

SYNTHESIS AND APPLICATION OF ZNO NANORODS FOR OXYGEN GAS SENSOR

KHAIRUL ANUAR ABD WAHID

FEBRUARY 2015

SYNTHESIS AND APPLICATION OF ZNO NANORODS FOR OXYGEN GAS SENSOR

by

KHAIRUL ANUAR ABD WAHID

Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

FEBRUARY 2015

ACKNOWLEDGEMENT

In The Name Of Allah the Most Gracious and the Most Merciful

Alhamdulillah, all praises to Allah for the strength and His blessing in completing this thesis. I would like to take this opportunity to give a special thanks to my supervisor Prof. Dr. Ishak Abd Azid whose continuously support on my research especially on comments and suggestion throughout this thesis preparation and constructively shape my idea in this research works. A sincere million thanks to my official and un-official field supervisors Dr. Daniel Bien Chia Sheng, Dr Lee Hing Wah, Dr. Teh Aun Shih and Dr Lee Wai Yee who give invaluable support on technical knowledge especially on fundamentals on regarding topic, nanomaterial synthesis process, sensor fabrication, and data analytical techniques. My special thanks also goes to my lab members, lunch mates and exchanged ideas and jokes partner, Dr. Zul, Adam, Aniq, Nadia, Lee Mai Woon, Norlida and many more. I also would like to forward my gratitude to my life companion, Nur Hirzam and my children, Imtiyaz and Aufa for their internal motivation, understanding, patience, love and care throughout the course of this work. Special appreciation to all office mates, for direct and indirectly support, insights, help and above all the friendship and memories. Last but not least, to my beloved parents my mother Mahtom Bt. Samsudin, my father, Abd Wahid Bin Sharif, my brothers and sisters for their kindness, endless love, prayers, encouragement and moral support during my study. Thank you very much.

Khairul Anuar Abd Wahid, 2015

TABLE OF CONTENTS

ACKNOWLEDGEMENT	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	vii
LIST OF FIGURES	viii
LIST OF SYMBOLS	xiii
ABSTRAK	XV
ABSTRACT	xvii

CHAPTER 1: INTRODUCTION

1.0 Research Motivation	1
1.1 Nanostructured Metal Oxide Oxygen Gas Sensor	2
1.2 Zinc Oxide (ZnO) Semiconductor Sensing Mechanism	4
1.3 Problem Statements	10
1.4 Research Objectives	12
1.5 Research Scope	13
1.6 Thesis Outlines	14

CHAPTER 2: LITERATURE REVIEWS

2.0 Overview	16

2.1 ZnO Nanostructures Study for Gas Sensor	
2.2 ZnO Nanostructure Synthesis Techniques	22
2.2.1 Wet Based Synthesis Method	22
2.2.2 Gas Phase Synthesis Method	23
2.3 ZnO Nanostructure Growth Parameters	24
2.3.1 Parameters Studied in Hydrothermal Process	24
2.3.2 Parameters Studied in PECVD	31
2.4 Gas Sensor Platform	
2.4.1 Cantilever	37
2.4.2 Field Effect Transistor (FET)	39
2.4.3 Interdigitated Electrodes (IDEs)	41
2.5 Sensor Drift Compensation Method	
2.6 Literature Remarks	

CHAPTER 3: METHODOLOGY

3.0 Overview		49
3.1 ZnO Nanomaterial Synthesis Process		51
3.1.1	Overview	51
3.1.2	Hydrothermal Synthesis Method	51
3.1.3	Plasma Enhanced Chemical Vapor Deposition (PECVD)	
	Synthesis Method	54

3.2 IDE Fabrication Process

58

	3.2.1	Overv	iew of IDE Fabrication Process	58
	3.2.2	Theory	y of Resistive IDEs	58
	3.2.3	IDE M	lask Design	61
	3.2.4	Fabric	ation Process Flow of IDEs	63
	3.2.5	Selecti	ive ZnO Nanostructure Growth on IDE	70
		3.2.5.1	Lift-off Process	70
		3.2.5.2	2 Manual Polyimide Tapping	73
	3.2.6	Wire I	Bonding and Packaging Process	75
3.3	Gas Te	esting Se	etup	78
		3.3.1	Overview	78
		3.3.2	Oxygen Gas Sensor Testing Setup	77
		3.3.3	Gas Sensor Characteristics Testing	80
			3.3.3.1 Sensitivity	81
			3.3.3.2 Response time	82
			3.3.3.3 Selectivity	82
			3.3.3.4 Resolution	83
			3.3.3.5 Stability	83
			3.3.3.6 Temperature and Humidity Effect	84
3.4	Sensor	Drift C	ompensation based on Baseline Drift	
	Manip	ulation l	Method	85
25	C			00
3.3	Summ	ary		88

