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SINTESIS, PENCIRIAN DAN AKTIVITI FOTO PEMANGKINAN
TITANIUM DIOKSIDA BERASASKAN (Ca, Ce, W) UNTUK DEGR ADASI
PEWARNA DAN RACUN PEROSAK.
ABSTRAK
Pengindustrian global berhadapan dengan berbabarara Pelepasan yang tidak
diingini melibatkan produk dan bahan cemar yangikagen dan toksik ke dalam
persekitaran oleh industri tekstil, kimia dan peoggisan adalah berkadar langsung
kepada pertumbuhan industri. Persekitaran harusstiikan selamat. Maka, teknik
fotopemangkinan telah dikaji untuk merawat air sygang mengandungi bahan
pencelup (asid merah 1, reaktif oren 16, reaktifi k9, terus biru 71 dan asid biru
25) dan racun serangga (asid 2-4-diklorofenoxiksefl,4-D). Fotomangkin
komposit yang stabil elektroniknya daripada jenig.<k)Caax-y)Ceax-y)Wiy6)O2(1-2(y-
x) (pada y<2x dan x+y<1) dengan aktiviti fotopemangki yang lebih baik telah
dibangunkan secara pencampuran jTi@engan unsur Ca, Ce dan W.
Fotopemangkinan ini telah disediakan dengan kaedbbel, dirawat secara termal-
hidro dan digunakan untuk menguraikan bahan-baharseliut di atas.
Keberkesanan fotopemangkinan komposit disahkan afengembandingkan
aktivitinya dengan dua fotopemangkinan komersiagixsa P25 dan TiOSigma
pada keadaan ujikaji yang sama. Fotopemangkinag gdbangunkan ini didapati
lebih baik daripada Sigma -TiQlalam penguraian AR1 secara fotopemangkinan
solar. Ujian kebolehgunaan ke atas fotopemangkigang dibangunkan ini
membuktikan yang ia lebih baik berbanding Degus®a (fang mana tidak boleh
mendak dari larutan selama tujuh bulan selepasadagr fotopemangkinan ke atas
2,4-D). Ini membuktikan yang ia bukan boleh digusemula. Sebaliknya,

fotomangkin komposit dapat menguraikan pencemaanrgirdari 1 jam selepas
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pemancaran dan keberkesanannya pada kitaran keagglah masih sama seperti
pada kitaran pertama. Kelebihan fotomangkin kontgos ke atas Degussa P25
menghadkan bilangan perbandingan di antara mergleagkin lain turut dibangun
dan diuji. Fotomangkinan yang dibangunkan ini tethtirikan oleh X-ray foto-
elektron spektroskopi untuk unsur-unsur kimia, bafa sinar-X dan Fourier
transformasi infra merah untuk pencirian struktan énalisis kumpulan berfungsi;
imbasan elektron mikroskop untuk mikrostruktur daorfologi permukaan; jerapan
nitrogen untuk penentuan luas permukaan dan talsainliiang; UV-Vis pantulan
untuk penilaian ‘band gap’. Keputusan pencampuranghasilkan penurunan sela
jalur gelombang Ti@ daripada 3.2 eV kepada 2.94 eV. Oleh itu, tidalkada
fotopemangkinan beralih kepada kawasan tampak.lisda&PS beresolusi tinggi
menunjukkan fotomangkinan adalah lebih stabil kereeghadiran kandungan kimia
pada keadaan pengoksidaan yang dijangkan. Fotoggman mempunyai luas
permukaan yang besar dan jerapan-penyaheraparmmsotérogen jenis IV dengan
kelok histerisis H2. Pelbagai parameter operasersiekepekatan awal bahan-bahan
pencemar, pH awal, kalsinasi suhu/hidrotermal dandkngan campuran telah
dikaji. Walaupun pH mempengaruhi proses fotopemigagkuntuk semua keadaan,
kepekatan awal di dapati tidak mempengaruhi prkeesali bagi penguraian  2,4-
D. Ujikaji kinetik mendapati tertib tindakbalas yaterbaik adalah tertib pertama,
kecuali untuk penguraian cahaya yang boleh diliARfl di mana kadar tidak

bergantung kepada kepekatan awal.
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SYNTHESIS, CHARACTERIZATION AND ACTIVITY OF TITANIUM
DIOXIDE BASED-(Ca, Ce, W)-TiO, PHOTOCATALYSTS FOR
DEGRADATION OF DYE AND PESTICIDE
ABSTRACT

