THE PRODUCTION OF THIRD-GENERATION BIOETHANOL FROM *EUCHEUMA COTTONII* USING DOWEX (TM) DR-G8

TAN INN SHI

UNIVERSITI SAINS MALAYSIA 2015

THE PRODUCTION OF THIRD-GENERATION BIOETHANOL FROM EUCHEUMA COTTONII USING DOWEX (TM) DR-G8

by

TAN INN SHI

Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

September 2015

In my memory of my mum, Kuan Yew Choon.

ACKNOWLEDGEMENT

First and foremost, I am most grateful to my main research supervisor, Prof. Dr. Lee Keat Teong who has supported and inspired me throughout my entire PhD study with his patience and knowledge, especially during the compilation of my every journal paper. He spent endless hours proofreading my papers and giving me excellent suggestions which always resulted in improved versions of documents.

Next, I would like to thank all technicians, academic and administrative staff of the School of Chemical Engineering, USM, for their guidance and supports during my postgraduate study period. In addition, I would like to acknowledge the technical staff of the Analytical Laboratory: Mr Ismail, Mr Faiza, Kak Latifah, and Miss Nur'ain for providing useful and practical advices.

I would like to acknowledge a number of additional financial supports I received for this project, including the funding given by USM (Postgraduate Research Grant Scheme No. 8045036) and Mybrain15 MyPhD scholarship funded by the Ministry of Higher Education Malaysia.

Furthermore, I would like to express my honest appreciation to Dr. Lam Man Kee for his numerous efforts in assisting me in my thesis. I am deeply grateful for all the help you gave me. I would like to thank all my colleagues in School of Chemical Engineering for their cooperation through this period.

Finally, I want to express my appreciation to my family members: my parents and siblings for all your support and love which encourage me to always work hard. Thanks to my mother for her affection and gentleness towards me. I miss you so much. Here, special thanks to Henry Foo Chee Yew for providing me with his unending support.

TABLE OF CONTENTS

Table of Contents.iiiList of Tables.xiList of Figures.xiList of Plates.xiList of Abbreviations.xiList of Symbols.xiAbstrak.xiAbstract.xi	nentii
List of Tables.xiList of Figures.xiList of Plates.xiList of Abbreviations.xiList of Symbols.xiAbstrak.xiAbstract.xi	nts iii
List of Figures.xiList of Plates.xiList of Abbreviations.xiList of Symbols.xiAbstrak.xiAbstract.xi	xi
List of Platesx: List of Abbreviationsx: List of Symbolsx: Abstrakx: Abstractx:	xiv
List of Abbreviationsxx List of Symbolsxx Abstrakxx Abstractxx	xxii
List of Symbols xx Abstrak xx Abstract xx	ations xxiv
Abstrak xx Abstract xx	s xxvii
Abstract xx	xxix
	xxxi

CHAPTER 1 - INTRODUCTION

1.1	Biofuel	s an answer to a sustainable fuel	1
1.2	Bioetha	nol	3
1.3	Current	status and potential production of bioethanol	4
1.4	Evoluti	on of bioethanol	7
1.5	An outl	ook of macroalgae biomass as the third-generation	
	bioetha	nol	9
	1.5.1	Introduction to macroalgae	9
	1.5.2	Advantages of bioethanol produced from macroalgae	10
1.6	Problen	n statement	13
1.7	Objectiv	ves	14
1.8	Scope c	f study	14
1.9	Thesis of	organization	16

CHAPTER 2 – LITERATURE REVIEW

2.1	Macroalgae-based biorefinery concept			
2.2	Chemical composition of macroalgae			
	2.2.1	Difference between macroalgae and terrestrial biomass	21	
	2.2.2	Carbohydrate composition of macroalgae	23	

		2.2.2 (a)	Red macroalgae	24
		2.2.2 (b)	Brown macroalgae	24
		2.2.2 (c)	Green macroalgae	25
2.3	Hydroly	sis of macro	balgae biomass	26
	2.3.1	Acid hydro	olysis	26
	2.3.2	Enzymatic	hydrolysis	30
2.4	Chemic	al pretreatm	ent of macroalgae for recovery of cellulose	33
2.5	Solid ac	cid catalyst h	ydrolysis and pretreatment techniques	38
	2.5.1	Hydrolysis	s with solid acid catalyst	39
	2.5.2	Pretreatme	ent with solid acid catalyst	41
2.6	Immobi	lization of e	nzyme	44
2.7	Bioetha	nol conversi	on technologies	45
	2.7.1	Separate h	ydrolysis and fermentation (SHF)	46
	2.7.2	Simultane	ous saccharification and fermentation (SSF)	49
	2.7.3	Simultane	ous saccharification and co-fermentation	
		(SSCF)		52
	2.7.4	Direct mic	robial conversion (DMC) or consolidated	
		bioprocess	ing (CBP)	53
2.8	Cost est	timation of b	vioethanol production	53
2.9	Life cyc	ele assessme	nt (LCA)	55
	2.9.1	Life cycle	assessment (LCA) methodology	55
	2.9.2	Life cycle	assessment (LCA) of macroalgae biofuels	59

