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NO     Nitrogen oxide 
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SINTESIS, PENCIRIAN DAN AKTIVITI FOTO PEMANGKINAN 
TITANIUM DIOKSIDA BERASASKAN (Ca, Ce, W) UNTUK DEGR ADASI 

PEWARNA DAN RACUN PEROSAK.  
 

ABSTRAK  

Pengindustrian global berhadapan dengan berbagai cabaran.  Pelepasan yang tidak 

diingini melibatkan produk dan bahan cemar yang karsinogen dan toksik ke dalam 

persekitaran oleh industri tekstil, kimia dan pemprosesan adalah berkadar langsung 

kepada pertumbuhan industri. Persekitaran harus dipastikan selamat. Maka, teknik 

fotopemangkinan telah dikaji untuk merawat air sisa yang mengandungi bahan 

pencelup (asid merah 1, reaktif oren 16, reaktif biru 19, terus biru 71 dan asid biru 

25) dan racun serangga (asid 2-4-diklorofenoxiasetik; 2,4-D). Fotomangkin 

komposit yang stabil elektroniknya daripada jenis Ti(1-x-y)Ca(3x-y)Ce(2x-y)W(y/6)O2(1-2(y-

x)) (pada y<2x dan x+y<1) dengan aktiviti fotopemangkinan yang lebih baik telah 

dibangunkan secara pencampuran TiO2 dengan unsur Ca, Ce dan W. 

Fotopemangkinan ini telah disediakan dengan kaedah sol-gel, dirawat secara termal-

hidro dan digunakan untuk menguraikan bahan-bahan tersebut di atas.  

Keberkesanan fotopemangkinan komposit disahkan dengan membandingkan 

aktivitinya dengan dua fotopemangkinan komersial; Degussa P25 dan TiO2- Sigma 

pada keadaan ujikaji yang sama.  Fotopemangkinan yang dibangunkan ini didapati 

lebih baik daripada Sigma -TiO2 dalam penguraian AR1 secara fotopemangkinan 

solar. Ujian kebolehgunaan ke atas fotopemangkinan yang dibangunkan ini 

membuktikan yang ia lebih baik berbanding Degussa P25 (yang mana tidak boleh 

mendak dari larutan selama tujuh bulan selepas degradasi fotopemangkinan ke atas 

2,4-D). Ini membuktikan yang ia bukan boleh diguna semula.  Sebaliknya, 

fotomangkin komposit dapat menguraikan pencemar kurang dari 1 jam selepas 
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pemancaran dan keberkesanannya pada kitaran keempat adalah masih sama seperti 

pada kitaran pertama.  Kelebihan fotomangkin komposit ini ke atas Degussa P25 

menghadkan bilangan perbandingan di antara mereka.  Mangkin lain turut dibangun 

dan diuji. Fotomangkinan yang dibangunkan ini telah dicirikan oleh X-ray foto-

elektron spektroskopi untuk unsur-unsur kimia, belauan sinar-X dan Fourier 

transformasi infra merah untuk pencirian struktur dan analisis kumpulan berfungsi; 

imbasan elektron mikroskop untuk mikrostruktur dan morfologi permukaan; jerapan 

nitrogen untuk penentuan luas permukaan dan taburan saiz liang; UV-Vis pantulan 

untuk penilaian ‘band gap’. Keputusan pencampuran menghasilkan penurunan sela 

jalur gelombang TiO2 daripada 3.2 eV kepada 2.94 eV. Oleh itu, tidak balas 

fotopemangkinan beralih kepada kawasan tampak.  Analisis XPS beresolusi tinggi 

menunjukkan fotomangkinan adalah lebih stabil kerana kehadiran kandungan kimia 

pada keadaan pengoksidaan yang dijangkan. Fotopemangkinan mempunyai luas 

permukaan yang besar dan jerapan-penyaherapan isoterma nitrogen jenis IV dengan 

kelok histerisis H2. Pelbagai parameter operasi seperti kepekatan awal bahan-bahan 

pencemar, pH awal, kalsinasi suhu/hidrotermal dan kandungan campuran telah 

dikaji. Walaupun pH mempengaruhi proses fotopemangkinan untuk semua keadaan, 

kepekatan awal di dapati tidak mempengaruhi proses kecuali bagi penguraian     2,4-

D. Ujikaji kinetik mendapati tertib tindakbalas yang terbaik adalah tertib pertama, 

kecuali untuk penguraian cahaya yang boleh dilihat AR1 di mana kadar tidak 

bergantung kepada kepekatan awal. 
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SYNTHESIS, CHARACTERIZATION AND  ACTIVITY OF TITANIUM 
DIOXIDE BASED-(Ca, Ce, W)-TiO2 PHOTOCATALYSTS FOR 