Global industrialization is not without its attemti@hallenges. The release of
unwanted by-products and pollutants which are naggnic and toxic into the
environment by textiles, chemicals and processidgstries is directly proportional
to industrial growth. The environment must be kegde. Therefore, photocatalysis
leading to complete mineralization of pollutant{&s adopted to treat wastewaters
containing dyes (acid red 1, reactive orange Itiee blue 19, direct blue 71 and
acid blue 25) and a pesticide (2,4-dichlorophenostia acid; 2,4-D). A composite
photocatalyst, electronically stable of the typg-Iy)Casx-y)Ceax-y)Wyi6)O2(1-2(yx)
(at y<2x and x+y<1) with an enhanced photocatalytitvity was developed by
doping TiQ with Ca, Ce and W. The photocatalyst was preplhyesbl-gel method,
hydrothermally treated and employed in the degradatf the above mentioned
pollutants. The effectiveness of the compositetteatalyst was verified by
comparing its activity under the same experimecdalditions with two commercial
photocatalysts; Degussa P25 andF8gma product CAS No. 1317-70-0. The
developed photocatalyst was better than,73@ma product in solar photocatalytic
degradation of AR1. The reusability test of theaedeped photocatalyst makes it
superior to Degussa P25 (which could not settleobgblution seven months after
photocatalytic degradation of 2,4-D), hence remdgit non-reusable. On the other
hand, the composite photocatalyst settled out lotiso in less than 1 h after
irradiation and proved to be as efficient at therflo cycle as in the first, as it
accomplished a complete degradation at the saadiation time. This advantage

of the composite photocatalyst over Degussa P2Zslitme number of comparison
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made between them. Other catalysts were alsoa@e@land tested as described in
the body of the Thesis. The developed photocatalysre characterized by X-ray
photoelectron spectroscopy (XPS) for the chemitzaés of the elements in the
developed photocatalysts; X-ray diffraction (XRDdaFourier Transformed Infra
Red (FTIR) for structural and functional groupslgsia respectively; surface
scanning electron microscopy (SEM) for microstroetand morphology; Nitrogen-
physisorption for surface area and pore size Higfions; and UV-Vis diffused
reflectance for band gap evaluations. The dopasglted in a reduction in the band
gap of TiQ from 3.2 eV to 2.94 eV, and hence the photocatatgaction was
pushed into the visible region. The high resolutd”S analysis revealed that the
photocatalysts is stable as its chemical constituerre found to exist in the
proposed oxidation states. The photocatalysts heyesurface areas available for
photocatalysis and are oflddsorption-desorption isotherms of type 1V witpey

H2 hysteresis loops. Various operational pararaegaech as initial pollutants
concentration, initial pH, calcination/hydrotreatmhéemperatures and dopant
contents were investigated. While pH greatly iaefloed the photocatalytic process
in all cases, initial concentration does not seemftuence the process, except for
2,4-D degradation. The kinetic study revealed thattion order that best describes
the whole process is first order, except for trele light degradation of AR1

where the rate is independent of initial conceitnat
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CHAPTER ONE

INTRODUCTION

The effluents, gaseous or liquid produced by someur industries are
harmful to the health and general well-being of m&ihen undesirable substances
are present in liquid effluents, it can be disasiras their presence pose severe
threat to the immediate recipients. Wastewaters frvarious industries, factories,
laboratories, etc are serious problems to the enwient. The discharged wastes
containing dyes are toxic to microorganisms, agu#dg and human beings (Borker
& Salker, 2006). These deleterious effects of dhats on the earth ecosystems are
a cause for serious concern. Several of theseichlBnsuch as azo dyes, herbicides,
and pesticides are actually present in rivers akdd, and are in part suspected of
being endocrine-disrupting chemicals (EDCs) (Coleratal, 2000; Honget al,

1998; Ohkeet al, 2001; Wang and Hong, 2000).

Konstantinou and Albanis (2004) reported that textlyes and other
industrial dyestuffs constitute one of the larggstups of organic compounds that
represent an increasing environmental danger. Ale2® % of the total world
production of dyes is lost during the dyeing pracasd is released in the textile
effluents (Zollinger, 1991). The release of thasdoured wastewaters in the
environment is a considerable source of non-aestpetlution and eutrophication,
and can originate dangerous byproducts throughativid, hydrolysis, or other
chemical reactions taking place in the wastewdtaisp. It must be noted that dyes
can present toxic effects and reduce light penetram contaminated waters (Prado,

et al, 2008).



