
THÈSETHÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par : l’Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier)

Présentée et soutenue le 26/01/2018 par :
Mojtaba Hajmoosaei

A Bottom-up Process Management Environment
dedicated to Process Actors

JURY
Antoine Beugnard Professeur

IMT Atlantique Bretagne
Rapporteur

Eric Cariou Maître de conférences
Université de Pau

Examinateur

Marie-Pierre Gervais Professeur
Université Paris Nanterre

Rapporteur

Chihab Hanachi Professeur
Université Toulouse 1

Examinateur

Christian Percebois Professeur
Université Paul Sabatier

Directeur

Hanh Nhi Tran Maître de conférences
Université Paul Sabatier

Co-directeur

École doctorale et spécialité :
MITT : Domaine Mathématiques : Mathématiques appliquées

Unité de Recherche :
Toulouse Institute of Computer Science Research (IRIT)

Directeur(s) de Thèse :
Christian Percebois et Hanh Nhi Tran

Rapporteurs :
Antoine Beugnard et Marie-Pierre Gervais

2

Acknowledgments

Firstly, I would like to express my sincere gratitude to my advisers Prof. Christian
Percebois and Dr. Hanh Nhi Tran for the continuous support of my Ph.D study and
related research, for their patience, motivation, and immense knowledge. Their guidance
helped me in all the time of research and writing of this thesis. They taught me how
to ask questions and express my ideas. They showed me different ways to approach a
research problem and the need to be persistent to accomplish any goal. In addition to
our academic collaboration, I greatly value the close personal rapport that my advisers
and I have forged over the years. I could not have imagined having a better advisers
and mentors for my Ph.D study.

Besides my advisers, I would like to thank the rest of my thesis committee: Antoine
Beugnard, Marie-Pierre Gervais, Eric Cariou and Chihab Hanachi for their encourage-
ment, insightful comments, and hard questions.

I thank my team mates in IRIT MACAO: Herve Leblanc Amani Makhlouf, Robin
Bussenot and Nicolas Hili for all the interesting discussion and fun we have had in the
last four years. Moreover, I am grateful to our industrial partners who dedicated their
precious time during this doctoral study and helped us on developing the case studies
for our research and on validating our prototype.

Finally, and most importantly, I would like to thank my family. Their support, encour-
agement, quiet patience and unwavering love were undeniably the foundations upon
which the past seven years of my life have been built. This last word of acknowledgement
I have saved for my dear wife Larissa Haake, who has been with me all these years and
has made them the best years of my life.

3

4

Abstract

Companies increasingly adopt process management environments, which offer promising
perspectives for a more flexible and efficient process execution. Traditional process
management environments embodies a top-down approach in which process modeling is
performed by process designers and process enacting is performed by process actors. Due
to this separation, there is often a gap between process models and their real enactments.
As a consequence, the operational level of top down process environments has stayed
low, especially in system and software industry, because they are not directly relevant to
process actors’ needs.

In order to facilitate the usage of process environments for process actors, this thesis
presents a user-centric and bottom-up approach that enables integration of process actors
into process management life cycle by allowing them to perform both the modeling and
enacting of their real processes. To this end, first, a bottom-up approach based on the
artifact-centric modeling paradigm was proposed to allow each process actor to easily
describe the process fragment containing the activities carried out by his role.

The global process is thus decomposed into several fragments belonging to different
roles. Each fragment can be modeled independently of other fragments and can be added
progressively to the process model; therefore the process modeling becomes less complex
and more partial. Moreover, a process fragment models only the structural aspect of
a role’s activities without anticipating the behavior of these activities; therefore the
process model is less prescriptive.

Second, a data-driven process engine was developed to enact activities coming from
different process fragments. Our process engine does not require predefined work-sequence
relations among these activities to synchronize them, but deduces such dependencies
from their enactment-time exchanged artifacts. We used a graph structure name Process
Dependency Graph (PDG) to store enactment-time process information and establish
the dependencies among process elements.

Third, we extend our process environment in order to handle unforeseen changes
occurring during process enactment. This results in a Change-Aware Process Environment
that allows process actors reporting emergent changes, analyzing possible impacts and
notifying people affected by the changes.

In our bottom-up approach, a process is split into several fragments separately

5

modeled and enacted by process actors. Our data-driven process engine, which uses the
availability of working artifacts to synchronize activities, enables enacting independently
process fragments, and even a partially modeled process where some fragments are
missing. The global process progressively emerges only at enactment time from the
execution of process fragments. This new approach, with its simpler modeling and more
flexible enactment, integrates better process actors into process management life cycle,
and hence makes process management systems more attractive and useful for them.

6

Résumé

Les organisations adoptent de plus en plus les environnements de gestion des proces-
sus car ils offrent des perspectives prometteuses d’exécution en termes de flexibilité
et d’efficacité. Les environnements traditionnels proposent cependant une approche
descendante qui nécessite, de la part de concepteurs, l’élaboration d’un modèle avant
sa mise en œuvre par les acteurs qui le déploient tout au long du cycle d’ingénierie.
En raison de cette divergence, un différentiel important est souvent constaté entre les
modèles de processus et leur mise en œuvre. De par l’absence de prise directe avec
les acteurs de terrain, le niveau opérationnel des environnements de processus est trop
faiblement exploité, en particulier en ingénierie des systèmes et des logiciels.

Afin de faciliter l’utilisation des environnements de processus, cette thèse présente
une approche ascendante mettant les acteurs du processus au cœur de la problématique.
L’approche proposée autorise conjointement la modélisation et la mise en œuvre de leurs
activités quotidiennes. Dans cet objectif, notre approche s’appuie sur la description des
artéfacts produits et consommés durant l’exécution d’une activité. Cette description
permet à chaque acteur du processus de décrire le fragment de processus exprimant les
activités dictées par son rôle.

Le processus global se décompose ainsi en plusieurs fragments appartenant à différents
rôles. Chaque fragment est modélisé indépendamment des autres fragments ; il peut
aussi être greffé progressivement au modèle de processus initial. La modélisation des
processus devient ainsi moins complexe et plus parcellaire. En outre, un fragment de
processus ne modélise que l’aspect structurel des activités d’un rôle sans anticiper sur le
comportement des activités ; il est moins prescriptif qu’un ordonnancement des activités
de l’acteur.

Un moteur de processus basé sur la production et la consommation d’artéfacts a été
développé pour promulguer des activités provenant de différents fragments de processus.
Ce moteur ne requiert pas de relations prédéfinies d’ordonnancement entre les activités
pour les synchroniser, mais déduit leur dépendance à partir de leurs artéfacts échangés.
Les dépendances sont représentées et actualisées au sein d’un graphe appelé Process
Dependency Graph (PDG) qui reflète à tout instant l’état courant de l’exécution du
processus.

Cet environnement a été étendu afin de gérer les changements imprévus qui se

7

produisent inévitablement lors de la mise en œuvre des processus. Ce dispositif permet
aux acteurs de signaler des changements émergents, d’analyser les impacts possibles et
de notifier les personnes affectées par les modifications.

En résumé, notre approche préconise de répartir les tâches d’un processus en plusieurs
fragments, modélisés et adoptés séparément par les acteurs du processus. Le moteur
de processus, qui s’appuie sur la disponibilité des artéfacts pour synchroniser les activ-
ités, permet d’exécuter indépendamment les fragments des processus. Il permet aussi
l’exécution d’un processus partiellement défini pour lequel certains fragments seraient
manquants. La vision globale de l’état d’avancement des différents acteurs concernés
émerge au fur et à mesure de l’exécution des fragments. Cette nouvelle approche vise à
intégrer au mieux les acteurs du processus dans le cycle de vie de la gestion des processus,
ce qui rend ces systèmes plus attractifs et plus proches de leurs préoccupations.

8

Contents

1 Problematic and Contributions 13
1.1 Basic Concepts of Process Management 13

1.1.1 Process Modeling . 14
1.1.2 Process Enactment . 15

1.2 Problem Statement . 16
1.3 Objective and Contributions . 19
1.4 Outline . 28

2 Artifact-centric Process Modeling 35
2.1 Challenges of Top-down Process Modeling 36

2.1.1 Examined Process . 36
2.1.2 Observed Difficulties . 39
2.1.3 Discussion . 42

2.2 Artifact-centric Process Modeling Approach 45
2.3 Structural Process Modeling Language (SPML) 47

2.3.1 SPML Meta-model . 47
2.3.2 SPML Well-formedness Rules . 50
2.3.3 SPML Expressiveness . 56

2.4 Modeling Process . 60
2.5 Related Work . 62

2.5.1 Evaluation Criteria . 62
2.5.1.1 Modeling Objective . 63
2.5.1.2 Modeling Process . 63
2.5.1.3 Modeling Language . 64

2.5.2 Review of User-centric Modeling Approaches 65
2.5.2.1 Participative Approaches 65
2.5.2.2 Role-Based Modeling Approaches 66

2.5.3 Synthesis . 68
2.6 Summary . 70

Appendices 73

9

3 Artifact-driven Process Enactment 81
3.1 Challenges of Enacting SPML Process Models 82

3.1.1 Structurally and Partially Defined Processes 82
3.1.2 User-centric Enactment . 83

3.2 Data-Driven and User-Centric Process Enactment 83
3.3 Process Environment BAPE . 85
3.4 Process Dependency Graph PDG . 86

3.4.1 Structure of PDG . 87
3.4.1.1 Nodes of PDG . 88
3.4.1.2 Edges of PDG . 91

3.4.2 PDG Example . 93
3.5 Process Engine . 95

3.5.1 Process Instance Life cycle . 96
3.5.2 Activity Instance Life cycle . 98
3.5.3 Task Instance Life cycle . 102
3.5.4 Discussion . 107

3.6 Enactment Flexibilities . 107
3.6.1 Loose Inter-Tasks Execution Order 108
3.6.2 Partial Modeling . 110
3.6.3 Examples of Enactment Flexibilities 110

3.7 Related Work . 111
3.7.1 Evaluation Criteria . 113

3.7.1.1 Control . 113
3.7.1.2 Flexibility . 114

3.7.2 Review of Artifact-driven Enactment Approaches 115
3.7.2.1 Case Handling . 115
3.7.2.2 Object and data aware Process Enactment 116
3.7.2.3 Product-based Workflow Support 116

3.7.3 Review of Activity-driven Enactment Approaches 117
3.7.3.1 Traditional Process management 117
3.7.3.2 Flexible Enactment by Change 117
3.7.3.3 Loosely-specified Process Enactment 118
3.7.3.4 Subject-oriented Process Enactment 118

3.7.4 Synthesis . 118
3.8 Summary . 120

4 Change Aware Process Enviroment 125
4.1 Problems of Unofficial Changes . 126

4.1.1 Example of an Unofficial Change 126
4.1.2 PDG as a Global View . 129
4.1.3 Discussion . 130

10

4.2 Change Impact Analysis Objectives . 132
4.3 Change-aware Process Environment BAPE 133
4.4 Change Management Mechanism . 134

4.4.1 Change Analyzer Process . 136
4.4.2 Change Analyzer Component . 138

4.4.2.1 Correction Pattern . 140
4.4.2.2 Evolution Pattern . 141

4.5 Assessing the Impact of Change . 145
4.6 Related Work . 149

4.6.1 Process/Documentation Support 150
4.6.2 Decision Making Support . 150
4.6.3 Synthesis . 152

4.7 Summary . 154

5 Evaluation 159
5.1 Proof-of-Concept Prototype . 159

5.1.1 Overall Architecture . 160
5.1.2 Process Engine as Controller . 160
5.1.3 End-User Interfaces . 161

5.1.3.1 Modeling UI . 162
5.1.3.2 Enactment UI . 165
5.1.3.3 Monitoring UI . 167
5.1.3.4 Change Management UI 167

5.1.4 Implementation of PDG . 169
5.2 Industrial Case Study . 172

5.2.1 Modeling and Enactment Evaluations 173
5.2.2 Change Management Evaluation 175

5.3 Summary . 180

6 Conclusion and Future Work 183
6.1 Contributions . 183
6.2 Limitations and Perspectives . 185
mtcsettitleminitocList of Sections

11

12

Chapter 1

Problematic and Contributions

Contents
1.1 Basic Concepts of Process Management 13

1.1.1 Process Modeling . 14
1.1.2 Process Enactment . 15

1.2 Problem Statement . 16
1.3 Objective and Contributions . 19
1.4 Outline . 28

This chapter aims at providing a synthesis of our work. We present the context, the
underlining problematic and outline our contributions.

1.1 Basic Concepts of Process Management
In practice, each organization uses some operational processes to accomplish their business
goals in an application domain. These processes are enacted by process actors who are
domain experts with specific skills in the given domain. Such operational processes are
however not always documented in a clear and unambiguous way. Consequently, it is
difficult to monitor the enactment of these processes and thus also difficult to improve
them.

Process Management is the discipline that aims at identifying and formalizing
processes in order to communicate, improve them and to control their execution [10, 48].
It has received considerable attention in recent years due to its potential for increasing
productivity and saving costs. Process management comprises two main phases as
process modeling and process enactment. Process management environments are software

13

systems that support modeling and enacting processes.
The next sections give the basic concepts of process modeling and process enactment

which are necessary to our work.

1.1.1 Process Modeling

Process modeling is the activity of representing processes, so that the examined process
can be communicated, improved or automated. Process modeling is a critical component
for a successful process management. Normally, process modeling is conducted by process
designers who have process modeling techniques with the participation of process actors
who are equipped with detailed domain knowledge about the process to be modeled.
The objective of process modeling is to produce a process model, represented in a chosen
notation, from the informal descriptions given by process actors. In general, a process
model can be used to pursue two main objectives: (1) to improve process by getting
a common basis which process actors can communicate and discuss about and result
in increasing organization performance; (2) to control the enactment of the modeled
process with the help of a process management environment.

Generally, process modeling is conducted in two steps: process elicitation and process
formalization.

• Process elicitation In this step, process designer first gathers information from
process actors who have intimate knowledge about how a process and its activities
are performed in practice. The outcome of this process discovery is a process
description reflecting the understanding of process actors in the organization about
how their work is carried out.
Once the process description is obtained, sometimes process designer need to refine
the process to get enough details allowing making a fine-grained model, especially if
the objective of process modeling is automatizing the control of process enactment
by using a process management environment.

• Process formalization This step aims to provide a formal and unambiguous rep-
resentation of the process. A process designer uses a process modeling language
(PML) in order to create a process model corresponding to the process description
obtained in the process elicitation [10]. A PML can be non-executable or executable.
A non-executable PML is enough to model processes for communication purpose.
If the purpose of modeling is controlling process enactment, an executable PML
defining a precise operational semantics for process modeling concepts is needed
so that the process model can be interpreted by the target process management
environment.

Today, two most popular process modeling approaches are activity-centric and artifact-
centric process modeling [30].

14

• Activity-centric process modeling describes a process based on the control-flow
between its activities. It uses activities and work-sequence relations between them
as first class modeling constructs. Most of the mainstream PMLs proposed over the
last two decades are activity-centric as Software Process Engineering Metamodel
(SPEM) [32] and Business Process Modeling Notation (BPMN) [33].

• Artifact-centric process modeling describes a process based on the data-flow passing
through its activities. It regards data objects and their life cycles as first class
modeling constructs [31, 26]. The life cycles describe the allowed data object
manipulations and the interdependencies of multiple data objects in the course of
process model execution. Languages such as Guard-Stage-Milestone (GSM) [22],
Case Management Model and Notation (CMNN) [34] are proposed to define the
life cycles of artifacts.

Each of process modeling approaches expresses a different point of view by considering
either activity or artifact as their main modeling construct. This impacts the operational
semantics of a PML at enactment.

1.1.2 Process Enactment

Process enactment is the activity that applies a process model to create and perform
activities in a concrete project. Process enactment can be done with the help of a
process management environment. In this context, we can see an enactable process
model, i.e. process model represented in an executable PML, as a program and the
process management environment supporting that PML is the process execution engine
(process engine) of process models. Process enactment now means the process engine
executes a process model by creating a corresponding process instance which is managed
by the process environment, i.e. the process engine controls the creation, execution and
termination of process’s activities.

In order to enable a process engine to enact process models, the operational semantics
of the modeling language must be defined. Operational semantics define precisely how the
modeling language concepts will be instantiated and evolved during process enactment.
The process engine implements the defined operational semantics to transform a valid
process model into a running process.

A process engine needs to synchronize correctly all running activities, i.e., guarantee-
ing that the activities are performed according to the execution constraints specified in
the process model. To do so, during the enactment of the process, the process engine uses
the process model as a recipe to determine the sequence of activities to be executed. As
said earlier, the process modeling approach determines the synchronization mechanism of
process enactment. Activity-centric process modeling requires activity-driven enactment
whereas artifact-centric process modeling requires data-driven enactment.

15

• Activity-driven enactment uses the event related to activity completion as the
primary driver for the progress of a process. The process engine needs to knows
the work-sequence betweens process’s activities to synchronize them.

• Data-driven enactment uses the availability or the changes on states of data objects
as the primary driver for the progress of a process. To start or stop an activity,
the process engine needs to know if the preconditions or postconditions concerning
the data objects used or produced by the activity are satisfied.

During process enactment, execution data regarding stateful process element instances
is gathered. This execution data provides the basis for process engine to synchronize
and monitor running processes.

1.2 Problem Statement
Generally, process management in most existing process environments adopts the activity-
driven approach and is carried out in a top-down manner. As illustrated in Figure 1.1,
process modeling is then performed by process designers with the indirect participation
of process actors or people having domain knowledge. The result of modeling phase is
a completely defined process model which can be enacted with support of an activity-
driven process engine. That means that process actors perfom their activities as defined
in the model under control of process engine. Based on this method, several process
environments have been proposed during last decades to control and monitor the
execution of processes related to System and Software Engineering (SSE) process or
business process either in academic or commercial level, e.g., jBPM [23], AristaFlow [5],
Bonita BPM Suite[7].

Notwithstanding the popularity of top-down process management, there are voices
claiming that top-down process management relies too much on process designers, making
it an activity performed by process actors but not really defined by them [49, 12, 35].
Some studies [37, 3, 35, 20] state that process actors are often cut from the development
cycle of processes after their information on the process has been captured once. As
a consequence, there is only little proactive feedback from process actors regarding
modeling their processes.

Generally, for complex processes, it is usually very difficult for the process designer
to define properly the entire process model before the actual activities are performed by
process actors during project execution. Process models often do not reflect the real
processes as perceived and supported during project execution by process actors. This
fact has been led to limited adoption of process environments in industry, specially in
Software and System Engineering (SSE) [16, 4, 28, 2, 9].

We present the reason of such rejection as a gap between what are described in a
process model and what happen when enacting the process in a concrete project. We

16

Figure 1.1: Activity-driven and top-down process management

identified the primary causes of the gap and classified them as following:

• Dissimilar knowledge As mentioned earlier, a process is modeled via collabora-
tion of two roles as process designer and process actor. Process designers are
experts in modeling and have through knowledge regarding modeling techniques
and notations, i.e., process knowledge. However, they lack knowledge regarding
process application, i.e., domain knowledge. On the other side, process actors
who are operatively involved in work processes, are domain experts with extensive
knowledge about their respective roles in a work process, but normally have little
methodological knowledge about process modeling [38]. The role of process actors
in top-down process modeling is limited to provide domain knowledge for process
designers.
In complex processes such as SSE, domain knowledge is vast in which a process
comprises several expertise domains where each actor has its own local view of
process, i.e., related to his expertise domain. Process designers require to acquire
and combine knowledge of different expertise domains in order to model the global
process. This issue can become a very difficult, time and effort consuming task for
process designers.

• Mixing temporal aspects At process modeling-time, process designers and process
actors try to describe not only the structural aspect of the process but also its
behavior which occurs later at process enactment-time and thus is difficult to be
fully anticipated.
Envision all possible execution paths at modeling-time can result in an inaccurate
process model [29] as there can be some situations which are not anticipated in
the model. Moreover, it can bring rigidity as process designer must define the

17

complete process model before enactment which the model enforces the prescribed
procedure on process actors. Finally it can make the process models very complex
as process designers require to apply different modeling constructs to describe all
anticipated execution scenarios [29, 15].

To remedy the problem of top-down process management, many works either focus on
facilitating process modeling by process actors with the objective of process improvement
or providing flexibility to process actors. In the former, many researchers proposed end-
user modeling approaches that better integrate process actors into process management,
enabling them to proactively contribute to process development. These approaches
consider process actors as the first-citizens in process modeling who are the ones that
have knowledge and use the system at the end. However the degree and the way of
actor’s involvement are varied, i.e., in a centralized way [13, 43] or fragmented way
[46, 44]. They state that when the process actors model their own contribution of process,
a more detailed and accurate model representing the actual work is obtained [36, 11].

In the latter, many researchers proposed adaptive and flexible process environments.
Flexibility can be achieved by enabling the enactment of loosly specified process models
which include structural aspect of process and also rules and constraints to prohibit the
undesired execution behavior, e.g., declarative approaches [47, 39, 1, 24, 40, 41]. Some
other works provide flexibility by allowing process actors to adapt the enactment by only
making alternations to the model or running instances, e.g., planned or ad-hoc process
deviation [6, 50, 42, 27, 8, 5], refinement-based approach [14], etc.

The challenges addressed in both areas are of high relevance for the aim of improving
process management. However, the proposed solutions are not really user-centric in
order to be relevant to process actor’s real works and needs.

Being aware of the benefits of process actors’s participation in process management
life cycle, the main challenge underlining this thesis is to how we can enable them actively
contribute in process modeling and enactment. In other words, we aim at turning the
procedure of process management from top-down to bottom-up where process actors
have more autonomy in controlling their processes.

Currently there is a discussion in the process management community of how to
properly integrate process actors, since they are the process performers having much
more information about their process than process designers. The accuracy of the model
that represents the real scenario directly increases proportional to the involvement of
the process actors in process management. However, to properly move in the direction
of user-centric process management, we require to provide some degree of autonomy and
control to process actors regarding modeling and enactment of their processes. This
autonomy can cause process actors to model and enact their processes as they occur in
reality.

18

1.3 Objective and Contributions
We aim at a user-centric approach to seamlessly integrate process actors into the entire
process management life cycle in order to bring down the gap happening in the transition
from process modeling to process enacting. We hope that by reducing this gap, our
solution can help promoting the use of process management environments.

In this thesis, the main objective of process modeling is process control than process
improvement. While many results have been obtained on process improvement and
provide good basis for process communication, as mentioned earlier the operational level
of process control has been low. Thus, our primary objective is process control which a
process modeling produces an executable process model that can be directly enacted by
the support of a process engine. We assume that there is an already (informally) defined
process which process actors perform their activities but without having a dedicated
tool to control the process, i.e., systematic synchronization of their activities.

