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KESAN PENGAMBILAN GARAM YANG TINGGI 
PADA HEMODINAMIK  DAN FUNGSI 

GINJAL PADA NORMOTENSI DAN HIPERTENSI: 
PERANAN ADRENOSEPTOR-α1 

 
ABSTRAK 

 
 
 

Hipertensi merupakan penyebab utama morbiditi dan kematian yang berkait rapat 

dengan penyakit jantung koroner, kegagalan ginjal dan strok. Natrium memainkan 

peranan patofisiologi yang penting di dalam pembentukkan hipertensi. Sistem 

adrenergik ginjal menyumbang kepada kesan hipertensi daripada pengumpulan 

natrium. Tujuan kajian ini adalah untuk mengetahui apakah kesan pengambilan diet 

makanan yang mengandungi kandungan natrium tinggi terhadap purata tekanan 

darah arteri (MAP) dan juga reaktiviti vaskular kortikal ginjal terhadap rangsangan 

adrenergik di dalam hal hubungannya dengan mekanisme reseptor adrenergik-α1. 

Selanjutnya kajian ini bertujuan untuk mengenal pasti sumbangan jenis-jenis reseptor 

adrenergik-α1 (α1-ARS) di dalam regulasi fungsi kortikal tubul ginjal dan 

hemodinamik ginjal, baik di dalam tikus normotensif WKY (Wistar Kyoto) mahupun 

di dalam SHR (tikus hipertensi spontan) apabila diberi kandungan garam yang tinggi. 

Kedua-dua SHR dan tikus WKY dipelihara dengan diet yang normal (WKYNNa & 

SHRNNa) dan diet bernatrium tinggi (WKYNNa & SHRNNa) selama enam minggu 

dan pengumpulan data metabolisme dimulakan. Haiwan-haiwan itu dikurung secara 

individu di  kandang metabolik besi-tidak-berkarat yang diubahsuai sendiri; data asas 

dikumpulkan diikuti dengan pengumpulan data eksperimental selama enam minggu 

berturut-turut. Darah dan sampel urin dikumpulkan setiap minggu, dan berat badan, 

data pengambilan air dalam masa 24 jam dan data pembuangan air kencing dalam 

masa 24 jam diukur. Kemudian, kajian akut hemodinamik dan fungsional ginjal pada 
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akhir tempoh 6 minggu pengumpulan data metabolisme dilakukan terhadap tikus-

tikus tersebut. Dalam kajian hemodinamik ginjal, perubahan perfusi korteks ginjal 

(RCP) yang disebabkan oleh penyempitan arteri berhampiran ginjal disebabkan oleh 

noradrenalin (NA), phenylephrine (PE), dan methoxamine (ME) ditentukan di dalam 

ketiadaan dan juga di dalam kehadiran 5-MeU, chloroethylclonidine (CEC) dan 

BMY7378 pada WKY dan SHR berdiet natrium biasa dan juga tinggi. Parameter 

fungsi tubular ginjal iaitu kadar filtrasi glomerulus (GFR), kadar aliran urin (UFR), 

pecahan ekskresi natrium dan ekskresi natrium mutlak (UNaV & FENa) terhadap PE 

dalam ketiadaan dan kehadiran 5-MeU, CEC dan BMY7378 dinilai sebagai saiz 

inulin klearan. Data-data yakni purata ± sem, dianalisis dengan satu dan dua cara 

analisis varians diikuti dengan Bonferroni post hoc dengan tahap siknifikan 5%. 

Keputusan menunjukkan bahawa MAP di dalam kumpulan diet SHRHNa & 

WKYHNa dan pada kumpulan kawalan diet SHRNNa & WKYNNa tidak 

menunjukkan sebarang perbezaan statistik. Terdapat (p <0.05) peningkatan 

signifikan pada pengambilan air, pembuanagn air kencing, kandungan natrium urin 

di dalam WKY dan SHR diet natrium tinggi. Sementara (p <0.05) kenaikan berat 

badan hanya diperhatikan pada WKYHNa. Plasma natrium tetap tidak berubah di 

kedua-dua kumpulan diet SHRHNa dan WKYHNa berbanding dengan kumpulan 

kawalan mereka. Diet pada SHRHNa dan WKYHNa menunjukkan perningkatan 

kepekaan vaskular ginjal korteks  terhadap NA, PE, dan ME. Vasokonstriktor ginjal 

terhadap NA, PE dan ME nyata (semua p <0.05) dilemahkan oleh 5-MeU dan 

BMY7378 di SHR dan WKY berdiet natrium biasa dan tinggi. Selain itu, CEC 

meningkatkan (p <0.05) respons vasokonstriktor ginjal terhadap NA, PE dan ME 

pada SHRNNa dan WKYNNa. Di samping itu, di dalam kumpulan SHRHNa dan 

WKYHNa, vasokonstriksi kortikal ginjal terhadap NA, PE dan ME dikurangkan 
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(semua p <0.05) oleh CEC. SHRHNa dan WKYHNa menunjukkan kenaikan 

