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Abstract—Cumulative Sum (CUSUM) chart has been used 

extensively to monitor mean shifts. It is highly sought after by 

practitioners and researchers in many areas of quality control 

due to its sensitivity in detecting small to moderate shifts. 

Normality assumption governs its ability to monitor the process 

mean. When the assumption is violated, CUSUM chart typically 

loses its practical use. As normality is hard to achieve in practice, 

the usual CUSUM chart is often substituted with robust charts. 

This is to provide more accurate results under slight deviation 

from normality. Thus, in this paper, we investigate the impact 

of using robust location estimators, namely, median and 

Hodges-Lehmann on CUSUM performance. By pairing the 

location estimators with a robust scale estimator known as 

median absolute deviation about the median (MADn), a duo 

median based CUSUM chart is attained. The performances of 

both charts are studied under normality and contaminated 

normal distribution and evaluated using the average run length 

(ARL). While demonstrating an average power to detect the out-

of-control situations, the in-control performances of both charts 

remain unaffected in the presence of outliers. This could very 

well be advantageous when the proposed charts are tested on a 

real data set in the future. A case in point is when the statistical 

tool is used to monitor changes in clinical variables for the health 

care outcomes. By minimising the false positives, a sound 

judgement can be made for any clinical decision. 

 

Index Terms—Average Run Length (ARL); Contaminated-

Normal Distribution; CUSUM Control Chart; Median Based 

Estimators. 

 

I. INTRODUCTION 

 

As one of the memory-type charts, Cumulative Sum 

(CUSUM) control chart is known for its reliability in 

monitoring small shifts in the process mean [1]. The 

performance of the chart is frequently measured regarding its 

average run length (ARL). The ARL is used to gauge how 

responsive is the chart towards special causes if these 

variations occur in Phase II. However, calculation of the ARL 

is also governed by normality assumption. Thus, when 

violated, the chart is expected to signal more frequently than 

its nominal ARL would suggest. In general, this translates to 

unnecessary process adjustment and loss of confidence in any 

chart as monitoring tools [2]. To overcome the sensitivity of 

the usual CUSUM chart in a slight deviation from normality, 

researchers seek for alternatives in robust CUSUM structure. 

As such, many have opted to substitute �̅� in the plotting 

statistics with robust location estimators. The idea is to keep 

the false alarm rate in check upon contamination in the 

process.  For instance, the use of trimmed mean in the 

CUSUM design has been shown to achieve the said goal [3]. 

Similarly, reliable ARL results were claimed to be achieved 

when Hodges-Lehmann (HL) and tri-mean estimators were 

applied in CUSUM in nthe on-normal environment [4]. 

Others have also considered robust estimation when the 

underlying process mean and variance are unknown. More 

recently, [5] applied the classical estimators to attain the 

process parameter in Phase I normal condition, whilst 

proposing several robust location estimators; trimmed mean, 

HL, tri-mean and median, in the plotting statistics of three 

memory-type charts; CUSUM, Exponentially Weighted 

Moving Average (EWMA) and Mixed EWMA-CUSUM 

charts. Though the finding disclosed that no single chart or 

estimator is competent in all data condition, it is hard to turn 

a blind eye on how fast the standard chart performance 

deteriorates as the level of contamination increases.  

In practice, normality assumption is hard to achieve nor do 

we have the value of the process parameters readily available 

most of the time. Thus, in this paper, we study the estimation 

of both location and dispersion process parameter; 𝜇0 and 𝜎0, 

respectively, when Phase I data may contain outliers. To 

accomplish this, we examine the effect of using median based 

estimators with CUSUM control structure. Two robust 

location estimators, namely, median and HL, are to be used 

both for plotting statistics and for deriving �̂�0. We use only 

one method to derive �̂�0, so that the contrast in the CUSUM 

performance are merely due to the estimation of 𝜇0. A 

consistent estimator of 𝜎0, known as median absolute 

deviation about the median (MADn) is opted in this article.  

The outline of the paper is structured as follows. In Section 

II, we present the standard CUSUM control chart, follows by 

the description of the median based estimators in Section III. 

A step by step approach to construct the proposed method is 

delineated in Section IV. Section V detailed out the 

simulation outcomes. The final section; Section VI, 

summarises the conclusion of this study. 

 

II. THE STANDARD CUSUM CONTROL STRUCTURE 

 

 Page [6] proposed the idea to measure the accumulative 

sum of deviation of data from the in-control process mean in 

two different plotting statistics; the upper (𝐶𝑈,𝑖) and the lower 

(𝐶𝐿,𝑖) part as in Equation (1).  