As shown in Figure 1.2, we propose to conduct process management in a bottom-up
manner directly by process actors [17, 45]. Our objective is providing process actors a
user-friendly process management environment that allows them to smoothly switch
from modeling to enacting their working process. First, we aim at eliminating the need
of process designer role in process modeling and empowering process actors to properly
express their working processes. Second, we put the main emphasis on enactment-time
data as the basis of synchronization to reflect better process actors’ real behavior. The
main propositions of our bottom-up process management are as follows:

• Letting each process actor modeling his own fragment of process to eliminate the
knowledge cause of gap In order to model accurately an executable process, the
understanding of both process technology domain and the application domain
of the project are required. It is always challenging to make a process designer
understand well the process’s application domain to describe the whole process,
especially when this later concerns several expertise domains. It is more feasible
to make a process actor learning a process modeling solution to describe his
working process, especially when the modeling solution is simple and does not
require information outside his role’s knowledge. Each process actor can model his
contribution to the process which can be seen as a fragment of process belonging
to his role.

• Describing only structural aspect of the process at modeling-time to remove the
temporal cause of the gap In a top-down approach, process engine synchronizes
activities based on their work-sequence relations which are described in the behav-
ioral aspect of the process. Trying to model the complete behavior of a process
before its applications in a project, however, is often source of complexity, rigidity
and inaccuracy of process modeling. In fact, the dependencies among activities

19

Figure 1.2: Bottom-up process management

can be deduced at enactment-time from the artifacts that they exchange, which
are already described in structural aspect of the process. Such a synchronization
is practically viable because in daily work process actors manage their artifacts
[25, 26], i.e., specially in SSE processes. Thus, to reflect more exactly the reality,
an efficient modeling approach would rather focus on describing the process’s
artifacts than process work-sequences relations.

We develop a Bottom-up Artifact-centric Process Environment (BAPE) for the support
of process management. The BAPE environment has been developed in the ACOVAS
(outil Agile pour la COnception et VAlidation Système) FUI project that was established
in the context of this thesis. The core of the BAPE environment shall cover the modeling
and enactment stages of process management life cycle as well as process monitoring. In
contrast to conventional process environments which are typically built to suit the needs
of process experts, our process environment must be easy to be used by process actors.

In the following we present the main points of the contributions of this thesis. The
details of each contribution will be presented later in the separate chapters.

20

Artifact-centric Process Modeling

Enabling process actors to model themselves their operational process requires a modeling
approach reflecting as exactly as possible how a process actor, playing a role, sees the
process fragment that he performs. Moreover, to allow process actors performing the
modeling with ease, a simple language using the concepts known by process actors in
their daily work is advisable. In practice, generally a process actor often describes his
process as a list of activities transforming working artifacts into some specific states,
without giving explicit execution order of these activities.

Considering the above requirements and observations, we exclude the use of top-down
modeling approach and activity-centric process modeling languages as BPMN [33] and
SPEM [32]. In contrast, first we propose a bottom-up approach which assembles the
global process model from several fragments; each fragment describes only the activities
performed by a given role. Secondly, inspired by the artifact-centric modeling paradigm
[21] which uses artifacts to combine the data and process logic, we define a simple process
modeling language named Structural Process Modeling Language (SPML).

The core part of SPML meta-model is illustrated in Figure 1.3a. Note that Figure
1.3a is only shown to give an overview of the SPML whose complete meta-model is
presented in the Chapter 2. A SPML process is comprised of several process fragments.
Each fragment encapsulates the activities performed by a specific role. An activity
describes a work composed of enactable tasks (mandatory or optional) corresponding
to different sub-objectives. A task manipulates artifacts in some given states and puts
them into required states. The relation between a task and an artifact allows specifying
how the task uses the artifact.

Figures 1.3b and 1.3c show simple SPML process models regarding the fragments of
role R1 and R2 in process P1. For instance, in activity A1 of R1, mandatory task MT1
consumes artifact Art1 in state S1 and produces artifact Art2 in state S1. Moreover,
mandatory tasks MT1 of R1 and MT2 of R2 implicitly exchange the artifact Art2 in
state S1.

SPML suppresses the work-sequence relations in process models but strengthens
the description of data-flows in order to provide essential information for synchronizing
activities. Concretely, SPML describes the preconditions and postconditions on artifacts
used and produced by a task. Based on the changes on states of artifacts exchanged
between tasks, the behavioral aspect of process emerges at enactment-time.

Our modeling approach allows fragmented process modeling in which each actor
defines his fragment of process belonging to his role separately from other process
fragments. To do so, we assume that process actors share common information about
their global process, particularly about artifact definitions. Aligning different process
information sources is out of scope of this thesis.

SPML provides a simple language containing only the process elements known by
process actors but enough expressive to allow them defining real situations in their daily

21

(a) Core of SPML meta-model

Process P1 options O1, O2

ProcessFragment R1

Activity A1 options O1

MandatoryTask MT1

Artifact Art1(in, S1)
Artifact Art2(out, S1)

OptionalTask OT1 ifOption O1

Artifact Art2(in, S2)
Artifact Art3(out, S1)

(b) SPML process fragment of R1

Process P1 options O1, O2

ProcessFragment R2

Activity A2 options O2

MandatoryTask MT2

Artifact Art2(in, S1)
Artifact Art2(out, S2)

OptionalTask OT2 ifOption O2

Artifact Art3(in, S1)
Artifact Art3(out, S2)

(c) SPML process fragment of R2

Figure 1.3: Structure of SPML

work.

Data-driven Process Enactment

As the process modeling paradigm determines the process execution mechanism, to enact
SPML process models, we proposed an enactment approach with the following features:

• Using a data-driven process execution mechanism where the main driver to progress
an activity is the availability of artifacts in the demanded states.

22

• Offering a user-centric control where process actors have enough autonomy to
decide the way they enact their processes as happen in reality.

In order to support aforementioned features we propose:

A Process Dependency Graph (PDG) To define the operational semantics of a
language, a structure keeping the information of process element instances at
enactment-time is needed. For SPML, such a structure is Process Dependency
Graph (PDG). PDG [45] is a graph structure that stores SPML process elements
instances along with the dependencies among them.
We define a direct mapping between the PDG concepts and the SPML concepts.
Each element of PDG has a reference assigning them to their corresponding element
in SPML as illustrated in Figure 1.4. PDG nodes represent the instance of SPML
basic concepts and PDG edges represent the association among instances of these
concepts. As the PDG represent the global view of system, we do not require a
specific PDG node to represent SPML ProcessFragment concept.

Figure 1.4: Core of PDG structure

PDG’s concepts are stateful to show the behavioral aspect of the running pro-
cess. Thus each PDG element is described with its current state in the system.

23

Moreover, as process models are fragmented in our system, the role of PDG is
not only storing running information but also establishing the global view of the
system from separate process fragments. PDG unifies the process fragments at
enactment-time based on shared artifacts and resources among activities instances
of respective fragments.
Figure 1.5 gives a snapshot of PDG regarding the instances of process fragments
R1 and R2 which their activities are enacted respectively by process actor Actor1
playing role R1 and Actor2 playing role R2. At the moment, task instance MT1.1
consumed artifact instance Art1.1 and produced Art2.1 in state S1. Art2.1 is con-
suming by task instance MT2.1. Task instance OT1.1 is waiting for the artifact
instance Art2.1 in state S2 which is under production by running task MT2.1.

Figure 1.5: Snapshot of PDG

PDG is the source of information for process synchronization. When it comes
to the process synchronization where process engine requires to know the depen-
dencies among running process elements, having a mechanism implementing a
graph structure is a promising solution which perfectly represents the connected
information and provides highly effective query and traversal mechanisms.

A Data-driven Process Engine In SPML process models, there is no work-sequence
relations defined among process activities or tasks. Thus, to enact SPML process
models, we propose a process engine adopting a data-driven execution mechanism.

24

The progress of tasks, activities and processes are based on the states at enactment-
time of the artifacts that they use or produce. The process engine analyzes the real
data exchanged among the running tasks to deduce the work-sequence relations
among process activities or tasks at enactment-time. Therefore, the global view of
the system which is used for synchronizing all activities and for process monitoring
is dynamically constructed based on the real situations occurring at enactment-
time.
We present the SPML operational semantics by the state-machines associated to
the SPML executable elements. SPML operational semantics define the possible
state transitions of process, activity and task instances. By adopting the data-
driven execution mechanism, we define the state transitions of these instances
based on the states of their consumed or produced artifacts. The respective state
machines pilot the process engine by enacting and evolving the process, activity
and task instances in the PDG. For instance, Figure 1.6 gives our process state
machine specifying the operational semantics of a process instance. The life cycle
of a process is dependent on its activities, the life cycle of an activity itself depends
on its tasks and finally the life cycle of a task depends on its consuming/producing
artifacts.

Figure 1.6: Process state machine

We emphasize the importance of providing flexibility to process actors in order to
deal with unforeseen situations at enactment-time. Thus, the proposed process
engine:

• Offers more control to process actors by allowing the definition of necessary
transitions in the state machines of process, activity and task instances to
allow capturing events emerging during enactment-time.

• Enables different configurations of the activities executions in response to
different execution contexts (e.g., optional activities) or unforeseen situations

25

(e.g., rework) that may occur at enactment-time.
• Supports the enactment of partially-defined processes in which some fragments

can be modeled and enacted where other process fragments are missing. This
is achieved thanks to data-based synchronization mechanism.

By using the conditions based on the artifact states to decide the progress of
task execution, our process engine better integrates the data into tasks life cycles
and thus provides a finer control on the execution of tasks. While conventional
process engines rely exclusively on the process actors to make progress a task
execution, our process engine ensures that the execution of a task makes progress
the concerned artifacts as required in the process models.

Bottom-up Artifact-centric Process Environment BAPE

To enable process actors to model and enact their executable process fragments, we
propose our process environment BAPE which integrates our modeling and enactment
solutions in a comprehensive environment. Figure 1.7 gives an overview of BAPE’s archi-
tecture comprising its main components SPML, process engine, PDG and interactions
among these components.

Figure 1.7: Overview of BAPE architecture

Process actors can model their process fragments in SPML and enact them by support
of the process engine through user-friendly modeling and enactment interfaces. Process
engine as the core of BAPE plays a role of event listener and handler by listening to
different events as specified in the state machines. These events are regarding starting,
termination, etc. of process element instances which result in updating PDG by creating
and evolving respective process elements instances. As PDG establishes the global view of
system, process engine uses the information of PDG in order to provide synchronization
among activities instances via shared resources which are enacted from separate process
fragments.

As an advantage of BAPE’s architecture we can mention its extensible characteristic.

26

BAPE allows executions of different system processes (e.g., change management process,
quality management process, risk management processes, etc.) without requiring any
modifications on the core engine. Each of these processes adds a new functionality to
BAPE and can be implemented and run in parallel with other processes.

Change-aware Process Environment

In many dynamic environments, unforeseen changes occurring during process enactment
are almost inevitable but often poorly managed due to lack of efficient mechanism for
spontaneously handling these enactment-time changes.

As process actors have a partial view on the global process, often they do not know
how their work relates to other tasks and have difficulties, even impossibility, in identi-
fying the right persons to communicate with for quickly resolving a problem. Lack of
information on task connections can lead to unnecessary repetition or inconsistent results,
which in turn will require rework or changes in other tasks. Insufficient communication
usually discourages process actors to report all the changes they made or obliges them
to follow hierarchical channels for propagating a change, where it can be delayed or
misinterpreted.

We don’t have the ambition to propose a complete solution for change management.
We are primarily interested in the change notification issue. Our objective is to provide
an effective assistance for coordinating process actors in order to keep their artifacts
consistent.

We apply BAPE in the context of ACOVAS project to remedy the problem of
unnoticed changes in order to permit concerned people to anticipate and respond to
changes so that they can avoid obsolete works [45, 19, 18]. In addition to modeling
and enacting supports of BAPE, we turned BAPE to a Change-Aware Process Environ-
ment. Our Change-Aware BAPE is reactive to change requests but proactive to change
implementations with providing the following functionalities:

• Capturing in a centralized and continuous way all change requests sent asyn-
chronously by various process actors.

• Analyzing the potential impacts when a change happens and notifying process
actors affected by the change.

To achieve these objectives, we defined a change management process representing a
possible policy to handle the change requests asynchronously sent by process actors.
This process, executed by BAPE as a system process, comprises automated activities
which implement the algorithms to analyze the impact of change and inform the affected
people.

27

Proof-of-Concept Prototype

This thesis provides an extensive validation of the process environment BAPE. In
particular, it introduces a proof-of-concept prototype for demonstrating fundamental
concepts of the modeling and enactment environments of BAPE along with functionalities
of change impact analysis. In addition, we apply this prototype to real-world cases
within Acovas project to elaborate the benefits of our approach regarding modeling,
enactment and change impact analysis as well as lessons and feedback learned from our
industrial partners.

Figure 1.8 illustrates our overall solution which makes the process modeling simpler
and more realistic by reflecting the partial point of view of roles. On the other hand, it
makes the process enacting more flexible by synchronizing activities based on their real
artifact exchanges at enactment-time and offering more autonomy to process actors to
control their processes.

Figure 1.8: BAPE process environment

1.4 Outline
This thesis is organized in 6 chapters. As announced, this chapter provides the context,
research problematic and outline our main contributions. Chapters 2, 3 and 4 present

28

in details our proposed approaches for modeling, enacting and change analysis. Each
chapter is written as an independent article comprising studying the problematic and
the contributions as well as the related work on the topic. The evaluation and validation
of proposed solutions are found in Chapter 5.

• Chapter 2 - Artifact-centric Process Modeling represents our process modeling
approach which enables process actors to model themselves their operational
process. Our objective is obtaining an enactable process model which is faithful to
process actors’ activities. To do so, a simple and user-oriented modeling language
and the modeling process is introduced.

• Chapter 3 - Data-driven Process Enactment introduces our enactment approach
which enables process actors to enact activities of their process fragments models
encoded in our modeling language. We present the architecture of our proposed
process environment, as well as its main components.

• Chapter 4 - Change-aware Process Environment presents an application of our
process environment which is regarding handling the unofficial changes by allowing
process actors to report emergent changes, analyze the possible impacts and inform
the affected people by the changes.

• Chapter 5 - Evaluation and Validation illustrates first the proof-of concept imple-
mentation of the modeling, enactment and monitoring environment. Second, it
provides an evaluation of our process environment on process modeling, process
enactment and change management based on the experiments conducted with
applying this prototype to real-world processes of our industrial partners.

• Chapter 6 - Conclusion and Future Work summarizes the contribution of this
thesis, illustrates the benefit of the provided solution, and provides an outlook on
future research directions.

29

Bibliography
[1] M. Adams, A. H. M. ter Hofstede, D. Edmond, and W. M. P. van der Aalst.

Worklets: A Service-Oriented Implementation of Dynamic Flexibility in Workflows,
pages 291–308. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[2] A. Agostini and G. D. Michelis. Improving flexibility of workflow management
systems. In Business Process Management, Models, Techniques, and Empirical
Studies, pages 218–234, London, UK, UK, 2000. Springer-Verlag.

[3] Y. Alotaibi. Business process modelling challenges and solutions: a literature review.
Journal of Intelligent Manufacturing, 27(4):701–723, Aug 2016.

[4] S. Arbaoui, J.-C. Derniame, F. Oquendo, and H. Verjus. A comparative review of
process-centered software engineering environments. Annals of Software Engineering,
14(1-4):311–340, 2002.

[5] AristaFlow. http://www.aristaflow.com/.

[6] R. Bendraou, M. A. A. da Silva, M. Gervais, and X. Blanc. Support for deviation
detections in the context of multi-viewpoint-based development processes. In Pro-
ceedings of the CAiSE’12 Forum at the 24th International Conference on Advanced
Information Systems Engineering (CAiSE), Gdansk, Poland, June 28, 2012, pages
23–31, 2012.

[7] BonitaSoftware. http://www.bonitasoft.com/.

[8] A. Borgida and T. Murata. Tolerating exceptions in workflows: A unified framework
for data and processes. SIGSOFT Softw. Eng. Notes, 24(2):59–68, Mar. 1999.

[9] S. Brahe and K. Schmidt. The story of a working workflow management system. In
Proceedings of the 2007 International ACM Conference on Supporting Group Work,
GROUP ’07, pages 249–258, New York, NY, USA, 2007. ACM.

[10] M. Dumas, M. L. Rosa, J. Mendling, and H. A. Reijers. Fundamentals of Business
Process Management. Springer Publishing Company, Incorporated, 2013.

[11] A. M. Ertugrul and O. Demirors. A method for modeling business processes in a
role-based and decentralized way. In Proceedings of the 8th International Conference
on Subject-oriented Business Process Management, S-BPM ’16, pages 4:1–4:4, New
York, NY, USA, 2016. ACM.

[12] A. Fleischmann, W. Schmidt, C. Stary, S. Obermeier, and E. Brger. Subject-Oriented
Business Process Management. Springer Publishing Company, Incorporated, 2014.

30

[13] A. Front, D. Rieu, M. Santorum, and F. Movahedian. A participative end-user
method for multi-perspective business process elicitation and improvement. Software
& Systems Modeling, pages 1–24, 2015.

[14] F. R. Golra. A Refinement based methodology for software process modeling. Theses,
Télécom Bretagne, Université de Rennes 1, Jan. 2014.

[15] G. Grambow, R. Oberhauser, and M. Reichert. User-Centric Abstraction of Workflow
Logic Applied to Software Engineering Processes, pages 307–321. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2012.

[16] V. Gruhn. Process-centered software engineering environments, a brief history and
future challenges. Ann. Softw. Eng., 14(1-4):363–382, Dec. 2002.

[17] M. Hajmoosaei, H. N. Tran, and C. Percebois. A user-centric process management for
system and software engineering projects. In presented at the 7th IESM Conference,
October 11–13, 2017, Saarbrucken, Germany, 2017.

[18] M. Hajmoosaei, H. N. Tran, C. Percebois, A. Front, and C. Roncancio. Impact
analysis of process change at run-time. In 24th IEEE International Conference on
Enabling Technologies: Infrastructure for Collaborative Enterprises, WETICE 2015,
Larnaca, Cyprus, June 15-17, 2015, pages 156–161, 2015.

[19] M. Hajmoosaei, H.-N. Tran, C. Percebois, A. Front, and C. Roncancio. Towards a
change-aware process environment for system and software process. In Proceedings
of the 2015 International Conference on Software and System Process, ICSSP 2015,
pages 32–41, New York, NY, USA, 2015. ACM.

[20] T. Herrmann, K. Loser, and I. Jahnke. Sociotechnical walkthrough: A means for
knowledge integration. The Learning Organization, 14(5):450–464, 07 2007.

[21] R. Hull. Artifact-Centric Business Process Models: Brief Survey of Research Results
and Challenges, pages 1152–1163. Springer Berlin Heidelberg, Berlin, Heidelberg,
2008.

[22] R. Hull, E. Damaggio, F. Fournier, M. Gupta, F. T. Heath, III, S. Hobson, M. Line-
han, S. Maradugu, A. Nigam, P. Sukaviriya, and R. Vaculin. Introducing the
guard-stage-milestone approach for specifying business entity lifecycles. In Pro-
ceedings of the 7th International Conference on Web Services and Formal Methods,
WS-FM’10, pages 1–24, Berlin, Heidelberg, 2011. Springer-Verlag.

[23] JBoss. jbpm, http://www.jbpm.org/.

[24] J. Klingemann. Controlled Flexibility in Workflow Management, pages 126–141.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2000.

31

[25] M. Kuhrmann and S. Beecham. Artifact-based software process improvement
and management: A method proposal. In Proceedings of the 2014 International
Conference on Software and System Process, ICSSP 2014, pages 119–123, New York,
NY, USA, 2014. ACM.

[26] V. Künzle and M. Reichert. Philharmonicflows: towards a framework for object-
aware process management. Journal of Software Maintenance and Evolution:
Research and Practice, 23(4):205–244, June 2011.

[27] Z. Luo, A. P. Sheth, K. Kochut, and J. A. Miller. Exception handling in workflow
systems. Appl. Intell., 13(2):125–147, 2000.

[28] R. Matinnejad and R. Ramsin. An analytical review of process-centered software
engineering environments. In IEEE 19th International Conference and Workshops
on Engineering of Computer-Based Systems, ECBS 2012, Novi Sad, Serbia, April
11-13,2012, pages 64–73, 2012.

[29] J. Mendling, H. A. Reijers, and W. M. P. van der Aalst. Seven process modeling
guidelines (7pmg). Inf. Softw. Technol., 52(2):127–136, Feb. 2010.

[30] A. Meyer and M. Weske. Activity-Centric and Artifact-Centric Process Model
Roundtrip, pages 167–181. Springer International Publishing, Cham, 2014.

[31] A. Nigam and N. S. Caswell. Business artifacts: An approach to operational
specification. IBM Syst. J., 42(3):428–445, July 2003.

[32] OMG. Software & Systems Process Engineering Metamodel Specification (SPEM)
Version 2.0, Apr. 2008.

[33] OMG. Business Process Model and Notation (BPMN) Version 2.0.2, Dec. 2013.

[34] OMG. Case Management Model and Notation, Version 1.1, May 2016.

[35] S. Oppl. Articulation of work process models for organizational alignment and
informed information system design. Information & Management, 53(5):591 – 608,
2016.

[36] S. Oppl and T. Rothschädl. Separation of Concerns in Model Elicitation – Role-
Based Actor-Driven Business Process Modeling, pages 3–20. Springer International
Publishing, Cham, 2014.

[37] M. Prilla and A. Nolte. Integrating Ordinary Users into Process Management:
Towards Implementing Bottom-Up, People-Centric BPM, pages 182–194. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2012.

32

[38] J. Recker, N. Safrudin, and M. Rosemann. How novices design business processes.
Information Systems, 37(6):557 – 573, 2012. BPM 2010.

[39] H. A. Reijers, T. Slaats, and C. Stahl. Declarative Modeling–An Academic Dream or
the Future for BPM?, pages 307–322. Springer Berlin Heidelberg, Berlin, Heidelberg,
2013.

[40] S. W. Sadiq, M. E. Orlowska, and W. Sadiq. Specification and validation of process
constraints for flexible workflows. Inf. Syst., 30(5):349–378, July 2005.

[41] H. Schonenberg, B. Weber, B. van Dongen, and W. van der Aalst. Supporting Flexible
Processes through Recommendations Based on History, pages 51–66. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2008.

[42] B. Staudt lerner, S. Christov, L. Osterweil, R. Bendraou, U. Kannengiesser, and
A. Wise. Exception Handling Patterns for Process Modeling. IEEE Transactions
on Software Engineering, 36(2):162–183, Mar. 2010.

[43] J. Stirna, A. Persson, and K. Sandkuhl. Participative enterprise modeling: Experi-
ences and recommendations. In Proceedings of the 19th International Conference
on Advanced Information Systems Engineering, CAiSE’07, pages 546–560, Berlin,
Heidelberg, 2007. Springer-Verlag.

[44] T. Stoitsev, S. Scheidl, F. Flentge, and M. Mühlhäuser. From personal task
management to end-user driven business process modeling. In Proceedings of the
6th International Conference on Business Process Management, BPM ’08, pages
84–99, Berlin, Heidelberg, 2008. Springer-Verlag.

[45] H. N. Tran, M. Hajmoosaei, C. Percebois, A. Front, and C. Roncancio. Integrating
run-time changes into system and software process enactment. Journal of Software:
Evolution and Process, 28(9):762–782, 2016.

