

MAGNETOPHORESIS OF POLY(SODIUM 4-STYRENESULFONATE)/Fe₃O₄ CLUSTERS: THE INFLUENCE OF COLLOIDAL STABILITY

YEAP SWEE PIN

UNIVERSITI SAINS MALAYSIA

2016

MAGNETOPHORESIS OF POLY(SODIUM 4-STYRENESULFONATE)/Fe₃O₄ CLUSTERS: THE INFLUENCE OF COLLOIDAL STABILITY

by

YEAP SWEE PIN

Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

June 2016

ACKNOWLEDGEMENT

Finally, it comes to the time for me to allocate my acknowledgement, which is the moment that I have been waiting for since five years ago. It is kind of mixed feelings circulating inside my heart now as I couldn't believe that I managed to finish this piece of work. The PhD journey is tough and challenging, definitely, I couldn't have gone through it without the help from every single one of you.....

My utmost gratitude assigned to my main advisor, Dr. Lim Jit Kang. Thanks for accepting me as your first PhD student. I have learned a lot from you, also, I have made a lot of trouble for you as well. My sincerest heartfelt apologies for the arguments that I have done. Thanks again for never giving up on me. I will keep in mind all the knowledge, sharing, and encouragement that you have given me. For my co-advisors, Dr. Ooi, Prof. Latif, and Dr. Low, thanks for guiding and supporting me. Also, my appreciation to the administrative and technical staffs of SCE for their kind assistance.

For the "CRAZY"-mates of mine, JingYao, HueyPing, Zeinab a.k.a Zeena, PeyYi, LiPeng, Jonathan, JingXiang, QianWen, KinHang, GuatWei, JianJie, thanks for being crazy with me and accompanying my every moment of ups and downs. Not forgetting, my beloved seniors and juniors, Dasmond, PeckLoo, MK, BeeWah, Qling, ChuanChun, LeeMuei, HuiSun, Salwa, QiHwa, Susan, SimSiong, Azimah, QianYee, ChunYu, FooKean, KhimMay, WeiJie, Haziyana, and etc., you guys are awesome as always and make my PhD life full of sweet memories. Your companionship means a lot to me, really. The only word best to express my feelings now is "T.h.a.n.k.s".

Last but not least, my gratitude to my dad and my brother, for always believing in my ability, supporting me, and allowing me to further my education to higher level.

Sincerely, Swee Pin

TABLE OF CONTENTS

Acknowledgement	ii
Table of Contents	iii
List of Tables	xi
List of Figures	xii
List of Abbreviations	xxii
List of Symbols	xxiv
Abstrak	xxix
Abstract	xxxi

CHAPTER 1 – INTRODUCTION

1.1	Magnetophoresis of magnetic nanoparticles in separation and purification processes	1
1.2	Physicochemical properties of Fe ₃ O ₄	3
1.3	Colloidal suspension of Fe ₃ O ₄ : Surface coating with polymer	4
1.4	Problem Statements	6
1.5	Research Objectives	8
1.6	Scope of Study	9
1.7	Organization of Thesis	11

CHAPTER 2 – LITERATURE REVIEW

2.1	Colloidal systems		
	Part I: On colloid and interface science		
2.2	Challenges associated to aggregation of colloidal suspension	14	

2.3	Aggregation kinetics			
2.4	.4 Stabilization strategies			19
	2.4.1	Different	stabilization and protection strategies	19
	2.4.2	Approach	for polymer coating	21
		2.4.2(a)	Pre-coating method	22
		2.4.2(b)	Post-coating method	23
		2.4.2(c)	Comparison between both methods	23
2.5	Mather	natical mod	elling for explaining particle stability	25
	2.5.1	Classical	DLVO	25
		2.5.1(a)	Origin of U_{vdw}	26
		2.5.1(b)	Origin of <i>U</i> _{elec}	28
		2.5.1(c)	Model assumptions	30
	2.5.2	Others not	n-classical DLVO interactions	30
		2.5.2(a)	Origin of U_{mag}	31
		2.5.2(b)	Origin of Usteric	32
2.6	Mono-	and polydis	persity characteristic of colloidal suspension	35
	Part II.	: Magnetism	and magnetophoretic separation	
2.7	Intrinsi	c magnetisn	n-related features	36
2.8	Magne	tic nano-sep	aration technology in process engineering	38
	2.8.1	Trends in	magnetic-based separation technology	38
	2.8.2	Magnetic	separation devices in laboratory and in industrial	39
		2.8.2(a)	High gradient magnetic separation devices	40
		2.8.2(b)	Low gradient magnetic separation devices	41
	2.8.3	Advantag	es of magnetic separation technique	42
2.9	Moven	nent of MNI	Ps in magnetic field	44

