

PASSIVE OPERATING SYSTEM FINGERPRINTING BASED

ON MULTI-LAYERED SUB-SIGNATURE MATCHING

SCHEME (MLSMS)

By

ASHRAF HAMDAN RASHID ALJAMMAL

Thesis submitted in fulfillment of the requirements

for the degree of

Doctor of Philosophy

August 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository@USM

https://core.ac.uk/display/159615833?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

Acknowledgements

All the praises and thanks be to Allah, the Lord of the world for giving me the

energy and the talent to finish my research; He guides me and grants me success in

my life. I cannot count His bounties on me.

I would like also to deeply thank my supervisor Associate Professor Dr.Bahari

Belaton for his encouragement, endless support and all the help and valuable

guidance he provided to me from the beginning until the moment of coming out with

this thesis.

Moreover, I would like to convey my appreciation to Universiti Sainis Malaysia

(USM) for providing us such a great research environment and support. I would not

forget to convey my deeply appreciation and thanks to the School of Computer

Sciences for their endless help and support.

Last but not least, I would like to thank whom in my heart; my father Dr.Hamdan

Aljammal whom I learned from him too much in this life. I would like to thank him

for his endless and continuous encouragement and support. To the big heart, my

mother, I would like to deeply thank her for the continuous prayers, inspirations and

encouragement. My deepest thanks go to my dearest brothers and sisters for keeping

me smiling and motivated. I would not forget my brother loai’s kids Jawad and

Janah whom added a smile to our life. I dedicate this humble work to all of them as

without their support and understanding, this thesis would not have been completed.

Thank you very much.