DEGRADATION OF DYE AND PESTICIDE 
 

ABSTRACT  

Global industrialization is not without its attendant challenges. The release of 

unwanted by-products and pollutants which are carcinogenic and toxic into the 

environment by textiles, chemicals and processing industries is directly proportional 

to industrial growth. The environment must be kept safe. Therefore, photocatalysis 

leading to complete mineralization of pollutant(s) was adopted to treat wastewaters 

containing dyes (acid red 1, reactive orange 16, reactive blue 19, direct blue 71 and 

acid blue 25) and a pesticide (2,4-dichlorophenoxyacetic acid; 2,4-D).  A composite  

photocatalyst, electronically stable of the type Ti(1-x-y)Ca(3x-y)Ce(2x-y)W(y/6)O2(1-2(y-x)) 

(at y<2x and x+y<1) with an enhanced photocatalytic activity was developed by 

doping TiO2 with Ca, Ce and W.  The photocatalyst was prepared by sol-gel method, 

hydrothermally treated and employed in the degradation of the above mentioned 

pollutants.  The effectiveness of the composite photocatalyst was verified by 

comparing its activity under the same experimental conditions with two commercial 

photocatalysts; Degussa P25 and TiO2-Sigma product CAS No. 1317-70-0.  The 

developed photocatalyst was better than TiO2-Sigma product in solar photocatalytic 

degradation of AR1.  The reusability test of the developed photocatalyst makes it 

superior to Degussa P25 (which could not settle out of solution seven months after 

photocatalytic degradation of 2,4-D), hence rendering it non-reusable.  On the other 

hand, the composite photocatalyst settled out of solution in less than 1 h after 

irradiation and proved to be as efficient at the fourth cycle as in the first, as it 

accomplished a complete degradation at the same irradiation time.  This advantage 

of the composite photocatalyst over Degussa P25 limits the number of comparison 
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made between them.  Other catalysts were also developed and tested as described in 

the body of the Thesis.  The developed photocatalysts were characterized by X-ray 

photoelectron spectroscopy (XPS) for the chemical states of the elements in the 

developed photocatalysts; X-ray diffraction (XRD) and Fourier Transformed Infra 

Red (FTIR) for structural and functional groups analysis respectively; surface 

scanning electron microscopy (SEM) for microstructure and morphology; Nitrogen-

physisorption for surface area and pore size distributions; and UV-Vis diffused 

reflectance for band gap evaluations.  The doping resulted in a reduction in the band 

gap of TiO2 from 3.2 eV to 2.94 eV, and hence the photocatalytic reaction was 

pushed into the visible region.  The high resolution XPS analysis revealed that the 

photocatalysts is stable as its chemical constituents were found to exist in the 

proposed oxidation states.  The photocatalysts have high surface areas available for 

photocatalysis and are of N2 adsorption-desorption isotherms of type IV with type 

H2 hysteresis loops.  Various operational parameters such as initial pollutants 

concentration, initial pH, calcination/hydrotreatment temperatures and dopant 

contents were investigated.  While pH greatly influenced the photocatalytic process 

in all cases, initial concentration does not seem to influence the process, except for 

2,4-D degradation.  The kinetic study revealed that reaction order that best describes 

the whole process is first order, except for the visible light degradation of AR1 

where the rate is independent of initial concentration.
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CHAPTER ONE 

INTRODUCTION 

 

The effluents, gaseous or liquid produced by some of our industries are 

harmful to the health and general well-being of man.  When undesirable substances 

are present in liquid effluents, it can be disastrous as their presence pose severe 

threat to the immediate recipients.  Wastewaters from various industries, factories, 

laboratories, etc are serious problems to the environment.  The discharged wastes 

containing dyes are toxic to microorganisms, aquatic life and human beings (Borker 

& Salker, 2006).  These deleterious effects of chemicals on the earth ecosystems are 

a cause for serious concern.  Several of these chemicals such as azo dyes, herbicides, 

and pesticides are actually present in rivers and lakes, and are in part suspected of 

being endocrine-disrupting chemicals (EDCs) (Coleman et al., 2000; Hong et al., 

1998; Ohko et al., 2001; Wang and Hong, 2000). 

 
Konstantinou and Albanis (2004) reported that textile dyes and other 

industrial dyestuffs constitute one of the largest groups of organic compounds that 

represent an increasing environmental danger. About 1-20 % of the total world 

production of dyes is lost during the dyeing process and is released in the textile 

effluents (Zollinger, 1991).  The release of those coloured wastewaters in the 

environment is a considerable source of non-aesthetic pollution and eutrophication, 

and can originate dangerous byproducts through oxidation, hydrolysis, or other 

chemical reactions taking place in the wastewater phase.  It must be noted that dyes 

can present toxic effects and reduce light penetration in contaminated waters (Prado, 

et al., 2008). 
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Degradation of dyes in industrial wastewaters has therefore received 

increasing attention and some methods of remediation have been proffered.   Most 

textile dyes are photocatalytically stable and refractory towards chemical oxidation 

(Arslan and Balcioglu, 2001), and these characteristics render them resistant towards 

decolorization by conventional biochemical and physico-chemical methods.  

Traditional physical techniques (adsorption on activated carbon, ultrafiltration, 

reverse osmosis, coagulation by chemical agents, ion exchange on synthetic 

adsorbent resins, etc.) have been used for the removal of dye pollutants (Tang and 

An, 1995; Konstantinou and Albanis, 2004).  These methods only succeed in 

transferring organic compounds from water to another phase, thus creating 

secondary pollution. This will require a further treatment of solid-wastes and 

regeneration of the adsorbent which will add more cost to the process.  