[46] O. Turetken and O. Demirors. Plural: A decentralized business process modeling
method. Information and Management, 48(6):235 – 247, 2011.

[47] W. M. P. van der Aalst, M. Pesic, and H. Schonenberg. Declarative workflows:
Balancing between flexibility and support. Computer Science - Research and
Development, 23(2):99–113, 2009.

[48] W. M. P. van der Aalst, A. H. M. ter Hofstede, and M. Weske. Business process
management: A survey. In Proceedings of the 2003 International Conference on
Business Process Management, BPM’03, pages 1–12, Berlin, Heidelberg, 2003.
Springer-Verlag.

33

[49] H. F. Witschel, B. Hu, U. V. Riss, B. Thönssen, R. Brun, A. Martin, and K. Hinkel-
mann. A Collaborative Approach to Maturing Process-Related Knowledge, pages
343–358. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[50] N. Zazworka, V. R. Basili, and F. Shull. Tool supported detection and judgment
of nonconformance in process execution. In Empirical Software Engineering and
Measurement, 2009. ESEM 2009. 3rd International Symposium on, pages 312 – 323,
2009/10// 2009.

34

Chapter 2

Artifact-centric Process Modeling

Contents
2.1 Challenges of Top-down Process Modeling 36

2.1.1 Examined Process . 36
2.1.2 Observed Difficulties . 39
2.1.3 Discussion . 42

2.2 Artifact-centric Process Modeling Approach 45
2.3 Structural Process Modeling Language (SPML) 47

2.3.1 SPML Meta-model . 47
2.3.2 SPML Well-formedness Rules 50
2.3.3 SPML Expressiveness . 56

2.4 Modeling Process . 60
2.5 Related Work . 62

2.5.1 Evaluation Criteria . 62
2.5.2 Review of User-centric Modeling Approaches 65
2.5.3 Synthesis . 68

2.6 Summary . 70

This chapter introduces our process modeling approach which enables process actors
to model themselves their operational process. Our objective is obtaining an enactable
process model which is faithful to process actors’ activities. First, in Section 2.1 we
discuss the challenges of current top-down process modeling based on our observations
from modeling the real processes of our industrial partners. Then Section 2.2 represents
the fundamental characteristics of our artifact-centric process modeling which aims at

35

overcoming the difficulties of top-down modeling by facilitating the participation of
process actors to model themselves their operational process. To this aim, we define in
Section 2.3 a simple process modeling language and propose in Section 2.4 a modeling
process which, enable process actors doing the process modeling in order to produce their
enactable process models. Section 2.5 positions and shows the strength of our modeling
proposal compared to related work. Finally, Section 2.6 summarizes this chapter.

2.1 Challenges of Top-down Process Modeling
The process modeling in a top-down manner has been considered as a mostly adopted
modeling approach. Notwithstanding the popularity of this approach, the procedure of
process modeling can be very challenging when it comes to modeling complex processes,
e.g., SSE processes. To better illustrate the difficulty of top-down process modeling,
we model a process of our industrial partners in this manner along with presenting the
observed challenges of such an approach.

2.1.1 Examined Process

We apply a top-down procedure in order to model the process of Modify Testbench
Wiring given by our industrial partners in the project FUI1 ACOVAS (Agile tools for
COnception and VAlidation of Systems) which aims at proposing novel agile methods to
manage complex avionic systems.

The top-down process modeling is conducted in two steps known as process elicitation
and process formalization. Process elicitation itself comprises two steps as process discov-
ery and process refinement. In process discovery, process designer gathers information
from process actors who have intimate knowledge about how a process and its activities
are performed through several interviews. Once the process description is obtained, in
case the process description is incomplete [41], the process designer interviews process
actors in order to refine the process and produce an enactable process model.

Figure 2.1 presents an extract of the outcome of the process discovery of the Modify
Testbench Wiring process derived from the description of the process actors. This process
is regarding the reconfiguring the wiring system of a testbench. In avionic systems, the
global specification of an airplane is refined into system domains, systems, sub-systems
and equipments. During the integration phase, the test center produces concrete test
procedures to be executed on a testbench. In this context, ACOVAS partners require to
reconfigure the wiring system of a testbench due to an evolution of the system under test.
The real process concerns several other expertise domains than wiring such as electrical,
mechanical, instrumentation, simulation and network. To keep the process description

1French academic industry joint program

36

less technical, we excluded the network, mechanical and simulation and focused on the
rest aspects which are needed for the illustrating example.

Figure 2.1: Process of Modify Testbench Wiring

Description of the process Modify Testbench Wiring
This process has to produce a well-configured testbench, in terms of wiring, ready
to run a test campaign for the evolved system. The process is performed by six
roles as Analyst, Electrical Designer, Instrumentation Team, Supplier, Wiring Team
and Bench Coordinator that are geographically dispersed. Each role performs his
activities to produce the required artifacts in order to configure the test bench. The
process starts when the Analyst receives the artifact Wiring Change Demand in state
defined which contains the detailed description of the required change. Afterwards,
he performs the activity Detail Change Requirement to specify the modifications
required by the change on different components of the bench. This activity produces
three output artifacts: a set of defined Component Requirement concerning the
modification on the wiring components, a defined Electrical Specification for the
support of electrical and a Functional Interface Control Document (FICD) in state
outlined for the modification on instrumentation. The modifications on wiring

37

and electrical components are mandatory for any change whereas modification on
instrumentation depends on the change requirements. In case of modification on
instrumentation, the artifact FICD in state defined is needed by the Analyst in
order to finalize the production of artifact Electrical Specification. For each required
component specified in the artifact Component Requirements, the Supplier and
Wiring Team respectively prepare and install the respective component into the
testbench. The activity Generate Bench Specification of Instrumentation Team
produces two artifacts in which the artifact ICD is produced if the change requires
the modification of testbench specific interface. After installing and wiring all
required components in the testbench, process finishes when the Bench Coordinator
validates the configured testbench.

To illustrate an example of process refinement, we consider the activity Detail Change
Requirement performed by the Analyst. The activity can be refined into three tasks which
each task corresponds to producing a separate artifact as illustrated in the Figure 2.2.
Then, the process designer requires to define the execution order of tasks by establishing
work-sequence relations among them. The activity Detail Change Requirement can
be enacted in two ways based on modification of the instrumentation component, i.e.
on the bench’s interface board. While the tasks that produce the mandatory artifacts
Component Requirements and Electrical Specification are always performed in parallel,
the task Outline Instrumentation Model producing the artifact Functional Interface
Control Document (FICD) will be enacted only if the option instrumentation is chosen.
Moreover, with the activation of instrumentation option, the task producing Electrical
Specification now requires an extra artifact FICD.

Process modeling continues with formalization step where process designer formalizes
the process with using a formal language. Figure 2.3 shows just one possible modeling of
the examined process modeled with the BPMN [37] modeling language. Each fragment
of the process is modeled in a separate swimlane. Each swimlane comprises the tasks
of each role which are connected via work-sequence relations. The artifact exchanges
among tasks are explicitly specified via message flows. Several modeling constructs as
gateways and loops have been used in order to define different possible situations in the
process model. As supplying and installation of components can be realized concurrently
and independently, the sub-process Component Purchase and Installation is modeled
as multi-instance task. The number of instances of the sub-process is determined
at enactment-time by the number of elements in the collection artifact Component
Requirements.

38

Figure 2.2: An example of process refinement

2.1.2 Observed Difficulties

We observed two main difficulties of top-down process modeling which are defined as
follows:

• Top-down process modeling requires to combine the knowledge of both process
designer and process actors This difficulty relates to the modeling process which
is performed by two roles having different knowledge, i.e., process designer and
process actor. Process designer has advance technical skills in process modeling
and optimization (process knowledge) with lack of domain expertise (domain
knowledge). On the contrary, process actor has domain knowledge but normally
have little methodological knowledge about modeling [3, 44]. The separation of
knowledge makes the communication and interaction between two roles very diffi-
cult. Moreover, SSE complex processes comprise often several expertise domains
where each actor has a local view on the global process and only knows activities
belonging to his domain. Therefore, process designer requires to first acquire each
domain knowledge. In such processes, the process designer requires to acquire
knowledge of all domains. As process knowledge is often spread out over the
organization, this acquisition can take months especially for large organizations
[54]. For instance, in our examined process, as a process designer, we had to spend
several interviews with involved process actors to obtain the process knowledge
comprising several expertise domains such as electrical, mechanic, instrumentation,
network, simulation, etc.

39

Figure 2.3: Process of Modify Testbench Wiring modeled in BPMN

40

After acquiring domain knowledge, process designer needs to synthesize activities
of all expertise domains by deducing and establishing the dependencies between
them in order to build the global model. Very often, this is a very difficult, time
and effort consuming task. For instance, we consider the fragments of Analyst
and Instrumentation Team of our examine process as illustrated in the Figure
2.4. There are strong dependencies between two fragments in case the option
instrumentation is activated, e.g., the Analyst’s task Defined Electrical Specification
producing Electrical Specification now requires an extra artifact FICD provided by
the Instrumentation Team’s task Design Instrumentation Model.

Figure 2.4: Example of synthesizing local views (fragments) modeled in BPMN

• Top-down process modeling requires to precisely describe the behavioral aspect of
process at modeling-time The behavioral aspect of process concerns defining all
possible execution situations of process which occur at enactment-time. As the
process has not been running yet at the modeling-time, it is not easy for process
actors to describe for process designers all possible running scenarios. Because
there are variety of situations that may occur at enactment-time which are not
imagined at modeling-time.
In SSE complex processes, the process modeling becomes a difficult task for process
designer, particularly when there are many ways to enact the process depending
on particular needs of the applying project. The causes of such difficulty can be
the insufficient expressivity of the modeling language, or the complexity of using
the language to correctly model the complex behavioral aspects.

41

To simply illustrate an example of difficulty of defining behavioral aspect of
process in the model, assume the following situation that may happen in the
process. Suppose that the Analyst finished the task Evaluate Change Demand the
conclusion that the option instrumentation is no needed. This task is the main
decision point which activates other branches in the process. At the moment, he
performs the task Define Electrical Specification to specify the required modification
on testbench’s electrical component, i.e., illustrated in the Figure 2.5b. While
performing his activity, the Analyst realizes lately that the change requires a
modification on testbench’s instrumentation component as well. Nevertheless,
the pre-defined model does not define a work-sequence relation between Define
Electrical Specification and Evaluate Change Demand; thus, the Analyst cannot
come back to the preceding step to activate the option instrumentation and carry
out the activity Outline Instrumentation Model.
Figure 2.5c shows the desired model which support the corresponding situation.
This is achieved by adding an intermediary conditional event to the task Define
Electrical Specification and an exclusive gateway which enable Analyst to role back
to the point where he can activate the option instrumentation. Notice that this
model only support the situation where the realization of the option instrumentation
is come during the execution of the task Define Electrical Specification.
In order to describe many situations in the model, process designer requires to use
different modeling constructs such as gateways and events to express the non-linear
sequences of activities’ execution. As a result, the process model becomes super
complex, unreadable and error-prone [32, 20, 38]. Process actors cannot easily
validate the complex models as they do not have process knowledge regarding the
modeling language.
In addition to the difficulty of pre-defining all situations in the model, if the
expressiveness of the modeling language is weak, creating some scenarios become
difficult. For instance, in case of instrumentation option is chosen, the task Define
Electrical specification can not be completed as it requires the artifact FICD in
state defined. This scenario cannot simply be defined in BPMN by associating the
artifact as the post-condition of the task or associating intermediary events to the
task. Therefore, as illustrated in Figure 2.3, we needed to split the task Define
Electrical Specification into two tasks Outline Electrical Specification and Define
Electrical Specification and define new gateways to describe such situation which
can make the model complex and error-prone.

2.1.3 Discussion

Top-down process modeling requires two roles having different knowledge to collaborate
together in order to produce an enactable process model. This combination of knowledge
makes the procedure of top-down modeling complicated. We can resume three causes of

42

(a) Execution scenario

(b) Actual model

(c) Supporting model

Figure 2.5: Execution scenario and the model supporting respective scenario

such difficulty defined as follows:

• Process modeling knowledge and domain knowledge are separate process designer
and process actors have totally different knowledge.

• Domain knowledge is diverse Process comprises several domain expertise which
each one requires specific knowledge and skills.

• Domain knowledge is partial Each actor has a partial view of the process.

43

These causes make the acquisition and synthesis of domain knowledge for process
designer a very hard, effort and time consuming task. To remedy such difficulty,
we investigate the idea of making process actors to realize process modeling. Many
researchers [40, 15, 54, 30, 23, 27] advocate the idea of process actor participation in
process modeling procedure. They stated that the degree of actors involvement in
process modeling directly affects both representation accuracy of actual work and total
effort required for process modeling. In our opinion, as we observed in real modeling the
process of our industrial partners as well, enabling full participation of process actors in
modeling their processes can make the process models to be more faithful to its reality.

Process actors participation in process modeling has great advantages but solely it
can not resolve the complexity of top-down process modeling. There is another important
factor that must be considered when making the process actors as the first-citizen in
process modeling. Process actors are the ones who know exactly their process. However,
by enabling process actors to describe the behavioral aspect of their process in the
model, we may face the same difficulties of top-down modeling. Mixing the structural
and behavioral aspects of process in the model may result in:

• Inaccurate model compared to the real process The formal global model resulted
from such modeling procedure might not suit process actors needs as it may not
correspond to the real situations occurring at enactment-time. There exist some
situations or exceptions that have not been predicted in the model and makes the
process actors to disobey the model in which causes their activities go beyond the
control of the process environment.

• Rigid model Process model imposes the enactment procedure where process actors
should perform their activities step by step as defined in the model. By defining
the exact behavior of process in the model, process model becomes rigid.

• Complex model Specification of behavioral aspect of process by using complex
modeling constructs make the process model very complex, unreadable, error-prone
and validation of model by process actors become a cumbersome task.

To remedy such difficulty, we investigate the idea of avoiding the specification of behevioral
aspect of process in the model. In fact, flows between tasks are really imposed by
exchanged data during the enacting-time. Therefore, defining only structural aspect of
their process by emphasizing on the exchanged artifacts between their activities can
lead to deduce the behavioral aspect of their process at enactment-time. Notice that
the data-flow among tasks may define the implicit temporal dependencies among them
but does not impose control constraints on process actors in executing their tasks. The
process actors have more autonomy to enact their tasks based on real situations.

44

2.2 Artifact-centric Process Modeling Approach
Being aware of the overall difficulties of top-down process modeling we claim that by (1)
separating the performers of process modeling and process enacting and (2) describing
the behavioral aspect of the process in the model, a process model becomes often inade-
quately specified and therefore not faithful to its real enactment. In other words, the
gap between process model and enactment occurs.

By using these arguments and our observations, we are interested in a process mod-
eling where the main emphasis is on process actors who have sufficient knowledge about
the actual work to model their operational working process [21]. Our main research
challenge is how to propose a modeling solution which perfectly satisfies process actor’s
needs by enabling them to produce their enactable process models. The modeling
objective is to give more liberty to process actors in order to react to situations in real
execution. Thus, we expect the modeling which better mimics the real enactment of the
process and thus can better deal with wrong or overcomplicated enactment.

To propose a satisfactory solution, we identified essential characteristics of modeling
support of such an approach. These characteristics are identified based on our observa-
tions from modeling of our examined process which are reinforced in the literature as
well [17, 54, 30, 31, 27]. In the next we describe each characteristic in details.

• Fragmented process modeling This characterisitic corresponds to the way that
process modeling is conducted. The examined process, similarly to most of SSE
processes, is complex and includes several roles which mostly relate to different
domain expertises and can be geophysically located in different sites. In other
words, each role only knows what are under his responsibility and only sees the
part of process that he performs and is mostly unaware of other roles’ activities.
This issue makes each role to have a partial view of the global process [40, 54].
One advantage of such a fragmentation is that the process is less complex to be
modeled, and more flexible to be instantiated or modified.

• Declarative process modeling This characteristic relates to avoid defining the
behavioral aspect of the process in the model, i.e., by defining work-sequence
relations among tasks. In fact, it is difficult for process actors to define the
behavior of their working process in terms of exactly knowing on which order
their activities will be executed. The reason behind such difficulty is the temporal
difference between process modeling and process enactment. Fully anticipating
the behavioral aspect of process at modeling-time which occurs at enactment-time
is difficult and can lead to the potential gap between model and real enactment.
In our approach, the focus is on structural aspect of the process so that process
actors have the liberty to enact their tasks at enactment-time, including corrective
steps for a bad implementation of the process.

45

• Artifact-centric process modeling This characteristic considers artifact as the first-
citizen in process modeling. As we focus on structural aspect of process, specifying
the artifact exchanges among activities in the model can provide information to
deduce the behavioral aspect of process at enactment-time. Thus, the modeling
language must specify the data-flow regarding the artifacts entering and leaving
the activities.

• Direct enactability As our objective is to enable process actors to directly produce
their enactable process models. In fact, the modeling language should be enough
simple and expressive to enable the precise definition of its execution semantics
[17, 31]. Moreover, simplicity of the language can result in an easier deployment
where the effort required to deploy the process and bring it to the concrete project
becomes minimum.

Additionally, we suggest a non-functional requirement and a hypothesis about the
application of process modeling approach which are respectively defined as follows:

• Language simplicity An empirical evidence shows that the number of elements
actually used during modeling is limited and highly dependent on the modeling
objective [35]. When involving process actors, it seems to be appropriate to
limit the number of available modeling elements. This issue has been the focus
of the majority of the user-centric modeling approaches to guide inexperienced
modelers through the process of creating a model without overwhelming them with
syntactic formalism and complex modeling constructs [27, 9, 18, 11, 40]. Notice
that the proposed language must be enough expressive and includes essential
process elements to allow process actors define different situations in their process
models. The structural definition of process models which avoids the needs of
work-sequence relations results in reducing the number of modeling constructs and
making modeling easier for process actors.

• Alignment of concepts As process modeling is conducted in a fragmented way
where each fragment is modeled separately and can belong to different expertise
domains, different notions can be used by different process actors to refer to the
same concept. For instance, a same artifact can be known with two different names
in two different fragments. Therefore, a common vocabulary used by all process
actors to describe their process fragments elements is a prerequisite for reaching
an alignment on the content level [48, 6].

In the next section, we present how our modeling approach supports the properties
mentioned above. To do so, first we introduce the concepts of our modeling language.
Then the main steps of process modeling are discussed to show how our language provides
simplicity to process actors in order to directly create their enactable process fragment
models.

46

2.3 Structural Process Modeling Language (SPML)
This section introduces our process modeling language, named SPML (Structural Process
Modeling Language). SPML is developed as a DSL (Domain Specific Language) [16]
which is dedicated to process actors to model their enactable process fragment models.
SPML is a user-friendly modeling language aiming at suiting process actors needs which
is simple but expressive enough to represent their operational process. The key features
of SPML are as following:

1. Removing the work-sequence relations among activities from the process model In
fact, SPML allows process actors to only describe the structural aspect of their
process.

2. Describing in detail the data-flow regarding the artifacts entering and leaving the
activities The respective data-flow provides sufficient information to deduce the
behavioral aspect of process at enactment-time.

SPML includes only the process elements known by process actors in their daily work
and avoids introducing concepts requiring process-special knowledge to understand.

A complete definition of a modeling language consists of the description of its syntax
along with well-formedness rules, and its execution semantics [22]. In the next, we
present the SPML abstract syntax and its well-formedness rules where the execution
semantics are discussed in detail in the next chapter.

2.3.1 SPML Meta-model

The SPML abstract syntax is defined by a meta-model comprising two packages which
each package deals with a specific aspect as illustrated in Figure 2.6. The package
CompanyAssets defines the concepts representing the common information shared among
process actors in the company. Company assets concern information that globally exists
in the company including definitions of processes, primary roles participating in processes,
definitions of artifacts together with their associated states, resource definitions and list
of options. Company assets provide thus a common vocabulary about process elements
distributed among process fragments. In practice, such company assets always exist
even if the process is not formally defined, e.g., documentations, guidelines, etc.

The package ProcessStructure defines the concepts allowing to describe the activities
and tasks inside each process fragments belonging to a role. The core concepts of SPML
along with relations among them are illustrated in Figure 2.7.
The basic concepts of SPML along with their essential properties are defined as follows:

• Process defines a collection of activities that will be performed by different roles to
achieve the process goal. An activity can use some resources during its execution
and manipulate artifacts representing process’s work products. A process is
organised into several Process Fragments.

47

Figure 2.6: Structure of SPML

• Process Fragment defines a partition within a Process that encapsulates the
activities belonging to the Role who performs the Process Fragment.

• Role represents the rights and the responsibilities to perform certain process’s
activities. Process actors play one or many roles when enacting a process.

• Artifact is a tangible work product consumed, produced, or modified by a Process.
They may serve as a basis for defining reusable assets. The property artifactKind
indicates that whether an Artifact is a single or a collection. The latter defines if the
Artifact represents a collection of elements and does not assume any dependencies
among the elements.

• Activity represents a unit of work within a Process that contributes to achieving
process’s goals. It is performed by a specific Role and is decomposed to a set of
enactable Tasks corresponding to activity’s sub-objectives.

• Task represents an enactable and manageable action performed by one process actor
taken to achieve one specific Activity’s sub-objective. A task can be mandatory or
optional. The former indicates the Tasks which are necessary for an Activity to be
completed. The latter indicates the Tasks which can be enacted at enactment-time
based on process actors needs. The property duration indicates the temporal
estimation of the performing Task.

• Resource is a non-human entity that provides capability for the task to be carried
out, i.e., a resource that does not correspond to an actual person, e.g., machine
environment, tools and equipment.

• Option allows process actors to specify alternative ways to realize an activity in
different execution contexts. An option represents a specific execution context and
is used to specify the condition to perform an Optional Task or to use an Artifact.

48

Figure 2.7: SPML meta-model

• ProcessFragmentPerformer represents the performing relation between a Role and
the activities inside a Process Fragment.

• TaskParameter defines the relation between a Task and an Artifact. The property
direction of the relation TaskParameter indicates if the concerned Artifact is
necessary for a Task to be consumed (input) or produced (output). The property
usage of the relation TaskParameter indicates if the concerned Artifact is necessary
for a Task’s pre-condition (toStart) or for a Task’s post-condition (toFinish).
The property demandedState defines a condition of existence of an Artifact at a
particular moment in its life-cycle. An Artifact evolves during its life-cycle by
passing through states. The property demandedState has a type State as defined in

49

the package CompanyAssets. Finally, the Option is also included as a property of
relation TaskParameter to define possible condition of using an Artifact in a Task.

