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PEMODELAN HIDRAULIK TATARAJAH SESEKAT KEATAS
KECEKAPAN PENYINGKIRAN UNTUK TANGKI PEMISAHAN
MINYAK/AIR

ABSTRAK

Pembuangan lemak, minyak dan gris ke dalam sistem retikulasi menyebabkan
penyumbatan saluran paip dan limpahan pembentungan pembersihan. Rekabentuk
tangki pemisahan minyak/air berdasarkan graviti digunakan dengan meluas di dalam
unit rawatan. Pengunaan sesekat di dalam tangki pemisahan dan penilaian kesannya
keatas kecekapan hidraulik adalah suatu bidang yang mencabar yang dijalankan oleh
penyelidik. Kajian ini melibatkan penilaian kesan lokasi sesekat hujung, lokasi
sesekat masuk, ketinggian sesekat masuk dan sudut pemasangan sesekat masuk ke
atas corak aliran dan kecekapan penyingkiran tangki pemisah minyak/air
menggunakan ujian makmal dan penyelakuan berangka. Meterhalaju Akustik
Doppler (ADV) digunakan untuk mengukur medan halaju di dalam tangki pemisahan
minyak/air di dalam makmal dengan tatarajah sesekat yang berlainan jenis untuk
menentukan susuk halaju. Ujian makmal dijalankan untuk mengukur kecekapan
penyingkiran tangki pemisahan minyak/air dengan berlainan tatarajah sesekat masuk.
Penyelakuan berangka termasuk corak aliran dan ciri-ciri hidraulik tangki pemisahan
minyak/air dengan tatarajah sesekat yang berlainan dijalankan untuk menentukan
lokasi sesekat hujung dan sesekat masuk, ketinggian sesekat masuk dan sudut sesekat
masuk. Hasil keputusan ujian makmal dan penyelakuan berangka menunjukan, lokasi
sesekat hujung de/L = 0.76, lokasi sesekat masuk di/L = 0.12, nisbah ketinggian

tenggelam sesekat masuk Hijp/H = 0.24, dan sudut sesekat masuk 90°, mencapai

XX



kecekapan penyingkiran yang maksima. Tatarajah sesekat tersebut menyebabkan
isipadu zon sirkulasi dan tenaga kinetik yang minima, keseragaman susuk halaju
yang tinggi, muka itu kecekapan penyingkiran yang tinggi di dalam tangki
pemisahan minyak/air. Rumus untuk menentukan kecekapan penyingkiran

berdasarkan lokasi sesekat masuk diperolehi daripada keputusan ujian makmal.
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HYDRAULIC MODELLING OF BAFFLE CONFIGURATION ON
THE REMOVAL EFFICIENCY OF A RECTANGULAR
OIL/WATER SEPARATION TANK

ABSTRACT

The particular release of fat, oil, and grease (FOG) into collection systems
ultimately brings about the blockage of conduits and subsequent sanitary sewer
overflows. Designing oil and water rectangular separation tank due to gravitation is
extensively applied in treatment units. Using baffles in separation tanks and
measuring its effects on hydraulic efficiency is a challenging subject that researchers
have investigated. In this study, the effects of end baffle location, inlet baffle
location, inlet baffle height, and inlet baffle angle installation on the flow pattern and
removal efficiency of oil/water separation tanks are investigated using experimental
test and numerical simulation. The velocity field in the laboratory separation tank
with various types of baffles configuration was measured by Acoustic Doppler
Velocimeter (ADV) to determine the velocity profile. In addition, experimental tests
are conducted to measure the removal efficiency of separation tanks equipped at
different inlet baffle. Numerical simulation, including the modelling of flow pattern
and hydraulic characteristics of separation tanks with different baffle configurations,
was performed to determine the best end and inlet baffle location, height of inlet
baffle and angle of inlet baffle. Based on the results of experimental tests and
numerical models, end baffles location d/L=0.76, with an inlet baffle position

di/L=0.12, inlet baffle submersible depth ratio Hj,/H= 0.24, and inlet baffle angle

XXii



installed at 90°, achieve the highest removal efficiency. This configuration produced
minimum circulation zone volume and Kinetic energy, the most uniform velocity
profiles, and thus highest removal efficiency in the separation tank. Finally a formula
to determine the removal efficiency as a function of inlet baffle location is obtained

from laboratory test results.
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