
REUSABLE AUTOMATED AGENT FOR UNIVERSAL

VERIFICATION METHODOLOGY SYSTEM TESTBENCH

By

R. LOGEISH RAJ S/O RAJUMANIKAM

A Dissertation submitted for partial fulfilment of the requirement for

the degree of Master of Science (Electronic Systems Design

Engineering)

AUGUST 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository@USM

https://core.ac.uk/display/159615862?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

ACKNOWLEDGEMENT

First and foremost, I would like to record my appreciation and thanks to Dr.

Rosmiwati binti Mohd Mokhtar. Dr. Rosmiwati has been ever present in guiding me to

conduct this research successfully. Without her guiding hand, I would be utterly lost. I

would also like to thank my manager who has been supportive throughout the course of

my study and research.

I would like to express thanks to my parents, Raju Manikam and Usha. They laid

the foundation for me to succeed in life. Last but not least, a special thanks to my

beloved wife Sarani. She has been patient and understanding throughout this research.

Without her support, encouragement and love, life would have been very tough.

iii

TABLE OF CONTENTS

Acknowledgement ii

Table of Contents iii

List of Tables vii

List of Figures viii

List of Abbreviations xi

Abstrak xiii

Abstract xv

Chapter 1: Introduction

1.1 Research Background ... 1

1.2 Problem Statement .. 3

1.3 Objectives of Research ... 4

1.4 Scope of Research ... 5

1.5 Thesis Outline .. 6

Chapter 2: Literature Review

2.1 Introduction .. 8

2.2 SystemVerilog and UVM Verification ... 8

2.2.1 Functional Verification .. 9

iv

2.2.2 SystemVerilog ... 20

2.2.3 Verification Methodologies for SystemVerilog .. 28

2.3 Universal Verification Methodology .. 31

2.4 UVM and Reusability in Verification... 32

2.5 UVM Testbench Architecture .. 35

2.6 Architecture and Component Overview ... 39

2.6.1 Test... 39

2.6.2 Environment... 39

2.6.3 Agent .. 40

2.6.4 Sequencer ... 40

2.6.5 Driver ... 41

2.6.6 Monitor .. 41

2.6.7 Scoreboard ... 41

2.7 Chapter Summary .. 42

Chapter 3: Research Methodology

3.1 Introduction .. 43

3.2 Research Framework .. 46

3.3 DUT Evaluation ... 47

3.4 Evaluation of Existing Testbench Support... 51

v

3.4.1 Sideband Directed Verilog Testbench ... 52

3.4.2 HMC UVM Testbench... 56

3.5 Devising Sideband Testbench Support Strategy ... 60

3.5.1 Reuse of Sideband BFM .. 60

3.5.2 Develop and Reuse Verification Environments... 62

3.5.3 Increase Automation and Test Abstraction through Autonomous Agent 63

3.5.4 Support Summary .. 64

3.6 Testbench Architecture Definition and Implementation .. 65

3.6.1 Sideband Agent Architecture with BFM ... 65

3.6.2 Sideband Environment Architecture .. 73

3.6.3 Sideband Scoreboard Architecture .. 75

3.6.4 HMC Environment Architecture ... 76

3.7 Autonomous Agent Approach Architecture Definition and Implementation 78

3.7.1 Driver Update for Autonomous Agent Approach .. 78

3.7.2 BFM Update for Autonomous Agent Approach.. 80

3.7.3 Scoreboard Update for Autonomous Agent Approach 83

3.8 Simulation and Qualification ... 85

3.9 Reusability Measurement and Comparative Analysis .. 86

3.9.1 Reusability Measurement .. 86

3.9.2 Comparative Analysis .. 87

vi

3.10 Chapter Summary .. 88

Chapter 4: Results & Discussions

4.1 Introduction .. 89

4.2 Simulation and Qualification ... 90

4.2.1 Main Band Tests .. 91

4.2.2 IO and MMR Mode Support .. 93

4.2.3 Sideband Scoreboard and Memory VIP support ... 97

4.2.4 Sideband Tests ... 99

4.2.5 Autonomous Agent Approach ... 100

4.3 Measurement and Comparative Analysis ... 102

4.3.1 Reusability Metric Measurement ... 103

4.3.2 Comparative Analysis .. 107

4.4 Chapter Summary .. 114

Chapter 5: Conclusion

5.1 Conclusion .. 115

5.2 Recommendation ... 117

REFERENCES

vii

LIST OF TABLES

Table 3.1: Core Features to be supported by Testbench. .. 50

Table 3.2: Special JEDEC Protocol Requirements. .. 51

Table 3.3: Special DUT Requirements. .. 51

Table 3.4: Capabilities supported by BFM. .. 55

Table 3.5: HMC Testbench Strengths and Capabilities of Interest................................. 59