Figures 2.8 and 2.9 illustrate the concrete syntax of SPML regarding two fragments
of the process in Figure 2.1 which other fragments of the process are provided in the
annex of this chapter. The fragment in Figure 2.8 is modeled by a process actor playing
the role Analyst and the fragment in 2.9 is modeled by a member of Instrumentation
Team. We assume that the information regarding the company assets (e.g., process
definitions, role definitions, artifact definitions, etc.) is defined by the project manager
in advance. The process contains two options as instrumentation and interface which
are defined globally in the scope of the process. Each fragment however can use only
some of these defined options. The process fragment of the role Analyst includes an
activity Detail Change Requirement composed of two mandatory tasks and an optional
task. The mandatory task Define Component Requirements requires an artifact Wiring
Change Demand and produces a collection of artifacts Component Requirements as a
result. The mandatory task Define Electrical Specification requires two input artifacts
Wiring Change Demand and FICD, each one in state defined. The latter artifact,
produced by the Instrumentation Team, is required only if the instrumentation option
is activated. The optional task Outline Instrumentation Model belongs to the option
instrumentation. The process fragment of the role Instrumentation Team includes two
activities Design Instrumentation and Generate Bench Specification. The former is
comprised of a mandatory task and the latter is comprised of two mandatory tasks and
an optional task which belongs to option instrumentation.

Notice that some properties of the SPML concepts described in the abstract syntax
are not represented in the process fragments models. These properties are assumed to
have a default value. For instance, an artifact by default is considered as a single artifact
in which the value of property kind is set to single. Moreover, in concert syntax, we
define the list of options in the scope of an activity. Each of defined options is realized
by an optional task of the activity.

2.3.2 SPML Well-formedness Rules

The proposed meta-model properly captures all the concepts that are necessary to create
a model in SPML, as well as all the valid relationships that can exist between these
concepts in a model. However, we require some additional constraints that restrict the
way concepts can be assembled to form correct and consistent SPML process models.
These constraints are defined in form of a set of OCL [2] well-formedness rules.

• taskOutputArtifact A task can consume many artifacts as input but can produce
only zero or one artifact as output. The reason behind such a constraint is
threefold: (1) better reflecting the actors vision on their process as they know their
manipulating artifacts, (2) providing finer change impact analysis which this fact

50

Process Modify Testbench Wiring options instrumentation, interface
ProcessFragment Analyst

Activity Detail Change Requirement options instrumentation
MandatoryTask Define Component Requirements

Artifact Wiring Change Demand(in, defined)
Artifact Component Requirements(out, defined, collection)

MandatoryTask Define Electrical Specification
Artifact Wiring Change Demand(in, defined)
Artifact FICD(in, defined, toFinish) ifOption instrumentation
Artifact Electrical Specification(out, defined)

OptionalTask Outline Instrumentation Model ifOption instrumentation
Artifact Wiring Change Demand(in, defined)
Artifact FICD(out, outlined)

Figure 2.8: Process Fragment of Analyst

Process Modify Testbench Wiring options instrumentation, interface
ProcessFragment Instrumentation Team

Activity Design Instrumentation
MandatoryTask Define Instrumentation Model

Artifact FICD(in, outlined)
Artifact FICD(out, defined)

Activity Generate Bench Specification options interface
MandatoryTask Define Bench Specification

Artifact FICD(in, defined)
Artifact Bench Specification(out, defined)

OptionalTask Define Specific ICD ifOption interface
Artifact FICD(in, defined)
Artifact ICD(out, defined)

Figure 2.9: Process Fragment of Instrumentation Team

will be discussed in details in Chapter 4 and (3) constructing the lifecycle of each
artifact in order to validate the model before enactment. The respective constraint
is expressed in OCL as follows:

context Task inv taskOutputArt i fac t :
s e l f . taskParameters−>s e l e c t (tp | tp . d i r e c t i o n

51

=ParameterDirect ionKind : : out)−>s i z e ()<=1

The Figure 2.10 represents an invalid model corresponding to this constraint.

Process Modify Testbench Wiring options instrumentation, interface
ProcessFragment Analyst

Activity Detail Change Requirement
MandatoryTask Define Component and Electrical Specification

Artifact Wiring Change Demand(in, defined)
Artifact FICD(in, defined, toFinish) ifOption instrumentation
Artifact Component Requirement(out, defined)
Artifact Electrical Specification(out, defined)

Figure 2.10: Invalid Model of constraint taskOutputArtifact

• taskOutputArtifactUsage As an output artifact only represents the post-condition
of a task, thus its property UsageKind can be only set to toFinish. The respective
constraint is expressed in OCL as follows:

context Task inv taskOutputArt i factUsage :
s e l f . taskParameters−>s e l e c t (tp | tp . d i r e c t i o n
=ParameterDirect ionKind : : out and tp . usage=UsageKind : : t oS ta r t)
−>isEmpty ()

The Figure 2.11 represents an invalid model corresponding to this constraint where
output artifact Electrical Design Model is set for the task’s pre-condition.

Process Modify Testbench Wiring options instrumentation, interface
ProcessFragment Electrical Designer

Activity Design Electrical Model
MandatoryTask Define Electrical Model

Artifact Electrical Specification(in, defined, toStart)
Artifact Electrical Design Model(out, defined, toStart)

Figure 2.11: Invalid Model of constraint taskOutputArtifactUsage

• artifactStateNotSame A task requires artifacts in certain states and produces an
artifact in a certain state as well. In case of a task manipulating a same artifact as

52

input and output, the state of the artifact must be different in its roles input and
output. The respective constraint is expressed in OCL as follows:

context Task inv art i factStateNotSame :
l e t tps : Set (TaskParameter) = s e l f . taskParameters−>s e l e c t (tp | tp
. d i r e c t i o n=ParameterDirect ionKind : : in) in
i f (tps−>notEmpty ()) then s e l f . taskParameters −> s e l e c t (tp | tp
. d i r e c t i o n=ParameterDirect ion Kind : : out)−>fo rA l l (tp | (tp . a r t i f a c t
. name<>tps−>f i r s t . a r t i f a c t . name) . or (tp . demandedState<>tps−>f i r s t
. demandedState))
e l s e t rue
end i f

The Figure 2.12 illustrates the part of the process fragment model of Instrumenta-
tion Team representing an invalid model corresponding to this rule.

Process Modify Testbench Wiring options instrumentation, interface
ProcessFragment Instrumentation Team

Activity Design Instrumentation
MandatoryTask Define Instrumentation Model

Artifact FICD(in, outlined)
Artifact FICD(out, outlined)

Figure 2.12: Invalid Model of constraint artifactStateNotSame

• artifactStateMustExist The demanded state associated to the relation between
a task and an artifact must be an element of artifact’s states as defined in the
company assets. The respective constraint is expressed in OCL as follows:

context Task inv a r t i f a c tS ta t eMus tEx i s t :
s e l f . taskParameters−>f o rA l l (tp | tp . a r t i f a c t . a r t i f a c t S t a t e s
−>ex i s t s (tp . demandedState=tp . a r t i f a c t . a r t i f a c t S t a t e s . name))

The Figure 2.13 illustrates the part of the process fragment model of Instrumenta-
tion Team where the artifact FICD has only two states as outlined and defined.

• activityOptions The list of options used by an activity must be a subset of options
defined in the scope of the containing process. The respective constraint is expressed
in OCL as follows:

53

Process Modify Testbench Wiring options instrumentation, interface
ProcessFragment Instrumentation Team

Activity Design Instrumentation
MandatoryTask Define Instrumentation Model

Artifact FICD(in, validated)

Figure 2.13: Invalid Model of constraint artifactStateMustExist

context Act i v i ty inv ac t i v i t yOpt i on s :
s e l f . processFragment . p roce s s . opt ions−>in c l ud e sA l l (s e l f . opt i ons)

The Figure 2.14 illustrates the part of the process fragment model of Analyst where
activity Detail Change Requirement includes an option which is not defined in the
scope of process.

Process Modify Testbench Wiring options instrumentation, interface
ProcessFragment Analyst

Activity Detail Change Requirement options mechanic

Figure 2.14: Invalid Model of constraint activityOptions

• activityOptionalTask For each option of the activity, there must be at least one
optional task which corresponds to the respective option. The respective constraint
is expressed in OCL as follows:

context Act i v i ty inv act iv i tyOpt iona lTask :
s e l f . opt ions−>in c l ud e sA l l (s e l f . t a sk s . a c t i va t ingCond i t i on)

The Figure 2.15 illustrates an invalid model corresponding to this rule where the
optional task Outline Instrumentation Model corresponds to an option which is
not defined in the scope of activity Detail Change Requirement.

• taskOption If an activity of the process has an optional task, the respective
activity must include an option corresponding to the respective optional task. The
respective constraint is expressed in OCL as follows:

context OptionalTask inv taskOption :
s e l f . a c t i v i t y . opt ions−>in c l ud e sA l l (s e l f . a c t i va t ingCond i t i on)

54

Process Modify Testbench Wiring options instrumentation, interface
ProcessFragment Analyst

Activity Detail Change Requirement options instrumentation
OptionalTask Outline Instrumentation Model ifOption interface

Figure 2.15: Invalid Model of constraint activityOptionalTask

The Figure 2.16 illustrates the part of the process fragment model of Analyst
representing an invalid model corresponding to this rule.

Process Modify Testbench Wiring options instrumentation, interface
ProcessFragment Analyst

Activity Detail Change Requirement
OptionalTask Outline Instrumentation Model ifOption instrumentation

Figure 2.16: Invalid Model of constraint taskOption

• artifactOption The option associated to a relation Taskparameter between an
input artifact and a task has to be in the list of process’s options. The respective
constraint is expressed in OCL as follows:

context TaskParameter inv a r t i f a c tOpt i on :
s e l f . task . a c t i v i t y . processFragment . p roce s s . opt ions−>in c l ud e sA l l
(s e l f . opt ion)

The Figure 2.17 illustrates an invalid model where artifact FICD is associated
with an option which is not defined in the scope of process.

Process Modify Testbench Wiring options instrumentation, interface
ProcessFragment Analyst

Activity Detail Change Requirement
MandatoryTask Define Electrical Specification

Artifact Wiring Change Demand(in, defined)
Artifact FICD(in, defined, toFinish) ifOption mechanic
Artifact Electrical Specification(out, defined)

Figure 2.17: Invalid Model of constraint artifactOption

55

In order to validate the presented OCL rules, we first defined the grammar of SPML
concrete syntax via Xtext [5, 59] and obtained a textual editor for defining SPML models.
Then we defined our OCL rules in the ecore file generated from the grammar and then
validated the respective rules in the textual editor.

2.3.3 SPML Expressiveness

This section discusses the capacity of SPML in supporting the essential control flows
when enacting process’s tasks, i.e. the sequencing, branching, parallelism, iteration and
also multi-instances execution.

Imperative process modeling languages describe explicitly the control-flows among
process’s tasks, thus, as described in [49, 1], they have to seek a way to correctly express
various complex branching, merging patterns of tasks at modeling time and a way to
correctly implement these patterns at enactment-time. In contrast to these languages,
SPML does not model the control-flows among process’s tasks, thus we do not need to
support the complex control-flow patterns described in [49, 1]. However, we want to
show that SPML can express the essential flows. This feature is enough to coordinate
process’s tasks at enactment-time thanks to an universal execution mechanism based on
the consumption and production of artifacts to synchronize tasks. We aim at illustrating
two points in this section:

– Which main control-flow patterns can be implicitly supported in SPML.

– How simple is for process actors to define respective patterns compared to impera-
tive languages, e.g., BPMN [37], SPEM [36], Petri Net [57], Event-Driven Process
Chains (EPCs) [50], Subject-oriented Business Process Management (S-BPM) [15],
etc.

In the following, we mention the SPML support for the main patterns.

• Sequence This pattern specifies a situation where a task in a process is enabled
after the completion of a preceding task in the same process.
In imperative languages, this pattern is supported by defining a work-sequence
relation between two tasks as illustrated in the Figure 2.18a.
SPML supports this pattern by specifying an artifact exchange between two tasks
as illustrated in the Figure 2.18b through exchanging artifact art1 in state s1.

• Parallelism This pattern presents a situation where a set of tasks can be exe-
cuted in parallel indicating that there is no dependencies (e.g., temporal, artifact
exchange) among them.
In imperative languages, this pattern is supported by using a parallel gateway as
illustrated in the Figure 2.19a.
In SPML, tasks can be concurrently executed as fas as there is no artifact exchange
among them, i.e., illustrated in Figure 2.19b.

56

(a) Imperative language

MandatoryTask T1

Artifact Art1(out, s1)
MandatoryTask T2

Artifact Art1(in, s1)

(b) SPML

Figure 2.18: Sequence Pattern in SPML and imperative language

(a) Imperative language

MandatoryTask T1

MandatoryTask T2
MandatoryTask T3

(b) SPML

Figure 2.19: Parallelism Pattern in SPML and imperative language

• Choice This pattern presents a situation where one or more tasks are selected for
subsequent execution from a set of available tasks. Generally, a process model is
used in different project contexts which result in different variants of the process.
In particular, respective variants have certain activities, while at the same time
differences due to their usage in different project contexts exist, e.g., certain activi-
ties are optional and relevant for only some of the process variants.
Imperative languages express these variants with using choice construct (decision
points) as illustrated in Figure 2.20a .
In SPML, the concept of Option enables process actors to implicitly define differ-
ent alternatives of their work process without overwhelming them with complex
modeling constructs. Each option is associated with an optional task as illustrated
in Figure 2.20b.
The advantage of SPML over imperative languages is noticeable when consider-
ing the positioning of decision points. In imperative languages, decision points
regarding choosing which path to be executed are fixed in the model. This fact
makes the model super complex when it comes to complicated scenarios. For
instance, in the example of Figure 2.20a, assume a scenario where only task T1
is activated. However, the actor performing T1 realizes that the tasks T2 and T3
must be selected as well. To support such situations, the choice constructs must

57

(a) Imperative language

Activity A1 options choice 1, choice 2, choice 3
OptionalTask T1 ifOption choice 1
OptionalTask T2 ifOption choice 2
OptionalTask T3 ifOption choice 3

(b) SPML

Figure 2.20: Choice Pattern in SPML and imperative language

be defined after each task to verify whether other tasks required to be selected or
not. By assuming defining the decision points in the whole process, this results in
a super complex process as illustrated in Figure 2.21a.
In SPML the option is not fixed and can be activated at any moment during
activity execution. This makes many situations to be covered by a simple and
single model, i.e., Figure 2.21b.

(a) Imperative language

Activity A1 options choice 1, choice 2, choice 3
OptionalTask T1 ifOption choice 1
OptionalTask T2 ifOption choice 2
OptionalTask T3 ifOption choice 3

(b) SPML

Figure 2.21: Complex scenario of choice pattern in SPML and imperative language

• Iteration This pattern describes a situation where one or more tasks can be

58

executed repeatedly. Note that iteration can be seen as a particular type of choice,
where the join precedes the split.
In imperative language, this pattern is modeled using an exclusive gateway which
either is controlled by a counter or is validated by a condition as illustrated in the
Figure 2.22a.
In SPML, we do not provide any support to model such pattern as shown in the
Figure 2.22b. We do not have condition for the loop and we bring this pattern
under control of process actors. Suppression of work-sequence relations among
activities and tasks facilitates the execution of such pattern as process actors can
instantiate their tasks repeatedly if required.

(a) Imperative language

MandatoryTask T1

MandatoryTask T2

(b) SPML

Figure 2.22: Iteration pattern in SPML and imperative language

• Multiple Instances This pattern presents a situation where multiple concurrent
instances of a task can be executed. The number of task instances depends on
run-time factors, often the input data of a task.
In imperative languages, this pattern can be supported as illustrated in Figure
2.23a where the output collection artifact Art1 of task T1 is the input of multi
instance task T2. In such case, when T1 is completed the cardinality n of its output
collection artifact Art2 determines the number of task instances of the subsequent
task T2.
In SPML, we do not provide any special construct for this pattern as illustrated
in the Figure 2.23b. In our approach, we allow process actors to instantiate their
tasks multiple times if needed, e.g., the task T2 can be instantiated n times in
which each instance takes one element of Art1 in state S1 as input.

To resume, our modeling language SPML is enough expressive to describe typical
situations of process execution. Most importantly, to model such situations, SPML does
not impose process actors with complex modeling constructs. SPML gives the control to
process actors in order to handle situations described by patterns such as Multi Instance,
Iteration, Cancellation and Termination. Suppression of work-sequence relation in the
model along with including the concept of Option give more autonomy to process actors
to decide different execution scenarios at runtime.

59

(a) Imperative language

MandatoryTask T1

Artifact Art1(out, s1, collection)
MandatoryTask T2

Artifact Art1(in, s1)
Artifact Art2(out, s1)

MandatoryTask T3

Artifact Art2(in, s1, collection)

(b) SPML

Figure 2.23: Multiple instance Pattern in SPML and imperative language

2.4 Modeling Process
This section introduces our proposed modeling process in order to exhibit the charac-
teristics of our artifact-centric process modeling approach, i.e., fragmented modeling,
avoidance of work-sequence relations, direct enactability, etc. The proposed modeling
process is illustrated in the Figure 2.24 by a map [13, 47]. A map is presented as
a diagram where nodes are intentions and edges are strategies. A map includes two
predefined intentions as Start and Stop, which mean accordingly the beginning and the
end of the process. An important notion in process maps are the sections represented as
a triplet <source intention, target intention, strategy>, in other terms, the knowledge
corresponding to a particular process step to achieve an intention (the target intention)
from a specific situation (the source intention) following a particular technique (the
strategy). The different sections of our modeling process can be described as follows:

Figure 2.24: The proposed modeling process described as a map

• <Start, Set company assets, By injecting global information> This section rep-
resents the activity required by process owners (e.g., project manager, team

60

responsible, etc.) who have the better vision on the global process to define the
global and common information shared among process actors in the company as
company assets. Note that all fragments are described based on common company
assets definitions.

• <Set company assets definitions, Elicit process fragments model, By fragmented
process modeling> This section presents the core step of our modeling process which
enables process actors to model their process fragments via using the proposed
modeling language SPML in a decentralized way. Each role specifies simply the
structure of his process fragment as a list of activities under his responsibility.
For each activity he defines the lists of mandatory and optional tasks. For each
mandatory/optional task he specifies the required and produced artifacts which,
generally, are pre-defined in the company assets as mentioned earlier. The artifacts
may be associated with an option indicating on which context the respective
artifacts are required or produced.

• <Elicit process fragments model, Set company assets, By updating company assets>
In our approach, we consider that the information regarding company assets can be
progressively defined by authorized actors (e.g., project manager, team responsible,
etc.) whenever needed by process actors during modeling their process fragments.

• <Elicit process fragments model, Stop, By validation> After defining the process
fragment model, the process actor can terminate the modeling process indicating
that process fragment model is valid and no modification is required in the
corresponding model. At this stage, the process fragment model is ready to
be enacted, i.e., instantiating fragment’s activities and tasks and starting their
executions by associating the concrete artifacts and resources required in the
project. This issue will be discussed in details in the next chapter.

Our artifact-centric process modeling approach gets the full benefits of fragmented pro-
cess modeling in which it enables each role to model his process fragment independently
of the other fragments. Obviously, each role knows his performing activities/tasks and
the artifacts required or consumed by the respective tasks without knowing exactly
where and by whom these artifacts are produced or will be used. Based on the common
company assets definitions, two fragments of the process can be defined separately but
using the same vocabulary for their exchanged artifacts. Thus, we assume that no
negotiation and collaboration are required at modeling-time. This will avoid bringing a
cognitive overload to the related roles and makes it easy for them to concentrate on their
own contribution to the process. For instance, the two fragments of Figures 2.8 and
2.9 are defined separately, however, both roles implicitly define their exchange artifact
FICD in certain states.

As illustrated in Figures 2.8 and 2.9, the work-sequence relations among activ-
ities/tasks are eliminated and process fragments are structurally defined. Moreover,

61

the proposed SPML includes only the process elements known by process actors in
their daily work (e.g., task, artifact, resource) and avoid introducing concepts requiring
process-special knowledge to understand (e.g., different gateways and events in BPMN).

With the proposed process modeling approach, process actors describe exactly what
they do in their routine work. Hence, the gap between a process model and its ap-
plications in concrete projects can be considerably reduced. Thanks to this simple
and data-flow based modeling language, the enactment of a process becomes a simple
instantiation of the process fragments models, i.e., creating concrete instances of the
process and its defined activities together with used tasks, then providing these tasks
the required effective parameters selected from the real artifact and resource instances.
Therefore, process actors can easily enact their process fragment activities without need
of a process designer for deploying and validating their process. In fact, our modeling
approach, which its main objective is control, is solely conducted by process actors and
does not require the participation of process designers, e.g., as a facilitator in modeling
process or to validate the process model.

One advantage of our artifact-centric modeling approach is that it is not necessary
to define the whole process from the beginning of the project. Thanks to the shared
company assets, the process fragments can be defined separately and even progressively
during the project execution. We remind that our main modeling objective is control
than improvement. However, process improvement will be possible after reconstructing
the global process model.

In the next section, we introduce and compare the existing modeling approaches
which like us put main emphasize on process actors.

2.5 Related Work
In order to increase the operationality and user acceptance of current process envi-
ronments, many conducted researches concentrate on improving the process model in
order to better match with process actors needs. They advocate the idea of process
actors participation in process modeling as they are the only ones who have the through
knowledge and have to use the system at the end, and thus they should really know
what is expected. This fact can result in a model which is more exact and close to the
reality. The variety of user-centric modeling approaches such as participative modeling
approaches [18, 52] and role-based modeling approaches [54, 53] with different objectives
has been proposed so far. In the next section, we propose our criteria for evaluating
current user-centric modeling solutions.

2.5.1 Evaluation Criteria

Agnes et al. [18] propose an evaluation criteria to assess different participative approaches
which is composed of three criteria as modeling process, modeling language and modeling

62

objective. Each criterion consists of different factors to carry out the evaluation. We
extend this evaluation criteria by adding two factors as fragmentation and progressiveness
for the modeling process criterion. Based on these considerations, the Figure 2.25
illustrates the outcome evaluation criteria.

Note that the corresponding evaluation criteria entails the fundamental characteristics
of our artifact-centric modeling such as fragmentation and direct enactability. In the next,
we present the description of each criterion along with its factors and their connection
with the requirements.

Figure 2.25: Modeling Evaluation Criteria

2.5.1.1 Modeling Objective

This criteria represents the aim of modeling approaches which can be to provide a model
of a process in an organization in order to improve and communicate among process
actors, i.e., by identification of the problem and bottlenecks [12] and/or to provide control
over the process by providing enactable process models which later can be deployed and
enacted by the process engine.

2.5.1.2 Modeling Process

This criterion is related to the modeling process to be followed during the process
modeling and consists in three factors to evaluate:

• Modeling performer defines the profile of people who are required to participate to
process modeling. It can be the process designer or the process actors (end-users)
or participation of both.

63

• Fragmentation describes the required negotiations among process participants (e.g.,
process actor, process designer, etc.) during the process modeling which can be as
follows:

– Centralized where all process actors participate in a meeting to model their
processes with the help of process designer as a facilitator.

– Semi-fragmented where each process actor can model his own fragment of
process and negotiates with other actors in case of artifacts exchanges.

– Fragmented where each process actor is able to model his fragment of process
separately of other fragments.

• Progressiveness defines the procedure of modeling process to be global by defining
the whole process from the beginning or incremental by allowing continuously
definition of process fragments during the project execution.

2.5.1.3 Modeling Language

This criterion is concerned with the language used during the modeling process. The
variety of languages has been proposed for modeling processes in SSE [19] or business
domains [33, 42] during last decade.