Degradation of dyes in industrial wastewaters hhasrefore received
increasing attention and some methods of remedidtave been proffered. Most
textile dyes are photocatalytically stable andaetory towards chemical oxidation
(Arslan and Balcioglu, 2001), and these charadtesisender them resistant towards
decolorization by conventional biochemical and ptgschemical methods.
Traditional physical techniques (adsorption on vedtdd carbon, ultrafiltration,
reverse osmosis, coagulation by chemical agents, exchange on synthetic
adsorbent resins, etc.) have been used for thevadnb dye pollutants (Tang and
An, 1995; Konstantinou and Albanis, 2004). Thesethmds only succeed in
transferring organic compounds from water to anotpbase, thus creating
secondary pollution. This will require a furtheredatment of solid-wastes and
regeneration of the adsorbent which will add morestcto the process.
Microbiological or enzymatic decomposition (Ha&® al, 2000), biodegradation
(Sleiman et al, 2007), ozonation (Slokar & Marechal, 1998), amvaanced
oxidation processes such as Fenton and photo-Featalytic reactions (Kuo, 1992;
Konstantinou and Albanis), &./UV processes (Ince and Gonenc, 1997; Argan

al., 2001) have also been used for dyes removal frastawaters.

Forgacset al. (2004) noted that traditional wastewater treatnectinologies
have proven to be markedly ineffective for handiwmastewater of synthetic textile
dyes because of the chemical stability of thestuaoits, and went further to verify
that 11 out of 18 azo dyes selected for their itigadons passed through the
activated sludge process practically untreated! ti#d aforementioned processes

have a wide range of their deficiencies in the reshof dyes from wastewaters.



Recent studies (Stylidet al, 2003; Silvaet al, 2006; Sunet al, 2006;
Reddyet al, 2007; Sleimart al, 2007; Saquibat al, 2008; Liet al, 2009; Kansal
et al, 2010; Zhangt al, 2011) have been devoted to the use of photosaddly the
removal of dyes from wastewaters, particularly,aese of the ability of this method

to completely mineralize the target pollutants (kawaan et al, 2008).

Among the AOPs, heterogeneous photocatalysis usin@, as a
photocatalyst appears as the most emerging dasgutdchnology (Hoffmann,
1995; Suet al, 2004;Sunet al, 2006;Saquibaet al, 2008; Zhanget al, 2011).
The key advantage of the former is its inherentrde8ve nature. Photocatalysis
can be carried out under ambient conditions (attm&$p oxygen is used as
oxidant), and may lead to complete mineralizatidnomanic carbon into CO
without any mass transfer operation. TuDoice as a photocatalyst is made because
it is largely available, inexpensive, and non-toaiwd relatively stable-chemically.
Moreover, works have been reported on the phothyt@tpotentials of TiQ (Zhang
and Liu, 2008). Titanium dioxide (TiPhas been very effective photocatalyst, but
its effectiveness is impaired by its high band gaprgy. These therefore, demand
modifications for the effective application of Ti@s a photocatalyst. Hence in
order to enhance interfacial charge-transfer reastithe catalyst has been modified
by selective ion doping of the crystalline Li@atrix (Chenet al, 2007; Huanget
al., 2008; Kryukovaet al, 2007; Ozcaret al, 2007; Rengaragt al, 2006; Suret

al., 2006; Weiet al, 2007; Zhiyonget al, 2007, 2008).

Various metal ions — rare earth (& al, 2002; Saif and Abdel-Mottaleb,
2007; Weiet al, 2007), transition (Wilke and Breuer, 1999; Jetml, 2000; Liet

al., 2001; Xuet al, 2004; Liuet al, 2005; Stiret al, 2006; Ghoraet al, 2007; Liao



et al, 2007; Xinet al, 2008; Zhang and Lei 2008; Huaagal, 2008; Dinget al,
2008; Faret al, 2008; Cheng 2011), other metal ions (®tral, 2006; Rengaraj
and Li, 2006; Rengarat al, 2006), co-doping (Ghorat al, 2007; Srinivasart
al., 2006; Colmenarest al, 2006; Bettinelliet al, 2007; Shiet al, 2007; Guet al,
2008; Liuet al, 2008; Zhang and Liu, 2008), non-metal ions (O&nal, 2004; Liu

et al, 2006; Suret al, 2007; Yuet al, 2007; Penget al, 2008; Liet al, 2008;
Zaleskaet al, 2008; Liet al, 2008; Zhanget al, 2008b; Crisaret al, 2008) and
surfactants (Lia@t al, 2007) have been used to enhance the photocatabtivities

of TiO,. It must be noted that though transition metafsisuch as Cr, V, Fe, etc,
have been used in doping Ti@hotocatalyst, doping with transition metal ions
generally increase carrier-recombination centersj aonsequently debases the
guantum efficiency of doped TiCratalysts (Guet al, 2008). Moreover, doping
with transition metal ions could result in thermastability of the doped
photocatalysts (Giet al, 2008). Anpo (2000) reported on doping Ti@ith
transition metals and their effects on the photigit decomposition of NO. Two
doping conditions were considered in his studyti{§ metal ions implanted T;O
and (ii) doping TiQ with the considered metal chemically. In both moels it was
discovered that the doping had negative influencthe photocatalytic efficiency of
TiO, even under UV light irradiation A€380nm), that is to say that the
photocatalytic efficiency of Ti@decreased with the doping. It was however noted
that for the photocatalytic decomposition of NOlyo@r and V ion-implanted Ti@
retained the same photocatalytic efficiency asdhginal unimplanted Ti@ even
under UV light irradiation X<380nm). This further explains why transition nheta

doping should be considered with utmost care.