berlebihan di dalam diuresis dan natriuresis. Tanpa mengira perubahan diet natrium, 

infusi PE menyebabkan signifikan (p <0.05) antidiuresis dan antidiuresis di WKY 

dan SHR. Respon antidiuresis dan antinatriuretik terhadap PE mununjukkan 

penurunan yang signifikan (p <0.05) oleh 5-MeU dan BMY7378 di dalam kumpulan 

diet WKYNNa, sedangkan 5-MeU nyata (p <0.05) dilemahkan respon antidiuresis 

dan antinatriuretik terhadap PE di SHRHNa. Tidak ada perubahan signifikan yang 

diamati di RCP, RAP (tekanan arteri ginjal) dan GFR semasa eksperimen fungsi 

tubular ginjal. Oleh yang demikian, kesimpulannya, peningkatan respon adrenergik-

α1 terhadap rangsangan adrenergik berkait rapat dengan peningkatan garam dengan 

sensitiviti vaskular ginjal pada SHRHNa dan WKYHNa. Tanpa mengira dietari 

pengambilan natrium, adrenergik-α1A dan -α1D adalah jenis-jenis reseptor fungsional 

yang terlibat dalam pengaturan vasokonstriksi kortikal ginjal secara adrenergik yang 

diinduksi pada tikus SHR dan WKY. Tambahan lagi, adrenergik-α1B adalah jenis 

resepor  fungsional yang terlibat dalam pengaturan vasokonstriksi kortikal ginjal 

adrenergick yang diinduksi pada WKYHNa dan SHRHNa. Selanjutnya, reseptor 

adrenergik-α1 terlibat dalam pengantaraan antinatriuresis dan antidiuresis di SHR dan 

tikus WKY berdiet natrium biasa dan tinggi. Selain itu,  adrenergik-α1A dan -α1D 

adalah jenis reseptor fungsional yang terlibat dalam pengaturan antidiuresis dan 

antinatriuresis adrenergik yang diinduksi di WKYNNa. Di  samping itu, reseptor 

adrenergik-α1A menengahi antidiuresis dan antinatriuresis dalam diet SHRHNa. 
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EFFECTS OF HIGH SALT LOAD ON RENAL 
HEMODYNAMICS AND FUNCTION IN 

NORMOTENSION AND HYPERTENSION: ROLE OF 
Α1-ADRENOCEPTOR 

 
 

ABSTRACT 
 
 
 
Hypertension is a major cause of coronary heart disease, renal failure and stroke. 

Sodium plays an important pathophysiological role in the development of 

hypertension. The renal adrenergic system contributes to the hypertensive effect of 

sodium loading.  The aim of this study was to investigate whether elevated dietary 

sodium intake had any effect on the mean arterial blood pressure (MAP) and renal 

cortical vascular reactivity to adrenergic stimuli in terms of its relation to α1-

adrenergic mechanism.  Further this study aimed to identify the contribution of α1-

adrenoreceptor subtypes in the regulation of renal cortical hemodynamic and renal 

tubular functions in both normotensive WKY (Wistar Kyoto rat) and SHR 

(spontaneously hypertensive rats) subjected to high sodium load.  Both SHR and 

WKY rats were kept on normal (WKYNNa & SHRNNa) and high sodium diet 

(WKYHNa & SHRHNa) for six weeks and the metabolic data collected.  The 

animals were housed individually in custom-built stainless steel metabolic cages; 

baseline data were determined followed by experimental data collection for six 

consecutive weeks. Weekly blood and urine samples were collected, and body 

weight, 24-h water intake and 24-h urine output were measured. The rats were 

subjected to acute renal hemodynamic and functional studies at the end of the 6-

weeks period of metabolic data collection.  In the renal hemodynamic study, changes 

in the renal cortical perfusion (RCP) of the animals caused by close renal arterial 



 

xxv 

 

administration of noradrenaline (NA), phenylephrine (PE), and methoxamine (ME) 

were determined in the absence and presence of 5-MeU, chloroethylclonidine (CEC) 

and BMY7378.  Renal tubular functional parameters namely glomerular filtration 

rate (GFR), urine flow rate (UFR), absolute and fractional sodium excretion (UNaV & 

FENa) upon infusion of PE in the absence and presence of 5-MeU, CEC and 

BMY7378 were assessed as a measure of inulin clearance.  Data, mean ± s.e.m., 

were analyzed with one and two way analysis of variance followed by Bonferroni 

post hoc with the significance level of 5%.  Results showed that MAP in SHRHNa 

and WKYHNa diet and in the control SHRNNa and WKYNNa diet were not 

statistically significantly different.  There was significant (p<0.05) increase in the 

water intake, urine output, urine sodium of WKYHNa and SHRHNa compared to 

control groups. Statistically significant (p<0.05) increase in the body weight 

observed only in the WKYHNa verses WKYNNa.  Plasma sodium remains 

unchanged in both SHRHNa and WKYHNa diet as compared to the control.  Both 

SHRHNa and WKYHNa groups expressed significantly enhanced renal cortical 

vascular sensitivity to NA, PE, and ME compared to control SHRNNa & WKYNNa.  