• Multi-perspective corresponds to capacity of modeling muti-aspect of process, each
focusing on one aspect of the process [29, 10], which are required to represent
complex processes. The main following perspectives can be considered:

– Structural aspect (functional, organizational and informational) presents three
modeling elements: who elements (organizational) representing actors, roles,
or organizational entities, what elements (functional) representing activities/-
tasks and exchange elements (informational) describing the artifacts that are
produced, consumed, or otherwise manipulated by the activities/tasks.

– Behavioral aspect provides control-flow information about the process, that is,
when activities are performed and how they are performed (e.g., by describing
the work-sequence relations between activities/tasks).

• Enactability defines the executability of process models, i.e. the capacity of enacting
a process model in the context of a concrete project.

– Indirect enactment indicates that the operational semantics of modeling
language is not defined. Consequently, there is no supporting process engine
for the language and deploying a process model requires efforts of process
designer and process actors to map the modeling constructs to equivalent
concepts of an operational process engine.

64

– Direct enactment indicates that the operational semantics of the language
is defined, i.e., specifies the behavior of the language’s own process engine
based on its modeling constructs. Thus, constructing a supporting process
engine for the language is direct to deploy and operate process models.

• Modeling paradigm represents different approaches in constructing process modeling
languages. There are two most important paradigms known as imperative or
declarative.

– Imperative modeling describes how the process has to enacted. It requires
every possible execution sequence to be modeled explicitly [42]. Process
actors must define the structural and behavioral aspects of their processes at
modeling-time.

– Declarative modeling describes the structural aspect of a process without
specify how the process has to work exactly at enactment-time. The behavioral
aspect is not modeled explicitly via the work-sequence relations. Declarative
modeling allows for all possible behavior as long as it is not forbidden by
specific constraints, thus can provide a better flexibility for enacting processes
[58, 45, 24, 34].

2.5.2 Review of User-centric Modeling Approaches

In the next, we briefly presents some user-centric modeling approaches which, like us,
put the main emphasize on process actors in process modeling. However, they put the
primary emp have different

We compare them related to our criteria in order to investigate their benefits and
shortcomings.

2.5.2.1 Participative Approaches

Participative approaches are mainly based on methods related to quality tools such as
seven tools of Total Quality Control [25]. These methods tend to involve the stakeholders
of a process in the proposition of ideas for process improvement, use techniques to
stimulate and motivate people and help them to solve problems and to propose creative
solutions, e.g., SIX Sigma [43, 28], PAWS [8], etc. Participative approaches try to
facilitate the process discovery step of modeling phase by organizing joint modeling
sessions with a centerlized collaboration and participation of process actors and process
designers [52, 4]. In the following, we present some participative approaches.

COMA

Rittgen [46] proposes the COllaborative Modeling Architecture (COMA) to support
active participation of the process actors unlike traditional process modeling in order

65

to make models more understandable and more agreeable. He focuses on providing
support for modeling and consolidating models during collaborative modeling with a
language-agnostic negotiation approach. COMA has four main activities for negotiation
which are propose, support, challenge and accept. Basically, each group member creates
a global model and proposes that model to others. The acceptance of the proposals is
decided based on either rule of seniority or rule of majority. The COMA adopts UML
(Unified Modeling Language) to enables actors to model the processes.

ISEA

Front et al. [18] propose a participative modeling approach named ISEA which concerns
participative and playful activities realized by the process actors to obtain, evaluate and
improve intermediary models of the business process by using a domain specific language
(DSL) that covers structural and behavioral perspectives of a process. ISEA proposes
the mappings rules between intermediary models and standard models (BPMN) in order
to automate the business process. The transformation is obtained by mapping each
concept of the meta-model to a BPMN collaboration diagram concept. The transformed
process is not enactable and requires a process designer to deploy the process in the
target process environment (e.g., Bonita [7]).

2.5.2.2 Role-Based Modeling Approaches

Role-based approaches differ from participative approaches on the way of process actors
participation in process modeling. Role-based approaches put more stress on process
actors to model their processes in a decentralized (fragmented) fashion. Each role in the
organization is responsible for modeling its own contribution to the process. Due to the
collaborative nature of role-based and fragmented process modeling, negotiations among
the actors who play different roles have a crucial impact on modeling activities of overall
process. Based on the communication and negotiation time among the actors, these
types of process modeling approaches vary. In the following, we resume some important
works.

Plural

Turetken et al. [54, 55] propose the Plural method based on a multi-perspective
modeling paradigm, which focuses on representation of individual work contributions
in models and subsequently merges them into a common model by agreeing upon the
interfaces (artifact exchanges) among the individual models. In Plural, the notation
used for describing the structural and behavioral aspects are based on extension of
Event-driven Process Chain (eEPC) [50] technique, which is semi-formal, imperative
and has limitations particularly in relation to the process execution. It is assumed that
actors are familiar with this language. Plural uses tool support built as add-on upon a

66

commercial modeling environment ARIS Toolset [51], which identifies inconsistencies
between individual models. Currently, however, it does not incorporate mechanisms to
support the enactment of the defined processes based on enactable definitions generated
from these models. Vandenhurk et al. [56] explore the feasibility of applying BPMN [37]
in Plural as it provides great execution support. Plural defines a third party participant
called coordination team in their process modeling.

RoaDMap

Ertugrul et al. [14] propose RoaDMap (ROle-based And Decentralized process Modeling)
to allow process actors to model their fragments of process. The overall process model is
formed progressively as long as the roles model their own internal behaviors and identify
interactions from their own perspectives. If there exist inconsistencies, roles identify and
resolve them in an ongoing way. Their proposed modeling language is an extension of
S-BPM [15]. As S-BPM notation has simple and few number of elements, it is easy to
learn for the inexperienced people. S-BPM comprises two types of diagrams, subject
interaction diagram (SID) to illustrate the subjects and artifact exchanges among them
and subject behavior diagram (SBD) to describe the structural and behavioral aspect of
each subject. However, S-BPM receives great enactment support but the authors did
not examine the enactment possibility of their extended S-BPM in the existing S-BPM
process engines.

CTM

Stoitsev et al. [53] develop a collaborative task management tool CTM (as add-in to
Microsoft Outlook) to enable end-users creating hierarchical to-do lists (tasks and sub
tasks). Tasks can be delegated over email exchange. Tracking of email exchange for
task delegation integrates the end-user’s personal to-do list to overall Task Delegation
Graphs (TDG). TDGs represent weakly-structured process models that are captured as
results of actual process enactment. Their approach supports process elicitation through
transformations of user-defined TDGs to formal workflows based on the task change
and evolution history. Task changes which alter task status, percent complete or task
artifacts, are considered as task processing changes, denoting that the user is acting
on a given task. The transformation is acheived by usage of jBOSS Business Process
Management (jBPM) solution [26] which uses an imperative modeling language (jPDL) to
model workflows. As the work-sequence relations among tasks are defined as suggestion
based on the time of tasks processing changes (e.g., alter task status, percent complete),
the resulting process is no exact and must be validated by end-users. Furthermore, as
TDGs are not enactable, their solution required the process designer to transform the
TDGs into formal process models and deploy into target process environment.

67

Oppl

Oppl [40] proposes a modeling approach which is driven by process actors and allows them
to model and align their views on a work process, and still leads to a syntactically correct
and semantically sound process model for further processing in IS (enactable models).
They apply case-based approaches that avoids the need for control-flow constructs
which reduces the number of modeling elements to make modeling easier for non-expert
modelers. The modeling process starts with defining a common understanding of the
relevant concepts and the scope of the process. Then the process modeling continues
with a set of concurrent individual modeling sessions, in which all involved process actors
structurally define their process fragments. Then, the individual models are brought
together and aligned to form a coherent and agreed-upon model of the global process
model. Finally, by applying a set of transformation rules [39], the case-based model is
mapped to target business process model in languages such as S-BPM [15] or BPMN
[37]. As the obtained model initially reflects only one variant of the process, the aim of
this step is creating a semantically correct representation of the work process in all its
variations. Their approach requires process actors to know the S-BPM language , which
follows an imperative paradigm, in order to improve the transformed model to include
all variants of their working process.

2.5.3 Synthesis

Table 2.1 synthesizes the different modeling solutions studied in the previous section in
relation to our criteria.

In general, participative approaches are considered as solutions mainly focus on
keeping the complexity of process modeling low so that process actors can actively
participate during the modeling phase in a centralized manner. To do so, they attempt
to propose a simple modeling language to be more convenient for process actors to
express their knowledge about their processes. Particularly, the objective is to obtain a
process model by means of communication and improvement. They emphasize on high
degree of collaboration in process modeling by holding a centralized modeling session
which requires participation of all involved process actors and process designer as a
facilitator to organize and guide the modeling sessions and resolve inconstancies.

Role-based approaches attempt to reduce the degree of collaboration among process
actors and give more freedom to them in modeling their own contribution to the process
by providing fragmented (decentralized) process modeling. To create a sound process
model, all involved roles need to communicate and negotiate in case of artifact exchanging
among them, either before, during or after modeling their process fragments. This fact
brings limitation in getting full advantage of fragmented process modeling as it makes
fragments to be dependent on each other.

Our proposed modeling approach gets the benefits of participative approaches in

68

simplicity of modeling language and role-based approaches in fragmentation of process
modeling, and strengths their shortcomings in order to achieve a solution which better
suits process actors needs. In the following, we resume the advantages of our proposed
modeling approach.

• Structural process model Mosltly all discussed works follow the imperative paradigm
in their process modeling which emphasizes on behavioral aspect of the process
which forces process actors to pre-define all situations in their working process that
may happen at enactment-time. The work in [40] pursues declarative paradigm by
adopting a modeling language which allows process actors to model their working
process structurally. In order to provide enactment support, they transform the
structurally defined models to imperative process models. Then process actors
must improve and validate obtained models by considering all possible variants
(situations) of their working process. This requires first process actors to know the
imperative modeling language (e.g., BPMN [37], S-BPM [15]) and most importantly,
it leads to the problem of imperative modeling as discussed in Section 2.1.
Our modeling language SPML follows the declarative and artifact-centric paradigm
by enabling process actors to define only structural aspect of their processes. Note
that specification of input and output artifacts of each task implicitly defines the
model constraints. The behavioral aspect of process emerges at enactment-time by
real exchange of artifacts among process actors. Moreover, the proposed concept of
Option in SPML enables process actors to specify different variants of their working
process without overwhelming them by using work-sequence modeling constructs.
Suppression of work-sequence relations makes SPML a less rigid language and gives
more autonomy to process actors to control their processes at enactment-time, i.e.,
some conditions such as multi-instance or loop are not explicitly define in the model
and process actors should control the number of their tasks at enactment-time.

• Enactable process model Current end-user modeling approaches have lack of enact-
ment support. Mainly they aim at process improvement than control and so the
obtained models are far from being further processed in the concrete project by
means of enactment. The task of transforming these models into representations
having a (semi) formal and executable modeling language that can be processed
in process environments, however, is left to process designers. Only few works
[18, 40] provided some support for process control by adopting transformation rules
between their modeling language and the target (semi) formal language. But the
transformed models are complex which required further effort of process actors and
process designer to be evaluated, redefine, validated and deployed into the target
process environment, i.e., by establishing a data mapping concerning information
flow from the process context to a particular task and from the task to the process.
Our approach enables process control by providing direct enactment and synchro-
nization support of the structurally defined process fragment models. Our proposed

69

modeling language SPML is simple and data-flow based which can facilitate the
precise definition of its execution semantics. Moreover, it leads to ease of process
deployment where the deployment of a process fragment is achieved by associating
the artifacts and resources with the concrete ones in the project.

• Fragmented process modeling Role-based approaches emphasize on fragmented
process modeling in which their main objectives have been the process improvement.
Thus, to obtain a valid global model, process fragments are dependent on each
other by means of negotiation and cannot be modeled separately than each other,
e.g., process actors who exchange an artifact, cannot continue modeling their
processes until agreeing on the exchanged artifacts.
As the objective of our modeling approach is control, it minimizes the degree of
collaboration in process modeling and allows each role to concentrate on his own
work regardless of other process fragments. The company assets definition allows
process actors to reach an agreement on the content level. Then, we assume that
each actor knows his tasks, respective artifacts to consume or produced. Thus,
they do not require to know the source and target of their required or produced
artifacts. In contrast to role-based modeling approaches, the negotiation among
process fragments are automatically conducted when process actors enact their
tasks and exchange concrete artifacts.

• Incremental (Progressive) process modeling To the best of our knowledge, none of
the existing end-user modeling approaches provide support for incremental process
modeling in which some fragments can be modeled and enacted where other process
fragments are missing. In fact, in these approaches, the overall process model
is constructed at modeling-time and so it is required before enactment. In our
approach, the creation of process fragment models occurs progressively. In fact,
we do not require the overall model to be defined before enactment, but it is
progressively constructed based on the real enactment of separate fragments. As
the dependency among process fragments are eliminated in the modeling-time, this
dependency will be deduced at enactment time to construct the global process
model. However, lack of global model hinders its validation before enactment.

To conclude, by inversion of the direction of process modeling and adopting an artifact-
centric paradigm, our modeling approach can reduce the gap and bring both simplicity
and enactability to process modeling.

2.6 Summary
This chapter introduced our artifact-centric process modeling approach which puts main
stress on process actors to model their enactable working process. To this end, a process
modeling language named SPML dedicated to process actors is proposed. SPML is

70

considered as an end-user friendly process modeling language which allows process actors
to structurally define their process fragments containing activities performed by their
roles. It includes only the process elements known by process actors in their daily work
and avoids introducing concepts requiring process-special knowledge to understand. The
key feature of the SPML is to remove the work-sequence relations among activities
and describing in detail the artifacts entering and leaving the activities to provide
enough information to deduce the behavioral aspect of the process at enactment-time.
Our modeling approach gets the full benefits of fragmented process modeling in which
fragments are defined separately than each other. The procedure of fragments creation
is incremental where some fragments can be modeled and enacted while other process
fragments are missing. Our proposed modeling language SMPL is expressive enough to
define executable process fragments models. However, fragmented and structural process
modeling create new challenges for enacting and synchronizing the separate fragments
of the process. In the next chapter, we present the solution to enable coordinating a
process which is (partially) modeled in separate fragments.

71

Ta
bl
e
2.
1:

Sy
nt
he

sis
of

En
d-
us
er

M
od

el
in
g
A
pp

ro
ac
he

s

Rel
ate

dw
ork

Com
par

ison

Cat
ego

ry
Na

me
/Au

the
r

Mo
del

ing
Lan

gug
ae

Mo
del

ing
Pro

ces
s

Mo
del

ing
Ob

ject
ive

Mu
lti-

Per
spe

ctiv
eE

nac
tab

ility
Par

adi
gm

Mo
del

ing
Per

form
er

Pro
gre

ssiv
ene

ss
Fra

gm
ent

atio
n

Ob
ject

ive

Par
ticip

ativ
e

Mod
elin

g
App

roac
hes

CO
MA

Stru
ctur

al
Beh

avio
ral

Ind
irec

t
Imp

erat
ive

Pro
cess

desi
gne

r
Pro

cess
acto

r
Glo

bal
Cen

tera
lized

Imp
rove

men
t

Sem
i-co

ntro
l

ISE
A

Stru
ctur

al
Beh

avio
ral

Ind
irec

t
Imp

erat
ive

Pro
cess

acto
r

Glo
bal

Cen
tera

lized
Imp

rove
men

t
Sem

i-co
ntro

l

Rol
e-ba

sed
Mod

elin
g

App
roac

hes

Plu
ral

Stru
ctur

al
Beh

avio
ral

Ind
irec

t
Imp

erat
ive

Pro
cess

acto
r

Glo
bal

Sem
i-de

cent
raliz

ed
Imp

rove
men

t
Sem

i-co
ntro

l

Roa
DM

ap
Stru

ctur
al

Beh
avio

ral
Ind

irec
t

Imp
erat

ive
Pro

cess
acto

r
Glo

bal
Dec

entr
aliz

ed
Imp

rove
men

t
Sem

i-co
ntro

l

CTM
Stru

ctur
al

Beh
avio

ral
Ind

irec
t

Imp
erat

ive
Pro

cess
desi

gne
r

Pro
cess

acto
r

Glo
bal

Dec
entr

aliz
ed

Imp
rove

men
t

Sem
i-co

ntro
l

Opp
l

Stru
ctur

al
Beh

avio
ral

Ind
irec

t
Imp

erat
ive

Pro
cess

acto
r

Glo
bal

Dec
entr

aliz
ed

Imp
rove

men
t

Sem
i-co

ntro
l

Art
ifac

t-ce
ntri

cP
roce

ssM
ode

ling
Stru

ctur
al

Dire
ct

Dec
lara

tive
Pro

cess
acto

r
Incr

eme
ntal

Dec
entr

aliz
ed

Con
trol

72

Appendix

Process Modify Testbench Wiring options instrumentation, interface
ProcessFragment Analyst

Activity Detail Change Requirement options instrumentation
MandatoryTask Define Component Requirements

Artifact Wiring Change Demand(in, defined)
Artifact Component Requirements(out, defined, collection)

MandatoryTask Define Electrical Specification
Artifact Wiring Change Demand(in, defined)
Artifact FICD(in, defined, toFinish) ifOption instrumentation
Artifact Electrical Specification(out, defined)

OptionalTask Outline Instrumentation Model ifOption instrumentation
Artifact Wiring Change Demand(in, defined)
Artifact FICD(out, outlined)

Figure 2.26: Process Fragment of Analyst

Process Modify Testbench Wiring options instrumentation, interface
ProcessFragment Supplier

Activity Purchase Component
MandatoryTask Supply Component

Artifact Component Requirements(in, defined)
Artifact Component(out, defined)

Figure 2.27: Process Fragment of Supplier

73

Process Modify Testbench Wiring options instrumentation, interface
ProcessFragment Instrumentation Team

Activity Design Instrumentation
MandatoryTask Define Instrumentation Model

Artifact FICD(in, outlined)
Artifact FICD(out, defined)

Activity Generate Bench Specification options interface
MandatoryTask Define Bench Specification

Artifact FICD(in, defined)
Artifact Bench Specification(out, defined)

OptionalTask Define Specific ICD ifOption interface
Artifact FICD(in, defined)
Artifact ICD(out, defined)

Figure 2.28: Process Fragment of Instrumentation Team

Process Modify Testbench Wiring options instrumentation, interface
ProcessFragment Wiring Team

Activity Fix and Install Components
MandatoryTask Fix Component

Artifact Component(in, defined)
Artifact Installed Component(out, defined)

Activity Wiring All Components
MandatoryTask Wiring components

Artifact Installed Components(in, defined, collection)
Artifact Testbench Wired(out, defined)

Figure 2.29: Process Fragment of Wiring Team

Process Modify Testbench Wiring options instrumentation, interface
ProcessFragment Electrical Designer

Activity Define Electrical Model
MandatoryTask Specify Electrical Model

Artifact Electrical Specification(in, defined)
Artifact Electrical Design Model(out, defined)

Figure 2.30: Process Fragment of Electrical Designer

74

Process Modify Testbench Wiring options instrumentation, interface
ProcessFragment Bench Coordinator

Activity Build Bench Specification
MandatoryTask Define Bench Specification

Artifact Bench Specification(in, defined)
Artifact ICD(in, defined) ifOption interface
Artifact Testbench Configuration(out, defined)

Activity Validate
MandatoryTask Validate Bench

Artifact Testbench Configuration(in, defined)
Artifact Testbench Wired(out, validated)

Figure 2.31: Process Fragment of Bench Coordinator

75

Bibliography
[1] Workflow pattern, http://www.workflowpatterns.com/.

[2] OMG Object Constraint Language (OCL), Version 2.4,
http://www.omg.org/spec/OCL/2.4, February 2014.

[3] Y. Alotaibi. Business process modelling challenges and solutions: a literature review.
Journal of Intelligent Manufacturing, 27(4):701–723, Aug 2016.

[4] J. Barjis. Collaborative, Participative and Interactive Enterprise Modeling, pages
651–662. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

[5] L. Bettini. Implementing Domain-Specific Languages with Xtext and Xtend. Packt
Publishing, 2013.

[6] M. Blay-Fornarino, A. Pinna-Dery, K. Schmidt, and P. Zaraté, editors. Cooperative
Systems Design, A Challenge of the Mobility Age, Proceedings of COOP 2002,
Saint-Raphaël, France, 4-7 June 2002. IOS, 2002.

[7] BonitaSoftware. http://www.bonitasoft.com/.

[8] M. R. Borges and J. A. Pino. Paws: Towards a participatory approach to business
process reengineering. In Proceedings of the String Processing and Information
Retrieval Symposium & International Workshop on Groupware, SPIRE ’99, pages
262–, Washington, DC, USA, 1999. IEEE Computer Society.

[9] C. Britton and S. Jones. The untrained eye: How languages for software specification
support understanding in untrained users. Hum.-Comput. Interact., 14(1):191–244,
Mar. 1999.

[10] B. Curtis, M. I. Kellner, and J. Over. Process modeling. Commun. ACM, 35(9):75–
90, Sept. 1992.

[11] J. C. de A. R. Gonçalves, F. M. Santoro, and F. A. Baião. Business process mining
from group stories. In M. R. S. Borges, W. Shen, J. A. Pino, J.-P. A. Barthès,
J. Luo, S. F. Ochoa, and J. Yong, editors, CSCWD, pages 161–166. IEEE, 2009.

[12] R. M. de Freitas, M. R. S. Borges, F. M. Santoro, and J. A. Pino. Groupware Support
for Cooperative Process Elicitation, pages 232–246. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2003.

[13] R. Deneckere, E. Kornyshova, and C. Rolland. Enhancing the guidance of the
intentional model ”MAP”: Graph theory application. In Research Challenges in
Information Science (RCIS), pages 13–22, Fès, Morocco, Apr. 2009.

76

[14] A. M. Ertugrul and O. Demirors. A method for modeling business processes in a
role-based and decentralized way. In Proceedings of the 8th International Conference
on Subject-oriented Business Process Management, S-BPM ’16, pages 4:1–4:4, New
York, NY, USA, 2016. ACM.

[15] A. Fleischmann, W. Schmidt, C. Stary, S. Obermeier, and E. Brger. Subject-Oriented
Business Process Management. Springer Publishing Company, Incorporated, 2014.

[16] M. Fowler. Domain Specific Languages. Addison-Wesley Professional, 1st edition,
2010.

[17] J. Friedrich and K. Bergner. Formally founded, plan-based enactment of software
development processes. In Proceedings of the 2011 International Conference on
Software and Systems Process, ICSSP ’11, pages 199–203, New York, NY, USA,
2011. ACM.

[18] A. Front, D. Rieu, M. Santorum, and F. Movahedian. A participative end-user
method for multi-perspective business process elicitation and improvement. Software
& Systems Modeling, pages 1–24, 2015.

[19] L. García-Borgoñón, M. A. Barcelona, J. A. García-García, M. Alba, and M. J.
Escalona. Software process modeling languages: A systematic literature review. Inf.
Softw. Technol., 56(2):103–116, Feb. 2014.

[20] G. Grambow, R. Oberhauser, and M. Reichert. User-Centric Abstraction of Workflow
Logic Applied to Software Engineering Processes, pages 307–321. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2012.