Microbiological or enzymatic decomposition (Hao et al., 2000), biodegradation 

(Sleiman et al., 2007), ozonation (Slokar & Marechal, 1998), and advanced 

oxidation processes such as Fenton and photo-Fenton catalytic reactions (Kuo, 1992; 

Konstantinou and Albanis), H2O2/UV processes (Ince and Gonenc, 1997; Arslan et 

al., 2001) have also been used for dyes removal from wastewaters. 

 
Forgacs et al. (2004) noted that traditional wastewater treatment technologies 

have proven to be markedly ineffective for handling wastewater of synthetic textile 

dyes because of the chemical stability of these pollutants, and went further to verify 

that 11 out of 18 azo dyes selected for their investigations passed  through the 

activated sludge process practically untreated.  All the aforementioned processes 

have a wide range of their deficiencies in the removal of dyes from wastewaters. 
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Recent studies (Stylidi et al., 2003; Silva et al., 2006; Sun et al., 2006; 

Reddy et al., 2007; Sleiman et al., 2007; Saquiba et al., 2008; Li et al., 2009; Kansal 

et al., 2010; Zhang et al., 2011) have been devoted to the use of photocatalysis in the 

removal of dyes from wastewaters, particularly, because of the ability of this method 

to completely mineralize the target pollutants (Madhavan, et al., 2008). 

 
Among the AOPs, heterogeneous photocatalysis using TiO2 as a 

photocatalyst appears as the most emerging destructive technology (Hoffmann, 

1995; Su et al., 2004; Sun et al., 2006; Saquiba et al., 2008; Zhang et al., 2011). 

The key advantage of the former is its inherent destructive nature.  Photocatalysis 

can be carried out under ambient conditions (atmospheric oxygen is used as 

oxidant), and may lead to complete mineralization of organic carbon into CO2 

without any mass transfer operation.  TiO2 choice as a photocatalyst is made because 

it is largely available, inexpensive, and non-toxic and relatively stable-chemically.  

Moreover, works have been reported on the photocatalytic potentials of TiO2 (Zhang 

and Liu, 2008).  Titanium dioxide (TiO2) has been very effective photocatalyst, but 

its effectiveness is impaired by its high band gap energy.  These therefore, demand 

modifications for the effective application of TiO2 as a photocatalyst.  Hence in 

order to enhance interfacial charge-transfer reactions, the catalyst has been modified 

by selective ion doping of the crystalline TiO2 matrix (Chen et al., 2007; Huang et 

al., 2008; Kryukova et al., 2007; Ozcan et al., 2007; Rengaraj et al., 2006; Sun et 

al., 2006; Wei et al., 2007; Zhiyong et al., 2007, 2008). 

 
Various metal ions – rare earth (Xu et al., 2002; Saif and Abdel-Mottaleb, 

2007; Wei et al., 2007), transition (Wilke and Breuer, 1999; Jeon et al., 2000; Li et 

al., 2001; Xu et al., 2004; Liu et al., 2005; Stir et al., 2006; Ghorai et al., 2007; Liao 
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et al., 2007; Xin et al., 2008; Zhang and Lei 2008; Huang et al., 2008; Ding et al., 

2008; Fan et al., 2008; Cheng 2011), other metal ions (Sun et al., 2006; Rengaraj 

and Li, 2006; Rengaraj et al., 2006), co-doping (Ghorai et al., 2007; Srinivasan et 

al., 2006; Colmenares et al., 2006; Bettinelli et al., 2007; Shi et al., 2007; Gu et al., 

2008; Liu et al., 2008; Zhang and Liu, 2008), non-metal ions (Ohno et al., 2004; Liu 

et al., 2006; Sun et al., 2007; Yu et al., 2007; Peng et al., 2008; Li et al., 2008; 

Zaleska et al., 2008; Li et al., 2008; Zhang et al., 2008b; Crisan et al., 2008) and 

surfactants (Liao et al., 2007) have been used to enhance the photocatalytic activities 

of TiO2.  It must be noted that though transition metals ions such as Cr, V, Fe, etc, 

have been used in doping TiO2 photocatalyst, doping with transition metal ions 

generally increase carrier-recombination centers, and consequently debases the 

quantum efficiency of doped TiO2 catalysts (Gu et al., 2008).  Moreover, doping 

with transition metal ions could result in thermal instability of the doped 

photocatalysts (Gu et al., 2008).  Anpo (2000) reported on doping TiO2 with 

transition metals and their effects on the photocatalytic decomposition of NO.  Two 

doping conditions were considered in his study; (i) the metal ions implanted TiO2 

and (ii) doping TiO2 with the considered metal chemically.  In both methods it was 

discovered that the doping had negative influence on the photocatalytic efficiency of 

TiO2 even under UV light irradiation (λ<380nm), that is to say that the 

photocatalytic efficiency of TiO2 decreased with the doping.  It was however noted 

that for the photocatalytic decomposition of NO, only Cr and V ion-implanted TiO2 

retained the same photocatalytic efficiency as the original unimplanted TiO2 even 

under UV light irradiation (λ<380nm).  This further explains why transition metal 

doping should be considered with utmost care. 