Renal vasoconstrictor response to NA, PE and ME was significantly (p<0.05 for all) 

attenuated by 5-MeU and BMY7378 in SHR and WKY on normal and high sodium 

diet.  On the one hand, CEC accentuated (p<0.05) the renal vasoconstrictor response 

to NA, PE and ME in SHRNNa and WKYNNa.  On the other hand in SHRHNa and 

WKYHNa groups, renal cortical vasoconstriction to NA, PE and ME was inhibited 

(all p<0.05) by CEC.  SHRHNa and WKYHNa showed exaggerated increase in the 

diuresis and natriuresis.  Irrespective of dietary sodium intake, PE infusion led to 

significant  (p<0.05) antidiuresis and antinatriuresis in WKY and SHR.  This 

antidiuretic and antinatriuretic response to PE was significantly (p<0.05) inhibited by 
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5-MeU and BMY7378 in WKYNNa diet, while 5-MeU significantly  (p<0.05) 

attenuated the antidiuretic and antinatriuretic response to PE in SHRHNa.  There 

were no significant changes observed in the RCP, RAP (renal arterial pressure) and 

GFR during renal tubular functional experiments.  Thus it is concluded that, 

augmented α1-adrenergic responses to adrenergic stimuli contribute to salt-related 

increase in renal vascular sensitivity in SHRHNa and WKYHNa.  Irrespective of 

dietary sodium intake α1A and α1D-adrenoceptors are the functional subtypes involved 

in mediating the adrenergically induced renal cortical vasoconstriction in SHR and 

WKY rats.  On the other hand α1B-adrenoceptors are the functional subtype involved 

in mediating the adrenergically induced renal cortical vasoconstriction in WKYHNa 

and SHRHNa.  Furthermore, α1-adrenoceptors are involved in the mediation of 

antinatriuresis and antidiuresis in SHR and WKY rats on normal and high sodium 

diet.  In addition, it is proposed that α1A and α1D-adrenoceptors are the functional 

subtypes involved in mediating the adrenergically induced antidiuresis and 

antinatriuresis in WKYNNa.  On the other hand α1A-adrenoceptors mediate the 

antidiuresis and antinatriuresis in SHRHNa diet. 
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CHAPTER 1 
 

INTRODUCTION 
 
 
 
Hypertension is among the most common health problems and a main cause for 

cardiovascular related risk factors. Hypertension is known to be a multifactorial 

disease; whose combined effects produces hypertension, yet the basic cause is not 

completely understood.  High dietary sodium intake has long been associated with 

high blood pressure.  It is suggested that chronic exposure to a high sodium diet 

appears to be a major pathophysiological factor involved in the frequent occurrence 

of hypertension and cardiovascular risk factor in humans (Meneton Pierre et al., 

2005).  The mechanism by which dietary salt increases blood pressure is not 

completely understood but it is suggested that, it may be due to the inability of the 

kidney to excrete excess amount of sodium in the body.  Human beings are adapted 

to ingest and excrete less than 1gm of salt per day, at least 10 times less than the 

average value currently observed in industrialized and urbanized countries.  

Independent of its effect on arterial blood pressure, high dietary sodium may also 

increase cardiac left ventricular mass, arterial thickness and stiffness, the incidence of 

strokes, and the severity of cardiac failure (Meneton Pierre et al., 2005).  

 

The role of kidney in blood pressure regulation has been confirmed by the 

experimental and conceptual work developed by Guyton on the pressure natriuresis 

and diuresis relationship (Guyton AC, 1991, Meneton Pierre et al., 2005, Raouf A 

Khalil, 2006).  Renal cross-transplantation experiments have documented the role of 

kidneys in the development of hypertension (Rettig R et al., 1990, Morgan DA et al., 

1990, Heller J et al., 1993, Raouf A Khalil, 2006).  Transplantation of a kidney from 
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young hypertensive rat into a normotensive rat leads to an increase in blood pressure. 

Similarly, when a kidney from normotensive rat is inserted into young hypertensive 

rat, the blood pressure of the hypertensive rat did not increase.  Moreover, the high 

blood pressure of a patient associated with nephrosclerosis becomes normal when 

they are transplanted with a kidney from normotensive donor (Meneton Pierre et al., 

2005). 

 

A decrease in the capacity of the kidneys to excrete sodium would cause 

sodium and water retention leading to an increase in the extracellular fluid and 

plasma volume thus resulting into an increase in arterial blood pressure.  Furthermore 

the ability of the kidney to excrete sodium declines gradually with age, and any small 

increase in the sodium intake predisposes an individual into a rise in blood pressure 

response (Raouf A Khalil, 2006).  In addition, as the age increases, the GFR is 

reduced, accompanied by reduction in functional population of the nephrons and also 

progressive development of glomerulosclerosis.  Thus with increasing age, if sodium 

consumption is not reduced, sodium balance is maintained by raising fractional 

sodium excretion which requires elevation in the arterial blood pressure.  Thus 

sodium balance is achieved but with the expense of high arterial blood pressure 

(Corman B and Michel JB, 1987, Raouf A Khalil, 2006).   