Ashraf Hamdan Aljammal

iii

Table of Contents

Acknowledgements .. ii

Table of Contents ..iii

LIST OF TABLES .. vi

LIST OF FIGURES ..viii

LIST OF ABBREVIATIONS .. xi

ABSTRAK ...xiii

ABSTRACT ... xv

CHAPTER ONE: INTRODUCTION .. 1

1.0 General Overview .. 1

1.1 Problem Statement ... 4

1.2 Research Goals and Objectives ... 6

1.3 Research Scope and limitations ... 7

1.4 Research Contributions ... 7

1.5 Research Methodology .. 8

1.6 Thesis outline ... 9

CHAPTER TWO: LITERATURE REVIEW ON OPERATING SYSTEM

FINGERPRINTING .. 11

2.0 Introduction ... 11

2.0.1 Operating System .. 13

2.0.2 Operating System Fingerprinting .. 14

2.0.2.1 Passive Operating System Fingerprinting .. 17

2.0.2.2 Active Operating System Fingerprinting ... 19

2.1 Active Operating System Fingerprinting Approach .. 21

2.1.1 NMAP ... 22

2.1.2 A method of identifying OS based on TCP/IP protocol fingerprint 26

2.1.3 Xprobe2 ... 29

2.1.4 SYNSCAN: Towards Complete TCP/IP Fingerprinting 34

2.1.5 A New Method of Recognizing Operating Systems of Automation

Devices ... 35

2.2 Passive operating system fingerprinting .. 36

2.2.1 A Robust Classifier for Passive TCP/IP fingerprinting 37

2.2.2 P0F (P-zero-F) ... 39

iv

2.2.3 Remote OS fingerprinting Using BP Neural Networks 41

2.2.4 Passive Operating System Identification from TCP/IP Packet Headers ... 44

2.2.5 POSFinger: A New Fingerprint for Passive Remote Operating System

Identification .. 45

2.3 Chapter Summary .. 47

CHAPTER THREE: MULTI-LAYER SUB-SIGNATURE MATCHING

SCHEME FOR PASSIVE OS FINGERPRINTING .. 48

3.0 Introduction ... 48

3.1 OS Signature Parameters based on TCP/IP Stack ... 50

3.2 Passive Operating System Fingerprinting Based On Multi-Layered Sub-

Signature Matching Scheme Methodology ... 54

3.2.1 Parameters Selection ... 55

3.2.2 Multi-Layering Approach ... 59

3.2.3 Sub-Signature Approach ... 63

3.2.4 OS Fingerprinting Matching Schemes .. 64

3.2.4.1 Exact OS Signature Matching Scheme .. 65

3.2.4.2 Approximate OS Signature Matching Scheme 68

3.2.5 Auto-Updating Signature DB ... 79

3.3 Chapter Summary .. 84

CHAPTER FOUR: THE MLSMS IMPLEMENTATION 85

4.1 Implementation .. 85

4.1.1 Programming Language .. 86

4.1.2 Network Packets handling .. 87

4.1.2.1Interface wrapper .. 89

4.1.2.2 Buffering structure: Traffic Handling .. 92

4.2 MLSMS Implementation ... 94

4.2.1 Parameters Extraction ... 96

4.2.2 Matching Engine .. 98

4.2.2.1 Exact OS signature Matching Approach .. 99

4.2.2.2 Approximate OS signature Matching Approach 103

4.2.3 Signature DB Auto-Updating Approach ... 107

4.3 Chapter Summary .. 110

CHAPTER FIVE: EXPERIMENTS, RESULTS AND PERFORMANCE

ANALYSIS ... 111

v

5.0 MLSMS Algorithm Performance Evaluation .. 111

5.1 Experimental Setup and Measurement Metrics ... 111

5.2 Scenario 1 - Ground Truth Test ... 117

5.3 Scenario 2 - OS Identification Accuracy (Comparative Test) 119

5.4 Scenario 3 - OS Identification Accuracy Comparative Test (Modified

Parameters) .. 122

5.4.1 Testing MLSMS, NMAP and P0F without parameters modifications ... 123

5.4.2 Testing Windows OS with Parameters Modification 124

5.4.3 Testing Linux, Mac, IRIX and AIX with Parameters Modification 128

5.5 MLSMS & P0F& NMAP identification over lab network 132

5.6 Scenario 4 – Virtual Machine Test .. 134

5.7 Scenario 5 - Signature Auto-Update Test .. 135

5.6.1 OS Signature within Valid Range ... 135

5.6.2 OS Signature beyond Valid Range ... 136

5.7 Chapter Summary .. 137

CHAPTER SIX: CONCLUSION AND FUTURE WORK 139

6.1 Conclusion ... 139

6.2 Future Work ... 140

REFERENCES .. 142

Appendix A ... 147

Appendix B ... 166

List of Publications .. 172

vi

LIST OF TABLES

Table 3.1 Stored parameters in sigDB and the captured signature 73

Table 3.2 Calculating the weight for each signature 74

Table 3.3 Assigned weights to the parameters over the layers 75

Table 5.1 Example of OS versioning structure 114

Table 5.2 MLSMS against different operating system 118

Table 5.3 MLSMS & NMAP P0f fingerprinting results 120

Table 5.4 MLSMS, NMAP and P0F fingerprinting results with no

 Modification

123

Table 5.5 Window OS Parameters Modification Results 126

Table 5.6 Linux 2.4.6 OS Parameters Modification Results 128

Table 5.7 Mac 10.5.8 OS Parameters Modification Results 128

Table 5.8 IRIX 6.5.21 OS Parameters Modification Results 129

Table 5.9 AIX 5.2 OS Parameters Modification Results 129

Table 5.10 Identification accuracy of MLSMS, NMAP, P0F against guest

 OSs

134

Table 5.11 Sample of layer one sigDB signatures of windows 136

Table A.1 MLSMS against different operating systems 147

Table A.2 MLSMS & NMAP P0f fingerprinting results 150

Table A.3 Fingerprinting results with modifying WS of Windows XP SP3 156

Table A.4 Results with modifying WS and TTL of Windows XP SP3 156

Table A.5 Results with modifying WS, TTL and MSS of Windows XP SP3 157

Table A.6 Results with modifying WS of Linux 2.4.6 158

Table A.7 Results with modifying WS and TTL of Linux 2.4.6 158

vii

Table A.8 Results with modifying WS, TTL and MSS of Linux 2.4.6 158

Table A.9 Results with modifying WS of Mac 10.5.8 159

Table A.10 Results with modifying WS and TTL of Mac 10.5.8 159

Table A.11 Results with modifying WS, TTL and MSS of Mac 10.5.8 159

Table A.12 Results with modifying WS of IRIX 6.5.21 160

Table A.13 Results with modifying WS and TTL of IRIX 6.5.21 160

Table A.14 Results with modifying WS, TTL and MSS of IRIX 6.5.21 160

Table A.15 Results with modifying WS of AIX 5.2 161

Table A.16 Results with modifying WS and TTL of AIX 5.2 161

Table A.17 Results with modifying WS, TTL and MSS of AIX 5.2 161

Table A.18 MLSMS, NMAP and P0f results over LAN 162

Table B.1 The original signature of Linux 2.4.6 166

Table B.2 Weight calculation at Layer one 166

Table B.3 Weight calculation at Layer two 167

Table B.4 Weight calculation at Layer one 167

Table B.5 Weight calculation at Layer two 168

Table B.6 The original signature of Mac 10.5.8 169

Table B.7 Weight calculation at Layer one 169

Table B.8 MLSMS Layer One Windows Signatures DB Snapshot 170

Table B.9 MLSMS Layer Two Windows Signatures DB Snapshot

170

Table B.10 MLSMS Layer Three Windows Signatures DB Snapshot

170

Table B.11 Signature snapshot of P0F DB

171

viii

LIST OF FIGURES

Figure 1.1 MLSMS Stages 9

Figure 2.1 Operating System Roles in the computers 13

Figure 2.2 TCP/IP packet structure and its parameters 16

Figure 2.3 OS fingerprinting approaches 17

Figure 2.4 Passive operating system fingerprinting 18

Figure 2.5 Active operating system fingerprinting 19

Figure 2.6 Active OS fingerprinting steps 22

Figure 2.7 NMAP scanning behavior for the targeted host 23

Figure 2.8 NMAP general algorithm 24

Figure 2.9 Classify the TCP/IP Protocol Suits Communication Actions 27

Figure 2.10 OS Fingerprinting Steps proposed 28

Figure 2.11 Xprobe2 scanning modules 31

Figure 2.12 Xprobe2 3way handshake packets 32

Figure 2.13 Passive OS fingerprinting steps 37

Figure 2.14 TCP 3-way handshaking between two machines 40

Figure 2.15 The structure of the BP network based classifier 42

Figure 2.16 The structure of the BP neural network 43

Figure 3.1 Maximum Transfer Unit (MTU)