CHAPTER 3 – MATERIALS AND METHODOLOGY

3.1	Raw ma	Raw materials and chemicals			
	3.1.1	Feedstock preparation	62		
	3.1.2	Chemicals, standards, and microorganisms	63		
	3.1.3	Experimental flow chart	64		
3.2	Proximate composition and structural analyses of Eucheuma				
	cottonii		64		
	3.2.1	Determination of total carbohydrate content	64		
	3.2.2	Determination of protein content	66		

	3.2.3	Determina	ation of crude lipid content	67
	3.2.4	Determina	ation of ash content	67
	3.2.5	Determina	ation of moisture content	68
	3.2.6	Analysis o	of reducing sugar and 5-HMF	68
	3.2.7	Fourier tra	ansform infrared spectroscopy (FTIR)	69
3.3	Hydrol	ysis of Euch	euma cottonii and macroalgae extract	69
	3.3.1	Screening	of solid acid catalysts for the hydrolysis of	
		Eucheum	a cottonii	69
	3.3.2	Solid-cata	lysed hydrolysis method	70
	3.3.3	Liquid-ca	talysed hydrolysis method	71
	3.3.4	Analysis o	of hydrolysis products	71
	3.3.5	Combined	l severity factor (CSF)	72
	3.3.6	Ammonia	temperature programmed desorption	
		(NH ₃ -TPI	D) of catalyst	72
	3.3.6	Catalyst r	eusability	73
3.4	Hydrol	ysis of macr	oalgae cellulosic residue	73
	3.4.1	Pretreatm	ent of macroalgae cellulosic residue	73
		3.4.1 (a)	Solid acid catalyst pretreatment	73
		3.4.1 (b)	Dilute acid and alkali pretreatment	74
	3.4.2	Enzymati	c hydrolysis method	75
		3.4.2 (a)	Enzymatic hydrolysis of macroalgae	
			cellulosic residue	75
		3.4.2 (b)	Enzymatic hydrolysis of pretreated	75
			macroalgae cellulosic residue	
		3.4.2 (c)	Effect of cellulase concentration on enzymatic	
			hydrolysis of pretreated MCR	76
		3.4.2 (d)	Determination of cellulase adsorption on	
			cellulose	76
	3.4.3	Analytica	l methods	77
		3.4.3 (a)	Analysis of hydrolysis products	77
		3.4.3 (b)	Determination of protein concentration	77
	3.4.4	Morpholo	gy and structural analyses of pretreated	
		macroalga	ae cellulosic residue	78

		3.4.4 (a)	Scanning electron microscopy (SEM) analysis	78
		3.4.4 (b)	Brunauer-Emmett-Teller (BET)	78
	3.4.5	Recycling	of catalyst	79
3.5	Immob	ilization of f	B-glucosidase from Aspergillus niger on	79
	к-carra	geenan hybr	id matrix	
	3.5.1	Preparatio	n of beads	79
		3.5.1 (a)	kappa-carrageenan beads (κC)	79
		3.5.1 (b)	Preparation and modification of crosslinked	
			κC hybrid beads	80
	3.5.2	Assay of [3-glucosidase activity	82
	3.5.3	Determina	ation of the amount of immobilized	
		β-glucosic	lase and soluble protein	83
	3.5.4	Analytical	methods	83
		3.5.4 (a)	Analysis of sugars	83
		3.5.4 (b)	Analysis of protein	84
		3.5.4 (c)	Zeta potential measurement	84
	3.5.5	Biophysic	al characterization of immobilized	
		β-glucosic	lase	84
		3.5.5 (a)	Fourier transform infrared spectroscopy	
			(FTIR)	85
		3.5.5 (b)	Elemental analysis (EA)	85
		3.5.5 (c)	Scanning electron microscopy (SEM)	85
		3.5.5 (d)	Simultaneous thermal analyzer (STA)	85
	3.5.6	Biochemi	cal characterization of immobilized	
		β-glucosic	lase	86
		3.5.6 (a)	Effect of pH on the immobilized	
			β-glucosidase	86
		3.5.6 (b)	Effect of temperature on the β -glucosidase	86
		3.5.6 (c)	Operational stability of immobilized	
			β-glucosidase	87
	3.5.7	Applicatio	on of β -glucosidase on hydrolysis of macroalgae	
		cellulosic	residue	87