	2.9.1	Theoretical background of magnetophoresis	44	
	2.9.2	Mechanisms of magnetophoresis: cooperative and non- cooperative	47	
2.10	Constra	aints and future outlooks in magnetic separation technology	49	
2.11	<i>Part III: Magnetic nanoremediations</i>1 Environmental engineering usages and environmental fate of MNPs			

CHAPTER 3 – MATERIALS AND METHODS

3.1	Research flow chart			
3.2	Materials and chemicals list			
3.3	Coating of Fe ₃ O ₄ with anionic polymer molecules			
	3.3.1	Post-coating of PSS on Fe ₃ O ₄	58	
	3.3.2	Purification of the synthesized PSS/Fe ₃ O ₄	58	
	3.3.3	Quartz crystal microbalance with dissipation (QCM-D) analysis	59	
3.4	Colloidal stability assessment			
	3.4.1	Zeta potential analysis	60	
	3.4.2	Time lapse size tracking by DLS measurement	61	
	3.4.3	Sedimentation monitoring under stationary state	61	
3.5	Determination of aggregation kinetic constant and stability ratio			
3.6	Design and characteristic of magnetic separator for magnetophoretic separation assessment			
	3.6.1	High gradient magnetic separation (HGMS)	63	
	3.6.2	Low gradient magnetic separation (LGMS)	65	
3.7	Altering	g the magnetic field gradient, dB_x/dx	66	

3.8	Synthesis of PSS/Fe ₃ O ₄ clusters of different cluster sizes				
	3.8.1	Electrolyte solution preparation	67		
	3.8.2	Water solubility of polymer in different electrolyte solutions	67		
	3.8.3	Electrostatic-mediated assembly technique	68		
3.9	In-situ	imaging on the structural information of Fe ₃ O ₄	69		
3.10	Effect of on the of	of various metal ions and dissolved organic matters (DOMs) colloidal behavior of particles	70		
	3.10.1	Chemical speciation analysis via Visual MINTEQ	70		
	3.10.2	Preparation of various metal ions and DOMs solutions	70		
	3.10.3	Prepare particle-DOM and particle-Cu ²⁺ -DOM complexes	71		
3.11	Physical, chemical, and magnetism properties characterizations				
	3.11.1	Particle sizing tools	72		
		3.11.1(a) Imaging technique: TEM	72		
		3.11.1(b) Non-imaging technique: DLS	74		
	3.11.2	Electrophoretic mobility determination	75		
	3.11.3	Freeze-drying of Fe ₃ O ₄ suspension	75		
	3.11.4	Attenuated total reflectance-Fourier transformed infrared spectroscopy (ATR-FTIR)	76		
	3.11.5	Thermogravimetric analysis (TGA)	77		
	3.11.6	Magnetism properties analysis	77		
	3.11.7	Surface area determination	78		
	3.11.8	Viscosity of Fe ₃ O ₄ suspension	78		
	3.11.9	Powder X-ray diffraction (XRD)	78		

CHAPTER 4 – RESULTS AND DISCUSSION

	4.1	Coating of Fe ₃ O ₄ with PSS: Colloidal Stability Study	80
--	-----	---	----

	4.1.1	Characteristics and dispersibility of bare Fe ₃ O ₄		
	4.1.2	Surface co	pating of bare Fe ₃ O ₄ with anionic polymer	82
		4.1.2(a)	Electrostatic-induced <i>post</i> -coating technique	82
		4.1.2(b)	Effect of PSS's molecular weight in controlling stability of PSS/Fe ₃ O ₄ against sedimentation	86
		4.1.2(c)	Dependent of suspension stability to PSS 70K as dispersant	91
4.2	Charac	terization of	f PSS 70K/Fe ₃ O ₄	92
	4.2.1	Sizing and	alysis	92
		4.2.1(a)	Particle hydrodynamic size determination	92
		4.2.1(b)	Time-lapse shift in particle hydrodynamic size	94
		4.2.1(c)	Particle sizing after long term storage	97
	4.2.2	Justificati	on on core-shell nanostructures formation	98
		4.2.2(a)	Change in UV-Vis absorbance spectra	98
		4.2.2(b)	FTIR analysis on PSS binding over Fe ₃ O ₄	99
		4.2.2(c)	Determining the coverage of PSS 70K over Fe ₃ O ₄ via BET analysis	100
		4.2.2(d)	Weightage contribution from the PSS adlayers	102
	4.2.3	Phase and	solid state structure analysis via XRD result	103
	4.2.4	Magnetic	properties analysis via VSM measurement	104
4.3	Interact Stabilit	tion Energie y	es between Particles and the Relation to Colloidal	106
	4.3.1	Extended- of bare Fe	-DLVO modelling on cluster-cluster interactions	106
	4.3.2	Extended of PSS 70	-DLVO modelling on cluster-cluster interactions 0K/Fe ₃ O ₄ clusters	108
	4.3.3	Comment	ary and analysis on the modelling outcomes	110