Table 4.1: Sideband Verification Solution Reuse Result. ... 104

Table 4.2: Reuse For HMC Testbench.. 106

Table 4.3: Test Comparison For Regular And Autonomous Agent. 112

viii

LIST OF FIGURES

Figure 2.1: ASIC Design Cycle (Onufryk, 1996). .. 10

Figure 2.2: Ad-Hoc Verilog Testbench. ... 11

Figure 2.3: Verilog testbench implemented by LSCC (1999). 13

Figure 2.4: Load Task used by LSCC (1999). .. 13

Figure 2.5: DUT response captured through $monitor task (LSCC, 1999).................. 14

Figure 2.6: Write and Read protocol of an IP (Iniguez, 2001). 16

Figure 2.7: Testbench Architecture employed by Iniguez (2001). 16

Figure 2.8: Breakdown of Effort in Design cycle (Evans et al., 1998). 18

Figure 2.9: Testbench Team Size (Evans et al., 1998). .. 19

Figure 2.10: Procedural Code VS OOP. ... 21

Figure 2.11: Tests Progress In A Project (Spear, 2008). .. 23

Figure 2.12: Signal Representation of Memory Write Transaction. 27

Figure 2.13: Transaction Based Test. ... 27

Figure 2.14: General testbench structure (Bergeron et al., 2006). 30

Figure 2.15: VMM Verification Environment (Bergeron et al., 2006). 30

Figure 2.16: UVM Base Classes for Testbench Development. 35

Figure 2.17: Example UVM Testbench Architecture. .. 38

Figure 3.1: Research Framework. ... 46

Figure 3.2: Simplified Illustration of the HMC. ... 48

Figure 3.3: Sideband Testbench. .. 53

Figure 3.4: REQ-ACK handshake of Sideband IO Interface. 53

ix

Figure 3.5: Sideband BFM. .. 54

Figure 3.6: HMC UVM Testbench. .. 57

Figure 3.7: Typical Driver – DUT Communication. .. 61

Figure 3.8: High Level Architecture of Sideband Agent. ... 67

Figure 3.9: Sideband Agent Architecture with MMR support. 69

Figure 3.10: Re-Architect Sideband BFM. ... 72

Figure 3.11: Sideband Verification Environment. .. 74

Figure 3.12: Sideband Scoreboard Architecture. .. 76

Figure 3.13: HMC Environment with Sideband Environment Reused. 77

Figure 3.14: Updated Sideband Driver. .. 80

Figure 3.15: Updated BFM Architecture. ... 82

Figure 3.16: Updated Sideband Scoreboard Architecture. ... 84

Figure 3.17: Predictor Mechanism Algorithm. ... 84

Figure 4.1: Simulation and Qualification Steps. ... 91

Figure 4.2: Main Band Tests. ... 92

Figure 4.3: Main Band Tests Result. .. 92

Figure 4.4: Sideband Tests in IO Mode. ... 94

Figure 4.5: Simulation Waveform for IO Mode Tests. .. 94

Figure 4.6: DUT Response on Waveform for IO Mode Tests. 95

Figure 4.7: Sideband Tests in MMR Mode. ... 96

Figure 4.8: Simulation Waveform for MMR Mode Test. .. 96

Figure 4.9: Scoreboard Compare Result. .. 98

Figure 4.10: Sideband Tests. .. 99

Figure 4.11: Sideband Tests Results. .. 99

x

Figure 4.12: Back to Back Self Refresh Test. .. 100

Figure 4.13: Refresh insertion by Autonomous Agent. .. 101

Figure 4.14: Autonomous Agent’s Simulation Waveform. .. 102

Figure 4.15: Sequence of Transactions for Short Calibration Command. 108

Figure 4.16: Short Calibration Test For Both Approaches. .. 108

Figure 4.17: Regular Agent Simulation Waveform For Case 1. 109

Figure 4.18: Autonomous Agent Simulation Waveform. ... 109

Figure 4.19: Sequence Of Transactions For One Self Refresh Cycle. 110

Figure 4.20: Self Refresh Test For Both Approaches... 111

Figure 4.21: Regular Agent Simulation Waveform For Case 2. 113

Figure 4.22: Autonomous Agent Simulation Waveform For Case 2. 113

Figure 5.1: Verification Progress With and Without Coverage Feedback. 118

Figure 5.2: Updated Memory Environment (mem_env). ... 120

xi

LIST OF ABBREVIATIONS

ASIC Application Specific Integrated Circuit

BFM Bus Functional Module

DUT Design Under Test

HMC Hard Memory Controller

IC Integrated Circuit