51

Figure 3.2 Time To Live (TTL) decrementing process 52

Figure 3.3 Window Size (WS) 53

Figure 3.4 Overall research Stages 55

Figure 3.5 Network test bed for selecting OS signature 57

Figure 3.6 Operating System fingerprinting Multi-Layers structure 60

Figure 3.7 The general MLSMS structure and components 61

ix

Figure 3.8 Finding the nearest signature in the signature DB 72

Figure 3.9 General algorithm of OS fingerprinting and DB auto-update 80

Figure 3.10 DB Auto-Update procedure 82

Figure 4.1 Implementation stages 86

Figure 4.2 Communication Process Functionality 88

Figure 4.3 JPCAP wrapper to winpcap 89

Figure 4.4 Get NIC indexes and description for capturing 90

Figure 4.5 MLSMS packet capturing Class diagram 91

Figure 4.6 Packets buffer 92

Figure 4.7 Initializing the Buffer 93

Figure 4.8 The architecture of the MLSMS 95

Figure 4.9 Parameters extraction 96

Figure 4.10 Parameters Extraction 97

Figure 4.11 Parameters extraction class diagram 97

Figure 4.12 Matching process 99

Figure 4.13 Exact matching engine 100

Figure 4.14 Matching function for layer one 101

Figure 4.15 Matching function for layer two 102

Figure 4.16 Matching function for layer three 103

Figure 4.17 Finding the nearest signature in the sigDB 104

Figure 4.18 Layer one approximate matching function 105

Figure 4.19 Layer two approximate matching function 106

Figure 4.20 Layer three approximate matching function 107

Figure 4.21 General algorithm of OS fingerprinting and DB auto-update 108

Figure 4.22 Layer one sigDB auto-update function 109

Figure 4.23 Layer two sigDB auto-update function 109

x

Figure 4.24 Layer three sigDB auto-update function 110

Figure 5.1 Test bed of the experimental (initial) setup 112

Figure 5.2 Testing plan 117

Figure 5.3 MLSMS fingerprinting accuracy 119

Figure 5.4 MLSMS, NMAP and P0f fingerprinting accuracy over 19

 machines

122

Figure 5.5 Results accuracy with no parameters modification 124

Figure 5.6 The effect of the number of modified parameters on the

 identification accuracy

127

Figure 5.7 MLSMS, NMAP and P0f results accuracy over the LAN 133

Figure A.1 MLSMS, NMAP and P0F fingerprinting accuracy over 5

 machines

154

Figure A.2 MLSMS, NMAP and P0F fingerprinting accuracy over 8

 machines

154

Figure A.3 MLSMS, NMAP and P0F fingerprinting accuracy over

 11 machines

155

Figure A.4 MLSMS, NMAP and P0F fingerprinting accuracy over

 14 machines

155

Figure A.5 MLSMS, NMAP and P0F fingerprinting accuracy over

 17 machines

156

Figure B.1 Snapshot of NMAP signature DB 171

xi

LIST OF ABBREVIATIONS

ACK Acknowledgement

BP Back Propagation

DB Database

DF Do-not-Fragment Bit

FrameTL Frame Total Length

HTTP Hyper Text Transfer Protocol

ICMP Internet Control Message Protocol

ICT Information and Communication Technology

IP Internet Protocol

IT Information Technology

JPCAP Java Packet Capturing

LAN Local Area Network

MAC Media Access Control

MLSMS Multi-Layer Sub-Signature Matching Scheme

MSS Maximum Segment Size

MTU Maximum Transfer Unit

NIC Network Interface Card

OCR Optical Character Recognition

OS Operating System

OSF Operating System Fingerprinting

SigDB Signatures Database

SNMP Simple Network Management Protocol

SYN Synchronize

TCP Transmission Control Protocol

xii

ToS Type of Service

TTL Time to Live

UDP User Datagram Protocol

W/Wscale Window scale

WINPCAP Windows Packet Capture

WS Window Size

xiii

PENYIDIKJARIAN SISTEM PENGENDALIAN PASIF BERDASARKAN

SKEMA PEMADANAN SUB-TANDATANGAN BERBILANG LAPISAN

ABSTRAK

Rangkaian komputer merupakan dimensi yang penting dalam organisasi

moden. Oleh itu, usaha memastikan rangkaian ini dapat berjalan pada prestasi

puncak dianggap amat penting dalam organisasi ini. Justeru itu, usaha memastikan

rangkaian adalah selamat merupakan isu yang penting untuk mencapai tahap prestasi

yang baik. Namun begitu, tugas ini adalah mustahil terutamanya apabila terdapat

beberapa isu persaingan yang perlu dipertimbangkan. Dalam tesis ini, kami

memfokus pada sistem pengendalian (OS) yang merupakan salah satu maklumat

penting untuk keselamatan dan pengurusan rangkaian. Maka maklumat yang

lengkap dan tepat tentang OS yang dikendalikan di rangkaian tertentu adalah sangat

