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SINTESIS DAN APPLIKASI NANOROD ZnO UNTUK PENDERIA GAS OKSIGEN 

ABSTRAK 

Di dalam tesis ini, penderia gas oksigen dengan kepekaan dan ketepatan yang tinggi 

pada suhu operasi di suhu bilik telah berjaya dibangunkan menggunakan nanorod ZnO. Satu siri 

kajian melalui hydrothermal dan PECVD telah dijalankan bertujuan untuk menghasilkan 

nanorod ZnO yang mempunyai kepadatan dan nisbah aspek yang tinggi. Kajian menunjukkan 

bahawa nanorod ZnO dengan kepadatan yang tinggi dan mempunyai nisbah aspek 15:1 boleh 

dihasilkan pada suhu penyepuhlindapan 100
o
C dengan masa pertumbuhan 3 jam untuk kaedah 

hydrothermal. Manakala untuk PECVD, nanorod ZnO dengan nisbah aspek 12:1 berjaya 

dihasilkan menggunakan pemangkin emas setebal 4 nm di dalam bekas dengan tekanan 700 

mTorr. Analisis dari SEM dan AFM menunjukkan formasi nanorod ZnO melalui hydrothermal 

dipengaruhi oleh morfologi partikel benih manakala untuk PECVD, saiz partikel Au dalam skala 

nano dan campuran nisbah yang betul antara komponen prekursor merupakan parameter utama 

yang memberi kesan terhadap pertumbuhan nanorod ZnO. Nanorod ZnO yang dihasilkan dari 

kedua-dua kaedah ini merupakan jenis kristal wurtzite berdasarkan ukuran anjak raman pada 

mod E2(tinggi), 436cm
-1

. Pencirian elektrik menggunakkan empat titik prob telah dijalankan dan 

keputusan menunjukkan sifat hakiki rintangan elektrik untuk nanorod ZnO yang dihasilkan 

melalui hydrothermal dan PECVD masing-masing ialah 4.47 × 10−3Ω. 𝑐𝑚 dan 47 ×
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10−3Ω. 𝑐𝑚. Kepekaan terhadap gas oksigen untuk kedua-dua nanorod ZnO telah dibandingkan 

di dalam suasana ambien dan keputusan menunjukkan nanorod ZnO yang dihasilkan melalui 

hydrothermal adalah lebih peka dengan perubahan rintangan sebanyak 57.67%. Keputusan juga 

menunjukkan kepekaan penderia gas telah meningkat dengan berkurangnya saiz nanorod ZnO. 

Masa tindak-balas, kebolehupayaan memilih, resolusi, kestabilan, kesan suhu dan kesan 

kelembapan terhadap penderia juga telah diperincikan. Kehanyutan isyarat  penderia terhadap 

perubahan suhu, kelembapan dan masa di dalam suasana sebenar telah berjaya diimbangkan 

melalui kaedah manipulasi garis dasar dan keputusan menunjukkan penderia mempunyai 

ketepatan setinggi 99.5% apabila dibandingkan dengan penderia yang komersial.  
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SYNTHESIS AND APPLICATION OF ZnO NANORODS FOR OXYGEN GAS SENSOR 

ABSTRACT 

 In this thesis, a high sensitivity and accurate gas sensor with operating temperature at 

room temperature has been successfully developed by using ZnO nanorods. A series of 

parametric studies via hydrothermal and PECVD have been carried out in order to synthesis a 

high dense and high aspect ratio of ZnO nanorods. It has been demonstrated that a high-density 

of ZnO nanorods with aspect ratio 15:1 can be successfully synthesized at an annealing 

temperature of 100
o
C and 3 hours growth duration for via hydrothermal. Meanwhile for 

PECVD, a high aspect ratio of 12:1 ZnO nanorods successfully synthesized at 4nm gold (Au) 

catalyst with chamber pressure of 700mTorr. SEM and AFM analyses showed that the formation 

of ZnO nanorods via hydrothermal is significantly influenced by the seeds particle morphology 

while for PECVD, the Au nanoparticle size and the proper ratio of vapors components are the 

major parameter affecting the ZnO nanorods growth. The grown ZnO from both samples is of 

the wurtzite crystal type based on raman shift E2(high) of 436cm
-1

.An electrical characteristics 

via four point probles been conducted and the results showed that the resistivity of the ZnO 

grown via hydrothermal and PECVD are 4.47 × 10−3Ω. 𝑐𝑚 and 47 × 10−3Ω. 𝑐𝑚 respectively. 