 

The kidneys ability to excrete sodium varies from individual to individual, 

those who require a higher than the normal blood pressure to excrete sodium are said 

to be "salt-sensitive." Those who can excrete excess salt at normal levels of blood 

pressure are called "salt resistant."  This variation in kidneys ability to excrete 

sodium is suggested to be due to an inherited defect.  The daily ingestion of large 
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amounts of salt leads to chronically expanded extracellular volumes that result into a 

considerable stress on the functional capacity of the kidney.  As the individual age’s 

renal capacity to excrete sodium decreases leading to rise in the arterial blood 

pressure (Freis ED, 1992).  Thus it is stated that the relationship between high dietary 

sodium intake and hypertension has evolved from a possible association of specific 

mutations in blood pressure controlling genes and alterations in the 

expression/activity of distinct ion channels, transporters, and enzymes (Raouf A 

Khalil, 2006). 

 

1.1 The Kidneys 
  
The kidneys are paired organs situated retroperitoneally on the posterior abdominal 

wall.  In gross terms, a section through the kidney shows it to be made up of cortex 

and medulla.  The cortex is primarily involved in the reabsorption of bulk filtrate, 

and the medulla which generates a concentrated osmotic interstitium is essential for 

the conservation of water.  Each human kidney contains about 1.2 millions functional 

units called nephrons.  A popular view considers the kidney to be an organ primarily 

responsible for the removal of metabolic waste from the body, although this is 

certainly one function of the kidney, there are other functions that are also more 

important (Douglas CE and John PP, 2004). In general the kidney is involved in 

1 Regulation of water and electrolyte balance. 

2 Excretion of metabolic waste. 

3 Excretion of bioactive substances (hormones and many foreign substances, 

specifically drugs) that affect body function. 

4 Regulation of arterial blood pressure. 

5 Regulation of red blood cell production. 
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6 Regulation of Vitamin D production. 

7 Gluconeogenesis. 

 

Figure 1.1 Gross anatomy of the kidney 
[Courtesy: http:// academic.kellogg.edu/ ] 

 

1.1.1 The Nephron 

The nephrons are made up of closely coiled tuft of capillaries, the glomerulus, which 

serves as an ultrafiltrate through which a considerable quantity of cell free and 

practically protein free fluid is separated from the plasma. The glomerulus is 

surrounded by the Bowman’s capsule of the tubule. The proximal tubule, which 

drains Bowman's capsule, consists of a coiled segment, the proximal convoluted 

tubule followed by a straight segment the proximal straight tubule which descends 
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toward the medulla, perpendicular to the cortical surface of the kidney.  The next 

segment, into which the proximal straight tubule drains, is the descending thin limb 

of Henle's loop.  The descending thin limb is in the medulla and is surrounded by an 

interstitial environment that is quite different from that in the cortex.  The descending 

thin limb ends at a hairpin loop, and the tubule then begins to ascend parallel to the 

descending limb.  The loops penetrate to varying depths within the medulla.  In long 

loops nephrons, the thin descending limb continues as the thin ascending limb of 

Henle's loop.  Beyond this segment, in these long loops, the epithelium thickens, and 

this next segment is called the thick ascending limb of Henle's loop.  In short loop 

nephrons, there is no ascending thin limb but the thick ascending limb begins right at 

the hairpin loop.  The thick ascending limb rises back into the cortex, near the end of 

every thick ascending limb, the tubule returns to Bowman's capsule, from which it 

originated, and passes directly between the afferent and efferent arterioles.  The cells 

in the thick ascending limb closest to Bowman's capsule (between the afferent and 

efferent arterioles) are specialized cells known as the macula densa.  The macula 

densa marks the end of the thick ascending limb and the beginning of the distal 

convoluted tubule.  This is followed by the connecting tubule, which leads to the 

cortical collecting tubule, the first portion of which is called the initial collecting 

tubule (Douglas CE and John PP, 2004). 

 

From Bowman's capsule through the loop of Henle to the initial collecting 

tubules, each of the 1 million nephrons in each kidney is completely separate from 

the others.  However, connecting tubules from several nephrons merge to form 

cortical collecting tubules, and a number of initial collecting tubules then join end to 

end or side to side to form larger cortical collecting ducts.   All the cortical collecting 
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ducts then run downward to enter the medulla and become outer medullary collecting 

ducts and then inner medullary collecting ducts. The latter merge to form several 

hundred large ducts, the last portions of which are called papillary collecting ducts, 

each of which empties into a calyx of the renal pelvis. 