.4	Assess Magne	ing the Role of Electrosteric Stabilization in Dictating tophoretic Separation Efficiency
	4.4.1	Separation efficiency: HGMS and LGMS studies
	4.4.2	Testing and validating the proposed rule via Hypothetico- deductive theory of confirmation
		4.4.2(a) Separation efficiency upon NaCl addition
		4.4.2(b) Experimental determination of stability ratio and the correlation to separation efficiency
5	Mechar Comple Freque	nistic Evaluation on the Transient Magnetophoresis Profile: ex Interplay between Electrosteric Stabilization and Collision ncy on the Cooperative Behavior
	4.5.1	Role of initial particle concentration towards aggregates formation and change in colloidal stability of Fe_3O_4 particles
	4.5.2	Magnetophoresis kinetic study on exposure to gradient field: contribution of concentration dependency
	4.5.3	Effect of field gradient on the transient profile of magnetophoresis and its relation to size fractionation
	4.5.4	Theoretical analysis and comparison to previous study
5	Aggreg inform	gation, self-assembly, and magnetic field-induced structural ation in microscopic scale
	4.6.1	Deposition and structural information of the particles in the earth's magnetic field
	4.6.2	Deposition and structural information of the particles in presence of external magnetic field and upon removal of the external magnetic field
7	Manipu Magne	ulating Cluster Size of PSS 70K/Fe ₃ O ₄ Clusters for Tunable tophoresis Behavior
	4.7.1	Design and synthesis of PSS 70K/Fe ₃ O ₄ clusters via electrostatic-mediated assembly technique

	4.7.1(a)	Preliminary evaluation and the compatibility of PSS with different electrolyte solutions	157
	4.7.1(b)	Influences of electrolyte concentration on the PSS 70K/Fe ₃ O ₄ cluster size	162
4.7.2	Role of CaCl ₂ as particle-polymer binder and clustering agent under alkaline condition		
	4.7.2(a)	Divalent cation bridging between like-charged surfaces under alkaline medium	164
	4.7.2(b)	Effect of CaCl ₂ concentration on the clustering of particles in an alkaline medium	167
4.7.3	Surface properties and colloidal stability assessments on the formed PSS 70K/Fe ₃ O ₄ clusters of various sizes		171
4.7.4	Effect of	cluster size on the magnetophoretic separation	173
4.7.5	Summary		176

4.8	Disruption in Colloidal Behavior of PSS 70K/Fe ₃ O ₄ Clusters in Dictation with Various Metal Ion Species			
	4.8.1	Possible m	echanism(s) of interaction	178
	4.8.2	Influence of kinetic pat	of various medium conditions on the aggregation tern of PSS 70K/Fe ₃ O ₄ clusters	179
		4.8.2(a)	Aggregation pattern in the absence of metal ion	179
		4.8.2(b)	Aggregation pattern in the presence of various species of heavy metal ions	181
		4.8.2(c)	Role of nature of divalent metal cation on the aggregation pattern	185
		4.8.2(d)	Role of ionic strength and absolute amount of cation species on the aggregation	186
	4.8.3	Qualitative microscop	e visualization on magnetophoresis behavior at ic level in water spiked with metal ion	188

4.9	Combinatorial Role of Dissolved Organic Matters (DOMs) and Metal Ions in Affecting the Colloidal Behavior		192
	4.9.1	Sedimentation of PSS 70K/Fe ₃ O ₄ clusters in water spiked with Cu^{2+} ion: competitive role of the coexisting DOMs	192
	4.9.2	Analysis on particle-DOM complexes and particle-Cu ²⁺ - DOM complexes formation	196
	4.9.3	Summary	202