 

𝐶𝑈,𝑖 = max  {0, 𝐶𝑈,𝑖−1 + (𝑍𝑈,𝑖 − 𝑘𝑈)}      

 𝐶𝐿,𝑖 = min  {0, 𝐶𝐿,𝑖−1 + (𝑍𝐿,𝑖 + 𝑘𝐿)} 
(1) 

 

  
where i defines the subgroup number, 𝐶𝑈,0 𝑎𝑛𝑑 𝐶𝐿,0 are the 

initial values; typically set at 0. The standardized statistics 

(𝑍𝑈,,𝑖 , 𝑍𝐿,𝑖) and the reference values (𝑘𝑈, 𝑘𝐿) are defined as 

Equation (2) and (3), respectively.  
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   𝑍𝑈,𝑖 =  𝑍𝐿,𝑖 =
�̂�𝑖−𝜇0

𝜎0 √𝑛⁄
                         (2) 

    𝑘𝑈 = 𝑘𝐿 =
𝛿𝑜𝑝𝑡

2
                                       (3)

   

where �̂� is the location estimator used to monitor the mean 

shift, 𝜇0 and 𝜎0 are the in-control process parameter, n is the 

sample size and 𝛿𝑜𝑝𝑡 is defined as a standardized shift in the 

location where a quick detection is required. An out-of-

control signal will be given at time i, if 𝐶𝑈,𝑖 > ℎ or 𝐶𝐿,𝑖 < −ℎ, 

where h is the decision limit.  

When process parameters are unknown, common practice 

is to estimate them based on the sample mean and sample 

standard deviation. However, these two statistics are easily 

perturbed by extreme values, which consequently may render 

the practical use of CUSUM chart meaningless. This leads us 

to the search of alternatives estimators that could help to 

alleviate the problem.   

 

III. ROBUST LOCATION AND DISPERSION ESTIMATORS  

 

The proposed methods of this article are established based 

on three median based estimators, namely median, HL and 

MADn. While the first two estimators in the list are used to 

measure the location, MADn is employed to measure the 

dispersion. The description each estimator is explained as 

follows.  

 

A. Median 

The estimate provided by median separates the lower half 

of the data to its upper half. Sample median is computed as in 

Equation (8). 

 

𝑚𝑒𝑑 = {

1
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,                                   𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

 (8) 

 

where n is the sample size. The efficiency of sample median 

also rivals the sample mean when tails of the distribution 

become heavier, irrespective of the sample size [7]. On 

normal data, the efficiency is set at 64% [8].  

 

B. Hodges-Lehmann (HL) 

Identified as the median of pairwise averages, this 

estimator is proposed by Hodges and Lehmann [9] and 

defined as in Equation (9). 

 

𝐻𝐿 = 𝑚𝑒𝑑𝑖𝑎𝑛 (
(𝑋𝑎 + 𝑋𝑏)

2
⁄   , 1 ≤ 𝑎 ≤ 𝑏 ≤ 𝑛)         (9)   

 

It is suited for symmetric models that are prone to outliers 

as its Gaussian efficiency closely tied-up to the sample mean, 

measured at approximately 96%. Its breakdown point (BP) is 

relatively lower than the median, placed at 29%, while the 

former is set at 50% [10]. On that account, some would forgo 

HL and capitalise on another alternative with higher finite 

breakdown point when dire contamination is speculated.  

 

C. Median Absolute Deviation About the Median 

(MADn) 

This dispersion estimator has made a mark in modern, 

robust statistical methods due to its 50% BP as well as its 

bounded influence function, with the sharpest possible bound 

among scale estimators [8]. These merits occasionally 

outweigh a duo setback experienced by MADn; 37% 

efficiency at Gaussian data and less suitable for asymmetric 

distributions. It is defined as Equation (10). 

 

      𝑀𝐴𝐷𝑛 =  (1
0.6745⁄  ) 𝑚𝑒𝑑𝑖|𝑥𝑖 − 𝑚𝑒𝑑𝑗𝑥𝑗|     (10) 

 

The constant 1 0.6745⁄  in the formula is needed to make the 

estimator consistent for the parameter of interest, i.e. 𝜎. 

The following section describes the design procedure to 

attain new robust CUSUM charts using the median, HL and 

MADn.  