There have been many reports on transition meted, @arth and noble metal



ions doping of TiQ, but studies on alkaline-earth metal ions dopihdi®, and
their photocatalytic properties have limited litew@. The only literature available
at the time of preparing this report is that repdrby Li et al, (2007). The
Researchers reported on the effect of doping With alkaline-earth metal ions and
its photocatalytic activity on the photocatalyticengration of hydrogen in
suspension. No report has been seen on dopingWii® alkaline earth metal ions
for photocatalytic degradation of textile wastewatehis has therefore been the
driving force of this work. This present work wtmerefore aimed at developing
doped and undoped photocatalysts for the photgtatalegradation of textile dyes
in textile wastewaters, with priority to T¥doped with alkaline earth and other

metals ions.

1.1 Problem Statement

It is certain that a good society needs a goodtiineaindition and for this to
take place, the environment, in totality must bptKeee from threat of any kind. It
is also a known fact that industrial effluents ewr@art major cause of environmental
pollution. Most of the industries like textile alimer, plastics, paper, food, cosmetic
and many others use dyes and pigments to colourpgheducts, and the coloured
wastewaters are always released into the water nelean These coloured
wastewaters from these industries are harmful tmgég life in rivers and lakes, due
to reduced light penetration and the presence giflfyitoxic metal complex dyes.
The release of these coloured wastewaters intetiv@onment is a considerable
source of non-aesthetic pollution and eutrophicagmd can originate dangerous
by-products through oxidation, hydrolysis, or otlebemical reactions taking place

in the wastewater phase. Noting also that abo% @0the industries in Malaysia



falls into the group of industries described abotlee wastewaters from these

industries must then be purified before releasewdter channels.

In purifying wastewaters some traditional physiteahniques (adsorption on
activated carbon, ultra-filtration, reverse osmosisagulation by chemical agents,
ion exchange on synthetic adsorbent resins, eaw¢ been used for the removal of
dye pollutants. These methods only succeed insfiearing organic compounds
from water to another phase, thus creating secgmmaiution. Other methods such
as chlorination and ozonation have also been usedthe rates of removal are
slower, and have high operating costs and limiféeteon carbon content. It is on
this background that many Researchers have devkl@uvanced oxidation
techniques for the degradation of dyes in wastewateAmong the advanced
oxidation techniques, is photocatalysis using;la@d this has been found to be very
efficient, but has a limit due to the high elecsdmles recombination that exists in
this photocatalyst. In view of this, the presdnty is set out to develop doped and
undoped photocatalysts for the photocatalytic ddafian of chemical pollutants.
As already been mentioned, chemical pollutantsh sag dyes and pesticides are
sources of environmental pollutions when they afteased into the environment and
they are majorly released into the water channgl€Cbhemical industries. These
pollutants must be removed from wastewater befaeehdrge into the water
channels. This research was therefore designaddbwastewaters containing dyes
and pesticides through titanium dioxide-based ptattdysis which possess the
potentials of total mineralization of the targetedllutant. The outcome of this
research will chart a pathway for the purificatiohwastewaters from industries,
which will be very helpful in keeping the environmefree from these harmful

chemicals.



1.2 Research Objectives

The present Research study was aimed at develapingusable doped
photocatalysts for the photocatalytic degradatibregtile dyes and pesticide (2,4-
dichlorophenoxyacetic acid). This aim was achieviedthe following objectives:
To

I. Develop doped and undoped photocatalysts usingiliita butoxide

as precursor photocatalyst.

il. Study the activity and effectiveness of the devetbmloped and

undoped photocatalysts by using them to degrade alye pesticide.

iii. Study both the kinetic and process parametersteftecthe activities

of the developed photocatalysts under UV, solar asible lights
irradiation on the photocatalytic degradation oéslpand pesticide.

V. Study the physical and chemical characteristicshef developed

doped and undoped photocatalysts.

1.3  Scope of study

The scope of the present study covered the devenproptimization and
comparative studies of titanium dioxide (L)®ased photocatalysts, and test of their
photocatalytic efficiency with the degradation ektile dyes and a pesticide (2,4-
dichlorophenoxyacetic acid; 2,4-D). It also inwedv characterization of the
developed photocatalysts using XPS for the chenstaks of the elements in the
developed photocatalysts; X-ray diffraction (XRD)daFourier Transformed Infra
Red (FTIR) for structural and functional groups lgsis respectively; surface

scanning electron microscopy (SEM) for microstroetand morphology; Nitrogen-



physisorption for surface area and pore size Higions; and UV-Vis diffused
reflectance for band gap evaluations. The scope eéttended to the evaluation of

the effects of operational parameters in photogitadegradation experiments.