CHAPTER 4: RESULTS AND DISCUSSIONS

4.0	Overv	iew	89
4.1	ZnO N	Vanostructure Synthesis Process and Characterization	89
	4.1.1	Hydrothermal Synthesis Method	90
		4.1.1.1 Effect of Annealing Temperature to ZnO Nanostructure Morphology	92
		4.1.1.2 Effect of Annealing Temperature and Growth Duration to ZnO Nanorod Dimension	96
		4.1.1.3 Effect of Ultrasonic to ZnO Growth Process	99
		4.1.1.4 Raman spectroscopy of ZnO nanorods	110
		4.1.1.5 Electrical Characteristics	113
	4.1.2	Plasma Enhanced Chemical Vapor Deposition Method (PECVD)	115
		4.1.2.1 Catalyst Thickness Effect	115
		4.1.2.2 Effect of Gas Precursor	118
		4.1.2.3 Effect of Chamber Pressure	123
		4.1.2.4 Raman Spectroscopy	124

		4.1.2.5 Electrical Characteristics	125
4.2	Findin	ngs from ZnO Nanorods Characterization	127
4.3	Synthe	esis of ZnO Nanorods on IDE	131
4.4	Gas Se	ensor Characteristics	135
	4.4.1	Gas Sensor Sensitivity	135
	4.4.2	Sensor Response Time	141
	4.4.3	Selectivity Test to CO ₂	143
	4.4.4	Resolution	145
	4.4.5	Stability (Drift Test)	146
	4.4.6	Humidity and Temperature Effect	148
	4.4.7	Drift Compensation Signal	151
4.5	Summ	nary	155

CHAPTER 5: CONCLUSIONS AND FUTURE WORKS

5.0	Conclusions	156
5.1	Future Works	157
REFI	ERENCES	159
APPI	ENDICES	
Appe	endix A	188
Appe	endix B	191
Appe	endix C	197

PUBLICATION LIST

LIST OF TABLES

		Page
Table 1.1	Safe oxygen level in indoor environment based on OSHA standard	1
Table 1.2	Acute effect to human body due to exposure of deficient oxygen in atmosphere based on NWOHS standard	2
Table 3.1	Parameters study to investigate the effect of annealing temperature and growth duration to ZnO growth nanostructure	53
Table 3.2	Parameters study to investigate the effect of zinc nutrient solubility to annealing and growth temperature of ZnO nanostructure growth	54
Table 3.3:	Annealing Process Parameter Setting	55
Table 3.4:	Growth Process Parameter Setting	55
Table 3.5:	Parameters study to investigate ZnO nanostructures growth process via PECVD	57
Table 4.1	Growth rate of ZnO nanorods at different seed annealing temperature	99
Table 4.2	Surface roughness values of seed layers annealed at 40, 60 and 80 $^{\rm o}{\rm C}$	107
Table 4.3	Frequency of typical Raman spectrum in bulk ZnO	111

Table 4.4	Initial resistance of IDE device before and after ZnO nanorods growth	134
Table 4.5	Drift coefficient value	152
Table 4.6	Partial of drift and compensated tabulated data	153

