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The shale dispersion test (rolling test) is a common procedure that is
used to measure the interactions between drilling fluids and shales.
The shale rolling test depends on the moisture content of the shale,
the shale composition, the viscosity of the test fluid, the rotation
speed of the rollers, and the test temperature. The rheological
behavior of the test fluid has the strongest influence on test results.
The data was generated experimentally, shale samples from Agbada
formation Niger-Delta was used. These shale samples were cored at a
depth of 2000 ft and 3400 ft. Water based mud that will minimize
shale dispersion and swelling of shale was formulated. The dispersion
test was conducted, and it involves exposing a weighted quantity of
sized shale to the formulated mud in roller-oven. This test is used to
design fluids and screen the effectiveness of inhibitor additives to
maintain the integrity of the cuttings and minimize the interaction of
fluids with the shale sections during the drilling and completion
operations. The swelling test was conducted and the linear expansion
adopted because it is the most representative of the increase seen by
the wellbore but was measured in the direction perpendicular to the
bedding plane as this is the direction of swelling into the wellbore.
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Table 1
Well A percentage recoveries for ben

Fluid composition

Base Fluid
3% Bentoniteþ0.3% KCl
3% Bentoniteþ1% KCl
3% Bentoniteþ0.3% CaCl2
3% Bentoniteþ1% CaCl2
3% Bentoniteþ0.3% NaCl
3% Bentoniteþ1% NaCl
ubject area
 Petroleum Engineering

ore specific subject area
 Drilling Engineering

ype of data
 Table, figure

ow data was acquired
 Experimental

ata format
 Raw, Analyzed

xperimental factors
 The shale rolling test depends on the moisture content of the shale,

the shale composition, the viscosity of the test fluid, the rotation
speed of the rollers, and the test temperature.
xperimental features
 The rolling test is a useful technique to measure the interactions of
electrolytes with shale granules in partially formulated drilling fluids
ata source location
 Rivers State, Nigeria.

ata accessibility
 Data are available within this article.

elated research article
 None.
R
Value of the data

� These data describe the rheological behavior of the test fluid as the strongest influence on the test
results.

� The data can be used to design fluids and screen the effectiveness of inhibitor additives to maintain
the integrity of the cuttings.

� These data can be applied when analyzing the interaction of fluids with the shale sections during
drilling operations.

� The data analyzed the behavior of drilling cuttings in drilling fluids as they travel up the annulus.
1. Data

Dispersion tests were carried out using various drilling fluids for Shale samples in Well A and B at
120 °F. Percentage recovery, a measure of shale recovered after dispersion tests were calculated.
Table 1 shows the percent recoveries of Shale in Well A for the bentonitic fluids. Maximum recovery
was obtained at 120 °F using a fluid composition of 3% Bentoniteþ1% KCl followed by 3%
Bentoniteþ1% CaCl2.

Table 2 shows the percent recoveries of Shale sample in Well B for the bentonitic fluids. Maximum
recovery was obtained at 120°F using a fluid composition of 3% Bentoniteþ1% KCl followed by 3%
Bentoniteþ1% CaCl2. The results are in agreement with the literature, that Kþ and Ca2þ ions are
added to the water-based muds to inhibit the clay from dispersing, to stop it from breaking up when
attacked by an aqueous solution [1,2]. These ions commonly replace the sodium ion (Naþ) associated
with the clay in the shale, creating a more stable rock that is able to resist hydration. The results show
tonitic fluids.

% Recovery

47.40
69.89
79.67
70.56
77.15
66.34
76.83



Table 2
Well B percentage recoveries for bentonitic fluids.

Fluid composition % Recovery

Base Fluid 50.40
3% Bentoniteþ0.3% KCl 70.40
3% Bentoniteþ1% KCl 77.20
3% Bentoniteþ0.3% CaCl2 66.80
3% Bentoniteþ1% CaCl2 71.80
3% Bentoniteþ0.3% NaCl 65.80
3% Bentoniteþ1% NaCl 70.80

Table 3
Plastic viscosity values for the bentonitic fluids before and after hot rolling with shale in Well A.

Fluid composition Plastic viscosity (cp)

At 120 °F

Before After

3% Bentoniteþ1% KCl 5 7
3% Bentoniteþ0.3% KCl 7 8
3% Bentoniteþ1% CaCl2 4 10
3% Bentoniteþ0.3% CaCl2 5 8
3% Bentoniteþ1% NaCl 5 6
3% Bentoniteþ0.3% NaCl 5 6

Table 4
Yield point values for bentonitic fluids before and after hot rolling with shale in Well A.