1.4  Organization of the thesis

This thesis consists of five chapters. Chapter(brteoduction) presents the
environmental problems associated with the releassedustrial wastewater into the
environment. Its also enumerates the existing atstiior the treatment of industrial
wastewaters and points out the merits of photogsitabver other methods. This
chapter presents the problem statement, the olgecfi the research, scope and

justification for embarking upon the research.

Chapter two (Literature Review) divulges information the past studies in
the area of the present studies and provides angodor the photocatalysts
development. It presents the merits and demefiffi@, and proposed possible
means of enhancement of the photocatalyst’s {jT&ativity. The influences of

operational parameters on the photocatalytic degi@u of pollutants are discussed.

Chapter three (Materials and Methods) explains étaits the materials,
chemicals used and the research methodology entployethe present study.
Detailed experimental setup including a step-wigscdption of the photocatalysts
development, process conditions and photocatatysteacterizations are outlined in

this chapter.

Chapter four (Results and Discussion) is the maiast of the thesis which

discusses, interprets and analyzes the resultinebtén the present investigations.



The chapter is divided into eight major sectionshiohh are development of
photocatalyst for photocatalytic processes, chargettion of photocatalysts,
photocatalytic degradation of AR1 dyes by calcinB@®,-based photocatalysts
under UV light irradiation, photocatalytic degradatof reactive orange 16 (RO16)
dyes by the 0.5 wt% Ca-TiOdegradation of dyes by hydrotreated photocatslyst
photocatalytic degradation of AR1 under visible htig degradation of
2,4-dichlorophenoxyacetic acid, and kinetic model.

Chapter five (Conclusions and recommendations)piadates the results

reported in this study and presents recommendatfooristure studies in the field.



CHAPTER TWO

SURVEY OF LITERATURE

This chapter provides information on previous itigagions in the current
area of interest (photocatalysis). It explainsabecept of photocatalysis; discusses
on the types of semiconductor photocatalysts amdtett a path for choosing TiO
as the semiconductor photocatalyst-base in theewcurstudies. It also present
information on different methods used in the prapan of TiO-baesd
photocatalysts and also presents justification ther decision to employ sol-gel
method in the preparations of the photocatalystshm present investigations.

Effects of operational parameters and other relapids are also considered.

2.1  Photocatalysis

Photocatalysis may be termed as a photoinducedtioraavhich is
accelerated by the presence of a catalyst (Milts ldante, 1997). These types of
reactions are activated by absorption of a photdh swufficient energy (equals or
higher than the band-gap energygEof the catalyst) (Cargt al, 2004). The
absorption leads to a charge separation due togiremof an electron (gfrom the
valence band of the semi-conductor catalyst to dbeduction band (CB), thus
generating a hole {hin the valence band (the schematic diagram oftioeess is

presented in Figure 2.1).
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Figure 2.1. Schematic diagram of photocatalytic process igitiaby photon
acting on the semiconductor

Legend: p-photogenerated electron/hole pair, s-surface réuatioln, r-recombination in the bulk, d-
diffusion of acceptor and reduction on the surface of semicondi8®)r t-oxidation of donor on the
surface of SC particles

The recombination of the electron and the hole nhgstprevented as much as
possible if a photocatalyzed reaction must be festu The ultimate goal of the
process is to have a reaction between the activalextrons with an oxidant to
produce a reduced product, and also a reactioneleetthe generated-holes with a
reductant to produce an oxidized product. The qienerated electrons could
reduce the dye or react with electron acceptorb siscQ adsorbed on the Ti(lll)-
surface or dissolved in water, reducing it to sopile radical anion ©
(Konstantinou and Albanis, 2004). The photo-geteeiaholes can oxidize the
organic molecule to form R or react with OH or H,O oxidizing them intoOH
radicals. Together with other highly oxidant speci{peroxide radicals) they are
reported to be responsible for the heterogeneo@ Pphotodecomposition of

organic substrates as dyes. According to this, hlevant reactions at the
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semiconductor surface causing the degradationed dgn be expressed as follows:

TiOz + hv(UV) — TiOz(ecs” + hvg®) (2.1)
TiOx(hvg") + HO — TiO, + H + OH (2.2)
TiOx(hvs*) + OH — TiO, + OH (2.3)
TiOz(ecg) + O, — TiO, + O, (2.4)
O +H — HO, (2.5)
Dye + OH — degradation products (2.6)
Dye + Rg" — oxidation products (2.7)
Dye + eg — reduction products (2.8)

wherehv is photon energy required to excite the semicotmiuelectron from the
valence band\g) region to conduction bandgd) region. The resultingdH radical,
being a very strong oxidizing agent (standard regotential +2.8 V) can oxidize

most of azo dyes to the mineral end-products.