3.6	Fermen	tation proce	SS	87			
	3.6.1	Cell cultiv	ation	87			
	3.6.2	Separate h	ydrolysis and fermentation (SHF)	88			
		3.6.2 (a)	Fermentation of solid acid hydrolysate	88			
		3.6.2 (b)	Fermentation of enzymatic hydrolysate of				
			pretreated macroalgae cellulosic residue	88			
	3.6.3	Prehydroly	ysis and simultaneous saccharification and				
		fermentati	on (PSSF) of pretreated macroalgae cellulosic				
		residue (P	-MCR)	89			
	3.6.4	Prehydroly	ysis and simultaneous saccharification and co-				
		fermentati	on (PCSSF)	89			
	3.6.5	Scale-up o	f bioethanol production	90			
	3.6.6	Determina	tion of bioethanol concentration	91			
	3.6.7	3.6.7 Yeast cell mass concentration					
3.7	Kinetic	s of growth	and bioethanol production in yeasts	92			
	3.7.1	Yeast cell	biomass kinetic growth model	93			
	3.7.2	Bioethano	l concentration model	94			
	3.7.3	Statistical	analysis	95			
3.8	Estimat	tion of bioetl	nanol cost	95			
	3.8.1	Estimatior	n of macroalgae biomass feedstock costs	95			
	3.8.2	Operating	cost	97			
	3.8.3	3.8.3 Estimation of capital investment cost					
	3.8.4	ons for the estimation of bioethanol production					
		cost		101			
3.9	Life cy	cle assessme	nt	102			
	3.9.1	Goal and s	scope definition	102			
	3.9.2	Process de	scription and system boundaries	102			
		3.9.2 (a)	Cultivation and harvesting of Eucheuma				
			cottonii (S1)	104			
		3.9.2 (b)	Transportation and biomass preparation				
			(S2)	105			
		3.9.2 (c)	Solid acid hydrolysis of macroalgae extract				
			(ME) (S3)	106			

	3.9.2 (d)	Pretreatment of macroalgae cellulosic residue	
		(MCR) (S4)	107
	3.9.2 (e)	Fermentation (S5)	108
	3.9.2 (f)	Purification of hydrous bioethanol (S6)	109
3.9.3	Data colle	ction and modelling	110
3.9.4	Life-cycle	energy analysis	110
3.9.4	Life-cycle	impact assessment	111

CHAPTER 4 – RESULTS AND DISCUSSION

4.1	Proxima	ate analysis	te analysis of <i>Eucheuma cottonii</i> 1				
4.2	Product	tion of galac	tose by solid acid hydrolysis reaction	115			
	4.2.1	Compariso	on of various solid acid catalysts	115			
	4.2.2	Effect of Dowex (TM) Dr-G8 loading					
	4.2.3	Effect of reaction temperature					
	4.2.4	Effect of biomass loading 1					
	4.2.5	Effect of c	combined severity factor	130			
	4.2.6	Compariso	on with other hydrolysis methods	132			
	4.2.7	Catalyst reuse cycle					
4.3	Hydroly	Hydrolysis of macroalgae cellulosic residue					
	4.3.1	Optimizat	ion of enzymatic hydrolysis parameters	135			
		4.3.1 (a)	Effect of substrate concentration	135			
		4.3.1 (b)	Effect of pH	136			
		4.3.1 (c)	Effect of temperature	137			
	4.3.2	Optimizat	ion of solid acid catalyst pretreatment	139			
		4.3.2 (a)	Effect of biomass loading	139			
		4.3.2 (b)	Effect of catalyst loading	140			
		4.3.2 (c)	Effect of pretreatment time	142			
		4.3.2 (d)	Effect of pretreatment temperature	144			
		4.3.2 (e)	Effect of enzyme loading	145			
		4.3.2 (f)	Effect of different pretreatment methods	147			
		4.3.2 (g)	Reuse of catalyst	151			