Fluid composition Yield point (lb/100 ft2)

At 120 °F

Before After

3% Bentoniteþ1% KCl 5 8
3% Bentoniteþ0.3% KCl 5 9
3% Bentoniteþ1% CaCl2 24 19
3% Bentoniteþ0.3% CaCl2 4 8
3% Bentoniteþ1% NaCl 4 7
3% Bentoniteþ0.3% NaCl 6 10
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that the dispersed solids in the fluids were large. The dispersion is a function of changes in the
structure of the shale matrix and in the bound and crystalline water caused by the hydration of the
cores [3,4].

The Well A cored at a depth of 2000 ft, is made up of 20% Quartz and 52% Clay. It contains other
non-clay minerals such as feldspar and carbonates in minimal amounts. The bulk of the clay content
consists of illite and mixed clays with a small amount of smectite. The existence of smectite indicates
the probability of some swelling and dispersion in aqueous solution. Well B cored at a depth of
3400 ft, is composed of 22% Quartz and 51% Clay. It also contains negligible amount of non-clay
minerals such as feldspar and carbonates. Zero smectite levels indicate low swelling tendencies.

The results are in agreement with the literature, that Kþ and Ca2þ ions are added to the water-
base muds to inhibit the clay from dispersing, to stop it from breaking up when attacked by an
aqueous solution. These ions commonly replace the sodium ion (Naþ) associated with the clay in the



Table 5
Plastic viscosity values for bentonitic fluids before and after hot rolling with shale in Well B.

Fluid composition Plastic viscosity (cp)

At 120 °F

Before After

3% Bentoniteþ1% KCl 5 8
3% Bentoniteþ0.3% KCl 7 9
3% Bentoniteþ1% CaCl2 4 9
3% Bentoniteþ0.3% CaCl2 5 8
3% Bentoniteþ1% NaCl 5 6
3% Bentoniteþ0.3% NaCl 5 8

Table 6
Yield point values for bentonitic fluids before and after hot rolling with shale in Well B.

Fluid composition Yield point (lb/100 ft2)

At 120 °F

Before After

3% Bentoniteþ1% KCl 5 4
3% Bentoniteþ0.3% KCl 5 6
3% Bentoniteþ1% CaCl2 24 19
3% Bentoniteþ0.3% CaCl2 4 5
3% Bentoniteþ1% NaCl 4 5
3% Bentoniteþ0.3% NaCl 6 5

Table 7
Shear stress and shear rate of bentonitic fluids before dispersion tests at 120 °F.

Shear
rate
(1/s)

Shear stress of 3%
Bentoniteþ1%
KCl

Shear stress of 3%
Bentoniteþ0.3%
KCl

Shear stress of 3%
Bentoniteþ1%
CaCl2

Shear stress of 3%
Bentoniteþ0.3%
CaCl2

Shear stress of 3%
Bentoniteþ1%
NaCl

Shear stress of 3%
Bentoniteþ0.3%
NaCl

1021.8 0.1599 0.2025 0.3411 0.1492 0.1492 0.1706
510.9 0.1066 0.1279 0.2985 0.0959 0.0959 0.1173
340.6 0.0853 0.1066 0.2878 0.0746 0.0746 0.0959
170.3 0.0533 0.0746 0.2665 0.0533 0.0533 0.0640
102.2 0.0426 0.0533 0.2558 0.0320 0.0426 0.0533
51.09 0.0320 0.0426 0.02345 0.0267 0.0320 0.0426
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shale, creating a more stable rock that is able to resist hydration. The results show that the dispersed
solids in the fluids were large. The dispersion is a function of changes in the structure of the shale
matrix and in the bound and crystalline water caused by the hydration of the cores.

The plastic viscosity (PV) and yield point (YP) were calculated before and after dispersion.
Tables 3–6 show the PV and YP values obtained for the bentonitic fluids.

A comparison of PV values before and after hot-rolling the shale samples showed distinct outcome
with the salt/bentonite fluids. The salt/bentonite fluids showed an increase in PV when hot-rolled at
120 °F; which indicates shale dispersion. Yield point for the salt/bentonite fluids showed a decrease in
YP after hot-rolling at 120 °F. YP is a function of electrostatic forces between fluid particles in motion
[5]. For Bingham fluids, it is also the shear stress required to initiate flow in fluids. From YP results, the
dispersion tests reduced the attractive force between the solid particles significantly.



Table 8
Shear stress and shear rate of bentonitic fluids after dispersion tests with shale from Well A at 120 °F.

