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BINARY POLYHEDRAL GROUPS AND EUCLIDEAN DIAGRAMS
Dieter Happel, Udo Preiser, Claus Michael Ringel

Recently, J.McKay [7] has observed that the irreducible complex
representations of the binary polyhedral groups can be arranged in
order to form the vertices of a Euclidean diagram in such a way that
the tensor product of any irreducible representation M with the
standard two-dimensional representation is the direct sum of the
irreducible representations which are the neighbors of M in the dia-
gram, and he asked for an explanation. In this note, we will show that
any self-dual two-dimensional representation gives rise to a general-
ized Euclidean diagram, and that this in fact can be used to give a
proof of the classification theorem of the binary polyhedral groups
which at the same time furnishes a list of the irreducible representa-
tions and also gives the minimal splitting field.

Of course, we know of many different proofs for the classification
of groups G with a faithful two-dimensional representation T (see
[6].[9],[3]). however in case T also is self-dual it seems to be of
interest to work directly with the corresponding generalized Euclidean
diagram., In particular, we will see that the diagram gives immediately

both the order of G and of G/G'.

It seems that the existence of additive, or subadditive functions
for Euclidean, or Dynkin diagrams respectively, is one of the reasons
for the frequent occurance (see for example [1]) of these types of
Cartan matrices. Whereas in this paper we deal with the binary poly-
hedral groups, a similar approach has proved successful also for the

representations theory of non-semisimple finite dimensional algebras

[4].

1. Selfdual two~-dimensional representations

Let k be a field of characteristic p 2 0O, and G a group of

order not divisible by P. Assume there exists a selfdual two-

dimensional representation T of G over k. We will see that T

determines a generalized Euclidean diagram (for the definition and

we refer to the next section). Let I

s of irreducible kG-modules,

the list of all possible cases,

be the set of all isomorphism classe
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2 HAPPEL et al.

and, for any i € I, fix a representative Mi. Let Ei = Ende(Mi)

. . . i .
be the endomorphism ring, e, = d1mk Ei’ and di = E;_ d1mk Mi,
thus di is just the dimension of M, considered as an E.-vector-
space, For any j € I, decompose T @ M, as direct sum of irreducible

]
modules, say

T & Mj = .GI & Mi.
i€ ci._}
The k-dimension of T & Mj is Zdjej’ the k-dimension of the

right side is I c¢,.d,e,, thus

i
el J i1
€i
(%) 2dj = .Z di(cij 'e'-)
1€l ]

Also, cij is equal to the dimension of Hom(Mi,TﬂHj) as E;-vector-
space, thus Cijei is its k-dimension. Similarly, i equals the
dimension of Hom(TﬂMi,Mﬁ) as Ej—vectorspace, thus Cjiej is its
k-dimension. Since T is selfdual, the vectorspace Hom(Mi,Tﬂaj)

and Hom(TﬁMi,Mj) have the same k-dimension, thus

(k%) C..e: = c..e;,

As a consequence, if we define ¢ = (Cij)ij by
Z—Cii i=j
C.. = for s
1]
e.
1 4 -
ey

then C 1is a generalized Cartan matrix, e = (ei)i is a symmetriza-

tion, and d = (di)i is_an additive function for C (again, for the
definition of symmetrization and additive function, we refer to the

next section). The classification of all connected generalized

Cartan matrices with additive functions given in the next section
determines the possible structure of C, and we want to apply this
to the connected component I, of 1 containing the trivial one-

dimensional representation (as well as T).
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HAPPEL et al, 3

LEMMA. An irreducible representation M belongs to Io if and

only if Ker M DKer T.

Proof: If N is a neighbour of M in I, and Ker M D Ker T,
then also Ker N D Ker T, since N 1is a direct summand of T & M.
Thus, any M in Io satisfies Ker M O Ker T. The converse is a

little more difficult, but also well-known, see [5}, theorem V.10.8.