	4.3.3	Morpholog	y and structural analyses of macroalgae	
		cellulosic re	esidue	152
		4.3.3 (a)	Scanning electron microscopy (SEM)	
			analysis	152
		4.3.3 (b)	Porosity and surface analysis	153
	4.3.4	Combinatio	n methods of hydrolysis at conditions giving	
		high sugar y	yields	154
4.4	Immob	ilization proce	ess of β-glucosidase	157
	4.4.1	Optimizatio	on of immobilization process	157
		4.4.1 (a)	Effect of PEI concentration	157
		4.4.1 (b)	Effect of activation time	160
		4.4.1 (c)	Effect of pH of PEI solution	161
	4.4.2	Biophysical	characterization of immobilized	
		β-glucosida	se	163
		4.4.2 (a)	Fourier transform infrared (FTIR) spectra	163
		4.4.2 (b)	Morphological studies of hybrid β-glucosidase	168
		4.4.2 (c)	Thermal behaviour of hybrid	171
			β-glucosidase	
	4.4.3	Biochemica	l characterization of immobilized	
		β-glucosida	se	175
		4.4.3 (a)	Optimum pH of the hybrid immobilized	
			β-glucosidase	175
		4.4.3 (b)	Optimum temperature of the hybrid	
			immobilized β-glucosidase	176
		4.4.3 (c)	Reusability of the hybrid immobilized	
			β-glucosidase	177
	4.4.4	Hydrolysis	of macroalgae cellulosic residue using	
		immobilize	d β-glucosidase	178
4.5	Fermer	ntation process	s for the production of bioethanol	180
	4.5.1	Optimizatio	on of separate hydrolysis fermentation	
		condition (S	SHF) of solid acid hydrolysate	180
		4.5.1 (a)	Effect of different Saccharomyces cerevisiae	
			inoculum	180

		4.5.1 (b)	Effect of	f initial sugar co	ncentration	182
	4.5.2	Separate 1	nydrolysis	and fermentation	on (SHF) of pretreated	
		macroalga	e cellulos	ic residue (P-MC	CR)	184
	4.5.3	Optimizat	ion of	prehydrolysis	and simultaneous	
		saccharifie	cation and	d fermentation	(PSSF) conditions of	
		pretreated	macroalg	ae cellulosic resi	idue (P-MCR)	186
		4.5.3 (a)	Effect o	f temperature		186
		4.5.3 (b)	Effect o	f biomass loadin	g	188
	4.5.4	Prehydrol	ysis and s	simultaneous sa	ccharification and co-	
		fermentati	on (PSSC	F) of pretreated	macroalgae cellulosic	
		residue (P	-MCR)			192
	4.5.5	Overall M	ass baland	e		194
	4.5.6	Scale up f	or bioetha	nol production		195
4.6	Kinetics	of growth	and bioeth	nanol production	in yeasts	197
4.7	Econom	y feasibility	y study			207
4.8	Life cyc	le assessme	ent			208
	4.8.1	Energy an	alysis	•••••		208
	4.8.2	Environm	ental impa	act assessment		210
		4.8.2 (a)	Global w	arming potentia	l (GWP)	210
		4.8.2 (b)	Acidifica	tion potential (A	AP)	212
		4.8.2 (c)	Photoche	mical ozone crea	ation potential (POCP)	
			(kg C2H4	4-eq.)		214
		4.8.2 (d)	Human t	oxicity potential	(HTP)	216
		4.8.2 (e)	Eutrophi	cation potential ((EP)	217
	4.8.3	General di	iscussion a	and recommenda	ations	219

CHAPTER 5 - CONCLUSIONS AND RECOMMENDATIONS

5.1	Conclusions	220
5.2	Recommendations	223
Refer	References	
List o	f Publications	253
Appe	ndices	

LIST OF TABLES

		Page
Table 2.1	Carbohydrate composition of macroalgae, microalgae, and lignocellulosic biomass	22
Table 2.2	Comparison of acid hydrolysis from red and brown macroalgae	27
Table 2.3	Comparison of enzymatic hydrolysis from various macroalgae feedstocks	31
Table 2.4	Comparison of pretreatment of various macroalgae feedstocks	34
Table 2.5	Comparison of solid acid hydrolysis from various substrate	40
Table 2.6	Comparison of solid acid pretreatment of rice straw	43
Table 2.7	Bioethanol production from SHF tested on red and brown macroalgae	47
Table 2.8	Bioethanol production from SSF tested on various macroalgae	51
Table 3.1	List of chemicals and reagents used in the experimental work	63
Table 3.2	Formulation design	82
Table 3.3	Estimated annual production of bioethanol in Sabah, Malaysia and technical assumption in this study	97
Table 3.4	Net operating cost of Eucheuma cottonii	98

