ /N ₂ separation	
Table 4.8	Comparison of gas transport properties between single	147
	and binary gas for O ₂ /N ₂ separation	

LIST OF FIGURES

		Page
Figure 1.1	Milestones in the industrial application of membrane	4
	gas separation systems (Bernardo and Clarizia, 2013)	
Figure 1.2	Typical molecular sieving mechanism (Ismail et al.,	7
	2011)	
Figure 2.1	Schematic structure of carbonized membrane	16
	(Kusakabe et al., 1998)	
Figure 2.2	Non-graphitising carbon structure (McEnaney, 1999)	16
Figure 2.3	Idealized "slit-like" carbon structure (Steel and Koros,	17
	2003)	
Figure 2.4	Bimodal PSD of carbon membranes (Steel, 2000)	18
Figure 2.5	(a) XRD pattern of the phenolic resin (PR) carbon	18
	membrane (Zhang et al., 2014) and (b) SEM	
	micrograph of the polyimide (PI) carbon membrane	
	(Tseng et al., 2009)	
Figure 2.6	Gas transport mechanisms in porous membrane	20
Figure 2.7	Concept of the polymer blending for carbon	36
	membranes fabrication (Ozaki et al., 1997)	
Figure 2.8	Schematic sketch represent the aging in the carbon	52
	membranes (Xu et al., 2014)	
Figure 2.9	Upper bound correlation of the (a) CO ₂ /CH ₄ , (b)	59
	CO ₂ /N ₂ and (c) O ₂ /N ₂ (Robeson, 2008)	

Figure 3.1	Flowchart of the study	62
Figure 3.2	Schematic diagram of the supported carbon membrane	65
Figure 3.3	Flowchart of the supported PEG/PEI carbon	66
	membranes preparation	
Figure 3.4	Schematic diagram of carbonization experimental set-	69
	up	
Figure 3.5	Carbonization profile for the carbon membranes	70
	preparation	
Figure 3.6	Schematic diagram of the single gas permeability test	71
	set-up	
Figure 3.7	Schematic diagram of the membrane permeation cell	72
Figure 3.8	Schematic diagram of the binary gas permeability test	74
	set-up	
Figure 3.9	Schematic diagram of a gas molecule permeates	85
	through a cylindrical pore (Lee et al., 2011)	
Figure 4.1	N ₂ adsorption-desorption isotherm of Al ₂ O ₃	90
	intermediate layer	
Figure 4.2	Pore size distribution of Al ₂ O ₃ intermediate layer	90
Figure 4.3	Weight loss and derivative weight versus temperature	93
	of (a) PEI (b) PEG1/PEI (c) PEG2/PEI (d) PEG3/PEI	
	and (e) PEG4/PEI films	
Figure 4.4	Single gas permeability of carbon membranes derived	99
	from different PEG:PEI blend ratio	

Figure 4.5	Ideal selectivity of carbon membranes derived from	101	
	different blend ratios		
Figure 4.6	Trade-off relationship between (a) CO ₂ permeability 10		
	and CO ₂ /CH ₄ selectivity, (b) CO ₂ permeability and		
	CO_2/N_2 selectivity and (c) O_2 permeability and O_2/N_2		
	selectivity of carbon membranes derived at different		
	polymer blend ratios		
Figure 4.7	XRD pattern of (a) PEG1/PEI-700 (b) PEG1/PEI-650	105	
	(c) PEG1/PEI-600 (d) PEG1/PEI-550 and (e)		
	PEG1/PEI film		
Figure 4.8	FTIR spectra of (a) PEG1/PEI-700 (b) PEG1/PEI-650	107	
	(c) PEG1/PEI-600 (d) PEG1/PEI-550 and (e)		
	PEG1/PEI film		
Figure 4.9	Single gas permeability of (a) CO ₂ , (b) O ₂ , (c) N ₂ and	112	
	(d) CH ₄ as a function of carbonization temperature for		
	PEI and PEG1/PEI carbon membranes		
Figure 4.10	Ideal selectivity of (a) CO ₂ /CH ₄ , (b) CO ₂ /N ₂ and (c)	115	
	$\mathrm{O}_2/\mathrm{N}_2$ of the PEI and PEG1/PEI carbon membranes		
	derived at different carbonization temperatures		
Figure 4.11	Trade-off relationship between (a) CO ₂ permeability	117	
	and CO ₂ /CH ₄ ideal selectivity, (b) CO ₂ permeability		
	and CO_2/N_2 ideal selectivity and (c) O_2 permeability		
	and O ₂ /N ₂ ideal selectivity of the PEI and PEG1/PEI		