LIST OF FIGURES

		Page
Figure 1.1	ZnO crystal structures. The gray balls are zinc atoms and the red ones are oxygen atoms (a) rock salt, (b) zinc blende, and (c) hexagonal wurtzite (Junguang et al., 2013)	5
Figure 1.2	Schematic diagram of band bending after adsorption of charged species E_C , E_V and E_F denote the energy of the conduction band, valence band and the Fermi level respectively while Δ_{air} denote the thickness of the space-charge later and $eV_{surface}$ denotes the potential barrier. The conduction electrons are represented by e ^T and + represents the elementary charge of donor sites (Chengxiang et al., 2010)	6
Figure 1.3	Structural and band models of ZnO oxygen gas sensing mechanism (a) without oxygen gas, (b) with oxygen gas (Adapted from Chengxiang et al., 2010)	7
Figure 1.4	Schematic model of the effect of the grain size on the sensitivity of metal-oxide gas sensor: (a) $D >> 2L_D$, (b) $D \ge 2L_D$, and (c) $D < 2L_D$ (Adapted from Yufeng et al., 2012)	8
Figure 2.1	Schematic diagram of cantilever (Adapted from John et al., 2014)	38
Figure 2.2	Schematic of ZnO nanowire FET combined with the electrical transport measurement circuit (Zhiyong et al., 2006)	39
Figure 2.3	Schematic diagram of gas sensor made of nanowires on a pair of interdigitated electrodes (Adapted from Toshinari et al., 2011)	42
Figure 3.1	Overview of research methodology	50

Figure 3.2	The main processes involved in hydrothermal synthesis process, (a): Spin coat the zinc precursor on substrate, (b): Annealing the substrate, (c): Grow the ZnO nanostructures in heated zinc nutrition solution.	51
Figure 3.3	The processes involved in PECVD synthesis method (a): Catalyst deposition by using RF sputtering system, (b): Annealing and growth process in PECVD chamber	54
Figure 3.4:	The ZnO nanostructure growth on initial parameter setting (a): top view, (b) side view	56
Figure 3.5	Schematic diagram of resistive IDEs (a) Simplified IDEs structure, (b) simplified electrical modelling of IDE without ZnO nanostructures, (c) simplified electrical modelling of IDEs with ZnO nanostructures and (d) equivalent circuits of IDEs with ZnO nanostructures. (Zhuwei et al., 2007)	60
Figure 3.6	Representative schematic of energy band for grown ZnO nanostructure between two electrodes. R_c resistance of the electrode-ZnO contact, R_l series resistance of depleted region of bulk ZnO, R_{gi} average resistance of intergrain boundary, E_b minimum of the conduction band in the bulk, qV_s band bending on the surface layer and qV_c band bending induced at the electrode-ZnO contact. Total charge trapped by oxygen gas can be represented in $R_{ZnO} = \sum R_c + \sum R_{gi}$.	61
Figure 3.7 (a)	IDE Masks Design Layout	62
Figure 3.7(b)	IDE platform mask layout comprising 6 devices.	63
Figure 3.8(a)-(k):	The fabrication process flow for IDEs device	67
Figure 3.9	Lift-off Process (a) The completed bare IDE, (b) The contact pad is deposited with the photoresist, (c) The gold is deposited on IDE by using RF sputtering system with thickness 2, 4, 6 and 8 nm (d) The resist is lifted-off with acetone together with gold film on top of the photoresist, (e) Selective growth of ZnO nanostructure on IDE via PECVD method	71

Figure 3.10	Manual Polyimide Tapping (a) The bare IDE, (b) The polyimide tape is tapped on contact pad, (c) The ZnO precursor which acts as the ZnO nanostructure catalyst in hydrothermal synthesis spin coat on IDE, (d) The ZnO is growth on overall IDE die through hydrothermal process, (e) The polyimide tape is stripped from the contact pad together with the nanostructure on top of it hence the nanowires only remained on electrodes area.	74
Figure 3.11	The contact pad of IDE that has been wire bonded to external PCB common board	76
Figure 3.12	IDE packaging process (a) The temperature sensor is integrate with MIMOS common PCB board, (b) Adhesive material is put on PCB at IDE assembly area, (c) IDE with external board is attached on MIMOS common PCB board, (d) wire bond to MIMOS common PCB board, (e) Polymer based protector type KOKI 0JU-100-5 is used to protect the wire bond while semi- transparent epoxy type penchem EN453 is used to inclusive protect sensor, (f) Harwin connector is used to connect the sensor with read-out circuit	77
Figure 3.13	The complete packaged oxygen gas sensor on MIMOS BHD common Printed Circuit Board	78
Figure 3.14	Schematic diagram of gas testing setup	79
Figure 3.15	Gas sensor testing setup: (a) The actual arrangement in laboratory, (b) DAQ board to collect the data during testing, (c) Customized quartz glass tube chamber and (d) Mass flow controller to control the gas flow rate	80
Figure 3.16	Response and recovery time	82
Figure 3.17	Schematic diagram of sensor drift compensation (a) Measured response is drifted due to ambience temperature and relative humidity, (b) Drift has been removed from measured response using baseline manipulation equation (adapted from Zvezditza et al., 2013)	87
Figure 4.1	(a)-(d): The results of pre-growth of ZnO nanorods at different growth time (a) 1 hour, (b) 2 hour, (c) top view of ZnO nanorods growth at 3 hours, and (d) side view of ZnO nanorods growth at 3 hours.	91