Table 3.5	Estimation of the investment cost of a bioethanol plant in Sabah, Malaysia	101
Table 3.6	Inventory data for the production of 1 tonnes of anhydrous bioethanol	104
Table 4.1	Chemical composition of <i>Eucheuma cottonii</i> , macroalgae extract, and macroalgae cellulosic residue	113
Table 4.2	Properties of catalyst used	117
Table 4.3	Comparison of different catalysts for hydrolysis of <i>Eucheuma cottonii</i>	117
Table 4.4	Comparison with other hydrolysis methods of <i>Eucheuma</i> cottonii	133
Table 4.5	Reuse catalytic performance of Dowex (TM) Dr-G8	134
Table 4.6	Comparison with other pretreatment methods of macroalgae cellulosic residue	149
Table 4.7	Physical properties of macroalgae cellulosic residue before and after pretreatment with Dowex (TM) Dr-G8 catalyst	154
Table 4.8	Comparison of reducing sugars after combination of chemical and enzymatic hydrolysis under optimum conditions	156
Table 4.9	Elemental analyses data of formulation 1 (κ C/K+) as control beads, formulation 2 (κ C/GA/K+), formulation 3 (κ C/GA/K+/PEI+), formulation 4 (κ C/GA/K+/PEI+/GA), and formulation 5 (κ C/GA/K+/PEI+/GA/ β -glucosidase)	168

- Table 4.10 Thermal degradation data of formulation 1 (κ C/K⁺) as 173 control beads, formulation 2 (κ C/GA/K⁺), formulation 3 (κ C/GA/K⁺/PEI⁺), formulation 4 (κ C/GA/K⁺/PEI⁺/GA), and formulation 5 (κ C/GA/K⁺/PEI⁺/GA/ β -glucosidase). *T* is maximum decomposition temperature for the main steps and *w* is corresponding mass loss
- Table 4.11Kinetic parameters estimated from experimental data for200the bioethanol production
- Table 4.12Estimation of bioethanol production cost from Eucheuma208cottonii (EC)
- Table 4.13Comparison between different bioethanol studies in the208literature

LIST OF FIGURES

		Page
Figure 1.1	Latest worldwide biofuel production as of Jun 2013	3
Figure 1.2	Bioethanol production by country from 2007 to 2013	5
Figure 1.3	Top 10 corn producers in the world in 2013	6
Figure 1.4	Top 10 sugarcane producers in the world in 2013	7
Figure 1.5	World production of farmed macroalgae from 2001 to 2012	11
Figure 2.1	Schematic flow diagram of conversion of macroalgae into third-generation bioethanol (TGB) using macroalgae biorefineries concept	20
Figure 2.2	Life cycle assessment framework	56
Figure 2.3	System boundaries	58
Figure 2.4	Life cycle inventory (LCI) analysis	59
Figure 3.1	Flowchart of the experimental works	65
Figure 3.2	Schematic diagram of hydrolysis experimental apparatus	70
Figure 3.3	Schematic representation of crosslinked κ -carrageenan beads modification and enzyme immobilization	81
Figure 3.4	Schematic flow diagram of biorefinery concept for the production of bioethanol from <i>Eucheuma cottonii</i>	96
Figure 3.5	System boundary for the macroalgae-based biorefinery concept for the production of bioethanol from <i>Eucheuma cottonii</i> as generated by GaBi 6 Education software	103
Figure 3.6	Harvesting sites at Semporna; Map adapted from Google	105