 
There have been many reports on transition metal, rare earth and noble metal 
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ions doping of TiO2, but studies on alkaline-earth metal ions doping of TiO2 and 

their photocatalytic properties have limited literature.  The only literature available 

at the time of preparing this report is that reported by Li et al., (2007).  The 

Researchers reported on the effect of doping TiO2 with alkaline-earth metal ions and 

its photocatalytic activity on the photocatalytic generation of hydrogen in 

suspension.  No report has been seen on doping TiO2 with alkaline earth metal ions 

for photocatalytic degradation of textile wastewater.  This has therefore been the 

driving force of this work.  This present work was therefore aimed at developing 

doped and undoped photocatalysts for the photocatalytic degradation of textile dyes 

in textile wastewaters, with priority to TiO2 doped with alkaline earth and other 

metals ions. 

 

1.1 Problem Statement 

 
It is certain that a good society needs a good health condition and for this to 

take place, the environment, in totality must be kept free from threat of any kind.  It 

is also a known fact that industrial effluents are in part major cause of environmental 

pollution.  Most of the industries like textile, leather, plastics, paper, food, cosmetic 

and many others use dyes and pigments to colour their products, and the coloured 

wastewaters are always released into the water channels.  These coloured 

wastewaters from these industries are harmful to aquatic life in rivers and lakes, due 

to reduced light penetration and the presence of highly toxic metal complex dyes.  

The release of these coloured wastewaters into the environment is a considerable 

source of non-aesthetic pollution and eutrophication and can originate dangerous  

by-products through oxidation, hydrolysis, or other chemical reactions taking place 

in the wastewater phase.  Noting also that about 70% of the industries in Malaysia 
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falls into the group of industries described above; the wastewaters from these 

industries must then be purified before release into water channels. 

 
In purifying wastewaters some traditional physical techniques (adsorption on 

activated carbon, ultra-filtration, reverse osmosis, coagulation by chemical agents, 

ion exchange on synthetic adsorbent resins, etc.) have been used for the removal of 

dye pollutants.  These methods only succeed in transferring organic compounds 

from water to another phase, thus creating secondary pollution.  Other methods such 

as chlorination and ozonation have also been used, but the rates of removal are 

slower, and have high operating costs and limited effect on carbon content.  It is on 

this background that many Researchers have developed advanced oxidation 

techniques for the degradation of dyes in wastewaters.  Among the advanced 

oxidation techniques, is photocatalysis using TiO2 and this has been found to be very 

efficient, but has a limit due to the high electrons-holes recombination that exists in 

this photocatalyst.  In view of this, the present study is set out to develop doped and 

undoped photocatalysts for the photocatalytic degradation of chemical pollutants.  

As already been mentioned, chemical pollutants, such as dyes and pesticides are 

sources of environmental pollutions when they are released into the environment and 

they are majorly released into the water channels by Chemical industries. These 

pollutants must be removed from wastewater before discharge into the water 

channels. This research was therefore designed to treat wastewaters containing dyes 

and pesticides through titanium dioxide-based photocatalysis which possess the 

potentials of total mineralization of the targeted pollutant. The outcome of this 

research will chart a pathway for the purification of wastewaters from industries, 

which will be very helpful in keeping the environment free from these harmful 

chemicals.
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1.2 Research Objectives 

 
The present Research study was aimed at developing a reusable doped 

photocatalysts for the photocatalytic degradation of textile dyes and pesticide (2,4-

dichlorophenoxyacetic acid).  This aim was achieved via the following objectives: 

To 

i. Develop doped and undoped photocatalysts using Titanium butoxide 

as precursor photocatalyst. 

ii.  Study the activity and effectiveness of the developed doped and 

undoped photocatalysts by using them to degrade dyes and pesticide. 

iii.  Study both the kinetic and process parameters effects on the activities 

of the developed photocatalysts under UV, solar and visible lights 

irradiation on the photocatalytic degradation of dyes and pesticide. 

iv. Study the physical and chemical characteristics of the developed 

doped and undoped photocatalysts. 

 

1.3 Scope of study 

 
The scope of the present study covered the development, optimization and 

comparative studies of titanium dioxide (TiO2) based photocatalysts, and test of their 

photocatalytic efficiency with the degradation of textile dyes and a pesticide (2,4-

dichlorophenoxyacetic acid; 2,4-D).  It also involved characterization of the 

developed photocatalysts using XPS for the chemical states of the elements in the 

developed photocatalysts; X-ray diffraction (XRD) and Fourier Transformed Infra 

Red (FTIR) for structural and functional groups analysis respectively; surface 

scanning electron microscopy (SEM) for microstructure and morphology; Nitrogen-
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physisorption for surface area and pore size distributions; and UV-Vis diffused 

reflectance for band gap evaluations.  The scope also extended to the evaluation of 

the effects of operational parameters in photocatalytic degradation experiments. 