Figure 4.2	SEM images of ZnO nanorods where seed layers were annealed at different temperatures and then grown at different durations (a)–(c): 100 °C, with growth at 3, 6, and 9 hours, respectively (d)–(f): 130 °C, with growth at 3, 6, and 9 hours, respectively (g)–(i): 150 °C, with growth at 3, 6, and 9 hours, respectively (j)– (l): 170 °C, with growth at 3, 6, and 9 hours, respectively, and (m)–(o): 200 °C, with growth at 3, 6, and 9 hours, respectively	93
Figure 4.3	AFM images of ZnO seed layers (a-b) annealed at low temperature, (c-d): annealed at high temperature	94
Figure 4.4	(a): Growth mechanism for samples annealed at \leq 150 °C, (i): ZnO seed layer coated onto SiO2, (ii) ZnO nanoseed particle formation during annealing, (ii) Vertical growth of ZnO nanorod	95
Figure 4.4	(b): Growth mechanism for samples annealed at ≥170 °C,(i): ZnO seed layer coated on SiO2, (ii) ZnO nanoseed particle agglomeration during annealing, (iii) Homocentric bundling of ZnO nanorods on top of vertical ZnO nanorods	95
Figure 4.5	(a): Effect of annealing temperature and growth duration on the length of ZnO nanorods, (b): Effect of annealing temperature and growth duration on the diameter of ZnO nanorods	98
Figure 4.6	ZnO nanorods grown at 80 °C and subjected to different annealing temperatures: (a–c) 40 °C, (d–f) 60 °C, and (g–i) 80 °C	101
Figure 4.7	ZnO nanorods grown at 60 °C and subjected to different annealing temperatures: (a–c) 40 °C, (d–f) 60 °C, and (g–i) 80 °C	102
Figure 4.8	ZnO nanorods grown at 40 °C and subjected to different annealing temperatures: (a–c) 40 °C, (d–f) 60 °C, and (g–i) 80 °C	103
Figure 4.9	(a): Average length of ZnO nanorods grown in a solution sonicated for different duration, (b): Average diameter of ZnO nanorods grown in a solution sonicated for different duration	104
Figure 4.10	AFM images of seed layer after annealing at 40 °C, (b) 60 °C, and (c) 80 °C	107
Figure 4.11	The conductivity and pH of the solution at different sonication duration	109

Figure 4.12	Raman spectrum of ZnO nanorods structures grown at different annealing temperature	111
Figure 4.13	The effect of annealing temperature and growth duration on ZnO nanorods film resistivity characteristics	114
Figure 4.14	The relationship of catalyst thickness to grown ZnO nanorods (a- b) Au= 2nm, (c-d) Au= 4nm, (e-f) Au= 6nm and (g-h) Au= 8nm	117
Figure 4.15	The effect of oxygen to ZnO growth (a) 50 sccm, (b) 100 sccm, (c) 150 sccm and (d) 200 sccm	119
Figure 4.16	Effect of diethlyzinc (DEZn) to ZnO growth process with fixed argon dilution at 250 sccm (a) 2 sccm, (b) 3 sccm (c) 4 sccm and (d) 6 sccm	120
Figure 4.17	Effect of argon (Ar) dilution to ZnO growth process with fixed 3 sccm of diethlyzinc (DEZn) (a) 150 sccm of Argon, (b) 250 sccm of Argon and (c) 350 sccm of Argon	121
Figure 4.18	Raman Spectrum of grown ZnO nanorods via PECVD under different flow rate of argon dilution and diethlyzinc	122
Figure 4.19	Darkish colour indicates the samples is overwhelming with carbon while whitish colour indicates the significant amount of ZnO	122
Figure 4.20	Effect of Chamber Pressure to ZnO growth (a) 1500 mTorr (b) 1000 mTorr (c) 700 mTorr (d) 500 mTorr	124
Figure 4.21	Raman spectrum of ZnO nanorods structures grown at different chamber pressure	125
Figure 4.22	(a) Electrical resistivity of grown ZnO nanorods under different chamber pressure condition, (b) SEM images of ZnO nanorods that has been characterized by four point probes	126
Figure 4.23	The summary of aspect ratio and electrical resistivity for ZnO nanorods grown via hydrothermal method	129
Figure 4.24	Summary of aspect ratio and electrical resistivity for ZnO nanorods grown via PECVD	130