[21] M. Hajmoosaei, H. N. Tran, and C. Percebois. A user-centric process management for
system and software engineering projects. In presented at the 7th IESM Conference,
October 11–13, 2017, Saarbrucken, Germany, 2017.

[22] D. Harel and B. Rumpe. Meaningful modeling: What’s the semantics of "semantics"?
Computer, 37(10):64–72, Oct. 2004.

[23] T. Herrmann, K. Loser, and I. Jahnke. Sociotechnical walkthrough: A means for
knowledge integration. The Learning Organization, 14(5):450–464, 07 2007.

[24] T. T. Hildebrandt and R. R. Mukkamala. Declarative event-based workflow as
distributed dynamic condition response graphs. In Proceedings Third Workshop on
Programming Language Approaches to Concurrency and communication-cEntric
Software, PLACES 2010, Paphos, Cyprus, 21st March 2010., pages 59–73, 2010.

[25] K. Ishikawa. What is total quality control? The Japanese way. Prentice Hall
business classics. Prentice-Hall, 1985.

77

[26] JBoss. jbpm, http://www.jbpm.org/.

[27] S. Kabicher and S. Rinderle-Ma. Human-Centered Process Engineering Based on
Content Analysis and Process View Aggregation, pages 467–481. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2011.

[28] P. Keller and T. Pyzdek. The Six Sigma Handbook, Fourth Edition. McGraw-Hill
Education, 2014.

[29] J. Krogstie. Perspectives to Process Modeling – A Historical Overview, pages
315–330. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[30] J. Krogstie and H. D. Jørgensen. Interactive models for supporting networked
organisations. In Advanced Information Systems Engineering, 16th International
Conference, CAiSE 2004, Riga, Latvia, June 7-11, 2004, Proceedings, pages 550–563,
2004.

[31] M. Kuhrmann, G. Kalus, and M. Then. The process enactment tool framework-
transformation of software process models to prepare enactment. Sci. Comput.
Program., 79:172–188, Jan. 2014.

[32] J. Mendling, H. A. Reijers, and W. M. P. van der Aalst. Seven process modeling
guidelines (7pmg). Inf. Softw. Technol., 52(2):127–136, Feb. 2010.

[33] H. Mili, G. Tremblay, G. B. Jaoude, E. Lefebvre, L. Elabed, and G. E. Boussaidi.
Business process modeling languages: Sorting through the alphabet soup. ACM
Comput. Surv., 43(1):4:1–4:56, Dec. 2010.

[34] M. Montali. Specification and Verification of Declarative Open Interaction Models:
a Logic-Based Approach, volume 56 of Lecture Notes in Business Information
Processing. Springer, 2010.

[35] M. Z. Muehlen and J. Recker. How much language is enough? theoretical and
practical use of the business process modeling notation. In Proceedings of the 20th
International Conference on Advanced Information Systems Engineering, CAiSE
’08, pages 465–479, Berlin, Heidelberg, 2008. Springer-Verlag.

[36] OMG. Software & Systems Process Engineering Metamodel Specification (SPEM)
Version 2.0, Apr. 2008.

[37] OMG. Business Process Model and Notation (BPMN) Version 2.0.2, Dec. 2013.

[38] S. Onoda, Y. Ikkai, T. Kobayashi, and N. Komoda. Definition of deadlock patterns
for business processes work ow models. In Proceedings of the Thirty-second Annual
Hawaii International Conference on System Sciences-Volume 5 - Volume 5, HICSS
’99, pages 5065–, Washington, DC, USA, 1999. IEEE Computer Society.

78

[39] S. Oppl. Articulation of subject-oriented business process models. In Proceedings of
the 7th International Conference on Subject-Oriented Business Process Management,
S-BPM ONE ’15, pages 2:1–2:11, New York, NY, USA, 2015. ACM.

[40] S. Oppl. Articulation of work process models for organizational alignment and
informed information system design. Information & Management, 53(5):591 – 608,
2016.

[41] S. Oppl. Towards scaffolding collaborative articulation and alignment of mental
models. Procedia Comput. Sci., 99(C):125–145, Oct. 2016.

[42] P. Pichler, B. Weber, S. Zugal, J. Pinggera, J. Mendling, and H. A. Reijers. Imper-
ative versus Declarative Process Modeling Languages: An Empirical Investigation,
pages 383–394. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[43] S. Pimsakul, N. Somsuk, W. Junboon, and T. Laosirihongthong. Production Process
Improvement Using the Six Sigma DMAIC Methodology: A Case Study of a Laser
Computer Mouse Production Process, pages 133–146. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2013.

[44] J. Recker, N. Safrudin, and M. Rosemann. How novices design business processes.
Information Systems, 37(6):557 – 573, 2012. BPM 2010.

[45] H. A. Reijers, T. Slaats, and C. Stahl. Declarative Modeling–An Academic Dream or
the Future for BPM?, pages 307–322. Springer Berlin Heidelberg, Berlin, Heidelberg,
2013.

[46] P. Rittgen. Collaborative modeling - a design science approach. In 2009 42nd
Hawaii International Conference on System Sciences, pages 1–10, Jan 2009.

[47] C. Rolland, N. Prakash, and A. Benjamen. A multi-model view of process modelling.
Requirements Engineering, 4(4):169–187, 1999.

[48] J. Roschelle. Computers, communication and mental models. chapter Designing for
Cognitive Communication: Epistemic Fidelity or Mediating Collaborative Inquiry?,
pages 15–27. Taylor & Francis, Inc., Bristol, PA, USA, 1996.

[49] N. Russell, A. H. Ter Hofstede, W. M. Van Der Aalst, and N. Mulyar. Workflow
control-flow patterns: A revised view. BPM Center Report BPM-06-22, BPMcenter.
org, pages 06–22, 2006.

[50] A.-W. Scheer, O. Thomas, and O. Adam. Process Modeling Using Event-driven
Process Chains, pages 119–145. Wiley, Hoboken, New Jersey, 2005.

[51] SoftwareAG. Software ag. http://www.softwareag.com/, 2014. retrieved january
2015.

79

[52] J. Stirna, A. Persson, and K. Sandkuhl. Participative enterprise modeling: Experi-
ences and recommendations. In Proceedings of the 19th International Conference
on Advanced Information Systems Engineering, CAiSE’07, pages 546–560, Berlin,
Heidelberg, 2007. Springer-Verlag.

[53] T. Stoitsev, S. Scheidl, F. Flentge, and M. Mühlhäuser. From personal task
management to end-user driven business process modeling. In Proceedings of the
6th International Conference on Business Process Management, BPM ’08, pages
84–99, Berlin, Heidelberg, 2008. Springer-Verlag.

[54] O. Turetken and O. Demirors. Plural: A decentralized business process modeling
method. Information and Management, 48(6):235 – 247, 2011.

[55] O. Turetken and O. Demirors. Business Process Modeling Pluralized, pages 34–51.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[56] H. van den Hurk, O. Turetken, and J. van Moll. Subject-oriented plural method
meets bpmn: A case study. In Proceedings of the 7th International Conference on
Subject-Oriented Business Process Management, S-BPM ONE ’15, pages 5:1–5:9,
New York, NY, USA, 2015. ACM.

[57] W. van der Aalst and C. Stahl. Modeling Business Processes: A Petri Net-Oriented
Approach. The MIT Press, 2011.

[58] W. M. P. van der Aalst, M. Pesic, and H. Schonenberg. Declarative workflows:
Balancing between flexibility and support. Computer Science - Research and
Development, 23(2):99–113, 2009.

[59] Xtext. https://eclipse.org/xtext/documentation/index.html.

80

Chapter 3

Artifact-driven Process
Enactment

Contents
3.1 Challenges of Enacting SPML Process Models 82

3.1.1 Structurally and Partially Defined Processes 82
3.1.2 User-centric Enactment . 83

3.2 Data-Driven and User-Centric Process Enactment 83
3.3 Process Environment BAPE . 85
3.4 Process Dependency Graph PDG . 86

3.4.1 Structure of PDG . 87
3.4.2 PDG Example . 93

3.5 Process Engine . 95
3.5.1 Process Instance Life cycle . 96
3.5.2 Activity Instance Life cycle 98
3.5.3 Task Instance Life cycle . 102
3.5.4 Discussion . 107

3.6 Enactment Flexibilities . 107
3.6.1 Loose Inter-Tasks Execution Order 108
3.6.2 Partial Modeling . 110
3.6.3 Examples of Enactment Flexibilities 110

3.7 Related Work . 111
3.7.1 Evaluation Criteria . 113
3.7.2 Review of Artifact-driven Enactment Approaches 115
3.7.3 Review of Activity-driven Enactment Approaches 117
3.7.4 Synthesis . 118

81

3.8 Summary . 120

This chapter introduces our process enactment approach which assists process actors to
perform their processes encoded in SPML. We aim at proposing an automated mechanism
to enact and synchronize different process fragments without confining process actors
to predefined execution scenarios. Section 3.1 discusses the main challenges to obtain
this objective and Section 3.2 characterizes our approach to enact a fragmented process
model while offering some degree of flexibilities to process actors. Section 3.3 presents the
architecture of our process environment Bottom-up Artifact-centric Process Environment
(BAPE) while Section 3.4 and Section 3.5.3 describe in detail two main components of
BAPE: a Process Dependency Graph (PDG) giving information about process instances
at enactment-time and a Process Engine executing process instances. We emphasize the
flexibilities of our enactment approach in Section 3.6. Section 3.7 compare our approach
to related work and Section 3.8 summarizes this chapter.

3.1 Challenges of Enacting SPML Process Models
Once the process is modeled, it can be put at working environment where real execution
happens by process actors performing their process model activities. Process enactment
is supported by a process engine whose responsibility is to control and monitor the
execution of operational processes by synchronizing their activities according to the
process models.

In conventional activity-driven process environments, process engines synchronize
process activities based on the work-sequence relations defined between activities in the
model [12, 6, 4]. They require then the whole process to be completely defined before
enactment in order to deduce the dependencies between process activities at enactment-
time, i.e., run-time. In this way, the conventional process engines use principally the
information on model-level to synchronize process activities in an established manner.

Obviously, the conventional activity-driven environments are unsuitable for enacting
SPML process models because of the characteristics of our modeling approach as discussed
in the next.

3.1.1 Structurally and Partially Defined Processes

We face two major challenges regarding enacting SPML process models which particularly
originate from the characteristics of our user-centric process modeling approach:

• SPML processes are structurally modeled in separate fragments where there is
no work-sequence relations defined among process activities or tasks. This fact

82

poses a question regarding how to know the inter-dependencies among activities
and among tasks coming from different fragments in order to synchronize them
correctly at enactment-time.

• SPML processes can be partially and progressively modeled because the process
fragments can be defined or not, and can be entered in the process environment
at different times. The second challenge here is how to enact a partially modeled
process with some process fragments are missing.

In our enactment approach, the main challenge is to propose a mechanism in order to
provide control over structurally and partially modeled processes encoded in SPML. The
enactment approach cannot solely rely on model-level information and should adopt
another mechanism to deduce dependencies among process tasks at enactment-time in
order to provide synchronization among them.

3.1.2 User-centric Enactment

Generally, process management tries to provide a balance between control and flexibility
over processes [33]. On the one hand, there is a desire to control processes and to
avoid incorrect or undesirable executions of these processes. On the other hand, process
actors want flexible process environments that do not put constraint on them in carrying
out their daily works. This apparent paradox has limited the application of process
environments, since, as indicated by many authors [17, 25, 5, 10], process environments
are too restrictive and have problems when dealing with unforeseen situations that occur
at enactment-time according to process actors needs. Our main objective is to ease the
use of process environments, thus our enactment approach should give process actors
more flexibility and autonomy in performing their processes.

In our user-centric approach, defining all execution situations at modeling-time is
undesirable for process actors from the standpoint of model complexity due to a large
number of possible execution paths. Thus the approach flexibility by design [28] which
emphasizes on defining all foreseen situations in the models is not suitable for our
intention. The challenge for our enactment approach is then to support more flexibility
to handle both foreseen and unforeseen situations without requiring process actors’ extra
efforts when using the process environment.

To propose an efficient solution, we identify the fundamental characteristics of such
an enactment approach which are discussed in details in the next section.

3.2 Data-Driven and User-Centric Process Enactment
Our ultimate goal is not only allowing process actors to create enactable models but also
providing an operational process engine to execute their models [9]. Considering the
characteristics of our modeling approach and the need of providing more flexibility to

83

process actors, the process engine implementing the operational semantics of our process
modeling language SPML should have two following features:

• Data-driven synchronization. SPML is defined for modeling especially software
and system processes where the execution of each activity will change the state of
an artifact representing a part of the final product. Therefore, we consider artifacts
as the main driver for process progression and define the operational semantics of
an activity based on the evolution of the artifacts that it uses or produces.
SPML process models are fragmented and structurally defined without work-
sequence relations among activities. However, their inter-dependencies between the
activities inside or among process fragments can be deduced at enactment-time from
the specification of the artifacts that they exchange. Our process engine adopts
then an artifact-driven synchronisation which uses the states of artifacts from the
real enactment circumstances to make activities progress. One advantage of this
feature is that it enables the enactment of partially modeled processes where some
fragments are missing or progressively defined. Because the synchronization of the
fragments defined in the model with those performed by external systems/agents
is based on the artifacts managed by a shared database, the process engine does
not need a complete process model to start executing its activities.

• User-centric control. By suppressing work-sequence relations in process models,
SPML does not prescribe the way process’s activities are enacted. Besides the
constraints on the availability of the used artifacts, process actors have more
freedom in enacting their activities. The enactment approach must offer then some
degree of flexibility to allow different execution possibilities of activities in response
to different execution contexts (e.g., optional activities) or unforeseen situations
(e.g., rework) that may happen at enactment-time.

In the next, we present how our enactment approach exhibits the characteristics men-
tioned above. To do so, first we introduce the overall architecture of our developed
Bottom-up Artifact-centric Process Environment (BAPE) which allows process actors
to model their processes fragments via SPML and enact them. Then, we thoroughly
present the main components of the BAPE enactment environment which are (1) a
Process Dependency Graph (PDG) as a run-time storage keeping the information of
process element instances coming from different process fragments and therefore represent
the global view of the system; (2) a process engine which provides a synchronization
mechanism to manage process activities and tasks. Finally, we introduce the flexibility
that our enactment approach supports.

84

Figure 3.1: Architecture of BAPE

3.3 Process Environment BAPE
We introduce in this section the overall architecture of our developed Bottom-up Artifact-
centric Process Environment (BAPE) which allows process actors to model their processes
fragments via SPML and enact them. Figure 3.1 illustrates the overall architecture of
BAPE. In the following, a brief description of its components is provided whereas the
more technical and detail explanations of them will be discussed in the Chapter 5.

1. End-user UIs This component provides interfaces that allow process actors to
interact with process environment during the modeling, enacting and monitoring
phases. The modeling interface enables process actors to define company assets
and model the fragments of their processes and then store them into the Process
Repository. The enactment interface enables process actors to manage their
activities and tasks (e.g., create activities, start and complete tasks, etc.). Each
user’s action on an activity or a task triggers a specific event that is handled by
the process engine. The monitoring interface enables process actors to assess the
performance of their running processes.

2. Database Management System (DBMS) We suppose that resources (e.g., process
actors, tools, etc.) and working artifacts are externally managed by each company
proper tools. However, those external tools use a central DBMS which is connected
to BAPE. This connection makes the process environment being aware of any
events changing the state of artifacts and resources in external systems.

3. Process Dependency Graph (PDG) This component stores the information of

85

running processes managed by BAPE. PDG is progressively updated by the
process engine to reflect always the current state and the global view of the system
at run-time. Hence, PDG is a source of information for the process engine to
coordinate and synchronize processes.

4. Process Engine This component is in charge of enacting and synchronizing the
processes managed by BAPE. Process engine implements the operational semantics
of SPML which define the behavior of process’s enactable elements at enactment-
time, i.e. processes, activities and tasks. The behavior of the process engine is thus
defined based on the state machines specifying the life cycles of process, activity
and task instances.

We used the conventional architect for our process environment but proposed innovations
in developing the two core components PDG and process engine in order to enable a
more flexible enactment.

3.4 Process Dependency Graph PDG
In the process environment, process information exists at two levels: model and instance
levels. The former relates to process information existing at modeling-time and extracted
from process models which are static and stateless. The modeling-level information
was discussed in the precedent chapter in details. On the other side, the instance-level
process information which is dynamic and statefull, is obtained when a process model is
enacted. When enacting a process model, the instances of process elements in the model
are created and the mappings from stateless model elements to their corresponding
statefull instances are established. It is necessary for a process environment to adopt a
mechanism to store the instance-level information.

Process Dependency Graph (PDG) is our solution to monitor the instances of process
elements enacted in the process environment as well as the relations among them. PDG
represents the instances of process elements along with the dependencies among them at
enactment-time and is progressively updated by the process engine to reflect always the
current state of the system. As in our approach process models are fragmented and are
progressively enacted during the project execution, PDG establishes the global view of the
system from separate process fragments at enactment-time via shared resources among
respective fragments. This global view helps the process engine in synchronizing the
process activities/tasks inside or among process fragments. In our process environment
PDG has two important functionalities as following:

• PDG is the source of information about process element instances. This instance
level information is required by the process engine in order to coordinate and
synchronize the process activities/tasks instances. This functionality of PDG is
discussed in the Section 3.5.3 in details.

86

• PDG, by having the global view of the system, provides the base for interesting
evaluations such as analysis of process change or analysis of process itself. The
former concerns the impact analysis of the change that may happen at enactment-
time, e.g., changing an already produced artifact which has being used by several
people. The latter concerns providing the process owner (e.g., project manager)
with information about the current status of the running projects. These aspects
will be discussed in the Chapter 5 in details.

PDG has a graph structure and is stored in a graph database. Graph structures
are particularly beneficial in areas where information about data inter-connectivity is
more important, or as important as the data itself. This fact is completely reflected
in SPML process models comprised of several connected elements. Moreover, SMPL
process fragments are defined separately but the dependencies among them is deduced at
enactment-time based on sharing resources. When assuming a real context with thousands
of running processes, the relations established among the process fragments result in a
highly connected data structure. When it comes to the process synchronization where
process engine requires to know these dependencies among running process elements,
having a mechanism implementing a graph structure is a promising solution which
perfectly represents the connected information and provide highly effective query and
traversal mechanisms.

3.4.1 Structure of PDG

PDG is defined as a directed graph composed of a set N of nodes and a set E of edges.
Nodes and edges of a PDG are typed in which each node represents an instance of an
SPML element and each edge represents the relationship between SPML elements at
instance-level. PDG is comprised of six types of nodes and five types of edges which are
specified in the following definitions:

PDG = (N , E)
N = ProcessNode ∪ ActivityNode ∪ TaskNode ∪ ArtifactNode ∪ ActorNode
∪ ResourceNode
E = BelongEdge ∪ ChildEdge ∪ DataEdge ∪ PerformEdge ∪ UseEdge
Figure 3.2 illustrates the structure of PDG along with presenting the mappings

between PDG elements with their corresponding SPML elements. We have mostly direct
mappings between elements of SPML and PDG. For instance, an element ProcessNode
has a property reference which directly assigns the PDG ProcessNode to the element
Process from SPML. Some of the mappings given in the Figure 3.3 have to be defined
based on indirect connections between SPML elements and PDG elements to reflect the
right semantics and to fulfil a particular purpose as explained in the Section 3.4.1.2. In
the next, we present each node and edge of the PDG in details.

87

Figure 3.2: Structure of PDG along with references to SPML

3.4.1.1 Nodes of PDG

PDG nodes represent process element instances. PDG presents the dynamic information
and behavior of the system, thus each PDG node has the property describing its current

88

state in the system. Each type of nodes along with their properties are defined as follows:

• ProcessNode represents an instance of a process whose attributes are defined in
the Table 3.1.

Table 3.1: Properties of a ProcessNode

Property Description
reference: Process Links to the corresponding element Process in SPML.

activeOptions: Option Indicates the list of options which are defined in the process
model, and are activated in the process instance.

processState: ProcessState

indicates the current state of the process instance. The values
of this property are define by the enumeration
ProcessState as follows:
processState = (inProgress, completed, aborted).

• ActivityNode represents an instance of an activity whose attributes are defined in
the Table 3.2.

Table 3.2: Properties of an ActivityNode

Property Description
reference: Activity Links to the corresponding element Activity in SPML.

activityState: ActivityState

Indicates the current state of the activity instance. The values
of this property are define by the enumeration ActivityState
as follows:
activityState = (inProgress, completed, aborted).

• TaskNode represents an instance of a task. Note that all mandatory and optional
tasks share common attributes and behavior. Thus, they are both instantiated as
TaskNodes. Table 3.3 represents the attributes of a TaskNode.

• ArtifactNode represents an instance of an artifact. Thanks to the information
provided by the DBMS which manages company’s data, the PDG’s ArtifactNodes
can be created and updated. In fact, PDG is connected to the DBMS in which
always reflects the current states of artifacts as they defined in the model. Table
3.4 represents the attributes of an ArtifactNode.

• ActorNode represents a real process actor in the system. An actor may involve
in several process instances. Moreover, an actor may play several roles which are
generally defined in the organizational model of a company. Table 3.5 represents
the attributes of an ActorNode.

89

Table 3.3: Properties of a TaskNode

Property Description
reference: Task Links to the corresponding element Task in SPML.

taskState: TaskState

Indicates the current state of the task instance. The values
of this property are define by the enumeration TaskState
as follows:
taskState = (created, inProgress, waiting, completed, aborted).

startTime Indicates the moment of starting executing a task.
endTime Indicates the moment of finishing executing a task.

duration Indicates the duration of executing a task which is derived from
properties endT ime and startT ime.

Table 3.4: Properties of an ArtifactNode

Property Description
reference: Artifact Links to the corresponding element Artifact in SPML.

currentState: ArtifactState

Indicates the current state of the artifact instance. Its
property currentState receives one possible value defined by
the demandedState of its referenced TaskParameter in the
SPML process model.

Table 3.5: Properties of an ActorNode

Property Description

actorState: ResourceState

Indicates the current state of the process actor. The values
of this property are define by the enumeration ResourceState
as follows:
resourceState = (notAvailable, idle, active).

Table 3.6: Properties of an ResourceNode

Property Description
reference: Resource Links to the corresponding element Resource in SPML.

resourceState: ResourceState

Indicates the current state of the resource instance. The values
of this property are define by the enumeration ResourceState
as follows:
resourceState = (notAvailable, idle, active).

• ResourceNode represents an instance of a resource that an actor uses to perform a
task which its attributes are defined in Table 3.6. Note that the procedure of PDG
to manage resources (human and non-human) is completely similar to the artifacts.
Thanks to the information provided by the RMS which manages company’s
resources (human and non-human), the PDG’s ActorNodes and ResourceNodes

90

can be created and updated. In fact, PDG is connected to the RMS which always
reflects the current states of artifacts and actors as they exist in the RMS.