CHAPTER 5 – CONCLUSIONS AND RECOMMENDATIONS

5.1	Conclusions	203
5.2	Recommendations	206

References	207
------------	-----

Appendices

List of Publications

LIST OF TABLES

		Page
Table 2.1	Saturation magnetization and magnetism of iron, nickel, cobalt, and various iron oxide.	37
Table 2.2	Comparison of magnetic separation to other common methods used in solid-liquid separation process: centrifugation and filtration	43
Table 2.3	Several published works investigate on the application of iron oxide nanoparticles coupled with magnetic separation technique for heavy metal removal.	52
Table 3.1	List of chemicals and materials.	56
Table 3.2	Physicochemical properties of different inorganic electrolytes employed in this work as clustering agents.	67
Table 3.3	Experiment conditions used to study the role of ionic nature, electrolyte concentration, and medium pH in affecting the cluster sizes of the PSS/Fe ₃ O ₄ clusters.	69
Table 4.1	Surface analysis of bare Fe ₃ O ₄ , PSS 70K/Fe ₃ O ₄ , and PSS 70K.	101
Table 4.2	Summary of physical properties of magnetic particles and the corresponding LGMS times done in the present work and by other author.	144
Table 4.3	EPM of bare Fe ₃ O ₄ suspended in different mediums.	160
Table 4.4	Initial aggregation rate (dd_h/dt) of PSS 70K/Fe ₃ O ₄ clusters under various condition. Linear regression was done on the first four points after the injection of metal ion solution which could be fitted with linear regression.	182

LIST OF FIGURES

Page

Figure 1.1	Images show ability of 16 nm MNPs to be magnetically separated. (a) Homogeneous suspension of the MNPs, (b) the MNPs were concentrated as black deposit after few minutes subjected to magnetic separator	1
Figure 1.2	The three major steps involved during application of MNPs for pollutant removal.	2
Figure 2.1	Illustration of typical colloidal systems.	13
Figure 2.2	Collision of particles occurred due to Brownian motion (zig- zag motion). The collision could be resulting in aggregation or bouncing.	16
Figure 2.3	(a) Time lapse <i>in</i> -situ micrographs showing aggregation kinetics of nano-scaled iron nanoparticles (scale-bar 25 μ m), (b) two regimes of aggregation.	17
Figure 2.4	Various strategies to enhance dispersion stability of MNPs.	19
Figure 2.5	Surface modification of particles with polymers: <i>pre</i> -coating technique.	22
Figure 2.6	Surface modification of particles with polymers: <i>post</i> -coating technique.	23
Figure 2.7	Illustration on the formation of stern layer and diffuse layer around a negatively-charged spherical nanoparticle.	28
Figure 2.8	(a) i. Non-interacting magnetic nanoparticles, ii. Nanoparticles being aligned after subjected to magnetic dipole-dipole interaction. (b) Two permanent magnet attract each other when being oriented in N-S configuration.	31
Figure 2.9	Illustration on the interparticle distance, h , between two surfaces with adlayer thickness δ .	32
Figure 2.10	Osmotic effect in the lens-shaped overlap zone.	33

- Figure 2.11 Images show monodisperse suspension (*left*), polydisperse 35 colloidal suspension consisted of particles with various sizes (*middle*), and polydisperse colloidal suspension formed due to aggregation of monodisperse particles (*right*).
- Figure 2.12 (a) Non-linear magnetisation curve and domains 38 configuration changes in response to initial increase in field strength, (b) a complete hysteresis loop.
- Figure 2.13(a) Schematic diagram showing a simple lab scale High40Gradient Magnetic Separator used in research study, (b)design of an industrial grade Metso[®] High Gradient MagneticSeparator (from Metso minerals).
- Figure 2.14 (a) Illustration of Low Gradient Magnetic Separator used for 41 lab-scale magnetic particle separation, (b) a commercially available homogeneous Low Gradient Magnetic Separator.
- Figure 2.15 Magnetic alignment and magnetic drifted motion of MNPs 44 under magnetic field gradient. The magnetic field gradient is generated by a magnetic source.
- Figure 2.16 Trajectories of singly dispersed Fe₃O₄ nanoparticles towards 45 magnetic field source.
- Figure 2.17 Possible forces exerted on a MNP under gradient field. 46
- Figure 2.18 (a) A clump of MNPs undergoes cooperative-type 47 magnetophoresis and (b) individual MNPs undergo non-cooperative-type magnetophoresis.
- Figure 3.1Overall research flow diagram.55
- Figure 3.2 Schematic diagram showing flow of PSS solution into QCM- 59 D module.
- Figure 3.3 (a) Schematic drawing on high gradient magnetic separator 64 used in this work. (b) *i*. Generation of external magnetic field by the mounted magnet blocks, *ii*. Steel wools being aligned along the external field and developed into individual/localized magnets, *iii*. Superposition of the external field and the field induced in the steel wools.