The generalized Euclidean diagram given by the generalized Cartan

matrix CIIO will be called the diagram of T. In order to determine

the possible diagrams of selfdual two-dimensional representations T,

we may assume T to be faithful.

Now the trivial one-dimensional representation shows that there
exists i with di =e; = 1, thus both d and e have to be the
functions given in the table of section 2, not just multiples. Also,

~~

we see that the cases K“,Ecn, ﬁl)n, En’ C].n, FAZ’ 622 cannot occur.

From d and e we can calculate both the order iGI of G, as

well as the order IG/G'I of the commutator factor group G/G',

namely

6] =Y d% e, lo/e'| = PN
1 a;=1

(The first follows directly from the Wedderburn structure theorem

for the semisimple algebra kG, the second from the fact that G' is
contained in Ker Mi if and only if di = 1. Namely, since /X] ’ ﬁ.&n
does not occur, we always have e, g 3, thus all possible endomor-

phism rings E; are commutative .)

We denote by Cn’ Un, % the cyclic, or dihedral, or binary di-
hedral group of order n. Thus, DZn and le are defined by the
following generators and relations

1
D =<x,y|xn=l,y=l,yxy=x>

2n
1 1
Q4n=<x’YlX2n=}' yo=x,y xXy=%x >
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(Note that D, =C,, D, = C2 X CZ’ and Q4 = C4; also, recall that

2 22 74

the binary dihedral 2-groups are also called generalized quaternion).

Also, T will denote the binary tetrahedral group (thus 7T = SL2(F3)),
0 the binary octahedral groups, and J the binary icosahedral group
(thus, J = SLZ(FS))’ see [6],[9] or [8].

We denote by Cn primitive n-th root of 1, and anCn+C;]
With k we denote the trivial (one-dimensional) representation. With

these notations, we can now formulate the main result,

THEOREM I Let G be a finite group, let k be a field of

characteristic p >0 with p{ |G|. Let T be a faithful selfdual

two-dimensional representation of G over k. Then we deal with one

of the following cases:

diagram |G| |G/G'| G k T
~ . *
Mh n+l n+l : Cn+l cn+l€k MOM
~ !
A, 4 4 - CyxC, MON , kpivik
A, 2 2 C, MoM
~ i
Bn 2n 2n : C2n p2n€k,c2n¢k
BL_ | 20m1 Gy Pon-1€KsT, Gk

CDZH &(Zn—l) 4 | Qﬁ(Zn—l) CZ(n—Z)Ek’C4¢k

' Py(n-2) 02 (n-2)Ek

D 4(n-2) |\ 4 % (a-2) %) (a-2)€k 1EO(2)
% 4 (n=2)Sk 0=1(2)

n | ;Duhrn Pon- &k
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HAPPEL et al, 5

Eg 24 3 T £,k

. 48 2 0 x

g 120 1 ] 2 €k

¥ 24 3 T 2,6k, T4k

L 1 I I

i 2 2 c, keM

Proof: Consider first the case where G is commutative. Recall
that this just means di =1 for all i, thus we deal with the cases
E;, EHZ’ @h, ﬁhn’ E;. Now, since G has a selfdual two—-dimensional
faithful representation T, it has to be cyclic or C2 x C,. Namely,
we may suppose that k 1is algebraically closed, thus T = T1 ] TZ
with T, one-dimensional. If T, = TT, then T, is a faithful
one—-dimensional representation, thus G 1is a subgroup of the multi-

plicative group of a field, thus cyclic., Otherwise T] = T%,

T2 = T;, and G = C2 x C2. In case E;, the diagram shows that
there exists an irreducible module M which is a direct summand of
T @ M. Now since d; =e; = 1 for all i, we see that T decom~

poses, say T = Tl 6 TZ’ thus T M =(T}QM) @ (TZQM), and we may
suppose M~ T,8 M. Since M is one-dimensional, this implies that
T, is the trivial representation, and therefore any N 1is a direct
summand of T & N. Thus the diagram must contain for every vertex

a loop. This shows that the only possible E; are E; and ﬂ}.