2.2 Semiconductors

Semiconductors (such as HOZnO, FgO; CdS, and ZnS) can act as
sensitizers for light-induced redox-processes duéhé electronic structure of the
metal atoms in chemical combination, which is cbemazed by a filled valence
band, and an empty conduction band (Hoffmahral, 1995). Upon irradiation,
valence band electrons are promoted to the cormubtind leaving a hole behind.
These electron-hole pairs can either recombineanoriteract separately with other
molecules. The holes may react either with electtonors in the solution, or with
hydroxide ions to produce powerful oxidizing specige hydroxyl (oxidation

potential 2.8 V) or super oxide radicals (Tang Angd 1995b).
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In other word, semiconductor materials are matenahose valence band
and conduction band are separated by an energyogdpand-gap. When a
semiconductor molecule absorbs photons with eneggyl or greater than its band-
gap, electrons in the valence band can be excitddwanp up into the conduction
band, and thus charge carriers are generated.der @0 have a photocatalyzed
reaction, the &-h" recombination, subsequent to the initial chargeasaion, must

be prevented as much as possible (Geetet, 2007).

Among all these semiconductors, the most widelydusemiconductor
catalyst in photoinduced processes is titaniumid®xTiO,). Though TiQ has the
disadvantage of not being activated by visibletlidgfut by ultraviolet (UV) light, it
is advantageous over the others in that it is cbalgi and biologically inert,
photocatalytically stable, relatively easy to proglland to use, able to efficiently
catalyze reactions, cheap and without risks torenment or humans (Cast al,

2004).

2.2.1 Titanium dioxide photocatalyst

Titanium dioxide (TiQ) or titania is a very well-known and well-reseadh
material due to the stability of its chemical sture, biocompatibility, physical,
optical and electrical properties. It exists iurfanineral forms (Gianlucat al,
2008), viz: anatase, rutile, brookite and titanidioxide (B) or TiQ (B). Anatase
type TiO, has a crystalline structure that corresponds eéadlragonal system (with
dipyramidal habit) and is used mainly as a photdgat under UV irradiation.

Rutile type TiQ also has a tetragonal crystal structure (withnpaiic habit). This

13



type of titania is mainly used as white pigmenpaint. Brookite type Ti@has an

orthorhombic crystalline structure. Ti®B) is a monoclinic mineral and is a
relatively newcomer to the titania family. TiQherefore is a versatile material that
finds applications in various products such as tppigments, sunscreen lotions,
electrochemical electrodes, capacitors, solar egltseven as a food coloring agent

(Meacocket al, 1997) in toothpastes.

The possible application for this material as atpbatalyst in a commercial
scale water treatment facility is due to severeidis:
(a) Photocatalytic reaction takes place at roonptature.
(b) Photocatalytic reactions do not suffer the dragks of photolysis reactions in
terms of the production of intermediate productsase organic pollutants are
usually completely mineralized to non-toxic substsuch as GOHCI and water
(Guillard, et al, 2003; Aramendiat al, 2005; Pichat, 2003; Malagd al, 2003).
(c) The photocatalyst is inexpensive and can bpatgd on various substrates such
as, glass, fibers, stainless steel, inorganic madgersand, activated carbons (ACs);
allowing continuous re-use.
(d) Photogenerated holes are extremely oxidizing photogenerated electrons

reduce sufficiently to produce superoxides fronxggens (Fujishimaet al, 2000).

Upon all the good qualities of titanium dioxidesitffers the disadvantage of
not being activated by visible light, but by ulti@et (UV) light because of it high
band gap energy. It also has a high rate of elestholes recombination, and this
always impaired it effectiveness, and limits itege of operations. Nevertheless,
the effectiveness of TiOphotocatalyst can be enhanced by doping metaihand

metal ions into it. The following investigationseahe proofs of enhancement of the
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efficiency of TiQ, by doping (Suret al, 2006; Suret al, 2008; Zhiyonget al,
2007, 2008; Huangt al, 2008; Wei etl., 2007; Chertal., 2007; Rengaragt al,
2006; Yuet al, 2007; Kryukoveet al, 2007; Ozcaret al, 2007). Krishnaet al.
(2008) also reported a 2.6 times higher rate adefft for PHF-TiQ over TiG, for

the degradation of triazine monoazo compound Rriotal MX-5B.

