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suspension as a function of field gradient are drawn in (c) and 

(d), respectively.  
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Figure 4.42 Comparison of separation times obtained in the present work 

to that in literature. (This work: ● Bare Fe3O4, + PSS 

70K/Fe3O4 clusters; De Las Cuevas et al., 2008: □ M 030/40; 

∆ M 020/50) 
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Figure 4.43 Schematic diagram showing orientation of magnetic dipole 

with respect to nearby particles.  
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Figure 4.44 Optical micrographs on the earth’s magnetic field-induced 

local structures of (a) bare Fe3O4 and (b) PSS 70K/Fe3O4 

clusters dispersed in deionized water solution at concentration 

i. 100 mg/L, ii. 1000 mg/L, and iii. 10000 mg/L. 
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Figure 4.45 Enlarged on portion of figure 4.44b.iii. 
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Figure 4.46 Transformation of the local structures of 10000 mg/L (a) bare 

Fe3O4 and (b) PSS 70K/Fe3O4 cluster suspensions during the 

exposure to the external magnet. (Full movies are included in 

the attached DVD) 
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Figure 4.47 TEM images of the PSS 70K/Fe3O4 clusters dried on TEM 

grid under the earth’s magnetic field (left) and the external 

magnetic field (right). 
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Figure 4.48 The local structures of 10000 mg/L bare Fe3O4 nanoparticle 

suspension after the removal of the external magnetic field. 

(Full movies are included in the attached DVD) 
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Figure 4.49 The local structures of 10000 mg/L PSS 70K/Fe3O4 cluster 

suspension after the removal of the external magnetic field. 

(Full movies are included in the attached DVD) 
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Figure 4.50 Flow diagram showing the possible routes of cluster 

formation using the proposed electrostatic-mediated assembly 

technique. The PSS 70K/Fe3O4 clusters drawn at the right, 

which were formed without salt added to further induce 

clustering, was used as the control sample.  
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Figure 4.51  (a) Average hydrodynamic cluster size of PSS 70K/Fe3O4 

clusters prepared without clustering agent (control) and with 

50 mM of NaCl, CaCl2, or AlCl3 as a clustering agent. (b) 

Their corresponding intensity-weighted size distributions.  
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Figure 4.52  (a) Photographs of conical tubes after used for Fe3O4/PSS 

mixing with i. NaCl, ii. CaCl2, and iii. AlCl3 as the clustering 

agent. (b) Water solubility of PSS in different electrolyte 

solutions. Markers assigned are NaCl (●), CaCl2 (□), and 

AlCl3 (∆). 
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Figure 4.53 (a) Average hydrodynamic cluster size of PSS 70K/Fe3O4 

clusters prepared using different concentrations of NaCl or 

CaCl2 as clustering agent. (b) Average hydrodynamic cluster 

size as a function of the ionic strength of the electrolyte 

solution. The intensity-weighted size distributions using NaCl 

or CaCl2 as clustering agent are shown in (c) and (d), 

respectively. 
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Figure 4.54 (a) Photos of PSS 70K/Fe3O4 clusters suspension prepared 

through two different strategies. (b) FTIR results on the 

freeze-dried samples. 
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Figure 4.55 (a) Evolution of EPM values of bare Fe3O4 at pH ~9.1 in the 

presence of different CaCl2 concentrations. (b) Schemes show 

the interactions between the PSS molecules and the bare 

Fe3O4 surface at pH ~9.1 and the role of CaCl2 as particle-

polymer binder.  
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Figure 4.56 (a) Average hydrodynamic cluster size of PSS 70K/Fe3O4 

clusters prepared at pH~9.1 using different concentrations of 

CaCl2 as clustering agent and particle-polymer binder, and (b) 

the corresponding intensity-weighted size distribution curves. 

(c) Profile of EPM vs. pH for PSS 70K/Fe3O4 clusters formed 

at pH ~9.1 using different concentrations of CaCl2.  
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Figure 4.57 Predicted Fe3O4 cluster formation in alkaline medium in the 

presence of CaCl2.  
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Figure 4.58 Average hydrodynamic cluster size of four samples of PSS 

70K/Fe3O4 clusters monitored by DLS throughout a time 

course of 12 hours. 
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Figure 4.59 Changes of suspension opacity with time for four PSS 

70K/Fe3O4 cluster samples during the magnetophoresis 

experiment. Inset shows the remaining sample turbidity after 

5 minutes of magnetophoresis. 
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Figure 4.60  (a) Photos show magnetophoresis of PSS 70K/Fe3O4 clusters 

with average hydrodynamic cluster sizes of 196.0 nm and 459 

nm, (b) photos show magnetophoresis of bare Fe3O4. 
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Figure 4.61 Contour plot on the aggregation pattern of PSS 70K/Fe3O4 

clusters (a) without any pH adjustment, (b) after pH adjusted 

to 4.24, and (c) after pH adjusted to near 3.00. (d) Normalized 

intensity-weighted size distribution of the particle suspension 

during initial measurement. (Color band scale bars show in a-

c are the associated intensity percentage)  
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Figure 4.62 Aggregation patterns of PSS 70K/Fe3O4 clusters under 

various conditions. (a) 1 mM AgNO3, pH 4.24 (inset is the 

enlarged version), (b) 3 mM AgNO3, pH 4.25, (c) 0.331 mM 

Cu(NO3)2, pH 4.24, (d) 0.995 mM Cu(NO3)2, pH 4.23, (e) 