IP Intellectual Property

LOC Lines Of Code

OOP Object-Oriented Programming

OVM Open Verification Methodology

SOC System On Chip

TBV Transaction Based Verification

UVM Universal Verification Methodology

VIP Verification Intellectual Property

VL Vector Language

xii

VMM Verification Methodology Manual

MPS Maximum Power Saving

DPD Deep Power Down

xiii

AGEN GUNA SEMULA BERAUTOMATIK BAGI MEJA UJIAN

SISTEM METODOLOGI PENGESAHAN SEJAGAT

ABSTRAK

Proses pengesahan pra-silikon merupakan suatu perkara penting dalam aplikasi

spesifik suatu kitaran reka bentuk cip bersepadu. Ia boleh dianggap sebagai salah satu

perkara yang boleh melambatkan projek reka bentuk moden hari ini. Oleh itu,

pengesahan kecekapan dan produktiviti telah menarik perhatian ramai sejak akhir-akhir

ini dan ia menjadi faktor pemacu bagi penyelidikan yang dijalankan ini. Tujuan kajian

ini ialah untuk membina suatu penyelesaian pengesahan yang secara aktif boleh

mempromosikan guna semula dan inter-operasi bagi pengesahan komponen-komponen

dan menambahbaik suatu automasi dalam kalangan penyelesaian pengesahan. Semua ini

telah dikenalpasti sebagai suatu konsep yang penting dalam memperbaiki kecekapan

pengesahan dan produktiviti. Seni penyelesaian pengesahan UVM (Metodologi

Pengesahan Sejagat) yang berpusat kepada konsep ini dibina bagi modul jalur sisi

sebuah pengawal memori keras. Pertama, keperluan pengesahan bagi modul jalur sisi

akan disiasat. Kemudian, penyelesaian meja ujian sedia ada akan dinilai bagi

mendapatkan keupayaaan guna semula. Ini diikuti dengan mencadangkan dan

melaksanakan seni bina meja ujian yang boleh mengguna semula komponen-komponen

pengesahan yang banyak dan boleh diguna semula secara sendiri. Seterusnya, seni bina

xiv

itu akan ditambahbaik bagi membenarkan automasi paras yang lebih tinggi dalam

kalangan meja ujian. Penyelesaian pengesahan yang terlaksana itu kemudiannya akan

diukur dan dianalisa berkaitan guna semula dan automasinya. Keputusan yang diperolehi

menunjukkan pelaksanaan penyelesaian pengesahan mencapai tahap guna semula

21.70% dalam aras sistem meja ujian dan 49.67% di dalam persekitaran pengesahan

jalur sisi tunggal. Sebagai tambahan, pendekatan agen berautomatik yang terlaksana di

dalam seni bina telah mengurangkan beban ujian penulis sekurang-kurangnya 60% dan

sehingga ke 78%.

xv

REUSABLE AUTOMATED AGENT FOR UNIVERSAL

VERIFICATION METHODOLOGY SYSTEM TESTBENCH

ABSTRACT

Pre-silicon verification process is an important cog in an application specific

integrated chip design cycle. It is considered one of the biggest bottle-neck in modern

day design projects. Thus, verification efficiency and productivity has gained a lot of

attention lately and will be the driving factor of this research. The purpose of this

research is to build a verification solution that actively promotes reusability and

interoperability of verification components and improve the automation within the

verification solution. These are identified as important concepts to improve verification

efficiency and productivity. A state of the art UVM (Universal Verification

Methodology) verification solution centered on these concepts is built for the sideband

module of a hard memory controller. First, the verification requirements of the sideband

module are investigated. Next, existing testbench solutions were evaluated for its reuse

capabilities. This is followed by proposing and implementing a testbench architecture

that highly reuses existing verification components and be reused friendly itself. Next,

the architecture is improved to allow higher level of automation within the testbench.