2.3  Operating Parameters in Photocatalytic Processe

In photocatalytic degradation of dyes in wastevwmtehe followings are
operating parameters which affect the process: pthe solution to be degraded,
and the pH of the precursor solution (catalyst'tutsan during preparation of
catalyst); oxidizing agent, calcination temperatudepant content, and catalyst
loading. These parameters will be considered @ee the other as they influenced

the photocatalytic processes of the degradatialyes$ in wastewaters.

2.3.1 Influence of pH on photocatalytic degradatiorof dyes in wastewaters

The interpretation of pH effects on the efficiermydye photodegradation
process is a very difficult task because of itstipld roles (Konstantinou, and
Albanis, 2004). First, is related to the ionizat&tate of the surface according to the
following reactions:

TiOH + HY <== TiOH," 2.9)

TiOH + OH" == TiO" +H,0 (2.10)

as well as to that of reactant dyes and produath s acids and amines. pH

changes can thus influence the adsorption of dylecutes onto the Ti@surfaces,
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an important step for the photocatalytic oxidationtake place (Fox and Dulay,
1993). Bahnemanet al. (1995) have already reviewed that acid-base ptiegenf
the metal oxide surfaces can have considerable igatjgins upon their

photocatalytic activity.

Second, hydroxyl radicals can be formed by thetimadetween hydroxide
ions and positive holes. The positive holes aresiciemed as the major oxidation
species at low pH, whereas hydroxyl radicals amesiciered as the predominant
species at neutral or high pH levels (Tunesi andekson, 1991). It was stated that
in alkaline solution,OH are easier to be generated by oxidizing moredxyde
ions available on Ti® surface, thus the efficiency of the process isiclalty
enhanced (Concalves al, 1999). Similar results are reported in the pbatalyzed
degradation of acidic azo dyes and triazine comgirmazo dyes (Tang and An,
1995a; Reutergarth and langpashuk, 1997; Guikaral, 2003), although it should
be noted that in alkaline solution there is a Collir repulsion between the
negative charged surface of photocatalyst and yheokide anions. This fact could

prevent the formation 6OH and thus decrease the photoxidation.

Third, it must also be noted that LiQarticles tend to agglomerate under
acidic condition and the surface area available dge adsorption and photon
absorption would be reduced (Fox and Dulay, 1993)e degradation rate of some
azo dyes increased with decrease in pH as repettsivhere (Sakthivedt al,

2003).

The study of Bararet al, (2008) also showed that the degradation of
Bromocresol purple dye under acidic condition wettds than in alkaline medium,

and that the molecules are positively charged. cifely, after the solution was
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acidified from pH 8.0 to pH 4.5, a 6-fold increase adsorption efficacy was
observed. Such an increase in adsorption efficamyidcnot be explained only
through changes of the TiQurface (probably caused by a change of pH (\Wéing

al., 2000)).

The mechanism of the photocatalytic reaction in fresence of Ti@
consists of a free radical reaction initiated by Wyht (Baranet al, 2008). The
mechanism may depend on the ability of the degradetbound to be adsorbed on
the surface of the catalyst. The extent of suclmtion depends on many factors,
such as the charge of the degraded compound. Ifouesl that in photocatalytic
degradation, the adsorption level on unmodified ;Ti© higher for dyes with a
positive charge (cationic) than for those with gateve charge (anionic) (Baraat
al., 2003). As the charge depends on the pH of a giedution, it follows that both
pH and the nature of a particular dye influencephetocatalyst activity (Grosse and
Lewis, 1998; Poulios and Aetopoulou, 1999; Poukbsal, 2000; Tang and An,

1995a,b; Alaton and Balcioglu, 2001).

The degradation rate of azo dyes increases withredse in pH
(Konstantinou and Albanis). At pH<6, a strong agton of the dye on the TiO
particles is observed as a result of the electiiostttraction of the positively
charged TiQ with the dye. At pH>@B as dye molecules are negatively charged in
alkaline media, their adsorption is also expectele affected by an increase in the
density of TiO groups on the semiconductor surface. Thus, du€dwlombic

repulsion the dyes are scarcely adsorbed (Abo-Fafid; Lachhelet al, 2002).

The effects of pH on photocatalytic degradatiodyd#s have been studied by

many Researchers (Borker & Salker, 2006; Rengaral, 2006; Suret al, 2006;
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Wei et al, 2007; Cheret al, 2007; Suret al, 2008; Xiaocet al, 2007; Bararet al,
2008; Huanget al, 2008; Saquiket al, 2008; Yapet al, 2010). Chakrabarti and
Dutta (2004) studied the effects of pH in the platalytic degradation of two
model dyes: methylene Blue and Eosin Y in wastewatging ZnO as the
semiconductor catalyst. With two things in mindgpindustrial effluents may not
be neutral, and two, pH of the reaction mixtureluances the surface-charge-
properties of the photocatalysts, they went omt@stigate the effect of pH on the
rate of degradation of dye at the pH range of 5/54%sing 50 mg/L methylene Blue
solutions. Their results revealed that the pesgmtdegradation of the dye
increased from 49 to 62 in 2 h as the pH incre&sed 5.5 to 9.7. This shows that
change in pH shifts the redox-potentials of theemaé and conduction bands, which

may affect interfacial charge-transfer.