3.4.1.2 Edges of PDG

Edges in PDG are used to represent different types of relationships among process
instance elements. Each type of edges along with their properties are defined as follows:

• BelongEdge represents the association between a process instance and its activities
instances. In SPML, the dependency between a Process and an Activity is created
by ProcessFragment. However, we remind that PDG represents the global view of
the system where all instances of process fragments models become unified. Thus,
as illustrated in Figure 3.3, we do not require a specific node to represent the
element ProcessFragment of SPML.

• ChildEdge represents the association between an activity instance and its task
instances. As illustrated in Figure 3.3, this edge is the mapping of composition
relation defined in SPML between an Activity and a Task elements.

• PerformEdge represents the association between an activity instance and an actor
who performs the activity and all its tasks. An actor may play several roles but
he has only one role in each activity as defined in the SPML meta-model. We
remind that the activities of a process fragment can be associated to only one
role in SPML. However, at enactment-time, the respective role instance can be
played by several process actors (i.e., ActorNodes). But each activity instance
(i.e., ActivityNode) and all its task instances (i.e., TaskNodes) can be performed
by only one process actor. Thus, as illustrated in Figure 3.3, we add the role as
the property of relation (i.e., PerformEdge) between process actor and respective
activity instance. Table 3.7 presents the properties of a PerformEdge.

Table 3.7: Properties of a PerformEdge

Property Description

reference: ProcessFragmentPerformer Links to the corresponding element
ProcessFragmentPerformer in SPML.

role: Role
Indicates the role of process actor as defined in the
model, i.e., computed by traversing from
ProcessFragmentPerformer in the SPML.

• DataEdge represents the association between a task instance and its artifact
instances whose attributes are defined in the Table 3.8. This edge is the direct
mapping of TaskParameter concept in SPML into PDG.

91

Figure 3.3: Indirect mappings between SPML and PDG

• UseEdge represents the association between a non-human resource and a task
which uses the respective resource. As illustrated in Figure 3.3, this edge is the
mapping of composition relation defined in SPML between a Task and a Resource
elements.

92

Table 3.8: Properties of a DataEdge

Property Description

reference: TaskParameter

Refers to the corresponding TaskParameter element in SPML.
Thanks to this reference, a DataEdge can access to
the reference.demandedState of the linked ArtifactNode to know
in which state it is required or produced by the TaskNode, i.e.,
to know the pre- and post-conditions of a TaskNode defined
in the model.

stateReady: StateReady
Indicates whether the artifact is currently ready or waiting
for the reference.demandedState so that the
TaskNode can use it.

3.4.2 PDG Example

Figure 3.4 provides an extraction of the PDG representing the system for a process
instance P1 instantiated from our examined process Modify Testbench Wiring of the
previous chapter. We assume that several process actors are involved in the project
by performing their activities/tasks. In this example, the process is initiated for the
artifact Wiring Change Demand WCD1. In this process instance, we assume that all
activities are completed and two options instrumentation and interface are activated.
The complete information of P1 is presented in the Table 3.9.

The PDG shows the activities performed by each actor, and the tasks executed
inside each activity. In fact, PDG presents the unification of all process fragments
models instances. The dependency among tasks, both inside or among process frag-
ments, are established based on their exchanged concrete artifacts and shared concrete
resources. PDG represents these dependencies based on the concrete information arising
at enactment-time. For example, if we consider process fragments instances of Analyst
and Instrumentation Team, the task OIM1, performed by the actor A1, has produced
the artifact FICD1 in the state outlined; the task DIM1, performed by the actor IT1,
has taken an outlined FICD1 as input, then modifies it to produce the output FICD1
in the state defined; the task DES1 is in state waiting as it needs a defined FICD1
to finish. By combining two process fragments into one common structure, the PDG
can establish a global view with following dependencies among two process fragments:
OIM1 has to finish so that DIM1 can start and DIM1 has to finish so that DES1 can
finish. This mechanism applies to all process fragments instances which result in a global
process.

As mentioned earlier, the PDG presents the dynamic information; this information
emerges progressively. In the next section, we present how PDG is progressively con-
structed by the process engine and how it provides the engine the necessary information
to synchronize process activities/tasks inside and among process fragments instances.

93

Figure 3.4: PDG representing the process fragments instances

94

Table 3.9: Information of P1

Process Actors Non-human Resources
Analyst = A1
Instrumentation Team = {IT1, IT2}
Supplier = {S1, S2}
Wiring Team = {WT1,WT2}
Electrical Designer = ED1
Bench Coordinator = BC1

TestBench = TB1

Artifacts Activate Options
Wiring Change Demand=WCD1
Component Requirement= {CR1, CR2}
Component= {C1, C2}
Installed Component= {IC1, IC2}
Testbench Wired=TW1
FICD=FICD1
Bench Specification=BS1
ICD=ICD1
Electrical Design Model=EDM1
Testbench Configuration=TC1

instrumentation
interface

Activities Tasks

Detail Change Requirement=DCR1
Purchase Components={PC1, PC2}
Fix & Install Components={FIC1, F IC2}
Wire All Components=WAC1
Define Instrumentation=DI1
Generate Bench Specification=GBS1
Define Electrical Model=DEM1
Build Bench Configuration=BBC1
Validate=V1

Outline Instrumentation Model=OIM1
FICD=FICD1
Specify Component Requirement=SCR1
Supply Component={SC1, SC2}
Fix Component={FC1, FC2}
Wire Components=WC1
Define Instrumentation Model=DIM1
Define Specific ICD=DSI1
Specify Electrical Model=SEM1
Define Bench Specifcation=DBS1
Validate Bench=V B1

3.5 Process Engine
Enactment of a process requires to define the precise operational semantics of each
process element. Operational semantics accurately prescribes how a proper SPML
process engine will realize the operation of process model elements at enactment-time.
In SPML process models, we have five elements which need their operational semantics
to be defined so that process engine can manage the instances of these elements. These
elements are Process, Activity, Task, Artifact and Resource. Notice that the Process,
Activity and Task elements are directly created and managed by the process engine.

95

Artifact and Resource elements are normally managed by the external systems, i.e.,
respectively Database Management System (DBMS) and Resource Management System
(RMS). We assume that our process engine is connected with these systems and is aware
of those events changing the state of these elements in the external systems. Our process
engine does not have a right to manipulate the state of artifacts and resources.

In BAPE, we define a life cycle for each instance of operational elements directly
managed by the process engine, i.e., Process, Activity and Task instances. These life
cycles generally characterize the operational semantics of process elements instances.
The conforming process engine launches process elements instances and controls their
internal states precisely as they are described by their life cycles. These life cycles are
defined by state machines comprising a set of possible states and transitions. Each
transition may have a trigger, a guard and an effect, as below:

• Trigger is the cause of the transition, which could be an event. In BAPE, events
are triggered by process actors from their Modeling/Enactment UIs or external
systems (e.g., DBMS and RMS).

• Guard is a condition which must be true in order for the trigger to cause the
transition. In BAPE, all conditions are verified in the PDG by the process engine
to enable or refuse the transition.

• Effect is an action which will be invoked directly on the process element that owns
the state machine as a result of the transition. In BAPE, all actions are taken
by the process engine which result in creating and updating the PDG nodes and
edges.

In the next we describe the life cycle of each process element and illustrate how these
life cycles define the overall behavior of process engine in enacting and synchronizing
the structurally defined process fragment models which results in progressively updating
the PDG. The operational semantics of SPML is given by the state machines defined for
each executable SPML element. The actions of these state machines which update the
PDG are defined by algorithms implemented in Java.

3.5.1 Process Instance Life cycle

In SPML, a process is composed of several process fragments which each fragment
comprises several activities. This fact makes the life cycles of a process and an activity
to be bound with each other, i.e., a process can only be completed if all its activities
are completed or an activity can only be enacted if its process is running as well. We
propose a generic state machine to define the life cycle of a process which is illustrated
in the Figure 3.5. The completed and aborted states are end states in which processes
cannot be performed.

In many cases it will be useful to store information about the execution of process

96

instances, so that this information can be used afterwards. For example, sometimes
we want to verify which actions have been executed for a particular process instance,
or in general, we want to be able to monitor and analyze the efficiency of a particular
process. For this reason, all completed and aborted processes are kept in database until
the issue of DiscardProcess event, i.e., manual deletion. We apply the same procedure
for activity and task instances. The detail description of main transitions of the process
state machine are defined as follows:

Figure 3.5: Process State Machine

• CreateProcess A process p is instantiated/enacted via triggering the event Cre-
ateProcess, e.g., event can be triggered by process owners. An event CreateProcess
has a parameter p with type Process. As the effect of this transition, process engine
takes an action createProcessInstance which itself constitutes two sub-actions:

1. createProcessNode Process engine creates pi as the instance of process p.
This is done by creating the corresponding PDG ProcessNode with a state
inProgress. The Figure 3.6 shows the PDG as a result of the corresponding
action regarding the enactment of our examined process Modify TestBench
Wiring (MTW) which results in a process instanceMTW1 in state inProgress.

2. getListOfProcessActivities Process engine looks up the process repository to
extract the list of activities of p from the process model which later can be
enacted by process actors.

• CompleteProcess A process instance pi can be completed via triggering the
event CompleteProcess. To enable the transition, a post-condition is defined which
specifies that a process instance pi can be completed if and only if all activities of
the process p are enacted and completed. As the guard of this transition, process

97

Figure 3.6: PDG as a result of creating process instance

engine verifies the process post-condition by first getting list of all activities of
the process p stored in the process repository. Then, process engine verifies inside
the PDG whether the respective activities are instantiated or not. Normally, two
situations may exist:

1. All process activities defined in the model are instantiated and completed. In
this case in which the post-condition is met, process engine updates the state
of the corresponding PDG ProcessNode pi to completed.

2. All process activities defined in the model are not instantiated or are instanti-
ated but they are not completed yet. In this case in which the post-condition is
not met, process engine keeps the state of the corresponding PDG ProcessNode
pi in inProgress.

The Figure 3.7 shows two mentioned situations regarding activities of process
instance MTW1.

• UpdateProcessModel In our approach, processes are composed of separate
fragments which can be progressively modeled during process execution, i.e., P i

in state inProgress. Thus, whenever a process actor adds a new fragment into
the process repository, the process engine invokes the event ProcessUpdate of P i

which has a new process fragment pf as parameter. As the effect of this transition,
process engine updates the list of process’s activities including the activities of a
new added fragment.

3.5.2 Activity Instance Life cycle

While the process instance pi is running, activities of pi which are defined in different
process fragments can be enacted. In SPML, an activity is composed of tasks, i.e.,
mandatory and optional tasks. This encapsulation binds the life cycles of an activity
and its tasks together, i.e., an activity can be completed if all its mandatory tasks and
required optional tasks are completed or a task can be enacted if its activity is running
as well. Each process actor can enact activities of process corresponding to his role.
The life cycle of an activity is defined by a state machine as illustrated in Figure 3.8.

98

Figure 3.7: PDGs as results of completing process instance

The detail description of main transitions of the activity state machine are described as
follows:

Figure 3.8: Activity State Machine

99

• CreateActivity An activity a of a running process pi is instantiated via triggering
the event CreateActivity. After the creation of an activity, the process actor can
enact the activity’s mandatory and required optional tasks. An event CreateActivity
has three input parameters as:

– pi is the process instance,
– a is an activity of process p extracted from the process model,
– act is the process actor who enacts the activity a.

As the effect of this transition, process engine takes an action createActivityInstance
comprising two sub-actions as:

1. createActivityNode Process engine creates an instance ai of an activity a.
This is done by creating the corresponding PDG ActivityNode ai with a state
inProgress. Then, process engine establishes a PDG BelongEdge between the
corresponding PDG ActivityNode ai and the PDG ProcessNode pi. Finally,
process engine establishes a PDG PerformEdge between the corresponding
ActivityNode ai and the ActorNode act along with assigning the role of process
actor as the property of the PDG BelongEdge. Remember that a process
actor performs the activity and all its tasks. The Figure 3.9 shows the PDG
as a result of this transition regarding the enactment of activity Detail Change
Requirement (DCR) by Analyst A1.

Figure 3.9: PDG as a result of creating an activity instance

2. getListOfActivityTasks Process engine extracts the list of activity’s tasks from
the process model which later can be enacted by process actors.

• CompleteActivity A process actor can complete an activity instance ai by
triggering the event CompleteActivity. To enable the transition, a post-condition
is verified by the process engine which is regarding the tasks of the activities
extracted from the model. An activity instance ai is completed if and only if the
following post-condition holds:

100

1. all mandatory tasks of ai → reference→ tasks are enacted and completed,
2. if an option o is activated in the activity, the optional tasks corresponding to
o in ai → reference→ tasks must be completed as well.

As the guard of this transition, process engine verifies the activity post-condition
by traversing the PDG ActivityNode ai through all ChildEdges to verify the state
of its mandatory and activated optional tasks instances. If all respective task
instances are completed, process engine updates the state of the corresponding
PDG ActivityNode ai to completed. If not, process engine keeps the state of
PDG ActivityNode ai as inProgress. Figure 3.10 shows PDGs in two cases: (a)
all mandatory and required optional tasks of activity instance Detail Change
Requirement DCR1 are completed; (b) an optional task Outline Instrumentation
Model OIM1 corresponds to option instrumentation is still running.

Figure 3.10: PDGs as results of completing an activity instance

• TaskEvent While an activity is running (i.e., in state inProgress), it listens to
events related to execution of its tasks. As the effect of this transition, for each type
of event, process engine triggers the appropriate handler. This solution facilitates
different execution configurations of an activity which is discussed in details in the
Section 3.6.1.

101

3.5.3 Task Instance Life cycle

An activity is comprised of mandatory and optional tasks. When a process actor enacts
an activity, he performs the activity’s tasks including all mandatory and required optional
tasks. Each task is associated with artifacts. A task consumes artifacts and is meant to
produce an artifact. Tasks are the real actions that change artifacts’ state and progress
the process’s execution. Similarly to conventional process engines, we adopt a state
machine inspired from the standard WS-HumanTask Specification [22] to define the life
cycle of any task managed by our process engine. Figure 3.11 gives our proposed task
state machine.

Figure 3.11: Task State Machine

As tasks are bound to artifacts, the life cycle of a task is highly dependent on artifacts
and their states. Artifacts are shared among tasks in the way that an artifact in a specific
state can be consumed by several tasks. However, tasks can not collaborate to produce
an artifact in a specific state, i.e., no sharing on artifact production. As mentioned
earlier, we assume that artifacts are managed by DBMS. Process actors directly interact
with DBMS in order to create or update their artifacts. To enable the coordination
between DBMS and our process environment, our process engine continuously listen
to any events related to creating or updating the artifacts in the DBMS and takes the
appropriate actions in order to make PDG always reflects the current state of artifacts.
The corresponding events are defined as follows:

102

• CreateArtifact Whenever an artifact instance arti with state s1 is created into
the DBMS, e.g., by process actors or external systems/agents, DBMS informs the
process engine of the new artifact instance arti. As a result, process engine creates
the corresponding ArtifactNode arti with state s1 in the PDG.

• UpdateArtifact Whenever an artifact instance arti is updated into the DBMS, i.e.,
by changing its state s1 to s2, DBMS informs the process engine of the arti’s state
change. Consequently, process engine takes two actions as:

1. updateArtifactInstance Process engine updates the state of corresponding
PDG ArtifactNode arti to s2.

2. findWaitingTaskInstances Process engine looks for those task instances which
are waiting for the respective artifact in the state s2. This procedure of engine
is explained in detail where we present the transitions of task sate machine.

The detail descriptions of main transitions of the task state machine are provided as
follows:

• CreateTask A task t (mandatory or optional) of an activity instance ai is enacted
via triggering the event CreateTask. An event CreateTask has two parameters as:

– ai is the active activity instance that wants to execute the task,
– t is a task in the list of possible tasks of ai to be executed.

To enable the transition, a condition is verified by the process engine and is hold if
either:

– t is a mandatory task,
– t is an optional task and the option o corresponding to t is activated in the

process instance.

Based on the result of the verification, two situations may happen:

– If the condition is satisfied, process engine creates ti as the instance of task t.
This is done by creating the corresponding PDG TaskNode ti with a state
created. Additionally, process engine establishes a ChildEdge between the
corresponding TaskNode ti and the ActivityNode ai.

– If the condition is not satisfied, process engine rejects the enactment of the
corresponding task, i.e., optional task.

The Figure 3.12 shows the PDG regarding the enactment of a mandatory task
Define Electrical Specification (DES) by Analyst A1.

103

Figure 3.12: PDG as result of creating task instance

Note that in conventional process engines, the condition of a transition between task’s
states is principally based on work-sequence relations defined among tasks. For example,
if the tasks A and B are related by a relation finishToStart 1, the task B can only
start its execution if the task A is completed. This solution cannot be applied to our
process engine as we do not describe the work-sequence relations among tasks in process
models. Instead of work-sequence relations, our process engine deduces the dependencies
among tasks from real enactment circumstances and uses artifacts as the main source
of synchronization to enable the task state transitions. In our task state machine, the
conditions of transitions as starting a task, completing a task and waking up a task are
defined based on the state of artifacts. In the next, we define each of these transitions in
details.

• StartTask A process actor can start the execution of his task instance ti by trig-
gering the event StartTask. Concretely, an event StartTask entails two parameters
as:

1. ti is the task instance.
2. artiList is the list of artifacts instances given by process actor. These artifacts

should fulfil following criteria as defined in the model:
• All input artifacts having the property usage set to toStart.
• The input artifact, which the property usage set to toStart, associated with
an option and the corresponding option has been activated in the process
instance.
With respect to the mentioned criteria, process engine selects required artifacts
from the model and demands the process actor to give the name of concrete
artifact (i.e., artifact instance) for each selected artifact.

After triggering the event StartTask including its effective parameters, a pre-
condition is defined which specifies the artifacts instances arti given by the process

1means that there is a work-sequence relation from A to B

104

actor, in a specific state s, required to start the task instance ti. As the guard
of this transition, process engine verifies the pre-condition of a task instance by
first finding the corresponding artifacts instances in the PDG and checking if the
states of the concerned PDG’s ArtifactNodes are the required ones. Normally two
situations may arise:

1. If the pre-condition is satisfied, the process engine updates the task’s state
from created to inProgress and establishes a DataEdge with the property
ready between the required PDG ArtifactNode arti and the corresponding
PDG TaskNode ti.

2. If not, the task will be put in waiting state to wait until the required input
artifact is available. As a result, in the PDG, a DataEdge with the property
waiting is established between the required ArtifactNode arti and the waiting
TaskNode ti so that the process engine can keep trace of the waiting tasks
and wake up them later when the needed artifact’s state is set.

Figure 3.13 illustrates the PDGs regarding two situations where process actor A1
starts his task DES1 by selecting artifact WCD1 in state defined.

Figure 3.13: PDGs as results of starting task instance

105

• TaskWakeUP As mentioned earlier, when a pre- or a post-condition of a task
is not satisfied, process engine puts the task in the waiting state. The condition
to leave the waiting state is related to availability of artifacts in the demanded
state. Thus, when an artifact instance is updated in the PDG, i.e., by changing its
state, process engine looks for the tasks which are waiting for the corresponding
artifact instance with the new state. Thanks to the dataEdges together with
their properties (e.g., demandedState) established between waiting TaskNodes
and ArtifactNodes, process engine can find TaskNodes which are waiting for the
respective artifact in the required state. Afterwards, process engine triggers the
TaskWakeUp event of the corresponding task instances as specified in their state
machines. To enable the transition, the process engine verifies whether all task’s
required artifacts are in demanded states or not.
The Figure 3.14 illustrates part of PDG regarding two fragments of Analyst and
Instrumentation Team regarding two situations: In Figure 3.14(a), task OIM1,
performed by the actor A1, has produced the artifact FICD1 in the state outlined;
the task DIM1, performed by the actor IT1, has taken an outlined FICD1 as
input then modifies it to produce the output FICD1 in the state defined; the
task DES1 is in state waiting as it needs a defined FICD1 to finish. Figure 3.14
(b) illustrates the moment when task OIM1 has produced the defined FICD1 in
which process engine wakes up the task DES1.

Figure 3.14: PDGs showing results of task wake up

• UserEvent This transition does not change the state of the task instance. However,

106

it gives a possibility to the process actor who performs the task instance to handle
some specific user defined events emerging during the task execution. For each
type of user events, process engine executes a pre-defined process comprising the
event handler. This feature offers a simple mechanism to extend the functionalities
of the process engine to better response to process actors’ needs. In Section 4, we
report an application of such feature to enable process actor to signal their change
requests.

3.5.4 Discussion

By using the conditions based on the artifact states to decide the progress of tasks
executions, our process engine enables the enactment of structurally-defined process
fragments models defined by our modeling language SPML. The behavioral aspect of
process is deduced at enactment-time based on artifact exchanges among processes’ tasks.
This leads to progressive unification of different process fragments inside PDG as process
actors enact their process activities/tasks. Thanks to the suppression of work-sequence
relations, our process engine allows activities and tasks to be enacted several times if
needed. Overall, our approach gives more autonomy to process actors in controlling
their activities.

By considering artifacts as a source of synchronization, our process engine better
integrates data into tasks life cycles and thus provides a finer control on the execution
of tasks. While conventional process engines rely exclusively on the process actors to
make progress a task execution, our process environment ensures that the execution of a
task makes progress the concerned artifacts as required in the process models.

Notice that resources (e.g., process actors, machines, etc.) can be considered as
another source of synchonization as well. The synchronization mechanism of process
engine is completey similar to the artifact one, i.e., conditions based on availability of
resources. However, the focus of our work is on artifacts which are significant in process
actors daily activities [14, 20, 15, 11].

Thus far, we have presented how our artifact-driven enactment approach provides
control over processes defined by our language SPML. We described the behavior of
the process engine in enacting and synchronizing the tasks which result in progressively
updating the PDG. As an advantage of our enactment approach we can mention offered
flexibilities for process actors which are presented in the next section.

3.6 Enactment Flexibilities
Due to the emerging situations occurring at enactment-time, a process cannot always
be executed as modeled. Therefore, a process environment must provide some degree
of flexibility to deal with these unforeseen situations while preserving the control over
processes [25, 28].

107

The conventional enactment approaches following activity-driven execution mech-
anism, tend to use the work-sequence relations in process models to explicitly specify
the execution order. Thus, the process execution, based on the work-sequence relations
prescribed in process model, is too strict in many cases thus cannot let process actors
dealing with emergent situations. On the contrary, by keeping constraints on exchanged
artifacts, our approach can have more balance between control and flexibility in enacting
processes. We want to emphasize two types of flexibilities offered by our enactment solu-
tion: Loose Inter-Tasks Execution Order and Execution of Partially Modeled Processes
(Partial Modeling). In the next, we discuss each of these flexibilities in details.

3.6.1 Loose Inter-Tasks Execution Order

In SPML, tasks are encapsulated into activities. This abstraction allows an activity
to separately manage the execution of its tasks. Moreover, without prescribed work-
sequence relations specifying the order for executing the tasks inside an activity, tasks
can be progressively and freely instantiated in order to support different execution
situations, especially rework situations. The key idea is giving more liberty to process
actors so that they can decide how to handle different situations emerging during the
enactment-time. For this purpose, we defined our activity state machine with a loop
transition on its inProgress state to allow an activity catching different events triggered
during its execution by the activity’s performer or by external systems.