~ ~
Next, consider the cases CBp, Dp. DL . Denote by G the class

of groups with only one-or two—-dimensional irreducible representations

having a two-dimensional faithful selfdual representation. Note that

G is closed under subgroups. If G € g and non-commutative, then we

see that the order of G/G' is 2 or 4. 1f G 1is a non—-commuta-

then |G/G'| =4 shows that G is either

tive 2-group in G,
However, it is easy

dihedral, semi-dihedral a generalized quaternion.
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6 HAPPEL et al.

to check that a semidihedral group cannot be embedded into GLz(k).

By induction on |G|, we see that a group G € G of order lc| = 2%t
with (2,t) = 1 contains a subnormal (thus normal) cyclic subgroup
of order t. Let ¢t # 1. Then G 1is a proper semidirect product of
a cyclic group N of order t by a dihedral or generalized quater-
nion group H. Let H] = CH(N), the centralizer of N in H. Then

H/H, embeds into the automorphism group of N, thus is cyclic,

1
and of order 2 or 4. In fact, only for H = Qﬁ(-CA), there is a

cyclic factor group of H of order 4, however one checks immediately
that for a cyclic subgroup N of GLZ(k), the normalizer of N
modulo the centralizer of N is of order 2. Thus, always we have
=Nx H, of G be-

1 I
longs to g, and since t divides the order of Gl/G', it follows

H/HI = C2. On the other hand, the subgroup G

that G, 1is commutative, thus by previous considerations, cyclic.
This shows that G is either dihedral or binary dihedral. Also note
that in case Ebn, the group G/G' has to be cyclic of order 4,
since G/G' only has 3 irreducible representations. As a consequence,
the order of G has to be 4t, with t odd, and therefore n

must be even.

In cases Eg, EZL it follows from |G| = 24, |G/G'| = 3 that
IG'] = 8, thus by the preceeding considerations, G' 1is either cyclic,

dihedral or quaternion. The first two cases are impossible, since
these groups do not allow an automorphism of order 3. Thus G is

non-trivial semidirect product of Q8 by C,, thus G =T.

In the case ﬁ} . we know from |G| = 48, |G/G'| = 2
that |G} = 24. Also, it follows that |[G'/G"| =3, thus G' =T
by the preceeding case. But there are just two non-trivial extensions
of T by CZ’ namely GLZ(F3) and (. Since the Sylow groups of

GL2(F3) are semidihedral, this case cannot occur, thus G = 0.

Finally, in case ﬁé, the group G 1is perfect. Let H be a
maximal normal subgroup of G, then G/H 1is a non-abelian simple
group of order dividing 120, thus G/H = A5 (see [5]). Also, H 1is
of order 2, thus H 1is the center of G, and ¢ = SLZ(FS) =]

(again,see [5]).

Also, note that the case €,, cannot occur. Namely, G/G'

would be of order 4 with only two irreducible representations,

impossible.
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HAPPEL et al. 7

Finally, let us indicate the reason for the assertions concer-
ning k. Note that k 1is a splitting field for Cn iff ;nEk.
If T 1is a twodimensional faithful selfdual representation of Cn,
then its trace is of the form G thus we must have pnﬁk. of
course, conversely, (_? pl) generates a cyclic subgroup of k of
order n, and, in this w%y, we obtain a selfdual representation.
For G =T, there exists a faithful two-dimensional representation
if and only if §4€k, and k 1is a splitting field for T iff in

addition C3€k.

Remarks

1. On splitting fields. If T 1is defined over k, and the

diagram of T 1is split, then k 1is a splitting field for G.

(This is an immediate consequence of the conmsiderations above).