 

IV. THE DEVELOPMENT OF THE PROPOSED CUSUM 

CONTROL STRUCTURE  

 

Rather than assuming data is free from contamination, we 

recognise the possibility of the presence of outliers. Thus, we 

propose a duo median based chart for monitoring the location 

shift. The first chart is the med-CUSUM chart; constructed 

using med and MADn, while the second chart is identified as 

HL-CUSUM chart; developed using HL and MADn.  

The proposed charts are constructed in two stages; namely 

Phase 1 and Phase II. The steps to design an optimal med-

CUSUM chart to detect a shift in location are as follows: 

 

Phase I: 

Step 1 Decide on the sample size, n and subgroup size, m. In 

this article, we set m = 50 and 𝑛 ∈ {7, 10}. 

Step 2 Generate the data based on selected distributions 

(explained later in the next section). 

Step 3 Compute the 𝑀𝑒𝑑̅̅ ̅̅ ̅̅  using the average of the Med 

estimators as in Equation (8). 

Step 4 Compute the 𝑀𝐴𝐷̅̅ ̅̅ ̅̅ ̅
𝑛 using the average of the MADn 

estimators as in Equation (10). 

 

Note that, for the HL-CUSUM chart, we compute 𝐻𝐿̅̅ ̅̅  using 

the average of the HL estimators as in Equation (9). This 

refers to the third step in Phase I.  

 

Phase II: 

A. To derive optimal parameters 

Step 1 Fixed n. 

Step 2 Fixed in-control ARL when data ~N(0,1).  

Step 3 Set 𝛿𝑜𝑝𝑡 

Step 4 Set k using Equation (3) 

Step 5 Simulate h for CUSUM such that the factor would 

produce value of in- control ARL in Step 2.  

 
B. To compute the ARL 

Step 1 Generate 15,000 new observations of size n from the 

selected distributions (which is the same as Phase I 

data distribution).  Assume data are in-control.  

Step 2 Calculate the Med using Equation (8) for each 

subgroup. This will be the value of �̂�𝑖 in the plotting 

statistics. 

Step 3 Compute the plotting statistics using Equation (1) and 

record whether they are within decision limits or not. 

The respective sample number (when either 𝐶𝑈,𝑖 > ℎ  

or 𝐶𝐿,𝑖 < −ℎ) is noted as the in-control run length. 

Step 4 Repeat the process for 10,000 simulation runs and 

compute the ARL over the total runs. 
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Step 5 Introduce shift, 𝛿 ∈ {0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 

2.0, 2.5, 3.0}. 

Step 6 Repeat steps 1 - 4 to get the out-of-control ARL.  

 

Note that, for the HL-CUSUM chart, we compute �̂�𝑖 using 

Equation (9). This refers to the second step in Phase II- B.  

Once the steps are completed, the simulation outcomes are 

readily available for discussion. 

 

V. SIMULATION OUTCOMES 

 

 This section discusses the performance of proposed 

methods. Two scenarios are considered in this study. First is 

the ideal condition, where data are assumed to be N(0,1). 

Second is the non-normal environment, wherein data come 

from a contaminated normal (CN) distribution. In CN 

distribution, 95% of the observations come from N(0,1). The 

remaining 5% of the data are still normally distributed with 

mean zero, but with a larger 𝜎 to illustrate the presence of 

outliers. In this study, we set 𝜎 = 9.  
The results of our simulation study are summarised in 

Table 2 and 3. To accomplish that, we set the nominal in-

control ARL  = 370 and 𝛿𝑜𝑝𝑡 = 1. Throughout this article, 

ARL0 and ARL1 are used to denote the in-control and out-of-

control ARL, respectively. The associated factor (h) for each 

chart can be referred in Table 1. Along with that, we include 

the simulation outcome for the standard CUSUM chart as a 

basis for comparison. The standard chart is constructed using 

the average of sample mean and average of sample standard 

deviation in Phase I, while the sample mean is employed in 

the charting statistics for monitoring process mean in Phase 

II.  
 

Table 1 

Factor (h) of CUSUM charts under 𝑁(0,1) at ARL0 = 370 

 

n Standard 
CUSUM chart 

Med-CUSUM 
chart 

HL-CUSUM 
chart 

7 5.048 10.41 12.45 

10 5.072 9.22 10.21 

 

The tabulated value in Table 2 gives ARL0 at a nominal 

level for all charts since each chart is specifically designed 

for quick detection of shift size 1 at ARL0 = 370. Under 

normality and when 𝛿 > 0, the standard chart is highly 

sensitive to signal the out-of-control situation. Note also that 

the ARL1 decreases as n increases. Between the two robust 

charts, HL outperforms the median chart irrespective of the 

sample size. 