penting. Teknik dan algoritma penyidikjarian OS yang sedia ada, terutamanya yang

berdasarkan OS pasif tidak memberi perincian tentang OS seperti tahap tampung

dan kejituan yang baik. Tujuan tesis ini adalah untuk mencadangkan dan membina

satu algoritma bagi menyidikjari dengan jitunya OS yang dikendali di mesin-mesin

yang dihubungkan kepada rangkaian. Tiga mekanisme dicadangkan untuk

meningkatkan kejituan penyidik jarian OS. Mekanisme pertama ialah rangka kerja

penyidikjarian berbilang lapisan. Ia adalah untuk mengurangkan ruang carian

parameter untuk menguji dan sebagai imbalannya ini akan meningkatkan kejituan

penyidikjarian. Mekanisme kedua ialah sub-tandatangan OS itu sendiri yang

memainkan peranan mengumpul maklumat yang lebih menonjol atau signifikan

tentang OS. Mekanisme ketiga ialah signature DB Auto-Update yang bertujuan

untuk memastikan DB dikemaskini dengan tandatangan OS yang terkini. Algoritma

yang dicadangkan ialah penyidikjarian OS pasif yang bergantung kepada lalu lintas

xiv

rangkaian TCP/IP. Kami telah melaksanakan penyidikjarian OS prototaip yang

dapat berfungsi penuh, dan ia telah diuji dalam pelbagai keadaan senario simulasi

dan juga nyata. Keputusan awal menunjukkan bahawa kaedah kami dapat

menghasilkan maklumat yang lebih jitu tentang OS berbanding dengan P0f dan

NMAP.

xv

PASSIVE OPERATING SYSTEM FINGERPRINTING BASED ON MULTI-

LAYERED SUB-SIGNATURE MATCHING SCHEME

ABSTRACT

Computer networks become an important dimension of the modern

organizations. Thus, keeping the computer networks running at the peak

performance is considered as a crucial part for these organizations. To achieve this

goal, networks must be secure since it is considered as the key issue to reach a good

performance level. However, this task is next to impossible especially when there

are many competing issues that need to be considered.

This thesis is focusing on Operating system (OS), which is one of the crucial

information for network security and management as well. Therefore, complete and

accurate information about the OS running on the machines connected to particular

network is of utmost importance. Existing OS fingerprinting techniques and

algorithms, particularly passive-based do not provide details of the OS such as patch

level with certainty and good accuracy.

The intention of this thesis is to propose and develop an algorithm to

accurately fingerprint OSs running on the machines that are connected to the

network. In this thesis, three mechanisms have been proposed to improve the OS

fingerprinting accuracy. The first mechanism is the multi-layer fingerprinting

framework. This basically to make it possible to have unique signatures of the

existing OSs and could reduce searching space of possible parameters to test and in

return this will improve the fingerprinting results accuracy. The second mechanism

is the OS sub-signature itself, which plays the role of capturing a more salient or

xvi

significant information about OS. The third mechanism is the signature DB Auto-

Update which aims to keep the DB updated with the latest OSs signatures. The

proposed algorithm is passive OS fingerprinting that relies on the TCP/IP network

traffic. A fully functional prototype of OS fingerprinting has been implemented, and

tested over both simulated and real time in various scenarios. Results showed that

our method is able to produce more accurate information about OS than P0f and

NMAP.

1

CHAPTER ONE

INTRODUCTION

1.0 General Overview

Operating System or OS is the soul of the digital devices, it is existed in

various forms, and for instance OS is embedded into the chips of the device often

known as firmware. More commonly it appears in every single computer as

exemplified by big names like Microsoft, IBM, Debian, RedHat, and many others.

OS drives and manages the essential functions of the device; it also acts as a

middleware between users, programs and the hardware. Therefore, the OS health

conditions have to be maintained all the times as one of the key success factors of an

organization that relies heavily on ICT assets to deliver and support their main

business/operations. On the other hand, maintaining and managing ICT assets so as

to keep every single machine updated with the latest security patches and running

the latest features and bugs free version is a very challenging task. Different types of

OSs running on different devices, some of them are very device or vendor specific

hence depending totally on the vendor/supplier, while others are open for the public

(like open source OS – linux variations) where changes/updates happen on non-

regular or cyclic patterns. Furthermore, the current trends are merging toward cloud

computing and virtualization with the promise that ICT resources are ubiquitously

available for us to tap. In such new scenario there is no clear demarcation between

what ICT assets are running which OSs; the task of managing this new phenomenon

of cloud is very challenging.

2

Securing computer network is not a simple task that can be performed once.

It is a continuous effort that should address various security factors and motivations,

such as worm infection, botnet attack, etc. Those are motivated by several factors

that vary from challenges to financial gains. These kinds of security breaches require

an entry point to the victim machine, regardless of their propagation means. These

entry points are mainly acquired through the operating system that is running and

operating the victim machine (Foundstone.Inc, 2003).

Unfortunately, each operating system has its own gaps and weaknesses

(vulnerabilities). Hence, the operating system must be updated and patched

frequently through the system user or network administrator, to check for the

updates and send the patches to the different machines to ensure that the network is

running smoothly (Adams & Erickson, 2000).