Figure 4.1	FTIR spectra of (A) raw <i>Eucheuma cottonii</i> (EC), (B) macroalgae extract (ME), and (C) macroalgae cellulosic residue (MCR)	115
Figure 4.2	Temperature programmed desorption (TPD) profiles of NH3-TPD for fresh Dowex (TM) Dr-G8	118
Figure 4.3	Effect of catalyst loading on the hydrolysis of (A) <i>Eucheuma cottonii</i> (EC) and (B) macroalgae extract (ME) in the presence of a solid acid catalyst Dowex (TM) Dr- G8. (Reaction conditions: s/l ratio: 8 %, temperature: 110 °C, reaction time: 0-2.5 h)	120
Figure 4.4	Effect of catalyst loading on the by-product (5-HMF) in hydrolysis of (A) <i>Eucheuma cottonii</i> (EC) and (B) macroalgae extract (ME) in the presence of a solid acid catalyst Dowex (TM) Dr-G8. (Reaction conditions: s/l ratio: 8 %, temperature: 110 °C, reaction time: 0-2.5 h)	122
Figure 4.5	Effect of reaction temperature on the hydrolysis of (A) <i>Eucheuma cottonii</i> (EC) and (B) macroalgae extract (ME) in the presence of a solid acid catalyst Dowex (TM) Dr- G8. (Reaction conditions: s/l ratio: 8 %, catalyst loading: 6 % w/v for EC and 8 % w/v for macroalgae extract, reaction time: 0-2.5 h)	125
Figure 4.6	Effect of reaction temperature on the by-product (5-HMF) in the hydrolysis of (A) <i>Eucheuma cottonii</i> (EC) and (B) macroalgae extract (ME) in the presence of a solid acid catalyst Dowex (TM) Dr-G8. (Reaction conditions: s/l ratio: 8 %, catalyst loading: 6 % w/v for EC and 8 % w/v for macroalgae extract, reaction time: 0-2.5 h)	126

- .Figure 4.7 Effect of biomass loading (s/l ratio) on the galactose 128 formation. (A) *Eucheuma cottonii* (EC) and (B) macroalgae extract (ME). (Reaction conditions: reaction temperature: 120 °C, catalyst loading: 6 % w/v for EC and 8 % w/v for macroalgae extract, reaction time: 0-2.5 h)
- Figure 4.8 Effect of biomass loading (s/l ratio) on the by-product (5-129 HMF) formation. (A) *Eucheuma cottonii* (EC) and (B) macroalgae extract (ME). (Reaction conditions: reaction temperature: 120 °C, catalyst loading: 6 % w/v for EC and 8 % w/v for macroalgae extract, reaction time: 0-2.5 h)
- Figure 4.9 Effects of combined severity on hydrolysis of *Eucheuma* 131 *cottonii* (EC) and macroalgae extract (ME). (A) Galactose yield and (B) 5-hydroxy-methyl-furfural (5-HMF) concentration
- Figure 4.10 Effect of substrate concentration on enzymatic hydrolysis. 136 (Conditions: pH 4.8, temperature 50 °C)
- Figure 4.11Effect of pH on enzymatic hydrolysis of macroalgae137cellulosic residue. (Conditions: substrate concentration2 % (w/v), temperature 50 °C)
- Figure 4.12Effect of temperature on the enzymatic hydrolysis.138(Condition: substrate concentration 2 % (w/v), pH 4.8)
- Figure 4.13 Effect of macroalgae cellulosic residue (MCR) loading on 140 the solid-acid pretreatment process. Pretreatment conditions: pretreatment time: 30 min, reaction temperature: 120 °C, catalyst loading: 4 % w/v.
 Enzymatic hydrolysis conditions: 2 % w/v pretreated MCR, 15 FPU/g of cellulase, 52 CBU/g of β-glucosidase, pH 4.8, 50 °C

- Figure 4.14 Effects of catalyst loadings on the pretreatment of MCR in 142 the presence of a solid acid catalyst Dowex (TM) Dr-G8.
 Pretreatment reaction conditions: biomass loading: 10 % w/v, pretreatment time: 30 min, reaction temperature: 120
 °C. The enzymatic hydrolysis conditions were the same as that in Figure 4.13
- Figure 4.15 Effects of pretreatment time on the pretreatment of MCR 143 in the presence of a solid acid catalyst Dowex (TM) Dr-G8. Pretreatment conditions: biomass loading: 10 % w/v, reaction temperature: 120 °C, catalyst loading: 4 % w/v. The enzymatic hydrolysis conditions were the same as that in Figure 4.13
- Figure 4.16 Effects of pretreatment temperature on the pretreatment of 145 MCR in the presence of a solid acid catalyst Dowex (TM) Dr-G8. Pretreatment conditions: biomass loading: 10 % w/v, pretreatment time: 30 min, catalyst loading: 4 % w/v. The enzymatic hydrolysis conditions were the same as that in Figure 4.13
- Figure 4.17 Effect of different enzyme loadings on hydrolysis of 147 pretreated MCR. Enzymatic hydrolysis conditions: 50 °C, 72 h, 120 rpm at 2 % w/v of pretreated MCR in 50 mM sodium acetate buffer at pH 4.8
- Figure 4.18 Overall mass balance for (A) solid acid, (B) dilute acid, 150 and (C) sodium hydroxide pretreatment
- Figure 4.19 Performance of the recycled catalyst at repeated runs. 151 Pretreatment conditions: catalyst loading: 4 % w/v, s/l ratio: 4 % w/v, pretreatment time: 30 min, reaction temperature: 120 °C