Figure 3.4	A modified UV-vis Spectrophotometer for LGMS kinetic study.	65
Figure 3.5	Adjustment of distance between the sample cuvette and the location of NdBFe permanent magnet.	66
Figure 4.1	(a,b) TEM images of bare Fe₃O₄ at different magnifications,(c) the number frequency count of particle size distribution.	80
Figure 4.2	(a,b) Preparation of 2.5 g/L bare Fe ₃ O ₄ suspension, (c) after 5 minutes of ultrasonication using bath ultrasonic with output frequency 42 kHz, (d) sedimentation observed after 30 minutes. (e) Extending the ultrasonication duration to one hour will still result with particle sedimentation.	81
Figure 4.3	Time-lapse tracking on the size of aggregates.	82
Figure 4.4	Zeta potential profiles of bare Fe ₃ O ₄ and PSS 70K.	83
Figure 4.5	The zeta potential profiles of PSS 70K/Fe ₃ O ₄ formed by conducting the <i>post</i> -coating process at different pHs.	84
Figure 4.6	Photograph shows the sedimentation condition of the PSS 70K/Fe ₃ O ₄ which were formed under different medium pHs	85
Figure 4.7	. Percentage of stable fraction and the initial sedimentation rate of bare Fe_3O_4 and PSS 70K/Fe ₃ O ₄ formed using different medium pHs.	86
Figure 4.8	Percentage of stable fraction and the initial sedimentation rate of the as-prepared bare Fe_3O_4 , PSS 70K/Fe ₃ O ₄ and PSS 1000K/Fe ₃ O ₄ .	87
Figure 4.9	Zeta potential profiles of PSS 70K/Fe ₃ O ₄ (\blacktriangle) and PSS 1000K/Fe ₃ O ₄ (\circ).	88
Figure 4.10	Schematic diagram illustrates two possible bridging flocculation mechanisms.	89
Figure 4.11	(a) Dissipation curves describe the conformation of polymer adsorption on the quartz crystal. (b) ΔD versus Δf curve fittings for the first 1600 seconds at which PSS adsorption happened and reached steady state.	90

Figure 4.12	(a) The change of $f_{with}/f_{without}$ as function of PSS 70K in the dispersant. (b) Photos show sedimentation of these particles.	91
Figure 4.13	Intensity size distribution of Fe_3O_4 both before (black line) and after surface modified with PSS 70K (blue line).	93
Figure 4.14	Time-lapse scanning on the intensity-weight size distribution of (a) bare Fe ₃ O ₄ , and (b) PSS 70K/Fe ₃ O ₄ clusters.	96
Figure 4.15	(a) Average hydrodynamic size and zeta potential of PSS $70K/Fe_3O_4$ clusters after 6 months storage. (b) Intensity-weighted size distributions for redispersion of the freeze-dried PSS $70K/Fe_3O_4$ clusters.	97
Figure 4.16	UV-Vis spectra scanning of PSS $70K/Fe_3O_4$ clusters, PSS $70K$, and bare Fe_3O_4 .	98
Figure 4.17	FTIR spectra of Fe_3O_4 nanoparticle before and after surface coating.	100
Figure 4.18	TGA curve for bare Fe $_3O_4$, PSS 70K and PSS 70K/Fe $_3O_4$ clusters.	102
Figure 4.19	Powder XRD pattern of (a) bare Fe_3O_4 and (b) PSS 70K/Fe ₃ O ₄ clusters.	103
Figure 4.20	Magnetization curve of bare Fe ₃ O ₄ (<i>connected line</i>) and PSS 70K/Fe ₃ O ₄ clusters (<i>dashed line</i>).	105
Figure 4.21	Schematic showing the interaction energies between two identical clusters of radius r with h is the interparticle distance.	107
Figure 4.22	The extended-DLVO profile of bare Fe ₃ O ₄ with core diameter 140 nm. Note that $U_T = U_{vdW} + U_{elec} + U_{mag}$.	108
Figure 4.23	Schematic showing the interaction energies taken into consideration between two identical clusters coated with polymers adlayer to a thickness δ .	109
Figure 4.24	The extended-DLVO modelling profile of PSS 70K/Fe ₃ O ₄ clusters with core diameter 140 nm. Note that $U_T = U_{vdW}$ + U_{elec} + U_{mag} + U_{steric} .	110