Borker and Salker (2006) in their work - photcatialglegradation of textile
azo dye over GgSnO, series reported on the effect of pH on the phaébytic
degradation of diazo dye Naphthol Blue Black (NBBjheir findings showed that
degradation of the dye was faster in alkaline mmdpH. It has earlier been
reported that in alkaline medium, there is a greptebability for the formation of
hydroxyl radical {OH), which can act as an oxidant, thus increasheg rate of

photodegradation of the dye (Zhang, 2002).

Sleimanet al (2007) reported on the influence of pH on thetpbatalytic
degradation of Metanil Yellow, an anionic dye wahsulfonate group, over T{O
photocatalyst under UV illumination. Their resuitsdicated that the process
efficiency is not considerably affected over a widage of pH (4-8). They added

that the interpretation of pH effect can be priadipexplained by a modification of
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the electrical double layer of the solid-electrelyihterface, which consequently
affects the sorption-desorption processes and dparation of the photogenerated
electron-hole pairs at the surface of the semicommlyparticles. Their study also
explained that since Metanil Yellow is an aniony@dnd has a sulfonate group, its
adsorption is favoured at low pH (the extent ofaapson is almost twofold at pH
4.0 compared to that at neutral pH). The resulttheir findings showed that the

nature of the substance to be degraded affectgpibrating pH of the system.

Zhiyonget al (2007) in their work - ZnSETiO, doped catalyst with higher
activity in photocatalytic processes, reported dre teffect of pH on the
photocatalytic degradation of Orange Il, an aniotye with -SQ group. Their
results showed that the photocatalytic activity wasst favoured at a lower pH
(3.0), but went on at a slower and inefficient ratgH 10.0. It is important to note
that the photocatalytic degradation of some dyeswaore effective at about neutral
pH (Chenret al, 2007), and others in alkaline medium (Saqgebal., 2008). It has
earlier been reported that in alkaline medium, géhsra greater probability for the
formation of hydroxyl radical’QH), which can act as an oxidant, thus increasing

the rate of photodegradation of the dye (Zhanagl, 2002).

In summary, Table 2.1 presents pH influence onphetodegradation of
various dyes and an insecticide. The table reuwbalsdifferent dyes have different
activity in photcatalytic reaction. Some are pleatalytically degraded at lower pH,
while others do so at higher pH. All these mayalteibuted to the nature of the
pollutant to be degraded. Therefore, it is imparteo study the nature of the
pollutants to be degraded, and determine the phphgght pH to photocatalytically

degrade them.
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Table 2.1. pH influence on the photocatalytic degi@ation of various dyes and an insecticide

Pollutant type Light Photocatalyst Tested pH range Optimum pH Refesence
source
Bisphenol-A Solar TiOL/AC 3.0-11.0 3.0 Yapet al, (2010)
Direct Blue DB53 uvc Gd-TiG, 2.0-9.0 4.0 El-Bahyet al, (2009)
Acid Orange 7 Visible WO,/TiO, 1.0-9.0 3.0 Sajjadet al, (2010)
Methyl Orange Visible WO,/TiO, 1.0-9.0 4.0 Sajjadet al, 2010
uv Pt-TiO, 2.5-11.0 25 Huanget al.(2008)
Orange Green uv Sn/TiG/AC 1.0-12.0 2.0 Sunet al.(2008)
Visible N-TiO, 1.5-6.5 2.0 Sunet al.(2008)
Fast Green uv TiO, 3.0-11.0 4.4 Saquibeet al. (2008)
Patent Blue VF uv TiO, 3.0-11.0 11.0 Saquibeet al. (2008)
Everdirect Blue uv K-TiO, 45-11.8 7.2 Chenet al. (2007)
(BRL)
Orange I Solar Zn-TiO, 3.0-10.0 3.0 Zhiyonget al. (2007)
Acid Red B uv Ce-TiO, 1.5-7.0 15 Wei et al. (2007)
Bromocresol Purple uv TiO, 4.5 and 8.0 4.5 Baranet al. (2008)
4-Chlorophenol uv N-TiO, 2.0-5.0 3.0° Yu et al.(2007)
Salicylic Acid uv TiO, 1.0-11.0 2.3 Suet al.(2004)

@pH of precursor solution (catalysts solution dgrpreparation of catalysts).
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