 

The pathway taken by fluids flowing within a nephron always begins in the 

cortex (in Bowman's capsule), descends into the medulla (descending limb of the 

loop of Henle), returns to the cortex (thick ascending limb of the loop of Henle), 

passes down into the medulla once more (medullary collecting tubule), and ends up 

in a renal calyx.  Each renal calyx is continuous with the ureter, which empties into 

the urinary bladder, where urine is temporarily stored and from which it is 

intermittently eliminated.  The urine is not altered after it enters a calyx.  From this 

point on, the remainder of the urinary system serves only to maintain osmotic and 

solute gradients established by the kidney (Douglas CE and John PP, 2004). 

 

1.1.1.a Glomerulus 

A glomerulus is formed of the afferent arteriole into an interconnecting capillary tuft 

surrounded by blind sac called renal or Bowman's capsule in nephrons of the 

vertebrate kidney.  The inner wall of the capsule is made up of a visceral layer of 

highly specialized epithelial cells called the podocytes and is closely applied to the 

glomerular capillary network.  The outer or the parietal layer of the capsule is made 

of simple squamaous epithelial cells that lies a short distance from the visceral layer 

so that an actual space is created between the two layers. This capsule and the 

contained glomerulus are called the renal corpuscle.  It receives its blood supply 

from an afferent arteriole of the renal circulation.  Unlike most other capillary beds, 
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the glomerulus drains into an efferent arteriole rather than a vein.  The resistance of 

the arterioles results in high pressure in the glomerulus aiding the process of 

ultrafiltrations, where fluids and soluble materials in the blood are forced out of the 

capillaries into Bowman's capsule. A glomerulus and its surrounding Bowman's 

capsule constitute a renal corpuscle, the basic filtration unit of the kidney. The rate, 

at which blood is filtered through all of the glomeruli, and thus the measure of the 

overall renal function, is the GFR (Sattar M.A, 1993) 

 

Figure 1.2 Renal corpuscle and glomerular filtration membrane 
 [Courtesy: - Benjamin Cummings, an imprints of Addison Wesley Longman, Inc] 

 
 

1.1.1.b Proximal tubule 
 
The segment of tubule that drains the Bowman’s capsule is the proximal tubule 

which initially forms several coils; the proximal convoluted tubule is the longest 

(14mm) and widest (60µm) part of the nephrons and conveys filtrate from Bowman’s 

capsule to the loop of Henle.  The epithelial cells that line the proximal convoluted 

tubule are columnar cells with large nuclei, a prominent luminal brush border and 
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abundant mitochondria.  The luminal surface of the epithelial cells of this segment is 

covered with densely packed microvilli.  The microvilli greatly increase the luminal 

surface area of the cells, presumably facilitating their resorptive function.  Over 80% 

of the filtrate is reabsorbed here, including all the glucose, amino acids, vitamins, 

hormones and 85% of the sodium chloride and water.  It is also responsible for 

secreting many types of medication like para aminohippuric acid, pencilin and 

organic acids, such as creatinine and other bases, into the filtrate.  The proximal 

tubule regulates the pH of the filtrate by exchanging hydrogen ions in the interstitium 

for bicarbonate ions in the filtrate (Sattar MA, 1993). 

 

1.1.1.c Loop of Henle 

The loop of Henle becomes increasingly thin walled as it descend and is called the 

thin descending limb of loop of Henle that makes a sharp hair-pin bind in the upper 

third of the medulla for the cortical nephrons and considerably deeper in the medulla 

for the juxtamedullary nephrons.  The thin descending limbs of loop of Henle are 14 

to 22µm in diameter, with thin flat epithelial cells; the descending limb has low 

permeability to ions and urea, while being highly permeable to water.  The ascending 

limb immediately after the bend is thin, but near the cortex it becomes wide, thick 

and continuous as distal convoluted tubule on reaching its own glomerulus.  The thin 

ascending limb is not permeable to water, but it is permeable to ions, between the 

outer and inner zones of the medulla, the epithelium of the tubule become columnar 

and continues as thick ascending limb of loop of Henle. The tubule continuous until 

it passes between the afferent and efferent arteriole of its own glomerulus and then 

become the distal convoluted tubule.  The main function of this structure is to create 

a concentration gradient in the medulla by means of a countercurrent multiplier 
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system, which utilizes sodium pumps; thus creating an area of high osmotic gradient 

deep in the medulla, near the collecting duct (Sattar MA, 1993).  