- Figure 4.25 Plot of (a) $|U_{elec}|/|U_{mag}|$ and (b) $|U_{steric}|/|U_{mag}|$ against 112 interparticle distance for PSS 70K/Fe₃O₄ clusters. (The inset is the enlarged of the dash circled part)
- Figure 4.26 (a) The amount of particles (%) successfully isolated by 113 HGMS for three different types of suspensions, and (b) photos of the suspensions after treated by HGMS.
- Figure 4.27 LGMS of bare Fe₃O₄ (*top*), PSS 1000K/Fe₃O₄ clusters 115 (*middle*), and PSS 70K/Fe₃O₄ clusters (*bottom*).
- Figure 4.28 Effects of increasing in suspension ionic strength through 118 addition of monovalent salt (NaCl) on the amount of particles isolated by HGMS. Markers assigned are Bare Fe₃O₄ (\bullet), PSS 1000K/Fe₃O₄ clusters (\Box), and PSS 70K/Fe₃O₄ clusters (Δ).
- Figure 4.29 Ionic strength effects on the aggregation profiles of (a) bare 120 Fe₃O₄, (b) PSS 1000K/Fe₃O₄ clusters, (c) PSS 70K/Fe₃O₄ clusters, and (d) the corresponding stability ratio graph plotted as Log [W_{exp}] vs. Log [NaCl].
- Figure 4.30 Stability of (a) bare Fe₃O₄ and (b) PSS 70K/Fe₃O₄ clusters 125 under various initial particle concentartions. *i*. Sedimentation profile, *ii*. initial sedimentation rate profile, and *iii*. photos show the sedimentation of particles at high concentration
- Figure 4.31 Average hydrodynamic size of aggregates formed at different 126 initial particle concentrations for (a) bare Fe₃O₄ and (b) PSS 70K/Fe₃O₄ clusters.
- Figure 4.32 Magnetophoresis profile showing decay of normalized 128 sample absorbance as function of time for (a) bare Fe₃O₄ and (b) PSS 70K/Fe₃O₄ clusters at different initial particle concentrations. Data plotted was based on average of three independent measurements.
- Figure 4.33 (a) Initial magnetophoresis rate and (b) the separation time 130 needed for the normalized absorbance dropped to 0.10 a.u (*equivalent to ~10% of initial suspension absorbance*) at different initial particle concentrations.
- Figure 4.34Photos show the remaining suspensions of (a) bare Fe₃O₄ after132subjected to 5 minutes of magnetophoresis, and of (b) PSS70K/Fe₃O₄ clusters after subjected to 60 minutes of

magnetophoresis. Graph (c) delineates the absorbance values of samples shown in (b).

- Figure 4.35 Intensity-weighted size distribution of samples *A* to *J* from 133 Figure 4.34b.
- Figure 4.36 Time lapse evolution of (a) average hydrodynamic size and 134 its corresponding (b) PDI. (c) Intensity-weighted size distribution of the remained particles and the corresponding (d) particle size distribution resolved bar chart after 30 secs, 5 mins, 30 mins, and 60 mins of magnetophoresis time for PSS 70K/Fe₃O₄ clusters of concentration 0.25 g/L.
- Figure 4.37 (i) Intensity weighted size distribution and (ii) particle size 136 distribution resolved bar chart for PSS 70K/Fe₃O₄ clusters with initial concentration (a) 0.050 g/L, (b) 1 g/L, (c) 2.5 g/L, and (d) 10 g/L.
- Figure 4.38 TEM images show RuO₄ vapor stain PSS 70K/Fe₃O₄ clusters 138 presence in (a) clumps due to the drying process and (b) individual small clusters (multi-core structures).
- Figure 4.39 Macroscopic study showing the temporal evolution of 139 magnetophoretic separation and re-suspension of PSS 70K/Fe₃O₄ clusters. Note: Magnet was inserted at time 00:06 (min:sec). (Full movie of this experiment is given in the attached DVD)
- Figure 4.40 Macroscopic study showing the temporal evolution of 140 magnetophoretic separation and re-suspension of bare Fe₃O₄.
 Note: Magnet was inserted at time 00:07 (min:sec). (Full movie of this experiment is given in the attached DVD)
- Figure 4.41 (a) Magnetophoresis profile of 0.250 g/L PSS 70K/Fe₃O₄ 141 clusters at different separation distances between sample cuvette and location of permanent magnet (the inset photos are the remaining suspensions after 1 hour of magnetophoresis). The intensity-weighted size distributions of these particular samples are shown in (b). Both separation time, t_s , and averaged hydrodynamic size of the remained suspension as a function of field gradient are drawn in (c) and (d), respectively.