	carbon membranes derived at different carbonization	
	temperatures	
Figure 4.12	XRD pattern of (a) PEG1/PEI-R1 (b) PEG1/PEI-R3	120
	(c) PEG1/PEI-R5 and (d) PEG1/PEI-R7	
Figure 4.13	Single gas permeability of (a) CO ₂ , (b) O ₂ , (c) N ₂ and	123
	(d) CH ₄ as a function of carbonization heating rate of	
	the PEI and PEG1/PEI carbon membranes	
Figure 4.14	Ideal selectivity of (a) CO ₂ /CH ₄ , (b) CO ₂ /N ₂ and (c)	126
	O ₂ /N ₂ of the PEI and PEG1/PEI carbon membranes	
	derived at different carbonization heating rates	
Figure 4.15	Trade-off relationship between (a) CO ₂ permeability	128
	and CO ₂ /CH ₄ ideal selectivity, (b) CO ₂ permeability	
	and CO ₂ /N ₂ ideal selectivity and (c) O ₂ permeability	
	and O_2/N_2 ideal selectivity of the PEI and PEG1/PEI	
	carbon membranes derived at different carbonization	
	heating rates	
Figure 4.16	Single gas permeability of (a) CO ₂ , (b) O ₂ , (c) N ₂ and	131
	(d) CH ₄ as a function of carbonization soaking time	
	for the PEI and PEG1/PEI carbon membranes	
Figure 4.17	Ideal selectivity of (a) CO ₂ /CH ₄ , (b) CO ₂ /N ₂ and (c)	134
	O ₂ /N ₂ of the PEI and PEG1/PEI carbon membranes	
	derived at different carbonization soaking times	
Figure 4.18	Trade-off relationship between (a) CO ₂ permeability	136
	and CO ₂ /CH ₄ ideal selectivity, (b) CO ₂ permeability	

	and CO ₂ /N ₂ ideal selectivity and (c) O ₂ permeability	
	and O ₂ /N ₂ ideal selectivity of the PEI and PEG1/PEI	
	carbon membranes derived at different carbonization	
	soaking times	
Figure 4.19	MSD of the PEG/PEI carbon membrane estimated	139
	from H-K method	
Figure 4.20	Single gas performance through the PEG/PEI carbon	142
	membrane as a function of permeation temperatures	
Figure 4.21	Relationship between the activation energy and gas	144
	kinetic diameter	
Figure 4.22	Ideal selectivity of the PEG/PEI carbon membrane as	144
	a function permeation temperatures	
Figure 4.23	Single gas performance through the PEG/PEI carbon	145
	membrane at different feed pressure	
Figure 4.24	Ideal selectivity of the PEG/PEI carbon membrane at	146
	different feed pressure	
Figure 4.25	Trade-off relationship between (a) CO ₂ permeability	149
	and CO ₂ /CH ₄ ideal selectivity, (b) CO ₂ permeability	
	and CO ₂ /N ₂ ideal selectivity and (c) O ₂ permeability	
	and O ₂ /N ₂ ideal selectivity of the PEG/PEI carbon	
	membrane for single and binary gas mixtures	
Figure 4.26	Single gas permeability of fresh, aged and regenerated	150
	of PEG/PEI carbon membrane	

Figure 4.27	Ideal selectivity of the fresh, aged and regenerated of	
	the PEG/PEI carbon membrane	
Figure 4.28	Trade-off relationship between (a) CO ₂ permeability	153
	and CO ₂ /CH ₄ ideal selectivity, (b) CO ₂ permeability	
	and CO ₂ /N ₂ ideal selectivity and (c) O ₂ permeability	
	and O_2/N_2 ideal selectivity of fresh, aged and	
	regenerated PEG/PEI carbon membrane	
Figure 4.29	Normalized permeabilities as a function of gas kinetic	155
	diameter of the PEG/PEI carbon membrane	

LIST OF PLATES

		Page
Plate 4.1	Surface of PEG/PEI carbon membranes (a) without	88
	Al ₂ O ₃ intermediate layer and (b) with Al ₂ O ₃ intermediate	
	layer after carbonization	
Plate 4.2	Schematic structure and cross section of the derived	88
	carbon membranes	
Plate 4.3	SEM micrographs of (i) surface and (ii) cross section of	91
	Al ₂ O ₃ intermediate layer	
Plate 4.4	SEM micrographs of (i) surface and (ii) cross section of	96
	(a) PEI (b) PEG1/PEI (c) PEG2/PEI (d) PEG3/PEI and	
	(e) PEG4/PEI carbon membranes	
Plate 4.5	SEM micrographs of (i) surface and (ii) cross section of	109
	(a) PEG1/PEI membrane (b) PEG1/PEI-550 (c)	
	PEG1/PEI-600 (d) PEG1/PEI-650 and (e) PEG1/PEI-700	
Plate 4.6	SEM micrographs of (i) surface and (ii) cross section of	121
	(a) PEG1/PEI-R1 (b) PEG1/PEI-R3 (c) PEG1/PEI-R5	
	and (d) PEG1/PEI-R7	
Plate 4.7	SEM images of (i) surface and (ii) cross section of (a)	130
	PEG1/PEI-1h (b) PEG1/PEI-2h (c) PEG1/PEI-3h	
Plate 4.8	The three dimensional AFM surface images of (a) PEI	140
	and (b) PEG/PEI carbon membranes	