Figure 4.25	Capacitive distribution of fabricated IDEs on 8 inch wafer	131
Figure 4.26	(a): The complete IDEs device fabrication process on 8 inch wafer, (b): The enlarge image of IDEs by using Scanning Electron Microscopy (i)-(ii) the gap and width of IDE device of 5 μ m as shown, (iii) The contact pad dimension 200 μ m × 200 μ m, and (iv) The thickness of IDE ~ 1 μ m	132
Figure 4.27	ZnO nanorods synthesis on IDE device (a-b) ZnO hydrothermal synthesis method- top and side view respectively, (c-d) ZnO PECVD synthesis method-top and side view respectively	134
Figure 4.28	The sensor sensitivity for ZnO nanorods synthesized by Hydrothermal and PECVD method	136
Figure 4.29	ZnO nanorods sensitivity repeatability to oxygen gas on different sensor	137
Figure 4.30	Upper and lower limit operation range of oxygen gas sensor sensitivity	138
Figure 4.31	Effect of ZnO nanorod size to oxygen sensor sensitivity	139
Figure 4.32	Comparison of gas sensor sensitivity between ZnO nanorods hydrothermal (3,6 and 9 hours) and ZnO nanaorods PECVD	141
Figure 4.33	ZnO nanorods response and recovery time	142
Figure 4.34	Selectivity test to CO ₂ gas	144
Figure 4.35	Comparison of gas sensor selectivity to O_2 and CO_2	144
Figure 4.36	Gas sensor resolution	145
Figure 4.37	Drift test at 40 °C and 60 %RH	147
Figure 4.38	Drift test at 60 °C and 80 %RH	147
Figure 4.39	Effect of temperature subjected at different relative humidity to ZnO nanorods resistance	149

Figure 4.40	Effect of humidity subjected at different temperature to on ZnO nanorods resistance	150
Figure 4.41	Comparison of ΔR sensor resistance to oxygen gas with temperature and humidity	151
Figure 4.42	ZnO oxygen gas sensor response in indoor environment (a) before compensation and (b) after compensation	154

LIST OF SYMBOLS

R_{NW}	Nanowire resistance
ρ	Nanowire resistivity
L	Nanowire length
D	Nanowire radius
L _D	Width of depletion layer
E_C	Conduction band
E_V	Valence band
E_F	Fermi level
$\Delta_{ m air}$	Thickness of the space charge
eV _{surface}	Potential barrier
e	Conduction electron
+	Elementary charge of donor sites
G	Conductance of electron
η	Carrier concentration
е	Elementary charge
μ	Mobility of the carrier

S	Sensitivity
G_g	Nanorods conductance in oxygen gas
G _a	Nanorods conductance in ambient air
λ_D	Debye length
Vs	Interfacial potential
k	Boltzman constant
Т	Temperature
N _d	Concentration of donor impurity
М	Molarity
P_{v}	Vapour pressure
Р	Chamber pressure
R_{ZnO}	ZnO resistance
C_{di}	Dielectric capacitance
R_C	Electrode-ZnO contact resistance
R_{gi}	Average resistance of inter-grain boundary
R_l	Series resistance of depleted region of bulk ZnO
qV_s	Band bending of the surface layer
qV_c	Band bending induced at the electrode ZnO contact