 

1.4 Organization of the thesis 

 
This thesis consists of five chapters.  Chapter one (Introduction) presents the 

environmental problems associated with the release of industrial wastewater into the 

environment.  Its also enumerates the existing methods for the treatment of industrial 

wastewaters and points out the merits of photocatalysis over other methods.  This 

chapter presents the problem statement, the objective of the research, scope and 

justification for embarking upon the research. 

 
Chapter two (Literature Review) divulges information on the past studies in 

the area of the present studies and provides a routing for the photocatalysts 

development.  It presents the merits and demerits of TiO2 and proposed possible 

means of enhancement of the photocatalyst’s (TiO2) activity.  The influences of 

operational parameters on the photocatalytic degradation of pollutants are discussed. 

 
Chapter three (Materials and Methods) explains in details the materials, 

chemicals used and the research methodology employed in the present study.  

Detailed experimental setup including a step-wise description of the photocatalysts 

development, process conditions and photocatalysts characterizations are outlined in 

this chapter. 

 
Chapter four (Results and Discussion) is the main thrust of the thesis which 

discusses, interprets and analyzes the results obtained in the present investigations.  
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The chapter is divided into eight major sections; which are development of 

photocatalyst for photocatalytic processes, characterization of photocatalysts, 

photocatalytic degradation of AR1 dyes by calcined TiO2-based photocatalysts 

under UV light irradiation, photocatalytic degradation of reactive orange 16 (RO16) 

dyes by the 0.5 wt% Ca-TiO2, degradation of dyes by hydrotreated photocatalysts, 

photocatalytic degradation of AR1 under visible light, degradation of                       

2,4-dichlorophenoxyacetic acid, and kinetic model. 

Chapter five (Conclusions and recommendations) recapitulates the results 

reported in this study and presents recommendations for future studies in the field. 
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CHAPTER TWO   

SURVEY OF LITERATURE  

 
This chapter provides information on previous investigations in the current 

area of interest (photocatalysis).  It explains the concept of photocatalysis; discusses 

on the types of semiconductor photocatalysts and charted a path for choosing TiO2 

as the semiconductor photocatalyst-base in the current studies.  It also present 

information on different methods used in the preparation of TiO2-baesd 

photocatalysts and also presents justification for the decision to employ sol-gel 

method in the preparations of the photocatalysts in the present investigations.  

Effects of operational parameters and other related topics are also considered. 

 

2.1  Photocatalysis 

 
Photocatalysis may be termed as a photoinduced reaction which is 

accelerated by the presence of a catalyst (Mills and Hunte, 1997).  These types of 

reactions are activated by absorption of a photon with sufficient energy (equals or 

higher than the band-gap energy (Ebg) of the catalyst) (Carp et al., 2004).  The 

absorption leads to a charge separation due to promotion of an electron (e-) from the 

valence band of the semi-conductor catalyst to the conduction band (CB), thus 

generating a hole (h+) in the valence band (the schematic diagram of the process is 

presented in Figure 2.1). 
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Figure 2.1. Schematic diagram of photocatalytic process initiated by photon 

acting on the semiconductor 
 
Legend: p-photogenerated electron/hole pair, s-surface recombination, r-recombination in the bulk, d-
diffusion of acceptor and reduction on the surface of semiconductor (SC), t-oxidation of donor on the 
surface of SC particles 
 

The recombination of the electron and the hole must be prevented as much as 

possible if a photocatalyzed reaction must be favoured.  The ultimate goal of the 

process is to have a reaction between the activated electrons with an oxidant to 

produce a reduced product, and also a reaction between the generated-holes with a 

reductant to produce an oxidized product.  The photogenerated electrons could 

reduce the dye or react with electron acceptors such as O2 adsorbed on the Ti(III)-

surface or dissolved in water, reducing it to superoxide radical anion O2
•− 

(Konstantinou and Albanis, 2004).  The photo-generated holes can oxidize the 

organic molecule to form R+, or react with OH− or H2O oxidizing them into •OH 

radicals. Together with other highly oxidant species (peroxide radicals) they are 

reported to be responsible for the heterogeneous TiO2 photodecomposition of 

organic substrates as dyes. According to this, the relevant reactions at the 
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semiconductor surface causing the degradation of dyes can be expressed as follows: 

 
 TiO2 + hv(UV) → TiO2(eCB

− + hVB
+)     (2.1) 

 TiO2(hVB
+) + H2O → TiO2 + H+ + OH•    (2.2) 

 TiO2(hVB
+) + OH− → TiO2 + OH•     (2.3) 

 TiO2(eCB
−) + O2 → TiO2 + O2

•−     (2.4) 

 O2
•− + H+ → HO2

•       (2.5) 

 Dye + OH• → degradation products     (2.6) 

 Dye + hVB
+ → oxidation products     (2.7) 

 Dye + eCB
− → reduction products     (2.8) 

 
where hv is photon energy required to excite the semiconductor electron from the 

valence band (VB) region to conduction band (CB) region.  The resulting •OH radical, 

being a very strong oxidizing agent (standard redox potential +2.8 V) can oxidize 

most of azo dyes to the mineral end-products. 