- Figure 4.42 Comparison of separation times obtained in the present work 145 to that in literature. (This work: Bare Fe₃O₄, + PSS 70K/Fe₃O₄ clusters; De Las Cuevas *et al.*, 2008: \Box M 030/40; Δ M 020/50)
- Figure 4.43 Schematic diagram showing orientation of magnetic dipole 146 with respect to nearby particles.
- Figure 4.44 Optical micrographs on the earth's magnetic field-induced 148 local structures of (a) bare Fe₃O₄ and (b) PSS 70K/Fe₃O₄ clusters dispersed in deionized water solution at concentration *i*. 100 mg/L, *ii*. 1000 mg/L, and *iii*. 10000 mg/L.
- Figure 4.45 Enlarged on portion of figure 4.44b.*iii*. 149
- Figure 4.46 Transformation of the local structures of 10000 mg/L (a) bare 152 Fe₃O₄ and (b) PSS 70K/Fe₃O₄ cluster suspensions during the exposure to the external magnet. (Full movies are included in the attached DVD)
- Figure 4.47 TEM images of the PSS $70K/Fe_3O_4$ clusters dried on TEM 153 grid under the earth's magnetic field (*left*) and the external magnetic field (*right*).
- Figure 4.48 The local structures of 10000 mg/L bare Fe₃O₄ nanoparticle 154 suspension after the removal of the external magnetic field. (Full movies are included in the attached DVD)
- Figure 4.49 The local structures of 10000 mg/L PSS 70K/Fe₃O₄ cluster 155 suspension after the removal of the external magnetic field. (Full movies are included in the attached DVD)
- Figure 4.50 Flow diagram showing the possible routes of cluster 157 formation using the proposed electrostatic-mediated assembly technique. The PSS 70K/Fe₃O₄ clusters drawn at the right, which were formed without salt added to further induce clustering, was used as the control sample.
- Figure 4.51 (a) Average hydrodynamic cluster size of PSS 70K/Fe₃O₄ 159 clusters prepared without clustering agent (*control*) and with 50 mM of NaCl, CaCl₂, or AlCl₃ as a clustering agent. (b) Their corresponding intensity-weighted size distributions.

- Figure 4.52 (a) Photographs of conical tubes after used for Fe₃O₄/PSS 161 mixing with *i*. NaCl, *ii*. CaCl₂, and *iii*. AlCl₃ as the clustering agent. (b) Water solubility of PSS in different electrolyte solutions. Markers assigned are NaCl (\bullet), CaCl₂ (\Box), and AlCl₃ (Δ).
- Figure 4.53 (a) Average hydrodynamic cluster size of PSS 70K/Fe₃O₄ 163 clusters prepared using different concentrations of NaCl or CaCl₂ as clustering agent. (b) Average hydrodynamic cluster size as a function of the ionic strength of the electrolyte solution. The intensity-weighted size distributions using NaCl or CaCl₂ as clustering agent are shown in (c) and (d), respectively.
- Figure 4.54 (a) Photos of PSS $70K/Fe_3O_4$ clusters suspension prepared 165 through two different strategies. (b) FTIR results on the freeze-dried samples.
- Figure 4.55 (a) Evolution of EPM values of bare Fe_3O_4 at pH ~9.1 in the 166 presence of different CaCl₂ concentrations. (b) Schemes show the interactions between the PSS molecules and the bare Fe_3O_4 surface at pH ~9.1 and the role of CaCl₂ as particlepolymer binder.
- Figure 4.56 (a) Average hydrodynamic cluster size of PSS 70K/Fe₃O₄ 168 clusters prepared at pH~9.1 using different concentrations of CaCl₂ as clustering agent and particle-polymer binder, and (b) the corresponding intensity-weighted size distribution curves.
 (c) Profile of EPM *vs.* pH for PSS 70K/Fe₃O₄ clusters formed at pH ~9.1 using different concentrations of CaCl₂.
- Figure 4.57 Predicted Fe₃O₄ cluster formation in alkaline medium in the 171 presence of CaCl₂.
- Figure 4.58 Average hydrodynamic cluster size of four samples of PSS 172 70K/Fe₃O₄ clusters monitored by DLS throughout a time course of 12 hours.
- Figure 4.59 Changes of suspension opacity with time for four PSS 174 70K/Fe₃O₄ cluster samples during the magnetophoresis experiment. Inset shows the remaining sample turbidity after 5 minutes of magnetophoresis.