Figure 4.20	Scanning electron micrographs of MCR before and after pretreatment and enzymatic hydrolysis: (A) raw material, (B) 4 % (w/v) Dowex (TM) Dr-G8, 120 °C, 30 min pretreated, (C) enzymatic hydrolysis of raw material without pretreatment	153
Figure 4.21	Effect of PEI concentration on the immobilization yield and enzyme activity	159
Figure 4.22	Zeta potential of PEI as a function of PEI concentration	159
Figure 4.23	Effect of activation time on the immobilization yield and enzyme activity	161
Figure 4.24	Effect of pH of PEI solution on the immobilization yield and enzyme activity	162
Figure 4.25	Zeta potential of PEI as a function of pH of solutions	163
Figure 4.26	FTIR spectra of the (A) formulation 1 (κ C/K ⁺) as control beads, (B) formulation 2 (κ C/GA/K ⁺), (C) formulation 3 (κ C/GA/K ⁺ /PEI ⁺), (D) formulation 4 (κ C/GA/K ⁺ /PEI ⁺ /GA), and (E) formulation 5 (κ C/GA/K ⁺ /PEI ⁺ /GA/β-glucosidase)	166
Figure 4.27	Scanning electron microscopy images of (A) formulation 1 (κ C/K ⁺) as control beads, (B) formulation 2 (κ C/GA/K ⁺), (C) formulation 3 (κ C/GA/K ⁺ /PEI ⁺), (D) formulation 4 (κ C/GA/K ⁺ /PEI ⁺ /GA), and (E) formulation 5 (κ C/GA/K ⁺ /PEI ⁺ /GA/ β -glucosidase)	169
Figure 4.28	EDX spectra of (A) formulation 2 (κ C/GA/K+) and (B) formulation 3 (κ C/GA/K+/PEI+)	170

- Figure 4.29 DSC thermograms of formulation 1 (κ C/K⁺) as control 172 beads, formulation 2 (κ C/GA/K⁺), formulation 3 (κ C/GA/K⁺/PEI⁺), formulation 4 (κ C/GA/K⁺/PEI⁺/GA), and formulation 5 (κ C/GA/K⁺/PEI⁺/GA/ β -glucosidase)
- Figure 4.30 Thermogravimetric weight loss curves. (A) TGA and (B) 174 DTG of formulation 1 (κ C/K⁺) as control beads, formulation 2 (κ C/GA/K⁺), formulation 3 (κ C/GA/K⁺/PEI⁺), formulation 4 (κ C/GA/K⁺/PEI⁺/GA), and formulation 5 (κ C/GA/K⁺/PEI⁺/GA/ β -glucosidase)
- Figure 4.31 Effect of pH on the activity of free and immobilized 175

 β -glucosidase. (Modified formulation of 2 % (w/v) κC crosslinked with 0.25 % GA and soaked in 2 % (w/v) PEI at pH 8 for 5 h followed by 1 % (w/v) GA for 2 h. The hybrid beads was then soaked in β -glucosidase for 24 h.)

- Figure 4.32 Effect of temperature on the activity of free and 177 immobilized β-glucosidase. (Modified formulation of 2 % (w/v) κC crosslinked with 0.25 % GA and soaked in 2 % (w/v) PEI at pH 8 for 5 h followed by 1 % (w/v) GA for 2 h. The hybrid beads was then soaked in β-glucosidase for 24 h.)
- Figure 4.33 Reusability study of the immobilized β -glucosidase. 178 (Modified formulation of 2 % (w/v) κ C crosslinked with 0.25 % GA and soaked in 2 % (w/v) PEI at pH 8 for 5 h followed by 1 % (w/v) GA for 2 h. The hybrid beads was then soaked in β -glucosidase for 24 h.)