 

1.1.1.d The distal tubule 

The distal tubule is 2 to 9 mm long and up to 50 µm in external diameter and it 

drains into collecting tubules. The height of the columnar epithelium is lower than of 

the proximal convoluted tubule. The distal tubule consists of three distinct segments, 

the thick ascending limb of loop of Henle, the macula densa and the distal 

convoluted tubule. Distal convoluted tubule is the final segment of the nephrons.   It 

is lined with simple cuboidal cells that are shorter than those of the proximal 

convoluted tubule. Distal convoluted tubule can be recognized by its numerous 

mitochondria, basal infoldings and lateral membrane interdigitations with 

neighboring cells. The point where distal convoluted tubule makes contact with 

afferent arteriole of renal corpuscle is called macula densa.  It has tightly packed 

columnar cells which display reversed polarity and may monitor the osmolarity of 

blood.  This region is the site of the mechanisms for fine control of salt, water and 

pH balance of the blood.  As the distal segment approaches the collecting tubule it 

undergoes some cytological differentiation, the prominent feature being the 

appearance of isolated, large, granulated cells and this portion is called the 

connecting tubule.  It participates in the regulation of water and electrolytes, 

including sodium, and chloride.  The connecting tubule is also sensitive to 

antidiuretic hormone (less than the cortical collecting ducts), largely determining its 

function in water reabsorption (Douglas CE and John PP, 2004, Imai, 1979).  
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1.1.1.e The collecting tubule 

The collecting duct system of the kidney consists of a series of tubules and ducts that 

connect the nephrons to the ureter.  It participates in electrolyte and fluid balance 

regulated by the hormones aldosterone and antidiuretic hormone.  Anatomically, 

there are several components of the collecting duct system that include the 

connecting tubules, cortical collecting ducts, and medullary collecting ducts. Several 

collecting tubules fuse to form one of the numerous papillary ducts draining into the 

minor calyx.  The tubular epithelium has a one-cell thickness throughout.  Before the 

distal convoluted tubule, the cells in any given segment are homogeneous and 

distinct for that segment. However, beginning in the second half of the distal 

convoluted tubule, 2 cell types are found in most of the remaining segments. One 

type constitutes the majority of cells in the particular segment, is considered specific 

for that segment, and is named accordingly: distal convoluted tubule cells, 

connecting tubule cells, and collecting-duct cells, interspersed among the segment-

specific cells in each of these 3 segments are individual cells of the second type, 

called principle and intercalated cells. There are actually several types of intercalated 

cells; 2 of them are called type A and type B. (The last portion of the medullary 

collecting duct contains neither principal cells nor intercalated cells but is composed 

entirely of a distinct cell type called the inner medullary collecting-duct cells 

(Douglas CE and John PP,2004, Sattar MA, 1993). 

 

1.1.2 The Juxtaglomerular Apparatus 
 
A portion of the late thick ascending limb at the point where, it comes in contact with 

afferent and efferent arterioles at the vascular pole of the renal corpuscle, this entire 

area is known as the juxtaglomerular apparatus.  Each juxtaglomerular apparatus is 
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made up of 3 cell types: (1) Granular cells, which are differentiated smooth muscle 

cells in the walls of the afferent arterioles; (2) Extraglomerular mesangial cells; and 

(3) Macula densa cells, these are the specialized epithelial cells of thick ascending 

limb.  The granular cells (so called because they contain secretory vesicles that 

appear granular in light micrographs) secrete the hormone renin, a crucial substance 

for control of renal function and blood pressure.  The extraglomerular mesangial 

cells are morphologically similar to and continuous with the glomerular mesangial 

cells but lie outside Bowman's capsule.  The macula densa cells are detectors of the 

luminal content of the nephrons at the very end of the thick ascending limb and 

contribute to the control of GFR and to the control of renin secretion (Douglas CE 

and John PP, 2004).  

 
 

 
Figure 1.3 Juxtaglomerular Apparatus 

[Courtesy: - Benjamin Cummings, an imprints of Addison Wesley Longman, Inc] 
 

1.1.3 Renal circulation 

The renal blood flow is relatively very high. The kidneys receive 1.2 to 1.3 L of 

blood per minute, about 20 to 25% of the cardiac output (Ganong, 2009).  Blood 
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enters each kidney via a renal artery, which then divides progressively into smaller 

branches: the interlobar, arcuate, and finally cortical radial arteries (also called 

interlobular arteries).  As each of the cortical radial arteries projects toward the outer 

kidney surface, a series of parallel afferent arterioles branch off at right angles, each 

of which leads to a glomerulus, the glomerular capillaries recombine to form another 

set of arterioles called the efferent arterioles.  

 

The efferent arteriole soon subdivides into a second set of capillaries; these are 

the peritubular capillaries, which are profusely distributed throughout the cortex.  

The peritubular capillaries then rejoin to form the veins by which blood ultimately 

leaves the kidney.  The vascular structures supplying the medulla differ from those in 

the cortex, for many of the juxtamedullary glomeruli  long efferent arterioles that 

extend downward into the outer medulla, where they divide many times to form 

bundles of parallel vessels that penetrate deep into the medulla.  These are called 

descending vasa recta which then continue as ascending vasa recta.  The vasa recta, 

in addition to being conduits for blood, also participate in exchanging water and 

solutes between plasma and interstitium.  The whole arrangement of descending and 

ascending blood flowing in parallel has major significance for the formation of 

concentrated urine because plasma constituents can exchange between descending 

and ascending vessels (Douglas CE and John PP, 2004). 
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Figure 1.4 Cortical and Juxtamedullary Nephron along with respective 

circulation   (Adapted from Princeton review in Campbell excretory system) 
 

1.1.4 Innervations of the kidney 

Autonomic control of the kidney is predominantly mediated by the sympathetic 

nerve system with nerves extending primarily to all the components (Salomonsson et 

al., 2000).  There is less evidence for the parasympathetic innervations (Peter D. 