2. On binary polyhedral groups. If we are only interested in

the classical question of the finite subgroups of SL2(¢), then one
first notes that we may suppose that G is a subgroup of SU2(¢),
thus the canonical 2-dimensional representation is selfdual.

. 2 .
(Namely, let (,) be the usual 1inner product on €, and define

1 ..
a new inner product by <x,y> = TET L (gx,gy), then this 1s
gEG

G-invariant). If 1 % g € G is an involution, then g is diago-—
nalizable, and since G EESLZ(C)’ we see that g 1is given by the
matrix (_é _?). This shows that g is central and is the only
involution. In this way, we exclude the possibility of G being
a dihedral group (or CZXCZ)’ thus (taking into account that k

is a splitting field) only the cases mh, Dn’ £ E7 ES remain.

3. On infinite groups. If G 1is an infinite group with a

two-dimensional selfdual representation T, and {Mi|i€I} is a set

of irreducible representations with the property that for all jE€I, the

tensor product T & Mj decomposes as a direct sum of some M., then
similarly we obtain a generalized Cartan matrix whose components are

either generalized Euclidean diagrams or else of the form

oo
By Moy By € s D, L

(Again, the component containing the trivial representation cannot be

of the form € or L ).
oo o
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8 HAPPEL et al,

For example, consider the group G = SLZ(G), and the irreducible
rational representations. The canonical two-dimensional representa-
tion T is selfdual ([8],3.1.6), and we obtain the diagram A%”.
Namely, there is precisely one irreducible rational representation
Mi of dimension i, and, for i » 2, we have T & Mi =M .9 Mi+

1-1 1
(see(8], 3.2.1 and 3.2.4).

2. Generalized Cartan - matrices

Let I be an index set. A function C: IxI - Z will be called

a generalized Cartan matrix in case

(1 Cii <2 for all i €1,

(2 Cij €0 forall i+ 3j in I, and

(3) C.. =0 if and only if C.. = 0.
1] Jj1

Note that we write Cij instead of C(i,j), and similarly x; = x(1)

for any function x: I - Z. (This generalizes the notion of a Cartan

matrix where one assumes instead of (1) the stronger property (1')

C;jj =2 for all i €1, see[2]). The underlying graph of C has

as vertices the elements of I, edges {i,j} for all pairs i % j

with Cij $ 0, and there are 2—C-li loops for every i€I. 1In case

for some i # j, we have Cijc'i + I, then we add to the edge {i,j}

the pair of numbers (|Cij

valued graph (possibly with loops). Clearly, C will be called

I,]Cji1), and, in this way, we obtain a

connected in case the underlying graph is connected.

Let C be a generalized Cartan matrix. A symmetrization for C

is a function e: I »N = {1,2,3,...} satisfying Cijej = Cjiei for
all i,j in 1. An additive function for C is a function d:I - N

satisfying I dic'j =0 for all j€I. (The existence of an additive
i€x
function for C of course immediately implies that for given je€I

at most finitely many Cij (i€1) are non-zero).

THEOREM 2. Let C be a connected generalized Cartan matrix on a

finite index set with an additive function d. Then C is of one of

the following form, d is a multiple of the listed additive function,

and there exists a symmetrization (and all are multiples of the listed
one).
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10 HAPPEL et al.

¥, oot Dy 12342 22211
-~ (1’3)
o—otla3), i 113
GZI 21
(% o—o32 D 2 3 331

These generalized Cartan matrices will be called generalized
Euclidean diagrams. Always, n+l 1is the number of points, where n

is the (first) 1index in K;, K&l’ etc.

Proof: One may apply Vinberg's theorem 3 of [10]. For the
convenience of the reader, we give an outline of a short proof,

similar to the proof given in [4].

A subadditive function d: I - for a generalized Cartan matrix

is defined by the property I dici' 2 0, for all je€I.
i€l J
(1) Let C be a generalized Cartan matrix, and assume there
exists an additive function 3 for the transpose CL. Then any

subadditive function for C is additive.