179 Figure 4.34 Hydrolysis of pretreated macroalgae cellulosic residue (MCR) under different conditions. Enzymatic hydrolysis of pretreated MCR was performed as described in Section 3.5.7 (A) Cellulase, (B) Cellulase with free β -glucosidase, (C) Cellulase with immobilized β -glucosidase Figure 4.35 181 The effect of different Saccharomyces cerevisiae inoculums amount on bioethanol production. (A) 8 g/L, (B) 16 g/L, (C) 24 g/L. (Fermentation conditions: 37°C, pH 5) Figure 4.36 183 The effect of initial concentration of galactose on bioethanol production. (A) 25 g/L, (B) 35 g/L, (C) 45 g/L Figure 4.37 The effect of different Saccharomyces cerevisiae 185 inoculums amount on bioethanol production. (A) 5.8 g/L, (B) 17.5 g/L, (C) 23.3 g/L. (Fermentation conditions: 37 ^oC, pH 5) Figure 4.38 187 Time course of bioethanol production and glucose consumption during 3 h SSF of the pretreated macroalgae cellulosic residue at different reaction temperature. SSF: 2 % (w/v) solid loading, pH 4.8, enzyme loading of 45 FPU/g of cellulase and 52 CBU/g of β -glucosidase, and with Saccharomyces cerevisiae. (A) 37 °C, (B) 40 °C, (C) 43 °C, and (D) 46 °C Figure 4.39 Profile of bioethanol production and glucose consumption 191 for 8 h SSF of pretreated MCR suspended in deionized water at different solid loadings. (A) 5 % w/v, (B) 6 % w/v, (C) 7 % w/v and (D) 8 % w/v. Conditions: enzyme loading of 45 FPU/g of cellulase and 52 CBU/g of β glucosidase, 50 °C for prehydrolysis, and 43 °C for SSF

XX

Figure 4.40	Profile of bioethanol production and glucose consumption for 96 h PCSSF of P-MCR suspended in macroalgae extract hydrolysate. Conditions: enzyme loading of 45 FPU/g of cellulase and 52 CBU/g of β-glucosidase, 50 °C for prehydrolysis, and 43 °C for SSF	193
Figure 4.41	Mass balance based on glucose amounts for bioethanol production by SHF and PSSF	195
Figure 4.42	Separate hydrolysis fermentation (SHF) of solid acid hydrolysate was carried out in a 5 L fermenter at 37 °C, 35 g/L of galactose, pH 4.8, and with <i>S. cerevisiae</i>	196
Figure 4.43	PSSF process was carried out in a 5 L fermenter at 43 °C, 5 % (w/v) P-MCR solid loading, pH 5, enzyme loading of 45 FPU/g of cellulase and 52 CBU/g β -glucosidase, and with <i>S. cerevisiae</i>	197
Figure 4.44	Yeast cell growth kinetics results from fitting the Logistic equation to the experimental data of cell mass concentration obtained during the fermentation process. (A) SHF of solid acid hydrolysate (B) PSSF of P-MCR	199
Figure 4.45	Bioethanol production kinetics results from fitting the Gompertz equation to the experimental data of bioethanol concentration obtained during the fermentation process. (A) SHF of solid acid hydrolysate (B) PSSF of P-MCR	202
Figure 4.46	Validation of the logistic function model for biomass production. (A) SHF of solid acid hydrolysate (B) PSSF of P-MCR	203
Figure 4.47	Validation of the Gompertz model for bioethanol production. (A) SHF of solid acid hydrolysate (B) PSSF of P-MCR	204

Figure 4.48	The comparison of experimental data with model prediction at 5 L fermenter scale bioethanol production from SHF of solid acid hydrolysate. (A) Yeast cell growth kinetics (B) Bioethanol production kinetics	205
Figure 4.49	The comparison of experimental data with model prediction at 5 L fermenter scale bioethanol production from PSSF of P-MCR. (A) Yeast cell growth kinetics (B) Bioethanol production kinetics	206
Figure 4.50	Energy breakdown of the life-cycle energy of bioethanol production	210
Figure 4.51	Global warming potential (kg CO ₂ -eq.) of individual processes for bioethanol production	212
Figure 4.52	Acidification potential (kg SO ₂ -eq.) of individual processes for bioethanol production	214
Figure 4.53	Photochemical ozone creation potential (kg C ₂ H ₄ -eq.) of individual processes for bioethanol production	215
Figure 4.54	Human toxicity potential (kg 1, 4-DCB-eq.) of individual processes for bioethanol production	217
Figure 4.55	Eutrophication potential (kg Phosphate-eq.) of individual processes for bioethanol production	218