The sensitivity to oxygen gas for both ZnO nanorods has been compared in ambient environment 

and the results indicated that the ZnO grown through the hydrothermal methods is more sensitive 

of the two in which a change of resistance of 57.67%. It has also been elucidated that the gas 

sensor sensitivity is also increased with decreasing ZnO nanorods dimension. The response time, 

selectivity, resolution, stability, temperature effect and humidity effect of the gas sensor have 

also been characterized. The sensor drift due to fluctuation of temperature, humidity and ageing 

time in real environment has successfully been compensated via baseline manipulation method 

and the results show the 99.5% accuracy compared to commercial sensor.  
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CHAPTER 1 

INTRODUCTION 

1.0       Research Motivation 

The safe oxygen gas limit is important to be measured and monitored, particularly in 

confined space such as in submarine, space shuttle, airplane or any poor ventilation area likes 

quarry, tunnel, drainage pipe and oil-rig platform (IACS, 2007). According to OSHA 

(Occupational Safety and Health Act) standard as shown in Table 1.1, oxygen concentration 

lower than 19.5 % is deemed hazardous while an oxygen gas concentration level beyond 23.5 % 

is categorized as flammable. Northwest Occupational Health and Safety (NWOSH) detailed the 

acute effect to the human when experiencing the lack of oxygen concentration as shown in Table 

1.2. As shown in Table 1.2, the deficient of oxygen gas concentration will seriously affect the 

physical and mind consciousness when the oxygen reaches to 16 % and risks to loss of life 

immediately when reaching 12 %. The danger of depletion oxygen has also been documented by 

European Industrial Gases Association (EIGA). Edward et al. (2007) reported that injury or 

death due to oxygen deficiency is a common hazard in many chemical, refinery and other 

industries. Toxic gas is often to blame when workers die unnecessarily due to asphyxiation in 

environments where the oxygen is actually depleted by gases such as nitrogen. In view of these, 

a sensitive and reliable oxygen gas sensor with the capability to detect the oxygen gas level 

within the safely limit as defined by the OSHA standard needs to be developed.  

Table 1.1: Safe oxygen level in indoor environment based on OSHA standard 

Oxygen Concentration (%) Condition 

>23.5 Flammable 

20-23 Safe 

<19.5 Hazardous 
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Table 1.2: Acute effect to human body due to exposure of deficient oxygen in atmosphere 

based on NWOHS standard 

Acute Effect Concentration (%) 

Increased heart and breathing rate, some loss of coordination, 

increased breathing volume, impaired attention and thinking 

16 

Abnormal fatigue upon exertion, emotional upset, faulty 

coordination, impaired judgement 
14 

Very poor judgement and coordination, impaired respiration that 

may cause permanent heart damage, nausea and vomiting 
12 

Nausea, vomiting, lethargic movements, unconsciousness, 

inability to perform vigorous movement or loss of all movement 

followed by death 

< 10 

Convulsions, shortness of breath, cardiac standstill, death in 

minutes 
< 6 

Unconsciousness after one or two breaths < 4 

 

1.1 Nanostructured Metal Oxide Oxygen Gas Sensors 

At present, there are many types of gas sensor technology such as polymer based, 

acoustic, chromatograph, calorimetric, optical, and metal oxide semiconductor. With the 

exception of metal oxide semiconductor, these gas sensor technologies are known to have 

suffered from problems such as short life span, limit to low temperature operation, expensive, 

and complexity in design which limit the wide range of applications. On the other hand, the 

metal oxide semiconductor technology is relatively inexpensive compared to other sensing 

technologies, able to miniaturize, robust in structure, stable at high temperature operation, 

lightweight, high material sensitivity and quick response times. In addition, high compatibility 

with semiconductor fabrication technologies has enabled the production of low cost sensor with 

improved sensitivity and reliability to be realized.  

 Nowadays, the nanotechnology is leading the development of highly sensitive metal 

oxide based gas sensor.  Functionalization of the metal oxide at nanoscale level will provide a lot 