 

2.2 Semiconductors 

 
Semiconductors (such as TiO2, ZnO, Fe2O3, CdS, and ZnS) can act as 

sensitizers for light-induced redox-processes due to the electronic structure of the 

metal atoms in chemical combination, which is characterized by a filled valence 

band, and an empty conduction band (Hoffmann et al., 1995).  Upon irradiation, 

valence band electrons are promoted to the conduction band leaving a hole behind. 

These electron-hole pairs can either recombine or can interact separately with other 

molecules. The holes may react either with electron donors in the solution, or with 

hydroxide ions to produce powerful oxidizing species like hydroxyl (oxidation 

potential 2.8 V) or super oxide radicals (Tang and An, 1995b). 
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In other word, semiconductor materials are materials whose valence band 

and conduction band are separated by an energy gap or band-gap.  When a 

semiconductor molecule absorbs photons with energy equal or greater than its band-

gap, electrons in the valence band can be excited and jump up into the conduction 

band, and thus charge carriers are generated. In order to have a photocatalyzed 

reaction, the e−–h+ recombination, subsequent to the initial charge separation, must 

be prevented as much as possible (Gerven et al., 2007). 

 
Among all these semiconductors, the most widely used semiconductor 

catalyst in photoinduced processes is titanium dioxide (TiO2).  Though TiO2 has the 

disadvantage of not being activated by visible light, but by ultraviolet (UV) light, it 

is advantageous over the others in that it is chemically and biologically inert, 

photocatalytically stable, relatively easy to produce and to use, able to efficiently 

catalyze reactions, cheap and without risks to environment or humans (Carp et al., 

2004). 

 

2.2.1 Titanium dioxide photocatalyst 

 
Titanium dioxide (TiO2) or titania is a very well-known and well-researched 

material due to the stability of its chemical structure, biocompatibility, physical, 

optical and electrical properties.  It exists in four mineral forms (Gianluca et al., 

2008), viz: anatase, rutile, brookite and titanium dioxide (B) or TiO2 (B).  Anatase 

type TiO2 has a crystalline structure that corresponds to the tetragonal system (with 

dipyramidal habit) and is used mainly as a photocatalyst under UV irradiation.  

Rutile type TiO2 also has a tetragonal crystal structure (with prismatic habit).  This 
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type of titania is mainly used as white pigment in paint.  Brookite type TiO2 has an 

orthorhombic crystalline structure.  TiO2 (B) is a monoclinic mineral and is a 

relatively newcomer to the titania family.  TiO2, therefore is a versatile material that 

finds applications in various products such as paint pigments, sunscreen lotions, 

electrochemical electrodes, capacitors, solar cells and even as a food coloring agent 

(Meacock, et al., 1997) in toothpastes. 

 

The possible application for this material as a photocatalyst in a commercial 

scale water treatment facility is due to several factors: 

(a) Photocatalytic reaction takes place at room temperature. 

(b) Photocatalytic reactions do not suffer the drawbacks of photolysis reactions in 

terms of the production of intermediate products because organic pollutants are 

usually completely mineralized to non-toxic substances such as CO2, HCl and water 

(Guillard, et al., 2003; Aramendia et al., 2005; Pichat, 2003; Malato et al., 2003). 

(c) The photocatalyst is inexpensive and can be supported on various substrates such 

as, glass, fibers, stainless steel, inorganic materials, sand, activated carbons (ACs); 

allowing continuous re-use. 

(d) Photogenerated holes are extremely oxidizing and photogenerated electrons 

reduce sufficiently to produce superoxides from dioxygens (Fujishima, et al., 2000). 

 
Upon all the good qualities of titanium dioxide, it suffers the disadvantage of 

not being activated by visible light, but by ultraviolet (UV) light because of it high 

band gap energy.  It also has a high rate of electrons-holes recombination, and this 

always impaired it effectiveness, and limits its range of operations.  Nevertheless, 

the effectiveness of TiO2 photocatalyst can be enhanced by doping metal and non-

metal ions into it.  The following investigations are the proofs of enhancement of the 
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efficiency of TiO2 by doping (Sun et al., 2006; Sun et al., 2008; Zhiyong et al., 

2007, 2008; Huang et al., 2008; Wei et al., 2007;  Chen et al., 2007; Rengaraj et al., 

2006; Yu et al., 2007; Kryukova et al., 2007; Ozcan et al., 2007).  Krishna et al. 

(2008) also reported a 2.6 times higher rate coefficient for PHF-TiO2 over TiO2 for 

the degradation of triazine monoazo compound Pricion red MX-5B. 

 

2.3 Operating Parameters in Photocatalytic Processes 

 
In photocatalytic degradation of dyes in wastewaters, the followings are 

operating parameters which affect the process: pH of the solution to be degraded, 

and the pH of the precursor solution (catalyst’s solution during preparation of 

catalyst); oxidizing agent, calcination temperature, dopant content, and catalyst 

loading.  These parameters will be considered one after the other as they influenced 

the photocatalytic processes of the degradation of dyes in wastewaters. 