- Figure 4.60 (a) Photos show magnetophoresis of PSS 70K/Fe₃O₄ clusters 175 with average hydrodynamic cluster sizes of 196.0 nm and 459 nm, (b) photos show magnetophoresis of bare Fe₃O₄.
- Figure 4.61 Contour plot on the aggregation pattern of PSS 70K/Fe₃O₄ 180 clusters (a) without any pH adjustment, (b) after pH adjusted to 4.24, and (c) after pH adjusted to near 3.00. (d) Normalized intensity-weighted size distribution of the particle suspension during initial measurement. (Color band scale bars show in a-c are the associated intensity percentage)
- Figure 4.62 Aggregation patterns of PSS 70K/Fe₃O₄ clusters under 181 various conditions. (a) 1 mM AgNO₃, pH 4.24 (*inset is the enlarged version*), (b) 3 mM AgNO₃, pH 4.25, (c) 0.331 mM Cu(NO₃)₂, pH 4.24, (d) 0.995 mM Cu(NO₃)₂, pH 4.23, (e) 0.164 mM Cr(NO₃)₃, pH 3.07, (f) 0.492 mM Cr(NO₃)₃, pH 3.00.
- Figure 4.63 Aggregation patterns of PSS 70K/Fe₃O₄ clusters under 185 various conditions. (a) 0.333 mM CaCl₂, pH 4.26, (b) 1 mM CaCl₂, pH 4.27, (c) 0.333 mM MgCl₂, pH 4.20, (d) 1 mM MgCl₂, pH 4.21, (e) changes of average hydrodynamic size as a function of time for all cases.
- Figure 4.64 Changes of average hydrodynamic size as a function of time 187 for (a) 0.333 mM MgCl₂ vs. 0.333 mM MgSO₄, (b) 0.333 mM MgCl₂ vs. 0.25 mM MgSO₄, and (c) 50 mM AgNO₃ vs. 16.667 mM Ag₂SO₄.
- Figure 4.65 Optical microscopic images of the mixture of PSS 70K/Fe₃O₄ 190 clusters and Cu(NO₃)₂ after (a) 1.30 minutes, (b) 4.30 minutes, (c) 6.04 minutes, (d) 10 minutes of preparation. (e,f) During exposure to external magnetic field and (g,h) after removal of external magnetic field (full movie of this is given in the attached DVD).
- Figure 4.66 (a) Illustration of the experiment conditions. (b) The $D_{settling}$ 193 and the corresponding initial settling rate of the PSS 70K/Fe₃O₄ clusters under water spiked with Cu²⁺ in the presence of different amounts and different types of coexisting DOM species. (Mixture pH for free PSS 70k test: 4.31 ± 0.01; HA test: 4.34 ± 0.06; NaAlg test: 4.42 ± 0.00;

BSA test: 4.33 ± 0.02 ; Gly test: 4.33 ± 0.02 ; Ace test: 4.04 ± 0.22)

- Figure 4.67 The recorded FTIR spectrum of various DOMs, PSS 196 70K/Fe₃O₄-DOM complexes, and PSS 70K/Fe₃O₄-Cu²⁺-DOM complexes. DOMs under investigated here include: (a) HA, (b) NaAlg, (c) BSA, (d) Gly, and (e) ACE. The denotation W1 and W4 refer to after one cycle of washing and after four cycles of washing, correspondingly.
- Figure 4.69 Images show the appearance of the mixture of NaAlg and PSS 201 70K/Fe₃O₄ solution after overnight mixing in the absence and presence of Cu²⁺ ions.

LIST OF ABBREVIATIONS

Ace	Acetic acid
ATR-FTIR	Attenuated total reflectance-Fourier transformed infrared spectroscopy
B&W	Black and white
BET	Brunauer-Emmett-Teller
BSA	Albumin from bovine serum
c.c.c	Critical coagulation concentration
СМС	Carboxylmethyl cellulose
DCB	Divalent cation bridging
DLCA	Diffusion-limited colloid aggregation
DLS	Dynamic light scattering
DLVO	Derjaguin-Landau-Verwey-Overbeek
DOMs	Dissolved organic matters
EPM	Electrophoretic mobility
EQA	Environmental Quality Art
FWHM	Full width at half maximum
Gly	Glycine
НА	Humic acid
HGMS	High gradient magnetic separation
IEP	Isoelectric point
LDV	Laser doppler velocimetry

LGMS	Low gradient magnetic separation
MNPs	Magnetic nanoparticles
Ν	North
NaAlg	Sodium alginate
PAA	Poly(acrylic acid)
PAM	Polyacrylamide
PAP	Polyaspartate
PDI	Polydispersity index
PSS	Poly(sodium 4-styrenesulfonate)
QCM-D	Quartz crystal microbalance with dissipation
RLCA	Reaction-limited colloid aggregation
RNIP	Reactive nanoscale iron particles
S	South
SMCL	Secondary Maximum Contaminant Level
TEM	Transmission electron microscopy
TGA	Thermogravimetric analysis
U.S. EPA	Environmental Protection Agency United States
VSM	Vibrating sample magnetometer
XRD	X-ray diffraction