The implemented verification solution is then measured and analysed for its reusability

and automation. The result obtained shows the implemented verification solution

xvi

achieves a reusability of 21.70% in a system level testbench and 49.67% in the

standalone sideband verification environment. In addition, the autonomous agent

approach implemented in the architecture reduces the test writer's burden by at least 60%

and up to 78%.

1

CHAPTER 1

INTRODUCTION

1.1 Research Background

 What is pre-silicon verification? Pre-silicon verification is part of a design cycle

that is used to make sure if the design is meeting the specification and performs its

functions as expected by the designer. Pre-silicon verification is conducted before a

silicon prototype is available, thus enables the designer to correct and refine the design

progressively right from the early stage (Wagner et al., 2011).

In the past when integrated circuits (IC's) used to be made of few thousand gates,

verification was not prominent. It used to be conducted fairly simply and quickly

through custom implementation, where the implementation can vary from one team to

another team within a company itself. It goes without saying that verification strategy in

the semiconductor industry was highly fragmented with custom implementations.

However this verification strategy is no longer adequate. Transistor sizes have

been shrinking. Transistor count in a single chip has been increasing rapidly. A single

chip can be designed to perform multiple functions and the complexity of these designs

is too great for a rudimentary verification approach. Wagner et al. (2011) also mentioned

that, with the growing level of detail in design, the time and computational effort

required to verify the design’s functionality has also increased. Besides that, the

2

verification approach had to be of high quality to produce bug free and high quality

silicon. Therefore a great need for a better verification strategy arose. The industry

responded to this need by creating SystemVerilog (IEEE Standard 1800, 2012).

SystemVerilog was mainly developed by Accellera Systems Initiative and

became an IEEE standard. This standard has been revised multiple times and IEEE

Standard 1800 (2012) shows the most recent revision. While Bromley (2013), specified

that SystemVerilog creates a higher level of abstraction for modelling and verification

compared to using Verilog hardware description language. Its main aim is to provide

object–oriented programming (OOP) language that supports digital hardware

verification.

With the advent of SystemVerilog, it was expected that verification approach can

now be standardized across the industry by adopting best-practice verification

techniques. Although system Verilog allows the creation of complex verification

environment by a very skilled engineer, the language was too rich and powerful for

widespread adoption. Therefore, verification methodologies such as Verification

Methodology Manual (VMM) (Synopsys Inc. 2011), Open Verification Methodology

(OVM) (Cadence Design Systems et al., 2008) and most recently Universal Verification

Methodology (UVM) (Accellera.org, 2011) were introduced.

These verification methodologies contain guidelines, additional base class

libraries, toolkits and macros to build verification environments in a structured way. It

not only helped reduce the complexity of using system Verilog but also enabled reuse of

verification components and sharing of verification ideas, solutions and industry best

3

practices among engineers. And according to Bromley (2013), besides the reuse of code

across projects and among users, a standard methodology is beneficial for engineer’s

career prospect as it enables them to take with them the shared understandings and best

practices with them from one place to another.

This research will be conducted using the UVM. This research intends to create a

UVM based testbench architecture that will have a higher level of abstraction, highly

automated and with high component reuse capability. It also intends to find a way to

reuse older, module based verification component into this UVM testbench. This

research exhibit high level of code reuse and reduce the test writers’ burden by half.

1.2 Problem Statement

The adoption of UVM in verification has been widespread. With a standard

methodology in place, reuse of UVM verification components, sharing of best practices

in verification, reuse of third party VIP’s and interoperability of UVM codes has never

been easier. However, reusability of older non-UVM verification components too is

important. Huge amounts of engineering effort need to be spent to re-develop, re-

architect and re-evaluate the verification components from scratch. Thus it makes sense

to reuse older non-UVM components wherever possible. This research will address the

reuse of older non-UVM Bus Functional Module (BFM) with a UVM driver.

 In the industry, designs are almost always never developed from scratch.