 

2.3.1 Influence of pH on photocatalytic degradation of dyes in wastewaters 

 
The interpretation of pH effects on the efficiency of dye photodegradation 

process is a very difficult task because of its multiple roles (Konstantinou, and 

Albanis, 2004).  First, is related to the ionization state of the surface according to the 

following reactions: 

 

      (2.9) 

     (2.10) 

 
as well as to that of reactant dyes and products such as acids and amines.  pH 

changes can thus influence the adsorption of dye molecules onto the TiO2 surfaces, 
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an important step for the photocatalytic oxidation to take place (Fox and Dulay, 

1993).  Bahnemann et al. (1995) have already reviewed that acid-base properties of 

the metal oxide surfaces can have considerable implications upon their 

photocatalytic activity. 

 
Second, hydroxyl radicals can be formed by the reaction between hydroxide 

ions and positive holes. The positive holes are considered as the major oxidation 

species at low pH, whereas hydroxyl radicals are considered as the predominant 

species at neutral or high pH levels (Tunesi and Anderson, 1991).  It was stated that 

in alkaline solution, •OH are easier to be generated by oxidizing more hydroxide 

ions available on TiO2 surface, thus the efficiency of the process is logically 

enhanced (Concalves et al., 1999).  Similar results are reported in the photocatalyzed 

degradation of acidic azo dyes and triazine containing azo dyes (Tang and An, 

1995a; Reutergarth and Iangpashuk, 1997; Guillard et al., 2003), although it should 

be noted that in alkaline solution there is a Coulombic repulsion between the 

negative charged surface of photocatalyst and the hydroxide anions. This fact could 

prevent the formation of •OH and thus decrease the photoxidation. 

 
Third, it must also be noted that TiO2 particles tend to agglomerate under 

acidic condition and the surface area available for dye adsorption and photon 

absorption would be reduced (Fox and Dulay, 1993).  The degradation rate of some 

azo dyes increased with decrease in pH as reported elsewhere (Sakthivel et al., 

2003). 

 
The study of Baran et al., (2008) also showed that the degradation of 

Bromocresol purple dye under acidic condition was better than in alkaline medium, 

and that the molecules are positively charged.  Precisely, after the solution was 
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acidified from pH 8.0 to pH 4.5, a 6-fold increase in adsorption efficacy was 

observed. Such an increase in adsorption efficacy could not be explained only 

through changes of the TiO2 surface (probably caused by a change of pH (Wang et 

al., 2000)). 

 
The mechanism of the photocatalytic reaction in the presence of TiO2 

consists of a free radical reaction initiated by UV light (Baran et al., 2008). The 

mechanism may depend on the ability of the degraded compound to be adsorbed on 

the surface of the catalyst. The extent of such adsorption depends on many factors, 

such as the charge of the degraded compound. It was found that in photocatalytic 

degradation, the adsorption level on unmodified TiO2 is higher for dyes with a 

positive charge (cationic) than for those with a negative charge (anionic) (Baran et 

al., 2003). As the charge depends on the pH of a given solution, it follows that both 

pH and the nature of a particular dye influence the photocatalyst activity (Grosse and 

Lewis, 1998; Poulios and Aetopoulou, 1999; Poulios et al., 2000; Tang and An, 

1995a,b; Alaton and Balcioglu, 2001). 

 
The degradation rate of azo dyes increases with decrease in pH 

(Konstantinou and Albanis).  At pH<6, a strong adsorption of the dye on the TiO2 

particles is observed as a result of the electrostatic attraction of the positively 

charged TiO2 with the dye. At pH>6.8 as dye molecules are negatively charged in 

alkaline media, their adsorption is also expected to be affected by an increase in the 

density of TiO- groups on the semiconductor surface.  Thus, due to Coulombic 

repulsion the dyes are scarcely adsorbed (Abo-Farha, 2010; Lachheb et al., 2002). 

 
The effects of pH on photocatalytic degradation of dyes have been studied by 

many Researchers (Borker & Salker, 2006;  Rengaraj et al., 2006; Sun et al., 2006; 
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Wei et al., 2007; Chen et al., 2007; Sun et al., 2008; Xiao et al., 2007; Baran et al., 

2008; Huang et al., 2008; Saquib et al., 2008; Yap et al., 2010).  Chakrabarti and 

Dutta (2004) studied the effects of pH in the photocatalytic degradation of two 

model dyes: methylene Blue and Eosin Y in wastewater using ZnO as the 

semiconductor catalyst.  With two things in mind; one, industrial effluents may not 

be neutral, and two, pH of the reaction mixture influences the surface-charge-

properties of the photocatalysts, they went on to investigate the effect of pH on the 

rate of degradation of dye at the pH range of 5.5-9.7, using 50 mg/L methylene Blue 

solutions.  Their results revealed that the percentage degradation of the dye 

increased from 49 to 62 in 2 h as the pH increased from 5.5 to 9.7.  This shows that 

change in pH shifts the redox-potentials of the valence and conduction bands, which 

may affect interfacial charge-transfer. 