LIST OF ABBREVIATIONS

6FDA 2,2'-bis(3,4-dicarboxyphenyl) hexafluoropropane

dianhydride

AFM Atomic force microscopy

APB 1,3-Bis(3-aminophenoxy) benzene

BET Brunauer-Emmet-Teller

BJH Barrett-Joyner-Halenda

BPDA Biphenyltetracarboxylic dianhydride

BTDA Benzophenone tetracarboxylic dianhydride

CA Cellulose acetate

CM Carbon membrane

DAM Diamino mesitylene

DDBT Dimethyldibenzothiophene sulfone

FA Furfuryl alcohol

FFV Fractional free volume

HCN Hydrogen cyanide

HFCM Hollow fiber carbon membrane

H-K Horvath-Kawazoe

IUPAC International Union of Pure and Applied Chemistry

MFI Mordenite framework inverted

MMSCFD Million metric standard cubic feet per day

MSD Micropore size distribution

MWNT Multi-walled carbon nanotube

NDA Naphthalene dicarboxylic acid

NMP N-methyl-2-pyrrolidone

NPC Nanoporous carbon

ODA Oxydianiline

PAN Polyacrylonitrile

PEG Polyethylene glycol

PEI Polyetherimide

PFA Polyfurfuryl alcohol

PFNR Phenol formaldehyde novolac resin

PFR Phenol formaldehyde resin

PI Polyimide

PPES poly(phthalazinone ether sulfone)

PPESK poly(phthalazinone ether sulfone ketone)

PPM Partially pyrolyzed membrane

PPO Poly(phenylene oxide)

PPy Polypyrrole

PR Phenolic resin

PSA Pressure swing adsorption

PSD Pore size distribution

PVB Poly(vinylbutyral)

PVDC-AC Polyvinylidene chloride-acrylate terpolymer

PVDC-PVC Poly(vinylidene chloride)-polyvinyl chloride

PVP Polyvinylpyrrolidone

RFR Resorcinol-formaldehyde resin

RF Resin formaldehyde

SEM Scanning electron microscopy

SPAEK Sulfonated poly(aryl ether ketone)

Tg Glass transition temperature

TGA Thermal gravimetric analysis

TMS Trimethylsilyl

TrisAPB tris-1,3-Bis(3-aminophenoxy) benzene

TSA Thermal swing adsorption

XRD X-ray diffraction

LIST OF SYMBOLS

		Unit
A	Membrane area	cm^2
Ag	Silver	-
Al_2O_3	Alumina	-
Ar	Argon	-
Ao	Cross-sectional area of the pore	cm ²
A_i	Cross-sectional area of the pore	cm ²
b	Equilibrium adsorption constant	Pa ⁻¹
C	Carbon	-
C ₃ H ₆	Propene	-
C ₃ H ₈	Propane	-
CH ₄	Methane	-
CO	Carbon monoxide	-
CO_2	Carbon dioxide	-
D	Diffusion coefficient	$m^2 s^{-1}$
d	Dimension spacing	nm
$d_{\it eff}$	Effective diffusion space	nm
d_k	Diameter of permeating gas	nm
d_p	Pore diameter	nm
dc/dx	Concentration gradient of the gas across	mol m ⁻⁴
	the membrane	
E_a	Apparent activation energy	kJ/mol

f_P	Normalized gas permeability	-
Н	Hydrogen	-
H_2	Hydrogen gas	-
l	Thickness of the membrane material	cm
J	Flux of gas through the membrane	$mol m^{-2} s^{-1}$
M	Molecular weight of the gas	g/mol
N	Nitrogen	-
N_2	Nitrogen gas	-
N_p	Number of pores	-
n	Integral number	-
NH ₃	Ammonia	-
NO_x	Nitrogen oxides	-
0	Oxygen	-
O_2	Oxygen gas	-
P	Permeability	barrer
P/l	Permeance	GPU
p	Pressure	Pa
p feed	Pressure at feed stream	cmHg
Q	Volumetric flow rate of gas at standard	cm^3/s
	temperature and pressure	
R	Gas constant	J K ⁻¹ mol ⁻¹
T	Absolute temperature	K
t	Time	S
V	Volume of permeate gas	cm ³