Additional capabilities, be it small or large are added to the original design. When new

capabilities are added to the design, the verification environment should follow such

4

reuse model as well. This research will strive to add verification capabilities without

making many modifications to the older testbench especially when it involves a large

verification feature.

The third problem is the lower level of automation in UVM testbenches. The

UVM gives a lot of control to the users (or test writers) of the verification environment.

Test writers have high degree of freedom to inject stimulus into the DUT as they please.

Although this is good for a very advanced test writer who wants to do manual testing, it

may not be attractive to the normal test writer. The testbench should be automated to

drive and check the DUT without much human intervention.

1.3 Objectives of Research

The main aim of this research is to build an automated reusable verification

solution for the sideband module of the hard memory controller (HMC) (Altera emi_rm,

2015) using the UVM system testbench. This is fulfilled by conducting the following

objectives:

 To construct a unit level UVM verification environment to verify the sideband of

a hard memory controller.

 To reuse a non-UVM module based sideband BFM, add new verification

capability and integrate the newly developed sideband UVM environment into a

system testbench.

5

 To develop sideband scoreboard to eliminate manual checking and introduce

autonomous agent that makes the sideband UVM verification environment

highly abstracted and automated.

 To measure the built verification solution’s reusability and compare the

autonomous agent performance against regular UVM agent.

1.4 Scope of Research

This research will be based on the UVM. The UVM testbench development will

be limited to exercising the sideband of a memory controller but will be reused and

integrated into a system testbench that is tasked to verify the entire hard memory

controller. HMC is used to control the DDR DRAM memory operations. The sideband

of HMC is used to control some of the non-timing critical memory operations such as

the refresh (REF) operation, self-refresh (SREF) operation, deep power down (DPD),

maximum power saving (MPS), long calibration (ZQCAL_L), and short calibration

(ZQCAL_S).

The verification solution must adhere to the concept of reusability and

interoperability to improve verification efficiency and productivity. In addition, the

verification solution should also strive to reduce the test writer burden by half through

automation within the testbench. A state of the art UVM testbench will be developed to

verify sideband of a hard memory controller (i.e. the DUT).

This testbench will be designed to comprehensively exercise the sideband of a

memory controller and reuse previously available verification components and

6

environments. It will also be integration and reuse friendly, eliminate manual inspection

of waveforms through scoreboarding, and uses an agent automation approach to reduce

the burden of verification engineers (i.e. test writers). The autonomous agent approach

should make the sideband UVM environment highly abstracted and automated, while

being less dependent on test writer inputs to steer correct transactions into the DUT

Lastly the built verification solution's reusability is to be measured and a

comparative analysis between the autonomous agent approach and the regular agent

approach recommended by UVM to be conducted.

1.5 Thesis Outline

This thesis is divided into five chapters. These chapters are divided by the

different phases undertaken to complete this research. Chapter one gives an overview of

this research. It clearly spells out the problems that this research sets out to solve as well

as the objectives of this research. It also defines the scope of this research.

Chapter two reviews the already available knowledge and previous works limited

to the scope of this research. It also aims to show the importance of pre-silicon

verification in an application specific integrated-circuit (ASIC) design cycle. In addition

chapter two introduces key concepts very relevant to this research. It introduces the

SystemVerilog language, the verification methodologies invented for it and the

testbench architectures from different methodologies.

7

Chapter three, which is the Research Methodology, defines the steps taken to

complete this research. These steps are clearly documented in the research framework

laid out in this chapter. Each step taken, help solve the problems described in Chapter 1

and bring this research closer to completion. Figures and tables are heavily used to help

describe what is being done for this research.

Chapter four presents the results of the methodology undertaken in Chapter

three. For the Simulation and Qualification step, waveforms and simulation logs are

shown to prove the functionality of the verification solution that has been designed and

explained throughout Chapter three. The verification solution is then measured for its

reusability and comparative analysis carried out between autonomous agent approach

and the regular approach.

Chapter five concludes this research. It summarizes the research findings and

recommends future work on this area.

8

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

 This chapter intends to introduce UVM and the readily available methodology to

create a working testbench from scratch. The major components of a testbench will be

explained in detail with the aid of diagrams. This chapter will also discuss existing

works on increasing reusability of verification environments and components. At the end

of this chapter, a basic knowledge of the workings of a UVM testbench and the

challenges as well as the increasing importance reuse in verification will be highlighted.