However, ensuring the integrity, reliability and security of the operating

system itself is the first step to protect them (Foundstone.Inc, 2003). Thinking the

same way the black-hat users think should enable users, systems and network

administrators to understand the various means the black-hat community employs to

gain access to any machine (victim) operating system. According to (McClure,

Scambray, & Kurtz, 2009) this will help them to guess little vulnerability that may

not be patched or identified yet, where black-hat guys can initiate their infection

propagation.

On the other hand, once a new update is released by the OS vendor, the

network administrator needs to find out the computers that should be updated. In

addition, he will be able to make sure that the network respects the company’s

3

policy regarding to the allowed operating systems to be used in the

company/organization.

Another important field is the network reconnaissance that can be active or

passive based (Chuvakin & Peikari, 2004). Network reconnaissance is considered as

the first step the attacker takes to compromise the target network and could be used

by the network administrators to collect information about the target network as

well.

Since most exploitable vulnerabilities are based on the operating system, OS

fingerprinting is considered as a crucial element in this field. Thus, knowing the

operating system that is running on the target machine would exploit the

vulnerabilities of that machine which makes it easier to the hacker to access and

compromise it as well (i.e. identifying the OS of the web server is considered as an

entry point to the web server and the other components of the target network). This

in turn, decreases the detected attacks and increases the percentage of successful

attack (Graves, 2007; Millican, 2003; Montigny-Leboeuf & Massicotte, 2005). As

the active reconnaissance techniques may face some obstacles such as the firewalls

and NATs, passive reconnaissance techniques could help to evade these obstacles

based on the fact that it could rely on the packets which bypass the firewalls and

NATs to perform the reconnaissance process , thus, it would not be affected by them

(Chuvakin & Peikari, 2004).

Network vulnerability test is regularly conducted by the security specialist or

network administrators to detect and evaluate the security vulnerabilities existed at

any network. As the first step is to collect information about the target network; OSs

running on the machines connected to this network is one of the crucial information

4

could be collected as previously discussed (Chuvakin & Peikari, 2004; Stopforth,

Vorster, & Erwin, 2007).

Furthermore, once the network administrator is tempting to find the

operating system that is running on some machines. This information will be useful

to build a network inventory by having accurate and up-to-date information which is

crucial for the network administrator in term of decision making process.

As aforementioned, having a maintained and completed database about ICT

assets in the organization is a must. Therefore, the OS fingerprinting tool should be

able to deduce accurate information about the OS, having automated solutions with

less intervention by the users and less intervention to the network.

To identify the operating systems accurately with details; collecting useful

and unique information is needed about it. In addition, a proper processing and

analysis need to be done for this information to come out with accurate and detailed

results about the OS. The identification accuracy means to correctly identify the

operating system which runs on some machines i.e if the target machine runs Win 7

ultimate, the OS fingerprinting tool should identify the OS as Win 7 ultimate

otherwise, it will not be considered as an accurate tool. On the other hand, details

about the operating system are to show the OS family name, version and the service

pack (i.e Windows XP SP3).

1.1 Problem Statement

Based on the current researches in the domain of the operating system

fingerprinting, existing methods in OS identification still lacking in providing the

details and accurate information about OS (Li, Zhang, & Yang, 2005; Greg Taleck,

5

2004; Veysset, Courtary, & Heen, 2002). Crucial information about the host OS

such as OS major version, OS minor version, OS service pack major version, patch

level, and other are essential for many purposes as explained earlier. Active OS

fingerprinting approach with its flexibility of crafting and probing the target host has

some potential to address this problem. However, in the long run this method is not

reliable as more security conscious organizations are tightening their ICT defenses

prohibiting probed packets from reaching the target hosts. On the other hand passive

based method is not affected by such security mechanism, and its stealth and

network’s friendly nature is quite attractive for us to investigate further on

addressing the stated research problems. Two points which are quite significant to be

addressed in this research: first is the selection of the reliable parameters, and the

second is the matching procedure to deduce the identity of OS.

The existing operating system fingerprinting techniques relies on a certain

parameters such as TTL, WS, MSS, FrameTL, DF, timestamp, ToS, and TCPoptions

(Berrueta, 2003; Höfler, 2004; Jiao & Wu, 2006; Li, et al., 2005). However, some of

these parameters are not reliable for the process of operating system fingerprinting,

because, some of these parameters might have the same values even for different

operating systems, versions and patches. Therefore, the usage of these parameters

might lead to uncertain and inaccurate results.

In this thesis a passive OS fingerprinting framework with a multi-layer sub-

signature matching scheme is proposed. The ingenuity of the proposed framework is

based on the segregation of the OS parameters matching into three hierarchical

layers; where in each layer a specific OS signature database is prepared and

compared. While matching process of the existing operating system fingerprinting

6

tools depends on a single layer in fingerprinting process. In other words, it uses the

whole parameters at once (not hierarchical), to be used in the matching process. This

will include some parameters which should not be combined with some other

parameters at the same level of matching. This in turn will affect the fingerprinting

tool/method to come out with an unreliable and hard-to-guess operating system

identification results.

Based on the earlier discussions and our researches in the domain of the passive

operating system fingerprinting, we have been prompted to answer the following

questions:

1. Is it possible to further improve the accuracy and provide detail information

about operating system of a remote host with a high accuracy?