Å	Angstrom
R _{air}	ZnO resistance in baseline oxygen gas in open environment
R _{gas}	ZnO resistance at targeted concentration
ΔR	Change of resistance
$ au_{res}$	Response time
$ au_{rec}$	Recovery time
δ_{time}	Time drift
Ŝ	Compensated sensor signal
У	Measured response
x	Sensor response without drift
δ	Drift
$\delta_{ heta}$	Temperature drift coefficient
δ_{ϕ}	Relative humidity drift coefficient
δ_t	Time drift coefficient
Ν	Nucleation density
ΔG	Activation energy of nucleation
ΔG_V	Volume free energy
ΔG_s	Surface free energy

SINTESIS DAN APPLIKASI NANOROD ZnO UNTUK PENDERIA GAS OKSIGEN

ABSTRAK

Di dalam tesis ini, penderia gas oksigen dengan kepekaan dan ketepatan yang tinggi pada suhu operasi di suhu bilik telah berjaya dibangunkan menggunakan nanorod ZnO. Satu siri kajian melalui hydrothermal dan PECVD telah dijalankan bertujuan untuk menghasilkan nanorod ZnO yang mempunyai kepadatan dan nisbah aspek yang tinggi. Kajian menunjukkan bahawa nanorod ZnO dengan kepadatan yang tinggi dan mempunyai nisbah aspek 15:1 boleh dihasilkan pada suhu penyepuhlindapan 100°C dengan masa pertumbuhan 3 jam untuk kaedah hydrothermal. Manakala untuk PECVD, nanorod ZnO dengan nisbah aspek 12:1 berjaya dihasilkan menggunakan pemangkin emas setebal 4 nm di dalam bekas dengan tekanan 700 mTorr. Analisis dari SEM dan AFM menunjukkan formasi nanorod ZnO melalui hydrothermal dipengaruhi oleh morfologi partikel benih manakala untuk PECVD, saiz partikel Au dalam skala nano dan campuran nisbah yang betul antara komponen prekursor merupakan parameter utama yang memberi kesan terhadap pertumbuhan nanorod ZnO. Nanorod ZnO yang dihasilkan dari kedua-dua kaedah ini merupakan jenis kristal wurtzite berdasarkan ukuran anjak raman pada mod $E_2(tinggi)$, 436cm⁻¹. Pencirian elektrik menggunakkan empat titik prob telah dijalankan dan keputusan menunjukkan sifat hakiki rintangan elektrik untuk nanorod ZnO yang dihasilkan melalui hydrothermal dan PECVD masing-masing ialah $4.47 \times 10^{-3} \Omega.$ cm dan $47 \times 10^{-3} \Omega.$

 $10^{-3}\Omega$. cm. Kepekaan terhadap gas oksigen untuk kedua-dua nanorod ZnO telah dibandingkan di dalam suasana ambien dan keputusan menunjukkan nanorod ZnO yang dihasilkan melalui *hydrothermal* adalah lebih peka dengan perubahan rintangan sebanyak 57.67%. Keputusan juga menunjukkan kepekaan penderia gas telah meningkat dengan berkurangnya saiz nanorod ZnO. Masa tindak-balas, kebolehupayaan memilih, resolusi, kestabilan, kesan suhu dan kesan kelembapan terhadap penderia juga telah diperincikan. Kehanyutan isyarat penderia terhadap perubahan suhu, kelembapan dan masa di dalam suasana sebenar telah berjaya diimbangkan melalui kaedah manipulasi garis dasar dan keputusan menunjukkan penderia mempunyai ketepatan setinggi 99.5% apabila dibandingkan dengan penderia yang komersial.