0.164 mM Cr(NO3)3, pH 3.07, (f) 0.492 mM Cr(NO3)3, pH 

3.00.  
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Figure 4.63 Aggregation patterns of PSS 70K/Fe3O4 clusters under 

various conditions. (a) 0.333 mM CaCl2, pH 4.26, (b) 1 mM 

CaCl2, pH 4.27, (c) 0.333 mM MgCl2, pH 4.20, (d) 1 mM 

MgCl2, pH 4.21, (e) changes of average hydrodynamic size as 

a function of time for all cases. 
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Figure 4.64 Changes of average hydrodynamic size as a function of time 

for (a) 0.333 mM MgCl2 vs. 0.333 mM MgSO4, (b) 0.333 mM 

MgCl2 vs. 0.25 mM MgSO4, and (c) 50 mM AgNO3 vs. 

16.667 mM Ag2SO4. 
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Figure 4.65 Optical microscopic images of the mixture of PSS 70K/Fe3O4 

clusters and Cu(NO3)2 after (a) 1.30 minutes, (b) 4.30 

minutes, (c) 6.04 minutes, (d) 10 minutes of preparation. (e,f) 

During exposure to external magnetic field and (g,h) after 

removal of external magnetic field (full movie of this is given 

in the attached DVD). 
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Figure 4.66  (a) Illustration of the experiment conditions. (b) The Dsettling 

and the corresponding initial settling rate of the PSS 

70K/Fe3O4 clusters under water spiked with Cu2+ in the 

presence of different amounts and different types of co-

existing DOM species. (Mixture pH for free PSS 70k test: 

4.31 ± 0.01; HA test: 4.34 ± 0.06; NaAlg test: 4.42 ± 0.00; 
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 BSA test: 4.33 ± 0.02; Gly test: 4.33 ± 0.02; Ace test: 4.04 ± 

0.22) 

 

Figure 4.67 The recorded FTIR spectrum of various DOMs, PSS 

70K/Fe3O4-DOM complexes, and PSS 70K/Fe3O4-Cu2+-

DOM complexes. DOMs under investigated here include: (a) 

HA, (b) NaAlg, (c) BSA, (d) Gly, and (e) ACE. The 

denotation W1 and W4 refer to after one cycle of washing and 

after four cycles of washing, correspondingly.  
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Figure 4.68 Images show the appearance of a vial of 100 mg/L pure HA 

solution (brownish colored) compared to the mixture of HA 

and PSS 70K/Fe3O4 solution in the absence and presence of 

Cu2+ ion.  
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Figure 4.69 Images show the appearance of the mixture of NaAlg and PSS 

70K/Fe3O4 solution after overnight mixing in the absence and 

presence of Cu2+ ions. 
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LIST OF ABBREVIATIONS 

  

Ace Acetic acid 

ATR-FTIR Attenuated total reflectance-Fourier transformed 

infrared spectroscopy 

 

B&W Black and white 

BET Brunauer-Emmett-Teller 

BSA Albumin from bovine serum 

c.c.c Critical coagulation concentration 

CMC Carboxylmethyl cellulose 

DCB Divalent cation bridging 

DLCA Diffusion-limited colloid aggregation 

DLS Dynamic light scattering 

DLVO Derjaguin-Landau-Verwey-Overbeek 

DOMs Dissolved organic matters  

EPM Electrophoretic mobility 

EQA Environmental Quality Art 

FWHM Full width at half maximum 

Gly Glycine 

HA Humic acid 

HGMS High gradient magnetic separation 

IEP Isoelectric point 

LDV Laser doppler velocimetry 

http://en.wikipedia.org/wiki/Attenuated_total_reflectance
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LGMS Low gradient magnetic separation 

MNPs Magnetic nanoparticles 

N North  

NaAlg Sodium alginate 

PAA Poly(acrylic acid) 

PAM Polyacrylamide 

PAP Polyaspartate 

PDI Polydispersity index 

PSS Poly(sodium 4-styrenesulfonate)  

QCM-D Quartz crystal microbalance with dissipation 

RLCA Reaction-limited colloid aggregation 

RNIP Reactive nanoscale iron particles 

S South  

SMCL Secondary Maximum Contaminant Level 

TEM Transmission electron microscopy 

TGA Thermogravimetric analysis 

U.S. EPA Environmental Protection Agency United States 

VSM Vibrating sample magnetometer 

XRD X-ray diffraction 
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