2. Is it possible to achieve the above improvements using passive OS

fingerprinting method and how?

1.2 Research Goals and Objectives

The main goal of this thesis is to propose and design a new Passive

Operating System fingerprinting method based on Multi-Layered Sub-Signature

Matching Scheme that is capable of fingerprinting the operating system with higher

accuracy.

Therefore the objectives of this thesis are as follow:

1. To propose a new multi-layer OS fingerprinting framework, this is basically

to reduce searching space of possible parameters to test and in return this will

improve the fingerprinting accuracy.

7

2. To propose a unique OS sub-signature for each OS family, version and sub-

version.

3. To propose a simple signature DB Auto-Update technique which aims to

keep the DB updated with the latest OS signatures.

1.3 Research Scope and limitations

The research scope is the passive operating system fingerprinting based on

TCP/IP SYN packets. Therefore, this approach is limited to the information

availability via the network. In other words, sometimes it takes long time to capture

the needed information about some machines. Furthermore, the machine is

considered absent unless its traffic appears on the network.

Another limitation is the packet parameters which the proposed method

depends on for the process of operating system fingerprinting and that are WS, MSS,

FrameTL and TCPoptions including W. But in case these parameters have been

changed or modified with some ratio, our method will not be able to identify the

correct operating system. Therefore, as a future work, more researches should be

conducted to find additional reliable information to be used in the OS fingerprinting

process.

1.4 Research Contributions

The main contribution of this thesis is the Passive Operating System

Fingerprinting based on Multi-Layered Sub-Signature Matching Scheme. The above

contribution is divided into; new matching mechanism (Multi-layering) and the sub-

signature structure for reliable and more accurate operating system fingerprinting in

addition to the automated technique for DB update.

8

1. New multi-layer Operating System fingerprinting framework.

2. Unique OS sub-signature. By, having different signatures for each of the

matching process layer.

3. Simple technique for automated signature DB update.

1.5 Research Methodology

The research methodology is divided into five stages, the first stage is the

Study and Test OS dependant parameters (parameters selection), which aims to

select the reliable and significant parameters to be used in the process of operating

system fingerprinting. The second and the third stages are proposing the multi-

layering and the sub-signature approaches, which will make it possible to come out

with unique sub-signatures for the OS family names, OS versions and sub-versions

in addition to reducing the searching space in the signature DBs. The fourth is the

matching approach which is divided into exact matching and approximate matching

which will provide the ability to match the original signatures in addition to the

manipulated signatures as well. And the fifth stage is the signature DB Auto-update

which aims to keep the signatures DB updated with the latest released OSs

signatures. Figure 1.1 illustrates the five stages that will be discussed in details in the

following sections in chapter 3.

9

Sub-Signature Approach

Signature DB Auto-Updating Approach

Matching Approaches

Propose Multi-Layering Approach

Study and Test OS dependant

parameters (parameters selection)

Figure 1.1 MLSMS Stages

1.6 Thesis outline

This thesis is organized into six chapters. Each chapter provides a basic idea

to further proceed to the next chapter. Firstly, this chapter (Chapter 1) introduces

the background of the content distribution of our research along with our objectives

and contributions.

In chapter 2, a review of the literature and fundamental concepts related to our

work. The other operating system fingerprinting techniques and methods in the latest

researches have been discussed in details too.

Chapter 3 covers the methodology and how the proposed method was designed.

The Multi-Layer technique and the Sub-Signature structure are described in details.

10

In addition, the exact matching, approximate matching method and the signature DB

Auto-Update are discussed too in this chapter.

Chapter 4 covers the implementation details of the Passive Operating System

Fingerprinting based on Multi-Layered Sub-Signature Matching Scheme.

Chapter 5 covers in-depth the conducted experiments and the results discussion.

Four experiments are conducted to test the results accuracy of the MLSMS against

well known tools (NMAP and P0f).

Finally, Chapter 6 summarizes this thesis. This chapter revises the research

contributions with regard to the proposed method in Chapter 3 and its results in

Chapter 5. Finally, a discussion and suggestions for future work pertaining to this

thesis is discussed.

11

CHAPTER TWO

LITERATURE REVIEW ON OPERATING SYSTEM

FINGERPRINTING

This chapter provides an overview of the current state of the art in Operating

System (OS) fingerprinting methods and tools.

2.0 Introduction

Getting accurate and details information about operating systems of the hosts

that are connect to the network is useful and beneficial for many purposes. A

network engineer may use such information to deploy software updates or to patch

serious security holes more efficiently. Maintaining complete and accurate database

of OS for ICT’s assets (Montigny-Leboeuf & Massicotte, 2004) such as computers,

network gears, and printers helps system administrator to manage the software and

system installation, applying updates, tuning and customizing network’s parameters

etc. Despite of its importance, many existing OS fingerprinting methods are still

lacking identifying and more importantly in capturing details (and accurate)

information of OS. In this chapter, a quick literature review on OS fingerprinting

methods will be presented. The focus of the review will be on the more recent

techniques and tools that are relevant to the approach proposed in this research

study.