SYNTHESIS AND APPLICATION OF ZnO NANORODS FOR OXYGEN GAS SENSOR

ABSTRACT

In this thesis, a high sensitivity and accurate gas sensor with operating temperature at room temperature has been successfully developed by using ZnO nanorods. A series of parametric studies via hydrothermal and PECVD have been carried out in order to synthesis a high dense and high aspect ratio of ZnO nanorods. It has been demonstrated that a high-density of ZnO nanorods with aspect ratio 15:1 can be successfully synthesized at an annealing temperature of 100°C and 3 hours growth duration for via hydrothermal. Meanwhile for PECVD, a high aspect ratio of 12:1 ZnO nanorods successfully synthesized at 4nm gold (Au) catalyst with chamber pressure of 700mTorr. SEM and AFM analyses showed that the formation of ZnO nanorods via hydrothermal is significantly influenced by the seeds particle morphology while for PECVD, the Au nanoparticle size and the proper ratio of vapors components are the major parameter affecting the ZnO nanorods growth. The grown ZnO from both samples is of the wurtzite crystal type based on raman shift E₂(high) of 436cm⁻¹.An electrical characteristics via four point probles been conducted and the results showed that the resistivity of the ZnO grown via hydrothermal and PECVD are $4.47 \times 10^{-3} \Omega$. cm and $47 \times 10^{-3} \Omega$. cm respectively. The sensitivity to oxygen gas for both ZnO nanorods has been compared in ambient environment and the results indicated that the ZnO grown through the hydrothermal methods is more sensitive of the two in which a change of resistance of 57.67%. It has also been elucidated that the gas sensor sensitivity is also increased with decreasing ZnO nanorods dimension. The response time, selectivity, resolution, stability, temperature effect and humidity effect of the gas sensor have also been characterized. The sensor drift due to fluctuation of temperature, humidity and ageing time in real environment has successfully been compensated via baseline manipulation method and the results show the 99.5% accuracy compared to commercial sensor.

CHAPTER 1

INTRODUCTION

1.0 Research Motivation

The safe oxygen gas limit is important to be measured and monitored, particularly in confined space such as in submarine, space shuttle, airplane or any poor ventilation area likes quarry, tunnel, drainage pipe and oil-rig platform (IACS, 2007). According to OSHA (Occupational Safety and Health Act) standard as shown in Table 1.1, oxygen concentration lower than 19.5 % is deemed hazardous while an oxygen gas concentration level beyond 23.5 % is categorized as flammable. Northwest Occupational Health and Safety (NWOSH) detailed the acute effect to the human when experiencing the lack of oxygen concentration as shown in Table 1.2. As shown in Table 1.2, the deficient of oxygen gas concentration will seriously affect the physical and mind consciousness when the oxygen reaches to 16 % and risks to loss of life immediately when reaching 12 %. The danger of depletion oxygen has also been documented by European Industrial Gases Association (EIGA). Edward et al. (2007) reported that injury or death due to oxygen deficiency is a common hazard in many chemical, refinery and other industries. Toxic gas is often to blame when workers die unnecessarily due to asphyxiation in environments where the oxygen is actually depleted by gases such as nitrogen. In view of these, a sensitive and reliable oxygen gas sensor with the capability to detect the oxygen gas level within the safely limit as defined by the OSHA standard needs to be developed.

Table 1.1: Safe oxygen level in indoor environment based on OSHA standard

Oxygen Concentration (%)	Condition
>23.5	Flammable
20-23	Safe
<19.5	Hazardous

Table 1.2: Acute effect to human body due to exposure of deficient o	oxygen in a	atmosphere
based on NWOHS standard		

Acute Effect	Concentration (%)
Increased heart and breathing rate, some loss of coordination, increased breathing volume, impaired attention and thinking	16
Abnormal fatigue upon exertion, emotional upset, faulty coordination, impaired judgement	14
Very poor judgement and coordination, impaired respiration that may cause permanent heart damage, nausea and vomiting	12
Nausea, vomiting, lethargic movements, unconsciousness, inability to perform vigorous movement or loss of all movement followed by death	< 10
Convulsions, shortness of breath, cardiac standstill, death in minutes	< 6
Unconsciousness after one or two breaths	< 4

1.1 Nanostructured Metal Oxide Oxygen Gas Sensors

At present, there are many types of gas sensor technology such as polymer based, acoustic, chromatograph, calorimetric, optical, and metal oxide semiconductor. With the exception of metal oxide semiconductor, these gas sensor technologies are known to have suffered from problems such as short life span, limit to low temperature operation, expensive, and complexity in design which limit the wide range of applications. On the other hand, the metal oxide semiconductor technology is relatively inexpensive compared to other sensing technologies, able to miniaturize, robust in structure, stable at high temperature operation, lightweight, high material sensitivity and quick response times. In addition, high compatibility with semiconductor fabrication technologies has enabled the production of low cost sensor with improved sensitivity and reliability to be realized.

Nowadays, the nanotechnology is leading the development of highly sensitive metal oxide based gas sensor. Functionalization of the metal oxide at nanoscale level will provide a lot