2.2 SystemVerilog and UVM Verification

 Functional verification is important in producing quality products.

SystemVerilog is the language designed to aide functional verification while UVM is the

state of the art verification methodology that is based on SystemVerilog.

9

2.2.1 Functional Verification

 Functional verification is the art of making sure an ASIC design or system on

chip (SOC) is functioning according to the designer’s expectations and fulfilling the

design requirements. In the past when ASIC design was still in its infancy, verification

was not a prominent idea. As ASIC design grew and SOC’s become a household name,

verification started to get very important, as it allows design bugs to be caught very early

in design cycle.

 Figure 2.1 shows a typical ASIC design flow (Onufryk, 1996), where functional

verification is done early in the design cycle. Any failures in this step would mean RTL

code need to be revised to fix the bug caught in the process. Functional verification is

important as bug fixes can be done quickly and easily in the early stage. RTL bugs found

at this early stage will not be costly to fix.

 In the beginning when verification was still gaining importance, it was done in

an ad-hoc fashion (Mintz et al., 2007), where simulations are inspected visually and

directed tests cases were used to verify the design. Ad-hoc verification means test cases

and testbenches are built for immediate use without much planning. In an ad-hoc testing

approach, designers usually employ any means necessary to find a bug. Therefore, ad-

hoc testing is never standard or structured.

10

Figure 2.1: ASIC Design Cycle (Onufryk, 1996)

Figure 2.2 shows a typical ad-hoc testbench. The blue cloud on the left holds the

code to drive the stimulus into the DUT and the green cloud on the right holds the

checking code to check the DUT output. The designers stimulate the DUT using directed

11

stimuli to check its functionality. The method to drive and check the DUT's response is

application specific as designers may apply any means necessary to check the DUT. For

example, some may opt to drive and check the DUT using Verilog tasks and functions,

some may use simulator waveforms while some other may use more advanced technique

such as Bus Functional Module (BFM) to drive and monitors to observe the DUT.

Although these methods are fast to find few initial bugs (except for BFM

development), it will not be able to comprehensively test a DUT, as the designers can

only test what they can think of. While these methods are acceptable for small designs, it

will not be sufficient for designs with thousands of design variables and vectors.

Figure 2.2: Ad-Hoc Verilog Testbench

In addition, as mentioned earlier the implementation to drive the stimulus and to

check the DUT's output can vary greatly from one team to another. This is evident in the

12

testbench solutions employed by LSCC (1999) and Iniguez (2001). LSCC (1999)

describes a Verilog testbench designed by engineers of Lattice Semiconductor to verify

a four bit asynchronous reset counter with load and count enable that will reside in their

Vantis CPLD in 1999.

The testbench implementation described by LSCC (1999) has been summarized

into Figure 2.3. Verilog Always blocks, Initial blocks and custom Tasks were used to

drive stimulus into the DUT. The DUT's responses were analyzed manually through

waveform viewer and Verilog built-in system tasks.

Initial and Always blocks are Verilog constructs that contain procedural

statements that execute sequentially (Khalil, 2007). An Initial Block executes only once

at simulation time zero, while an Always block executes repeatedly. In this testbench the

Initial block is used to initialize the clock, reset and other input pins of the DUT. The

Always block is used to generate a stable clock for the DUT.

The custom Verilog task is used to define repetitive or related commands and can

be called from an Initial or Always block. The custom task in this testbench loads a

vector into the Count_in pin of the DUT at the negative edge of the clock and controls

the DUT's load signal appropriately. Figure 2.4 is a snippet of Verilog testbench code

implemented by LSCC (1999) and the function of this task is as summarized earlier. The

response of the DUT is captured through Verilog system task called $monitor and also

checked manually through waveform viewer. Figure 2.5 shows the output captured by

the ‘$monitor tasks’ for manual debugging.

13

Figure 2.3: Verilog testbench implemented by LSCC (1999)

Figure 2.4: Load Task used by LSCC (1999)

14

Figure 2.5: DUT response captured through ‘$monitor task’ (LSCC, 1999)

The testbench development method shown by LSCC (1999) is very quick and

simple to implement and it is recommended for really small and simple DUTs. But with

the highly sophisticated and complex DUT or ASIC's of today, this method is no longer

viable.