1 .
Proof: From C3 = 0 it follows (dC)ai= 0. The components of
dC are » 0, those of 3 are > 0, thus dC = 0.

(2) Every subadditive function for a generalized Euclidean

diagram is additive.

Proof: One easily checks that the function given in the list

above 1is additive, we can apply (1).

If I'c1I, and C 1is a generalized Cartan matrix for I,
and C' one for I', then we say that C' 1is a restriction of C

if Cc!. » C.. for all 1i,j € 1.
ij ij

(3) Let C' be a proper restriction of a connected generalized
Cartan matrix C, and d subadditive for C. Then d|I' is subaddi-

tive and not additive.
Proof: Clearly d|I' is subadditive, since for jer!

I d.c!.» I d.C..» f d.C..»O0.
ier' * Y qerr 'Y jer 1
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HAPPEL et al, 11

In case Cij > Cij for some 1i,j € I) the first inequality sign
will be-proper, in case jJEIL| jEINI' are neighbors, the second in-

equality sign will be proper.

(4) Any connected generalized Cartan matrix with finite index
set is either a restriction of a generalized Euclidean diagram, or

has a generalized Euclidean diagram as its restriction.

Proof: This is a rather straightforward combinatorial verifi-

cation.

The connected generalized Cartan matrices being proper restrictions

of generalized Euclidean diagrams may be called generalized Dymkin dia-

grams ; there is besides the usual Dynkin diagrams
s,8,¢,0,E, £, €, F,, 6

one additional case, namely

L <:::>~——o ees O—0
n

(5) Let C be a generalized Dynkin diagram. Then this general-
ized Cartan matrix is regular, thus there is no non-zero function
£f: T »Q satisfying I £;C;. =0 for all j € I.
. i“ij
1€1
Proof: This is well-known (and easy to prove by case-by-case-
inspection,using induction if necessery) for the usual Dynkin

diagrams, and also easily established for Ln.

(6) End of proof: If C has a proper restriction to a gene~

ralized Euclidean diagram ¢! then C cannot have any subadditive

function, since its restriction to C' would be a subadditive

function which is not additive by (3), a contradiction to (2).

If C is a generalized Dynkin diagram, then there is no additive

function by (5), or also by (2) and (3). - Thus, C has to

are two additive

» . . L ] "
functions for C, then some linear combination d of dj d
I be a connected

be generalized Euclidean, by (4). f d) a"

vanishes for some i € I. Assume d # 0. Let

component of its support. Then CII' x 1I' is generalized Dynkin,
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12 HAPPEL et al.

and the function d|I' from I' to @ satisfies I d.C.. =0
ierr * 13

for all j € I'. Thus d|I' is zero by (5), a contraction. Thus,

d! d" are multiples of each other. - It is clear that for comnected

generalized Cartanmatrices, all symmetrizations are multiples of

each other.

Remarks

1. On infinite index sets., If C 1is a connected generalized

Cartan matrix on an infinite index set, with an additive function d,
then C 1is of one of the following form, d 1is a multiple of the
listed additive function, and there exists a symmetrization (and

all are multiples of the listed one)

case valued graph additive function symmetrization
A OO0 s+ 123 .o 1}‘...

[=+]

'\l ves 0—0—0. o110, cee 111
Qo

D

[= o]

1
] 22 ... 11 ...

(1,2)

C $2.1), o ... 122 ... 211 ...
::::xr—o vee

L Q——o 11 ... 1 ...

(The proof is similar to the considerations above, and for Cartan

matrices given in [4]).

2, On generalized Cartan matrices with subadditive functions.

If C is a connected generalized Cartan matrix with a subadditive
function which is not additive, then either ¢ is a generalized

Dynkin diagram, or else of type A .
o

(The proof for finite index sets is contained in our proof above,

the infinite case follows as in (4.
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