Vize et al., 2003, Norvell JE  and Anderson JM, 1983).  The renal nerve are 

composed of fibers from the celiac plexus, the thoracic plexus and the lumbar 

braches of the splanchnic nerve, the superior and inferior mesenteric plexus, the 

intramesentric nerve and the superior hypogastric plexus (Mitchell GA, 1950).  

These nerve fibers and their interconnection make up renal plexus which lies in the 

rather constant association with the aorticorenal ganglion (Mitchell GA, 1950). 

These fibers originate primarily from T5 to L3 of the spinal cord segment and thus 
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along renal artery and vein enter in to the hilus of the kidney (Takeuchi J et al., 

1964). The renal nerve within the kidney spread through the renal parenchyma 

following the blood vessels (Douglas C.E and John P. P, 2004).  The demonstration 

by (Barajas L et al., 1984) states that all segments of the renal tubule (as well as the 

Juxtaglomerular apparatus) were innervated by renal sympathetic nerve terminals. 

The basal discharge rate of renal sympathetic nerve is in the range of 0.5 to 2Hz 

(Robertson D, 2004).  

 

At the functional level, renal sympathetic nerve stimulation releases adrenaline, 

noradrenaline and dopamine. Among these, noradrenaline is the dominant 

neurotransmitter released after stimulation of the renal sympathetic nerves (Gabriela 

A. Eppel et al., 2004).  In addition, dopamine also appears to be present in these 

nerves as a precursor of noradrenaline synthesis (Gabriela A. Eppel et al., 2004). 

Moreover the presence of specific dopaminergic nerves within the kidney has also 

been confirmed (DiBona GF and Kopp UC, 1997).  There are reports  suggesting that 

co-transmitters, like neuropeptide Y and ATP are also released from the renal nerve 

and thus participate in renal sympathetic neurotransmission (DiBona GF and Kopp 

UC, 1997). They partially mediate renal nerve stimulation induced-reductions in 

renal blood flow (DiBona GF and Sawin LL, 2001, Pernow J and Lundberg JM, 

1989). Other neurotransmitters, like vasoactive intestinal polypeptide and 

neurotensin have been identified within the renal vasculature, however their role in 

renal sympathetic neurotransmission and regulation of renal function is not clear 

(Reinecke M and Forssmann WG, 1988, Gabriela A. Eppel et al., 2004).  

Neuropeptide galanin have also been defined in a proportion of the postganglionic 

sympathetic neurons innervating the kidney (Longley CD and Weaver LC, 1993). 
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The binding sites for Neuropeptide Y, vasoactive intestinal polypeptide and 

neurotensin have been localized to vascular elements of the medullary circulation 

including juxtamedullary afferent and efferent arterioles (Leys K et al., 1987, 

Reinecke M and Forssmann WG, 1988), raising the possibility that these sympathetic 

cotransmitters could contribute to the neural control of renal blood flow (Gabriela A. 

Eppel et al., 2004).  

 

 Renal sympathetic nerve activity  has been shown to contain oscillations over a 

range of frequencies from 0.1 to 10 Hz (Malpas SC, 1998).  At a higher frequency of 

renal sympathetic nerve stimulation (0.5 Hz) renin secretion rate is increased without 

alterations in renal hemodynamic or urinary sodium excretion.  At a frequency of 

renal sympathetic nerve stimulation (1.0 Hz), there is an increase in renal tubular 

sodium reabsorption (lowers urinary sodium excretion) without change in the renal 

hemodynamics, but renin secretion rate is further increased.  At even higher 

frequencies of renal sympathetic nerve stimulation (>2.0 Hz) they produce renal 

vasoconstriction with a decreases in renal blood flow, GFR and urinary sodium 

excretion (DiBona GF, 1989). 

    

The situation where a renal sympathetic nerve fiber makes sequential contact 

with multiple effectors is consistent with each effector having a different response 

threshold (e.g., exhibiting frequency dependence at supramaximal amplitude).  

However, it is also possible that each effector could respond by virtue of effectors-

specific information being encoded in the renal sympathetic nerve discharge pattern 

(e.g., variations in frequency, amplitude, duration; regular vs. irregular) (DiBona GF, 

2000).  This suggests that each effector may possess unique response characteristics 
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in either the time or frequency domain.  The situation where unique renal sympathetic 

nerve fibers specifically and selectively innervate arterioles, tubules, and 

Juxtaglomerular granular cells suggests that they might be coupled to separate central 

neuron pools with specific and selective afferent reflex inputs (DiBona GF, 2000).  