Here a brief discussion of some of the “old” operating system fingerprinting

methods and techniques. Banner grabbing is one of these methods; it is considered

the most basic and easiest method of operating system fingerprinting. Operating

system could be fingerprinted by using Telnet which is a standard tool that can be

12

found on most of the operating systems. By connecting to the remote host, Telnet

will show some information about the machine including the operating system

running on it. Unfortunately, this technique is not reliable – the operator of the

remote machine may configure their hosts to hide or even fake or provide limited

information about the operating system. In additional, due to its insecure nature

(clear text protocol), nowadays the usage of Telnet is prohibited on public network.

Another popular technique is to inspect operating system information embedded in

some of the common network traffics such as those typically found in HTTP’s

header. Some popular browsers (the client), as part of their headers, happily included

the type of operating system and this is mainly done to identify to the server the type

of client it is serving – perhaps for compatibly purposes. The information encoded in

this way once again is not reliable, as the browser can be configured to provide

inaccurate information or to hide the information all together. Other indirect

approaches such as relying on secondary information or relevant data may be used to

deduce the type of operating system. For instance, it is well known that certain

applications can only be deployed on specific operating system; hence the traces of

network traffic from those applications may be used to identify the operating system

of the host. Once again, such methods at best can identify the type of operating

system, the details but without accurate information about operating system which

still the main issue.

In this thesis, the focus of our work is on operating system fingerprinting

solely based on the most commonly used network traffic or network protocols.

Hence, this chapter reviews related works on operating system fingerprinting based

on network protocol such as ICMP, TCP/IP, UDP and the like. The literature review

is divided based on the type of OS fingerprinting general approach i.e. active vs.

13

passive approach. The type of protocols is highlighted for each reviewed method

(some approaches may use multiple protocols) together with the parameters used,

the matching mechanism and strengths & weaknesses of each approach.

2.0.1 Operating System

“Operating system is a set of system software programs in a computer that

regulate the ways application software programs use the computer hardware and the

ways that users control the computer” (Madison, 2010; Tanenbaum, 2001). Figure

2.1 shows the role of operating system in the machine as an intermediate between

the hardware and software.

Operating System

Applications

Hardware

KeyboardMonitorMouse

NIC

TCP/IP

Stack

Network

H/W

Management

User

* H/W: Hardware

* NIC: Network Interface Card

Figure 2.1 Operating System Roles in the computers

14

Operating system is considered as the backbone and the most important

program running on the machine. It manages both the software and hardware

resources, through controlling and allocating the memory as well as managing the

inputs from the external devices and transmitting outputs to the computer displays.

The critical role of the operating system in term of networking is the control and

management of the peripherals (McHoes & Flynn, 2007).

On the other hand, operating system has even more work to do. Such

operating systems monitor different programs and users, making sure everything

runs smoothly, despite the fact that numerous devices and programs are used

simultaneously (Hollander & Agostini, 2000). An operating system also has an

important role to play in security. Its job includes preventing unauthorized users

from accessing the computer system (INS, 2004; Post & Kagan, 2003).

2.0.2 Operating System Fingerprinting

OS Fingerprinting is the process of determining the operating system that is

running on the remote machine (Spangler, 2003; Ttrowbridge, 2003). Chapter 2 will

explain in details the various approaches of OS fingerprinting, while in this chapter

we provide a general overview of OS fingerprinting approaches. OS may be

identified via various means, the most direct approach is to manually inspect the

host – this of course will require physical access to the host. Another direct and

more automated approach is to install a software agent on the host, whereby the

agent main task is to find information related to OS and update the remote host or

server as requested or on regular basis. Similarly, the server may also query the

remote host running the agent software (client) to get the information about OS.

15

Example of agent based approach is the SNMP’s agent (Simple Network

Management Protocol).

The majority of OS fingerprinting methods however is focusing their

approach based on the network traffics/traces exhibited by the OS running on the

host. This group of methods is termed in the thesis as Network-based OS

fingerprinting method. These methods based their identification on some of the

unique signatures (mainly the parameters of popular protocols such as TCP/IP,

ICMP, UDP, etc.) produced by certain OS. The ingenuity of the approach varies in

several aspects such as the type and the number of parameters the method used, the

matching mechanism or rule used and finally the signature database – the true

parameters value exhibited by each OS. Figure 2.2 shows the structure of the TCP/IP

packet whose parameters can be used for operating system fingerprinting, since each

OS has a different TCP/IP stack configuration (Berrueta, 2003). Some of the more

reliable and typical parameters used for this purpose are those as highlighted with

the green color in the figure 1.2 e.g. (Time to Live (TTL), Window Size (WS),

Maximum Segment Size (MSS), Frame Total Length (TL), Do not Fragment Bit

(DF), and TCPoptions).

16

Identification

Vers TOS Total Length

Flags Fragment Offset

TTL Protocol Header Checksum

Source Address

Destination Address

Options Padding

Source Port Destination Port

Sequence Number

Acknowledgment Number

Offset U Window SizeReserv. A P R S F

Checksum Urgent Pointer

Options Padding

Payload Data

IP Header

TCP Header

Window Scale
No

Operation

Selective

Acknowledgment

IHL

Identification

Figure 2.2 TCP/IP packet structure and its parameters

Network-based OS fingerprinting methods may be further classified into two

categories on the basis of how intrusive they are in probing/collecting the OS of a

remote host. Figure 2.3 depicts the approaches of operating system fingerprinting.