 
Borker and Salker (2006) in their work - photcatalytic degradation of textile 

azo dye over Ce1-xSnxO2 series reported on the effect of pH on the photocatalytic 

degradation of diazo dye Naphthol Blue Black (NBB).  Their findings showed that 

degradation of the dye was faster in alkaline medium pH.  It has earlier been 

reported that in alkaline medium, there is a greater probability for the formation of 

hydroxyl radical (•OH), which can act as an oxidant, thus increasing the rate of 

photodegradation of the dye (Zhang, 2002). 

 
Sleiman et al. (2007) reported on the influence of pH on the photocatalytic 

degradation of Metanil Yellow, an anionic dye with a sulfonate group, over TiO2 

photocatalyst under UV illumination.  Their results indicated that the process 

efficiency is not considerably affected over a wide range of pH (4-8).  They added 

that the interpretation of pH effect can be principally explained by a modification of 
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the electrical double layer of the solid-electrolyte interface, which consequently 

affects the sorption-desorption processes and the separation of the photogenerated 

electron-hole pairs at the surface of the semiconductor particles.  Their study also 

explained that since Metanil Yellow is an anionic dye and has a sulfonate group, its 

adsorption is favoured at low pH (the extent of adsorption is almost twofold at pH 

4.0 compared to that at neutral pH).  The results of their findings showed that the 

nature of the substance to be degraded affects the operating pH of the system. 

 
Zhiyong et al. (2007) in their work - ZnSO4-TiO2 doped catalyst with higher 

activity in photocatalytic processes, reported on the effect of pH on the 

photocatalytic degradation of Orange II, an anionic dye with -SO3 group.  Their 

results showed that the photocatalytic activity was most favoured at a lower pH 

(3.0), but went on at a slower and inefficient rate at pH 10.0.  It is important to note 

that the photocatalytic degradation of some dyes are more effective at about neutral 

pH (Chen et al., 2007), and others in alkaline medium (Saquiba et al., 2008).  It has 

earlier been reported that in alkaline medium, there is a greater probability for the 

formation of hydroxyl radical (•OH), which can act as an oxidant, thus increasing 

the rate of photodegradation of the dye (Zhang et al., 2002). 

 
In summary, Table 2.1 presents pH influence on the photodegradation of 

various dyes and an insecticide.  The table reveals that different dyes have different 

activity in photcatalytic reaction.  Some are photocatalytically degraded at lower pH, 

while others do so at higher pH.  All these may be attributed to the nature of the 

pollutant to be degraded.  Therefore, it is important to study the nature of the 

pollutants to be degraded, and determine the probably right pH to photocatalytically 

degrade them. 
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Table 2.1. pH influence on the photocatalytic degradation of various dyes and an insecticide 
 

Pollutant type Light 
source 

Photocatalyst Tested pH range  Optimum pH References 

Bisphenol-A 
 
Direct Blue DB53 
 
Acid Orange 7 
 
Methyl Orange 
 
 
Orange Green 
 
 
Fast Green 
 
Patent Blue VF 
 
Everdirect Blue 
(BRL) 
 
Orange II 
 
Acid Red B 
 
Bromocresol Purple 
 
4-Chlorophenol 
 
Salicylic Acid 

Solar 
 

UVC 
 

Visible 
 

Visible 
UV 

 
UV 

Visible 
 

UV 
 

UV 
 

UV 
 
 

Solar 
 

UV 
 

UV 
 

UV 
 

UV 

TiO2/AC 
 

Gd-TiO2 

 
WOx/TiO2 

 
WOx/TiO2 

Pt-TiO2 
 

Sn/TiO2/AC 

N-TiO2 

 

TiO2 
 

TiO2 
 

K-TiO2 
 
 

Zn-TiO2 
 

Ce-TiO2 
 

TiO2 
 

N-TiO2 
 

TiO2 

3.0-11.0 
 

2.0-9.0 
 

1.0-9.0 
 

1.0-9.0 
2.5-11.0 

 
1.0-12.0 
1.5-6.5 

 
3.0-11.0 

 
3.0-11.0 

 
4.5-11.8 

 
 

3.0-10.0 
 

1.5-7.0 
 

4.5 and 8.0 
 

2.0-5.0 
 

1.0-11.0 

3.0 
 

4.0 
 

3.0 
 

4.0 
2.5 

 
2.0 
2.0 

 
4.4 

 
11.0 

 
7.2 

 
 

3.0 
 

1.5 
 

4.5 
 

3.0a 
 

2.3a 

Yap et al., (2010) 
 
El-Bahy et al., (2009) 
 
Sajjad et al., (2010) 
 
Sajjad et al., 2010 
Huang et al. (2008) 
 
Sun et al. (2008) 
Sun et al. (2008) 
 
Saquiba et al. (2008) 
 
Saquiba et al. (2008) 
 
Chen et al. (2007) 
 
 
Zhiyong et al. (2007) 
 
Wei et al. (2007) 
 
Baran et al. (2008) 
 
Yu et al. (2007) 
 
Su et al. (2004) 

a pH of precursor solution (catalysts solution during preparation of catalysts). 