While LSCC (1999) uses simple Verilog capabilities to quickly build a working

testbench, Iniguez (2001) employs much more advanced verification techniques to solve

harder verification problems. The author proposed a verification methodology for

intellectual property (IP) cores. It uses Verilog based coding style called the Vector

Language (VL) and a bus functional model (BFM) to verify the write and read protocol

15

of an IP. Figure 2.6 shows the write and read protocol of an IP that the proposed

testbench intend to verify.

A BFM is a Verilog model that emulates the bus protocol shown in Figure 2.6.

The BFM will be the only component in this testbench that has direct connection with

the DUT's signals. It will contain task and functions that will be invoked by the VL to

drive the DUT. VL is the tests that will have tasks and functions calls to the BFM.

Basically the VL will invoke the BFM's tasks and the BFM will drive the DUT's signals

based on the invoked tasks.

Figure 2.7 shows the testbench architecture described earlier. The DUT's

response will be monitored by a built-in monitor inside the BFM. The monitor will

dump out a log file that will be used to debug the DUT. The verification technique used

Iniguez (2001) to drive the DUT using a BFM is good. In fact, this technique to use a

BFM still exists today and even this research uses a BFM to drive the DUT. While the

technique to use a BFM is still relevant today, this testbench is insufficient as it uses

manual checking and directed test cases to verify the DUT.

16

Figure 2.6: Write and Read protocol of an IP (Iniguez, 2001)

Figure 2.7: Testbench Architecture employed by Iniguez (2001)

17

These old verification approaches as shown by LSCC (1999) and Iniguez (2001)

are insufficient today as they are not random enough to capture more bugs, require

manual checking, too ad-hoc, limited reusability, limited automation and most

importantly do not have a standard verification structure in place. Bergeron (2006),

points out that the old verification approach of writing targeted test cases and manual

checking was reaching its limit and a new verification approach is needed to keep up

with Moore's Law.

In 1965, G. Moore made an observation, where the number of transistors per

chip was doubling every eighteen months since 1959 (Moore, 1965). By extrapolating

this trend on a semi-log scale for a decade, Moore predicted that the number of

transistors in a square inch of silicon would double every two years. Later, Moore's

prediction became the goal that drove the industry (Hence came the term Moore's Law).

While keeping up with Moore’s Law, today’s ASIC's have increased greatly in size and

complexity.

The great increase in gate count and complexity of ASIC's, has now made

verification a major challenge and a serious bottleneck (Dhodhi et al., 1999), where 50%

to 60% percent of efforts in the design cycle goes to verification. For instance, the

engineers at Nortel, Canada analyzed the breakdown of effort for design and verification

of three of Nortel's largest ASIC's in Evans et al. (1998). These ASIC's were fabricated

in 0.25 micron process and had gate count of 482K, 824K and 635K gates. Evans et al.

(1998) studied the bottleneck in functional verification, as the system become more

complex. Figure 2.8 shows the breakdown of effort from the start of the design stage to

the start of the layout stage, averaged for all three ASIC's.

18

Figure 2.8: Breakdown of Effort in Design cycle (Evans et al., 1998)

 Based on Figure 2.8, the study noted that almost two third of the entire design

cycle effort is spent on verification and one third of the total effort is spent on

testbench’s development and simulation. Testbench development and debugging is

identified as the bottleneck in the functional verification. In addition, testbench

development difficulty increases as the DUT becomes more complex.

 Figure 2.9 by Evans et al. (1998) supports this notion, where it shows the overall

testbench team size for 824K gate ASIC is more compared to 625K gate ASIC over the

full project period. The study concludes that functional verification represented the

largest task in the design to layout interval, while testbench development is identified as

the critical path in functional verification. However the paper never mentioned anything

about the reduction of 824K gate team size in the latter months of the project. The paper

19

also failed to mention the exact percentage of breakdown of the effort in design cycle in

Figure 2.8. It only points out that verification takes more than 50 percent of the total

effort.

 These previous studies further strengthen the point that verification is lagging

behind design, and engineers require advanced verification techniques and

methodologies to overcome the verification challenges and gaps. SystemVerilog

addresses this verification gap.