17

OS Fingerprinting

Active OS

Fingerprinting

Passive OS

Fingerprinting

Hybrid OS

Fingerprinting

Figure 2.3 OS fingerprinting approaches

In the active OS fingerprinting approach, the remote host is actively being probed

with the specifically crafted network packets; the responses from the probed host are

then analyzed to deduce the identity of the host (Spangler, 2003). In contrast, in the

passive OS fingerprinting approach (Honeynet-Project, 2002; Nazario, 2001;

Ttrowbridge, 2003) the target hosts are unaware that their OS are been probed,

instead the identification of the OS is deduced from the normal network traffics

exhibited by the hosts e.g. stealthier (Giovanni, 2000). A combination of active and

passive (hybrid) approach is also possible to claim the benefits from the two general

approaches.

2.0.2.1 Passive Operating System Fingerprinting

Figure 2.4 illustrates passive OS fingerprinting technique in action, in this

case host X passively tapping on the hub to stealthy listen and capture traffics

passing though the hub. Network packets from both host A and B are accessible to

host X to analyze and identify the operating systems running on both machines.

18

BA B
Passive

Sensor

Client

Request

Server

ResponseX

Figure 2.4 Passive operating system fingerprinting

The main advantage of the passive OS fingerprinting technique is that it does

not send network traffic to the target host to be able to identify the OS. Instead, it

listens to the traffic that sent from the target host to be able to identify the OS that is

running on it. Thus it is not affected by security appliances such as firewall or

IDS/IPS protection mechanism (Chown, 2006; Kollmann & Xnih, 2005; Nazario,

2001; Zalewski & Michal, 2005). There is no specific network probe from the

passive monitoring host for a firewall to filter & block or for IDS/IPS to detect and

trigger alerts. In additional, since no network traffic is injected into the monitored

network, passive approach does not unnecessarily clogs the network with additional

traffics e.g. the bandwidth of the monitored network is not affected.

This invisibility and simple approach of capturing data about OS and then

identifying the target OS does have its limitations. Firstly, this technique suffers

from the hosts’ coverage or scope limitation issue. Host A in Figure 2.4 is only able

to see and analyze network traffics from the hosts connected to same network or

LAN where it is physically connected (including A and B). Putting this differently,

passive OS fingerprinting approach is not able to detect OSs of the remote hosts on

separate network/LAN. Secondly, passive approach will have to rely on more

19

common and general network packets to analyze and determine the OS i.e. limited

set of data, common and typical data. Thus with such limited information about the

target host, most passive approaches are not able to provide details and accurate

information about the OS of the target hosts. In this thesis, a passive based approach

is proposed relying totally on the most common network traffic to identify as details

as possible the identity of target OS. The details of our approach are discussed in

Chapter 3.

2.0.2.2 Active Operating System Fingerprinting

Figure 2.5 shows an example of active OS fingerprinting method, where host

X probes the machines which connected to the network (host A1 till host An) in order

to identify their respective OS. The active OSF (Operating System Fingerprinting)

software sends a crafted packets (probes) to these machines and waiting for the

replies (responses) to be analyzed later to identify the operating systems that are

running on both machines (Arkin, Yarochkin, & Kydyraliev, 2003a, 2003b; Lyon,

2008; Spangler, 2003).

X

Active OSF

Tool

A1

Crafted

Packet

Response

An

Crafted Packet

Response

.

.

.

Figure 2.5 Active operating system fingerprinting

20

As illustrated in the diagram, active OS fingerprinting generates extra

network traffic which directly affects the network performance of the hosts being

probed. Sometimes the target host’s performance may also be affected if the crafted

probes violates standard protocol format or if too many probes are being sent to the

target. This performance aspect is directly proportional to first, the number of probe

being send and second, to the number of host to probe. A rough calculation on the

effect of probing or scanning class B network for all 65,536 standard ports per host

has been illustrated to create upwards traffics of 170 gigabyte as explained in

(Chown, 2006). Packets probed by an active scanning host are subjected to security

appliances defenses as well as other protection mechanisms configured at the host

level e.g. personal firewall. Hence, there are clear risks here that the probing packets

may not reach the target host or the responses from the target host either being

dropped by firewall or being altered in such as way to give incorrect data about the

hosts. Another limitation of active approach is that the result its get is as good as

when the test was run, e.g. the information obtained is considered as a snapshot of

the network hosts information. According to (Chown, 2006) this snapshot can be

outdated in a short period of time depending on the pace at which the network’s

hosts are updated. In another words, any changes to the network that happens after

the scan is run will not be valid until another scan is conducted.

Active OS fingerprinting however does have a few advantages compared to its

passive counterpart (Spangler, 2003). First, with active technique ones can probe

any hosts accessible through internet, i.e. the choice of hosts are wider and not

limited to local LAN for instance. Also, given that a packet can be crafted in such a

way to induce certain behavior of the target host or to reveal certain types of

responses, an active method has the flexibility and freedom to craft or manipulate