Shear
rate
(1/s)

Shear stress of 3%
Bentoniteþ1%
KCl

Shear stress of 3%
Bentoniteþ0.3%
KCl

Shear stress of 3%
Bentoniteþ1%
CaCl2

Shear stress of 3%
Bentoniteþ0.3%
CaCl2

Shear stress of 3%
Bentoniteþ1%
NaCl

Shear stress of 3%
Bentoniteþ0.3%
NaCl

1021.8 0.2345 0.2665 0.4157 0.2558 0.2025 0.2345
510.9 0.1599 0.1812 0.3091 0.1706 0.1386 0.1706
340.6 0.1279 0.1492 0.2878 0.1279 0.1066 0.1173
170.3 0.0959 0.1066 0.2239 0.1066 0.0746 0.0746
102.2 0.0640 0.0959 0.2025 0.0746 0.0533 0.0640
51.1 0.0426 0.0640 0.1812 0.0533 0.0426 0.0426

Table 9
Shear stress and shear rate of bentonitic fluids after dispersion tests with shale from Well B at 120 °F.

Shear
rate
(1/s)

Shear stress of 3%
Bentoniteþ1%
KCl

Shear stress of 3%
Bentoniteþ0.3%
KCl

Shear stress of 3%
Bentoniteþ1%
CaCl2

Shear stress of 3%
Bentoniteþ0.3%
CaCl2

Shear stress of 3%
Bentoniteþ1%
NaCl

Shear stress of 3%
Bentoniteþ0.3%
NaCl

1021.8 0.2132 0.2558 0.3944 0.2239 0.1812 0.2239
510.9 0.1279 0.1599 0.2985 0.1386 0.1173 0.1386
340.6 0.1066 0.1279 0.2558 0.1066 0.0853 0.1066
170.3 0.0640 0.0853 0.2132 0.0746 0.0533 0.0640
102.2 0.0426 0.0640 0.1919 0.0533 0.0426 0.0426
51.1 0.0320 0.0426 0.1706 0.0320 0.0320 0.0320
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Further analysis of the dispersion tests involved the measurement of the fluid rheology before
and after the tests. Values of shear stress (τ) and shear rate (γ) were calculated and presented in
Tables 7, 8 and 9.
2. Experimental design, materials, and methods

The dispersion test involves exposing a weighed quantity of sized shale pieces (2–4 Sieve Opening
Millimeters) to a formulated fluid in a conventional roller-oven cell. The test provides long-term
exposure of the shale to the fluid under mild agitation. Under such conditions, dispersion of the shale
into the fluid will occur depending on the tendency of the shale to disperse and the inhibitive
properties of the fluid. Shale dispersion is a process by which shale cuttings disintegrate into smaller
sizes. It is a function of mechanical factors such as shear and chemical factors such as hydration
(Guizhong et al. [6]). The rheological characteristics of the fluid also can influence the test results by
altering the amount of agitation in the rolling phase. The fluid and shale are rolled together in a roller
oven for 16 hours at 120 °F. After cooling to room temperature, the fluid is poured over a 0.023 mesh
size and the retained shale pieces are recovered, washed, weighed, and dried overnight at 200 °F.
Afterward, the sample is re-weighed to determine the percent recovery [7].

Fluid rheological properties were also measured using a six-speed Fann 35 viscometer before and
after dispersion tests. This was done in order to monitor rheological alterations due to shale disin-
tegration and temperature changes after dispersion test was carried out. Values of shear stress (τ) and
shear rate (γ) were calculated using the following equations:



E.E. Okoro et al. / Data in Brief 19 (2018) 1620–1626 1625
For shear stress,

τ¼ 0:01066� θi � N ð1Þ
where

τ¼shear stress (lbf/ft2)
θi¼dial reading at ith rpm
N¼spring factor¼1
For shear rate,

γ¼ 1:703� RPM ð2Þ
where

γ¼shear rate (1/s)
RPM¼viscometer rotational speed

Salt additives {Potassium Chloride (KCl), Sodium Chloride (NaCl), Calcium Chloride (CaCl2)}, when
used in the drilling fluid have proved to be beneficial in stabilizing shale formations. These additives
lower the water activity of the drilling fluid, which leads to higher osmotic pressure gradients. Also,
solute mobility is low in shale, which increases the membrane efficiency of the shale/drilling fluid
system. As a result, the effective osmotic pressures generated could be strong enough to offset the
hydraulic mud over-balance, which indeed could lead to shale stabilization through dehydration.
Also, the main function of viscosifier is to increase the viscosity of the mud filtrate, and thus, reduce
the hydraulic flow and pressure penetration into shale formations. They also lower the water activity
of the drilling fluid and thus generate osmotic potentials [8]. These two factors may lead to shale
stabilization.

Linear Swelling tests were carried out on Shale samples from Well A and B using Water Base-mud
and deionized water. Both shale samples swell in deionized water after immersion for 24 h. They also
showed reactivity when placed in all the test fluids. Maximum linear swell for this shale was obtained
in the deionized water.
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