Figure 2.9: Testbench Team Size (Evans et al., 1998)

20

2.2.2 SystemVerilog

 SystemVerilog is an IEEE language standard that provides for advanced

verification techniques. It was originally invented for both designers and verification

engineers. However, with C++ like features such as object oriented programming (OOP)

and transaction level modelling, constrained random stimulus generation, functional

coverage creation, event control (Bromley, 2013), dynamic arrays and queues and

assertion support has made SystemVerilog popular among verification engineers.

 SystemVerilog has become the language of choice for verification as pointed out

by Mintz et al. (2007). To appreciate SystemVerilog for verification, it is imperative to

understand some the advanced features described earlier. The following sub-sections are

intended to give an overview of some of these features.

2.2.2 (a) Object Oriented Programming (OOP) and Transaction Level Modelling

 OOP is a programming paradigm that tries to solve a problem in terms of objects.

To understand OOP more, it can be compared with procedural programming. OOP

approaches a problem by decomposing it into a bunch of data types before applying

action (methods) onto the data type. Whereas procedural programming decomposes a

problem into a series of actions (procedures: functions and tasks) and apply the step by

step actions onto the data type. Figure 2.10 shows the basic difference between these

two paradigms. In OOP, data and the action is merged together to form an object (the

basic building block of OOP).

21

 In procedural programming the procedure and data are viewed as separate

concept and thus kept separate. The key benefit of merging the data and the action is the

ability to model complex behaviours with lesser amount of code. With OOP,

SystemVerilog can be used to create complex data types and tie them together with the

routines that work with them (Spear, 2008). It allows creation of models that work at a

higher level of abstraction known as transactions instead of signals.

 Abstraction of information, which is the main objective of OOP in

SystemVerilog, improves verification productivity. It helps testbench developer to

abstract away lower level details from the test writer, resulting in simpler test cases that

do not need to deal with ones and zeroes. OOP in SystemVerilog can be considered the

greatest contributor to transaction-based verification (TBV) methodology. TBV will be

explained in detail in latter sections.

Figure 2.10: Procedural Code VS OOP

22

2.2.2 (b) Constrained Random Stimulus Generation

 As the title suggest, SystemVerilog allows generation and injection of random

stimulus into the DUT. However the stimulus will be constrained so that the DUT can be

exercised in meaningful states. Spear (2008) argues that by randomizing the input

vectors, the test can hit multiple scenarios faster and may even exercise the DUT in a

way never thought of by the designers. Figure 2.11 from Spear (2008) shows the

difference in progress between a constraint random test and a directed test. Directed

testing is fast to execute, producing almost immediate results.

On the other hand, constraint random tests require more upfront work and

investment before producing results. However over the longer run, random test is more

beneficial as it hits hundred percents coverage faster. On a side note, Figure 2.11 is more

of an ideal case where both random and directed test cases achieved hundred percents

coverage on its own. In practice where random test is preferred, a few directed tests is

required to hit hundred percents coverage.

23

Figure 2.11: Tests Progress In A Project (Spear, 2008)

2.2.2 (c) Functional Coverage

 In constraint random testing of today where designs have thousands of vectors,

some states of the design will never be hit. To produce quality verification, it is

important to measure what has been verified, so that directed tests can be written to hit

untouched design spaces. Functional coverage is a measure of the progress and quality

of a verification based on the verification plan document (test plan). It is used check off

items in the verification plan (Spear, 2008). SystemVerilog provides provision to

monitor the stimulus going into the DUT, record the DUT's response as simulation data,

and combines data from all the tests into a functional coverage report.

24

2.2.2 (d) Improved Data Types

 Compared with Verilog, SystemVerilog offers more advanced data types.

SystemVerilog introduced two state data type for better performance and reduced

memory usage, queues, dynamic arrays, unions, packed structures, strings with built-in

support, enumeration and most importantly classes, which are the basis for abstract data

structures.

2.2.2 (e) Advance Communication Mechanism

 SystemVerilog introduced the concept of interfaces to replace signal to signal

connectivity between modules. SystemVerilog interface encapsulates all the

interconnects between separate modules. However this physical interface can only be

used in a static environment such as in a module. A class based environment which is

very common for verification need extra handling to use this SystemVerilog physical

interface.

A class is dynamic in nature as it based on OOP and operates in run time. To

handle the communication between the module world (static) and class world (dynamic),

virtual interface is introduced. A virtual interface is an abstract model of the actual

physical interface. It allows the user to access the physical interface from a class based

environment dynamically.

