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KAEDAH PENDERIAAN AKUSTIK BERASASKAN BENDALIR 

ELEKTROD KOPLANAR UNTUK APLIKASI BAWAH AIR 

ABSTRAK 

Tesis ini mencadangkan kaedah penderiaan akustik berasaskan cecair untuk aplikasi 

bawah air. Mekanisme penderiaan yang dipilih adalah berdasarkan konsep kemuatan 

yang terhasil daripada elektrod koplanar. Struktur tersebut dicadangkan untuk 

mengatasi beberapa permasalahan yang timbul daripada peranti sediada iaitu Pemuat 

Mikromesin Transduser Ultrasonik. Isu kebolehbergantungan, disebabkan 

lengkungan membran yang berlebihan diatasi dengan menyuntik cecair di bawah 

lapisan membran bagi menambah nilai redaman ketika beroperasi di bawah tekanan 

luaran dan voltan yang tinggi. Penggunaan teknik litografi lembut untuk fabrikasi 

memberi kelebihan disebabkan proses yang lebih ringkas. Kaedah penderiaan ini 

dibuktikan melalui kitaran lengkap yang terdiri daripada proses pemodelan, fabrikasi 

dan pengujian. Dimensi struktur mematuhi kriteria yang ditetapkan seperti teori 

lengkungan membran dan teori penembusan kedalaman. Ujian akhir menunjukkan 

kebolehan peranti untuk mengesan isyarat akustik 200kHz  yang dipancarkan melalui 

peranti bawah air  dengan bacaan sensitiviti sebanyak 0.67pF/Pa. Kesan persekitaran 

seperti getaran pada frekuensi rendah (10Hz to 100Hz) dan perubahan suhu (-20 C̊ to 

30 C̊) juga didapati tidak memberi kesan terhadap operasi peranti. Ini menujukkan 

kestabilan peranti untuk berfungsi pada keadaan tertentu. 
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COPLANAR ELECTRODE FLUIDIC-BASED ACOUSTIC SENSING 

METHOD FOR UNDERWATER APPLICATIONS 

ABSTRACT 

The thesis proposed a novel fluidic-based acoustic sensing method for underwater 

applications. The capacitive principles based on coplanar electrodes configuration is 

selected as the sensing mechanism. The new structure device was proposed to 

overcome several issues faced by the conventional device based on Capacitive 

Micromachined Ultrasonic Transducer (CMUT) by adapting the microfluidic 

technology. Reliability issues caused by the over deflected membrane was overcame 

by introducing the liquid backing material underneath the membrane which increases 

the damping at high operating voltage and high external pressure. The use of 

softlitography technique for fabrication also gave an advantage due to its process 

simplicity. The sensing concept was proven through a development cycle which 

consists of modelling, fabricating and testing. The structural design had satisfied 

several design rules such as membrane deflection theory as well as penetration depth 

theory. The final testing showed the ability of the device to detect 200kHz acoustic 

signal transmitted from the underwater acoustic projector with capacitive pressure 

sensitivity of 0.4 fF/Pa.  It was also found that the constant frequency vibration 

(10Hz to 100Hz) and change of temperature (-20 C̊ to 30 C̊) has minimal effect on 

the sensing performance, thus showcased the stability of the sensor. 
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CHAPTER 1 

INTRODUCTION  

1.1 Background 

Acoustic sensing is a field that deals with the reception process of acoustic signal. It 

is a technology that has been inspired from biological nature such as communication 

process of bat and dolphin. The use of acoustic for terrestrial application includes for 

military (Becker & Gu, 2000), structural monitoring (Hamdi et al. 2013; 

Mostafapour & Davoudi, 2013), level sensor (Osborne et al., 2004) and ecological 

monitoring(Blumstein et al., 2011). For underwater application, early history of 

acoustic sensing is recorded way back in 1490 when Leonardo Da Vinci had detected 

the vessel through an inserted tube underwater as well as when underwater bell was 

designed for hazards warning during 19
th

 century.  Modern application of underwater 

acoustic sensing is primarily influenced by the sonar technology and frequently 

related to the oceanography application (Zielinski et al., 1995;Zhao, 2010). Apart 

from that, the use of acoustic in immersion application also benefits humankind in 

some ways. As an example, the technology has contributed to the important 

application in medical imaging (B. Bayram et al., 2005; Chen et al., 2008; 

Vaithilingam et al., 2006) and near surface application such as underwater sensor 

network, sound and vibration instrument, navigation and fault detecting industries 

and underwater communication (Culver & Hodgkiss, 1988). Figure 1.1 shows 

various applications of underwater acoustic sensing and indicates the significance of 

such field to be studied and explored. 
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Figure 1.1: Summary of various applications of underwater acoustic sensing. 

 

In recent years, underwater acoustic sensor experienced a revolution in terms 

of its device fabrication, which shares the same technology as in Integrated Circuit 

(IC) technology, (Esashi, 2010; Gentili et al., 2005; Jin et al., 1998; Oralkan & 

Ergun, 2002). Fabrication process based on surface micromachining and bulk 

machining has brought the device technology into micro and nanoscale size which is 

proven to have substantial advantages in terms of its power consumption, reliability, 

handling and portability (Arshad, 2009). The progress, hence benefits the ocean and 

underwater research field due to the fact that the use of acoustic signal is preferred 

compared to other type of signal wave such as radio frequency (RF) due to its 

acoustic nature that is more prone to underwater noise (Akyildiz et al., 2005;Singer 

et al., 2009).  

In terms of performance, acoustic sensing can be classified into several 

categories. Different applications sometimes require different device performance to 

suit its operation. Structural design and fabrication process are two key factors that 
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