Folkow and colleagues (Folkow B et al., 1958) showed that differences in 

stimulation threshold of preganglionic fibers were associated with the activation of 

functionally differentiated effectors (DiBona GF, 2000). 

 

When characterized as to myelination and size of the renal nerves, it appears to 

be rather homogeneous (DiBona GF et al., 1996). Approximately 96% are 

unmyelinated fibers with a size range of 0.4–2.5µm.  However, when the distribution 

of fiber diameters was examined, it was found to be bimodal with a primary mode at 

1.1 µm and a secondary mode at 1.6 µm (DiBona GF, 2000).  This suggests that at 

least there are two populations of renal sympathetic nerve fibers, possibly subserving 

different functions (i.e., functional nonuniformity).  The conduction velocity is 

averaged 2.10 ± 0.10 m/s and  consistent with unmyelinated C-type fibers (DiBona 

GF et al., 1996).  Strength-duration analysis (at constant frequency) indicated that, 

for any stimulus duration, lower stimulus strength (volts) was needed to elicit an 

antidiuretic response rather than a vasoconstrictor response. Thus renal sympathetic 

nerve fibers producing the effect on the renal tubules (increased sodium and water 

reabsorption) were not the same as those producing the effect on the intrarenal 

arterioles (constriction) (DiBona GF, 2000).  By analogy with somatic nerves where 

stimulation threshold is inversely related to fiber diameter, this suggests that the 

diameters of the nerve fibers involved in the antidiuretic response are greater than the 

diameters of the nerve fibers involved in the vasoconstrictor response (DiBona GF, 
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2000).  These results confirmed the earlier observations demonstrating that during 

graded renal nerve stimulation, the response of the renal tubules occurs at a lower 

level of stimulation than that of the renal arterial vasculature (DiBona GF, 2000).  

 

Renal sympathetic innervations exert its effects on various aspects of renal 

function that includes the renal hemodynamics, tubular sodium and water 

reabsorption and renin secretion.  In this way, they produce alterations in renal 

hemodynamic, tubular reabsorption, and renin secretion rate and thus contribute 

importantly to renal adaption and compensation during normal physiological 

conditions (DiBona GF, 2000).  These effects constitute an important control system 

in the physiological regulation of arterial pressure and total body fluid and sodium 

homeostasis.  When studies of the neural control of renal function were extended to 

pathophysiological states such as hypertension, further important observations were 

proposed (DiBona GF, 2000).  In a variety of experimental animal models of 

hypertension, the rise of arterial blood pressure is completely prevented or reversed 

by renal denervation; for example, the obesity model of hypertension in the dog is 

completely prevented by renal denervation in association with a 50% decrease in 

cumulative sodium retention (Kassab S et al., 1995, DiBona GF, 2000).  

Approximately 30-40% of the renal sodium retention of edema-forming conditions, 

such as congestive heart failure, cirrhosis (DiBona GF and Sawin LL, 1991) and the 

nephrotic syndrome (Herman PJ et al., 1989) are dependent on intact renal 

sympathetic innervations (DiBona GF, 2000).  On the afferent side, signals from 

renal sensory receptors coursing via afferent renal nerves to the neuroaxis are 

involved in inhibitory renorenal reflexes and excitatory renosystemic reflexes, which, 

via peripheral sympathoexcitation, contribute to the hypertension of chronic renal 



18 
 

disease (Campese VM and Kogosov E, 1995, Converse R.L et al., 1992, DiBona GF, 

2000).  

 

1.2 Adrenoceptors 
 
Adrenoceptors are membrane bound receptors located throughout the body on 

neuronal and non-neuronal tissues where they mediate a diverse range of responses 

to the endogenous catecholamines, i.e. noradrenaline and adrenaline (Robinson and 

Hudson, 1998). These compounds are responsible for controlling, the cardiovascular, 

respiratory, neuronal, digestion, pupil dilation and contraction, energetic metabolism 

and endocrinal function (Beatriz CC and Amaya A, 2001).  

 

1.2.1 Classification of adrenoceptors and historical Perspective 
 
Extensive research on adrenoceptors has led to the current knowledge and 

information regarding adrenoceptors and has facilitated their present classification 

(Beatriz CC and Amaya A, 2001).  The first study on adrenoceptors was started by 

Dale in 1906.  In 1937, Cannon and Rosenblueth put forward a hypothesis, which 

initiated the idea of classification of adrenoceptors (Beatriz CC and Amaya A, 2001 

Cannon and Rosenblueth, 1937, Dale, 1906).  Later, Ahlquist in 1948 was the first to 

establish a pharmacological classification for adrenoceptors into α and β-

adrenoceptors (Beatriz CC and Amaya A, 2001). 

 

Ahlquist studied the effects of catecholamine’s on various physiological 

responses of the body that includes contraction and relaxation of the uterus, dilation 

of the pupil and stimulation of myocardial contraction (Ahlquist, 1948, Magdalena 

W et al., 2000).  He demonstrated that norepinephrine, epinephrine, isoproterenol, 