Table 3 gives the result for all three charts when data are 

non-normal. The strength of the proposed methods is evident 

when there are contaminations in the data. In general, the use 

of robust estimators dictates the in-control performance of 

CUSUM chart. Both robust charts performances are stable 

even when outliers are a presence, while the performance of 

the standard chart is declining markedly for 𝛿 = 0. The 

relationship between n and ARL0 bears little importance here.  

Although outlying values in the data have little to no impact 

on the ARL0 of the Med-CUSUM chart, the chart is highly 

resistant to the presence of outliers. As such, it is 

outperformed by the standard chart when 𝛿 > 0.  Trails 

behind the standard chart is the HL- CUSUM chart.  

 

 

 

 
Table 2 

ARL Value for Proposed Charts with with m = 50 at ARL0 = 370 with 

𝛿𝑜𝑝𝑡 = 1  under N(0,1) 

 

n 𝛿 Standard 

CUSUM 

chart 

Med-

CUSUM 

chart 

HL- 

CUSUM 

chart 

 0 370.248 370.098 370.137 

 0.25 26.475 55.711 31.891 

 0.5 7.106 18.839 9.643 
 0.75 4.090 11.233 5.727 

7 1 2.967 7.980 4.145 

 1.25 2.359 6.266 3.275 
 1.5 2.042 5.173 2.731 

 1.75 1.831 4.426 2.367 

 2 1.592 3.879 2.119 
 2.5 1.158 3.367 1.870 

 3 1.008 2.884 1.546 

 0 370.102 370.888 369.687 

 0.25 17.633 51.703 21.487 

 0.5 5.509 19.324 7.231 

 0.75 3.360 11.781 4.432 
10 1 2.472 8.531 3.258 

 1.25 2.048 6.702 2.605 

 1.5 1.796 5.544 2.204 
 1.75 1.513 4.736 3.367 

 2 1.237 4.163 2.884 

 2.5 1.012  1.414 3.367 
 3 1.000 1.067 2.884 

 
Table 3 

ARL value for proposed charts with m=50 at ARL0=370 with 𝛿𝑜𝑝𝑡 = 1  

under CN distribution 

 

n 𝛿 Standard 

CUSUM 
chart 

Med-

CUSUM 
chart 

HL- 

CUSUM 
chart 

 0 220.142 365.707 350.21 

 0.25 32.738 67.893 39.293 
 0.5 8.221 21.602 11.143 

 0.75 4.657 12.568 6.496 

7 1 3.316 8.945 4.629 
 1.25 2.620 6.999 3.643 

 1.5 2.205 5.740 3.018 

 1.75 1.961 4.886 2.607 
 2 1.776 4.255 2.297 

 2.5 1.336 3.450 1.982 

 3 1.059 2.917 1.763 

     

 0 231.452 368.21 356.523 

 0.25 22.337 64.222 26.677 
 0.5 6.339 22.082 8.235 

 0.75 3.773 13.393 4.930 

10 1 2.754 9.543 3.615 
 1.25 2.218 7.449 2.881 

 1.5 1.936 6.147 2.407 

 1.75 1.708 5.249 2.120 
 2 1.442 4.598 1.963 

 2.5 1.066 3.696 1.656 

 3 1.002 3.145 1.224 

  
 

VI. CONCLUSION  

 

In this paper, we have studied the performance of median 

based CUSUM charts. More specifically, we have 

investigated the effect of a duo median based location 

estimators; median and HL, on the CUSUM structure. To 

examine the in-control robustness of the CUSUM chart, the 

process is calibrated using contaminant data of the same type 

as are subsequently monitored. The goal is to keep the ARL 

relatively close to the nominal level even when outliers are a 

presence. By pairing each of the proposed location estimators 

with a high breakdown point scale estimator known as 
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MADn, this target can be met, remarkably well by the 

proposed methods.  

In general, the proposed charts are expected to be 

applicable in the manufacturing industry, where the quality of 

a product is in frequent need of constant monitoring. A more 

recent trend is to apply control chart in monitoring health care 

outcomes as the statistical tool is known to be relatively 

inexpensive, yet powerful enough for overseeing chronic 

disease. Thus, it vital to minimise false positives and or/ false 

negatives that could lead to the erroneous clinical decision. 

This could very well be accomplished via our proposed 

methods.    
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