In the first time, we handle specifically events causing activation of an option. This
transition is regarding the activation of an option via triggering event ActivateOption,
i.e., TaskEvent having eventType as ActivateOption and eventData as Option. Figure
3.15 illustrates respective part of the activity state machine.

Figure 3.15: Task event transition of activity state machine

As described in the SPML, an optional task is associated with an option and must
be enacted if the corresponding option is activated. The activation of an option enables
the execution of an optional task (i.e. process actors create a new task instance). The
activation of a new option may cause a reconfiguration of other tasks, i.e., activation of
an option makes another task to need an extra artifact. The information required by
the process engine to reconfigure the task conditions are defined in the model by the

108

property activatingCondition of each TaskParameter.
The actions taken by the process engine for the reconfiguration depends on (1)

the state of reconfigured task (2) pre- or post-conditions of the reconfigured task. We
distinguish three cases among which the activation of an option requires:

• Reconfiguration of a task’s pre-condition which is in state created.

• Reconfiguration of a task’s post-condition which is in state created.

• Reconfiguration of a task’s post-condition which is in state inProgress.

The above-mentioned cases are supported by the process engine through the Task Start
and Task Completion transitions specified in the task state machine. Remember that
regarding starting or completing a task, process engine considers the associated option
when extracting the required artifacts from the model.

There exist three other cases in which the activation of an option requires reconfiguring
the pre-condition of an inProgress task, reconfiguring the pre-condition of a completed
task or reconfiguring the post-condition of a completed task should be also considered
by the process engine.

In the first case, a task is in state inProgress which has been started with pre-
conditions that are no longer valid due to the activation of a new option. To handle
this situation, process engine undoes the configured task. Undoing a task leads to
moving control to the moment before the execution of a task i.e., changing the state
of task from inProgress to created as specified via event UndoTask in the task state
machine. The process actor has to re-start the task in which process engine can verify
the task conditions with the new pre-condition. Undoing a task is only possible if the
corresponding task has not been produced its output artifact and can cause the lost of
modifications done on the output artifact.

The process engine handles differently if the reconfigured task is in the state completed
or is in the state inProgress which the output artifact is produced. This mean that,
the task has produced an artifact may no longer be valid due to the activation of an
option, i.e., the task may require some extra input artifacts to correctly produce it
output artifact corresponding to the activated option. In such situation, activating a new
option implies to rework a completed task in order to produce the new version of the
artifact. The rework of a task is regarding creating a new instance of the task. Thanks
to the suppression of work-sequence relations, our process engine allows activities and
tasks to be enacted several times if needed.

Regarding the multi-instance tasks support, process actors can easily enact their
activities and tasks and start their tasks with requiring and producing different concrete
artifacts, i.e., elements of collection artifacts. However, we give control to process actors
in order to determine the number of their instances.

The rework of a task should be thoroughly considered as it implies producing a new

109

version of the artifact. As the corresponding artifact may have already being used by
other process actors, producing the new version of the artifact may cause major impacts
on affected people. This issue first requires that the impact of corresponding change has
to be evaluated. If the change is accepted the re-configured task can be reworked. This
relates to the process of change management which provides better control over rework
and will be discussed in the Chapter 4 in details.

To conclude, by enabling loose inter-task execution order, process engine provides
more flexibility in enactment of tasks. Therefore, process actors instead of explicitly
following the ordering of their model tasks as in conventional process environments, are
able to enact their tasks in different execution orders in response to different contexts or
unforeseen situations.

3.6.2 Partial Modeling

Partial modeling is the flexibility issue provided by our solution which is about enabling
enactment of partially-modeled processes where some fragments are missing. While con-
ventional process environments require the whole process to be defined and instantiated
to enable its enactment, our environment can enact a process with only the defined
process fragments that are managed by the system.

In our environment as mentioned earlier, artifacts are created/updated by process
actors or external agents/systems directly into the central DBMS. Our process engine is
aware of these events and keeps the PDG to be updated with any artifact changes in
the DBMS. In fact, PDG keeps the global image of artifacts existing in the DBMS. This
is done by the process engine which listens to the events related to creating or updating
the artifacts in the DBMS and takes the appropriate actions to create or update the
state of respective artifact nodes in PDG.

Thanks to this organization, we can enact and synchronize the managed fragments by
the process environment with those that are performed by external agents. The reason
is that synchronization information is based on the exchanged artifacts, which are surely
managed by the DBMS. This fact enables external agents/systems to participate into
the process without explicitly using our process environment but being under control of
the process environment.

3.6.3 Examples of Enactment Flexibilities

To better illustrate the discussed flexibilities of our enactment approach, we consider
our examined process Modify Tesbench Wiring. Figure 3.16 illustrates the whole proce-
dure of our process environment for enacting and synchronizing the activities/tasks of
Analyst and Instrumentation Team process fragments models in the process instance
Modify Tesbench Wiring MTW1. We suppose that the fragment of Analyst is defined
and performed by A1. Moreover, due to the organizational changes, the activities of

110

Instrumentation Team are performed by an external subsidiary who does not interact
with the process environment, but directly interacts with the central DBMS.

To illustrate the loose inter-task execution order in our enactment approach, the
tasks of the activity Detail Change Requirement DCR can be executed in any order. For
instance the Analyst A1 creates first instances of mandatory tasks Specify Component
Requirements SCR and Define Electrical Specification DES. Then by realizing the need
of instrumentation, he activates the option instrumentation which necessitates him to
create an optional task Outline Instrumentation Model OIM , i.e., to apply modification
on instrumentation component. The creation of task OIM is done regardless of other
task instances of its activity Detail Change Requirement DCR1. Moreover, once the
option instrumentation is activated, the process engine re-configures the activity DCR1
particularly by adjusting the post-condition of the task instance DES1 as it now requires
an extra artifact FICD in state defined. Note that the external agent is responsible
to produce the defined FICD. Such situations, if not specified in the model, are not
supported in conventional process environments. In fact, we allow process actors to enact
their tasks in any order in response to their real execution context without explicitly
defining their execution orders in the model.

To illustrate the enactment of partially-modeled processes in our enactment approach,
we suppose that the fragment of Instrumentation Team is performed by an external
subsidiary who is not managed by the process environment. As a big strength of our
enactment solution, following situation is remedied as shown in the Figure 3.16 where
A1 completes his task Define Electrical Specification DES1, process engine verifies the
post-condition and thus suspends the task as the artifact FICD1 is not in state defined.
Process engine allows the Analyst to start execution of his task DES1 as soon as the
artifact FICD1 with state defined is produced by the external subsidiary inside the
DBMS. Then, process engine updates the PDG regarding the state change of FICD1
and wakes up the task DES1. Conventional process environments are unable to deal
with such situations as the global process is partially modeled or partially instantiated.
For instance, the Analyst will be blocked on the task Define Electrical Specification,
waiting for the termination of the unmanaged activity Design Instrumentation Model.

To conclude, the artifact-driven enactment supports fully the execution of partially
and structurally modeled process models. It offers significant flexibilities to support
unforeseen situations while preserving control over the processes. It makes the process
execution less restrictive and closer to the reality which results in gaining the process
actors’ satisfaction and reducing the gap between model and its real enactment.

3.7 Related Work
Process environments mostly adopt two paradigms as being activity-driven or artifact-
driven in order to enact and synchronize processes. In activity-driven enactment, the

111

Figure 3.16: Enactment Procedure of Process Environment

112

main driver for process progression are the events related to activity completions. In
fact, activity completions enable subsequent activities according to the work-sequence
relations defined in the model. In turn, business artifacts are rather unknown to the
process engine of an activity-driven process environment. On the other side, artifact-
driven enactment emphasizes on tight integration of processes, artifacts (data), and
users where the main driver for process progress is not the events related to activity
completion, but availability of artifacts in certain states.

One of the main challenges of process environments has been offering flexibility due
to the dynamicity of current environments. A key consideration of effective process
environments is their ability to deal with both foreseen and unforeseen situations in the
context in which they operate [28]. This quality of a process environment reflects its
ability to deal with such situations by varying or adapting those parts of the process
that are affected by them, while maintaining the essential format of those parts that are
not impacted by the variations.

In the next, we present our evaluation criteria in order to evaluate the existing
enactment approaches.

3.7.1 Evaluation Criteria

Our evaluation criteria is inpired form the one proposed by Van der Aalst et al. [32, 28]
who presents a comprehensive description of the various approaches that can be taken
to facilitate flexibility within a process. All these strategies improve the ability of
processes to respond to (un)foreseen situations in their operating environment without
necessitating the complete redesign of the underlying process definition. However they
differ in the timing and manner in which they are effected. The respective evaluation
criteria is presented in the Figure 3.17 comprising two criteria as Control and Flexibility.

3.7.1.1 Control

This criterion concerns the whole procedure of the enactment approach in order to enact
and synchronize the process activities. It contains two factors as described below:

• Synchronization defines the main driver for the process progression which can be
the activity or the artifact.

• Enactment Requirement defines the required degree of process model completeness
to enable the enactment and synchronization of process activities which can be as
follows:

– Complete Model is the ability to enact a complete process model in which
all possible execution paths in a process model are completely defined at
modeling-time.

113

Figure 3.17: Enactment Evaluation Criteria

– Loose Model is the ability to enact an incomplete process model at enactment-
time, i.e. one which does not contain sufficient information to allow it to be
executed. The model does not need to be changed at run-time, instead it
needs to be completed by providing a concrete realisation for the undefined
fragments in order to enable the completion of process execution.

– Partial Model is the ability to enact a process in which some process fragments
are missing. This does not require the model to be completed to finish the
process execution but the engine can enact and synchronize the fragments
defined in the process model with those that have not been defined yet, i.e.,
performed by external agents/systems.

3.7.1.2 Flexibility

This criterion presents the ability of enactment solutions to respond to anticipated or
unforeseen situations in their operating environment without necessitating the complete
redesign of the underlying process model. Four different types of flexibility are identified
as following in which they differ in the timing and manner:

• Flexibility by Deviation is the ability for a process instance to deviate at enactment-
time from the execution path prescribed by the original process without modifying
its process model. Two important operations that characterize the support of
deviation are undo and rework/redo a task. The former concerns switching the
control to the moment before the execution of a task and the latter concerns
re-enacting the previously executed task without shifting control.

114

• Flexibility by Change is the ability to modify a process model at enactment-time. It
allows processes to adapt to changes that are identified in the operating environment
in an anticipated or an ad-hoc manner. Changes may be introduced both at process
instance and process model levels, i.e., one or all of the currently executing process
instances are migrated to a new process definition.

• Flexibility by Underspecification is the ability to execute an incomplete process
model at enactment-time. It comprises three types as follows:

– Late Binding is the approach where the realisation of an unspecified part
is selected from a set of available process fragments. Note that one process
fragment has to be selected from an existing set of process fragments which
are predefined at modeling-time. This approach is limited to selection, and
does not allow a new process fragment to be constructed.

– Late Modeling is the approach where a new process fragment is constructed
in order to realise a given unspecified part at enactment-time.

– Partial Modeling is the approach where the process can be enacted and
synchronized without requiring all fragments to be defined. In contrast to
late binding and late modeling, process models do not need to be defined
completely during process execution.

• Loose Inter-task Execution Order is the ability of the enactment solution to allow
enactment of processes tasks in different execution orders according to different
contexts or (un)foreseen situations without imposing any change in the process
model, i.e., enactment of optional activities.

3.7.2 Review of Artifact-driven Enactment Approaches

Several approaches have already perceived the inability of current process environments
to adequately capture the relation between process and data such as Case Handling
[10, 19, 34], Object-aware Processes [15, 21, 24] and Product-based Workflow Support
[26, 35]. The next section evaluates to what extent these approaches support the
enactment of structurally and partially modeled processes via SPML.

3.7.2.1 Case Handling

van der Aalst et al. [34] propose Case Handling (CH) approach aiming at more flexible
process enactment by relaxing the work-sequence relation of processes and emphasizing
on artifact-driven synchronization. Cases, data objects and activities are the main
concepts of CH. CH supports multiple instantiation patterns through dynamic sub-plans
(i.e., sub-process instances). CH coordinates the execution of activities based on the
data assigned to a case. CH differentiates between free, restricted, and mandatory

115

data elements. An activity is considered as completed if its mandatory data elements
all have an assigned value. CH associates three types of role to activities as execute
role to carry out an activity, rework role to redo a completed activity and skip role
to omit the execution of activities. Their approach is formalized by defining generic
state machines for activity and data objects, as well as Event Condition Action (ECA)
rules that describe the execution semantics. CH requires the whole process model to be
defined before enactment. Moreover, the rework of an activity is only possible if it is
explicitly defined in the model.

3.7.2.2 Object and data aware Process Enactment

Kunzle et al. [15] emphasize on the integration of process and data to offer more flexible
and efficient process enactment through the PHILharmonicFlows framework. They
address modeling and enactment of object-aware processes. Object types and object
relations are defined in a data model, while object behavior are expressed in terms of a
process whose execution is driven by object attribute changes. Enactment flexibility is
provided by allowing the rework and the explicit consideration of user decisions.

Muller at al. [20, 21] propose a data-driven coordination framework COREPRO
applied in the automotive domain. COREPRO enables the coordination of multiple
processes based on objects and object relations. Single objects are defined in terms
of states and (internal) transitions between them. The latter can be associated with
complex actions (i.e., processes) that must be completed before the subsequent state
may be entered. According to the relations between objects, external transitions connect
the states of different objects to coordinate their processing. In addition to modeling and
enactment, COREPRO allows dynamic adaptation of process structures based on certain
product model. COREPERO applies two modifications as add and remove system or
subsystem life cycles. Their work adopts the top-down approach that requires a global
view of process model before enactment.

3.7.2.3 Product-based Workflow Support

The core of product-based workflows [26, 35] is a Product Data Model described in
terms of a tree-like structure [26]. Processes are designed in respect to a certain product
structure comprising atomic data elements and operations. An operation is executable
if specific values are available for all input data elements. Finally, the product is fully
processed as soon as a value for the top element of the product data model becomes
available. Each process model solely contains data elements mandatorily required for
process enactment. Optional data is not taken into account and thus optional activities
are not considered. The process model must be completely defined before enactment
and also there is no possibility of rework or any other flexibility types.

116

3.7.3 Review of Activity-driven Enactment Approaches

Many solutions have been proposed to support the flexible enactment of activity-driven
processes. Some of them try to avoid change, e.g. by generating implicit alternative
paths [30], or by deferring the selection or modeling of the desired behavior, e.g. by late
binding or late modeling [3, 33]. Some approaches allow for changing the process model
for a single instance by allowing process actors to deviate from the model. The deviation
can be carried out in a planned [5, 7] or ad-hoc manner [4, 16]. Finally, some works
focus on process evolution by enabling the changing of a process model while migrating
all running process instances to the new version of process model. This solution is very
costly and may generate other problems especially if there are several running instances
of that model. However, to set a focus, we exclude issues related to process evolution
[25] as this section focuses on process enactment.

3.7.3.1 Traditional Process management

Several process environments adopting Business Process Management (BPM) decipline
are commercially developed and offer similar functionalities to users, e.g., jBPM [12],
Bonita BPM [6], Signavio Business Transformation Suite [1], etc. Among them, we
consider jBPM [12] which is a flexible Business Process Management (BPM) Suite. The
core of jBPM [12] is a light-weight, extensible process engine that allows you to execute
business processes using the latest BPMN 2.0 specification. On top of the core engine, a
lot of features and tools are offered to support business processes throughout their entire
life cycle, e.g., human task service, runtime persistence, process simulation, Business
Activity Monitoring (BAM), etc. jBPM is developed towards process experts and offers
a low degree of flexibility. Process engine requires a whole process to be modeled before
enactment. It support late selection by allowing the definition of the ad-hoc sub-process
in the model.

3.7.3.2 Flexible Enactment by Change

Changes/deviations are known as unexpected situations that could arise during process
enactment [29]. Bendraou et al. [5, 7] focus on detection of change on activity and
artifact by comparing execution trace to set of pre-defined rules. They provide no
support for correcting the deviation. Zazworka et al. [36] propose a solution to detect
and correct the deviation of software development project. Correction is done manually
by assisting project managers with only pieces of advice to help them finding out some
resolutions that are supposed to fix the occurred deviations once applied. Proposed
solutions are mainly tool specific and can be applied in small specific domains where
deviations are limited and known beforehand.

Lanz et al. [4, 16] propose AristaFlow BPM Suit as an adaptive process environment
based on ADEPT technology [8] which enables ad-hoc deviations from pre-specified

117

processes without affecting correctness and soundness of the process it implements.
AristaFlow uses BPMN [23] as its modeling language and state machine based process
engine which process progression is driven by activities’ completion. Moreover, the
process engine requires the global model to be defined before enactment. It offers handling
of exceptions by allowing process actors to adopt the process by adding/removing/moving
activities.

3.7.3.3 Loosely-specified Process Enactment

Some approaches focus on enactment of processes which are not fully pre-defined, where
parts of the process model are known at modeling-time, other parts are unknown and
can be specified during enactment-time [3, 27, 33], i.e., flexibility by underspecification.
Adams et al. [3] propose the Worklet approach that allows late selection by enabling
process designer to create a model which, except for its placeholder activities, is entirely
predefined. The enactment of a placeholder is selected from a set of defined process
fragments (i.e., activities and sub-processes).

Sadiq et al. [27] propose the Pockets of Flexibility approach that allows late modeling
of placeholder activities at enactment-time. They define declarative constraints, as
relations between tasks, to limit the construction of new models in which process engine
verifies these constraints to avoid undesirable enactment of process. In general, as more
constraints are defined for a process, less execution paths are possible, i.e., constraints
limit the flexibility. The process engine allows the enactment of incomplete processes.
However, the process engine requires the unspecified parts of the process to be completely
defined in order to completion of process execution. Moreover, the main driver for the
synchronization is activity completion.

3.7.3.4 Subject-oriented Process Enactment

The Subject-oriented Business Process Management (S-BPM) conceives a process as a
collaboration of multiple subjects (roles) organized via structured communication. It
aims to distributed modeling and execution of processes. Several process environments
following this paradigm exist either in commercial/academic level [13, 18, 31, 2]. S-BPM
engines (e.g., metasonic [18]) are activity-driven and are mostly rigid where there is no
flexibility offered such as rework, optional activities, etc. To enact a process, all process
fragments along with their artifact exchanges must be completely-defined.

3.7.4 Synthesis

Table 3.10 synthesizes the different enactment approaches discussed in the previous
section in relation to our evaluation criteria.

Artifact-driven enactment approaches provide a high degree of control over the
processes which considers artifacts as the main driver for process progression. On

118

the other side, they offer a low degree of flexibility to process actors by requiring the
completely defined process for enactment and synchronization. Moreover they are mostly
unable to deal with unforeseen situations. Many prototypes have been proposed by
offering means to model and enact processes [34, 15], but the lack of flexibility within
these environments has led to being less adopted within industry [11].

Activity-driven enactment approaches in which the main driver for process progression
is activity completion, provide a better balance between control and flexibility. Although,
they ignore the importance of process and data integration in which data is rather
unknown to their process engines. In turn, the process engine follows a control-flow based
process model to enact processes. These models are (loosely) completely defined. To
provide less rigid enactment, several prototypes have been proposed by offering different
types of flexibility to cope with unforeseen situations in academic (e.g., AristaFlow [4],
Declare [33], etc.) or commercial level (e.g., jBPM [12], Bonita [6], etc.). Among them
flexibility by underspecification [33, 27] appears to better keeping the balance between
control and flexibility. Process changes [4] offer high degree of flexibility to process actors
by allowing them to freely modify the process model which can cause control problems
on already running processes.

However, artifact and activity-driven enactment approaches differ in their way of
providing control and flexibility but both have difficulties in terms of enacting and
synchronizing the partially and structurally modeled processes. In contrast to activity-
driven approaches, artifact-driven approaches are able to enact the structurally defined
process fragments models. Our enactment approach gains this benefit of artifact-driven
approaches but most importantly, it provides some degree of enactment flexibilities
to deal with both foreseen and unforeseen situations while preserving the control over
processes.

Our enactment approach provides enactment flexibilities by proposing an activity
state machine which allows different possibilities of task executions, i.e., through optional
activities and rework. As there is no work-sequence relations defined among tasks, tasks
can be enacted less restrictive, e.g., activity and tasks can be enacted several times
if needed. Moreover, thanks to the connection between process engine and DBMS,
the enactment of partially modeled processes are supported (i.e., partial modeling).
Notice that, partial modeling encompasses late modeling as well by considering the
process fragments as unspecified parts of the model which can be defined during project
execution.

In our enactment approach, process deployment is simple as mapping between SPML
and PDG is direct. Having a mechanism as PDG which stores the global vision of the
running processes, leads to a better emergence of global models and dependencies among
process instance elements. This global model can provide a base for some interesting
analysis such as impact analysis of the change or process analysis. In the next chapter,
we discuss this feature in details.

119

3.8 Summary
This chapter introduced our artifact-driven enactment approach which puts the main
stress on artifacts as the main driver for process progression. The objective of our enact-
ment approach is to provide the balance between control (i.e., enacting and synchronizing
the activities/tasks of the structurally defined process fragments) and flexibility (i.e.,
coping with (un)foreseen situations). To do so, we develop a Bottom-up Artifact-centric
Process Environment (BAPE). The enactment environment of BAPE is comprised of
(1) a Process Dependency Graph (PDG) as a run-time storage keeping the information
of process element instances coming from different process fragments and therefore
represent the global view of the system; (2) an artifact-driven process synchronization
mechanism (process engine) to manage tasks’ life cycle. Our enactment approach offers
some degree of autonomy to process actors in order to deal with (un)foreseen situation
such as loose inter task execution orders, reworks and enactment of partially defined
processes. In our approach, process models are fragmented but they progressively emerge
from enacting the activities/tasks of separate process fragments models.

120

Ta
bl
e
3.
10

:
Sy

nt
he

sis
of

En
ac
tm

en
t
A
pp

ro
ac
he

s

Rela
ted

Wor
k

Com
pari

son

Cat
egor

y
App

roac
h

Flex
ibili

ty
Con

trol
Syn

chro
niza

tion
Ena

ctm
ent

Req
uire

men
t

Arti
fact-

drive
n

Proc
ess

Ena
ctme

nt

Case
Han

dling
Flex

ibilit
yby

Dev
iatio

n:se
mi-s

uppo
rtfo

rrew
ork

Arti
fact

Com
plete

Mod
el

Obje
ctan

dDa
ta-A

ware
Proc

essE
nact

men
tF

lexib
ility

byD
evia

tion:
Rew

ork
Arti

fact
Com

plete
Mod

el
Prod

uct-b
ased

Wor
kflow

Supp
ort

NoS
uppo

rtof
Flex

ibilit
y

Arti
fact

Com
plete

Mod
el

Acti
vity-

drive
n

Proc
ess

Ena
ctme

nt

Trad
ition

alP
roce

ssM
anag

emen
t

Flex
ibilit

yby
unde

rspe
cifica

tion:
late

bind
ing

Acti
vity

Com
plete

Mod
el

Proc
essA

dapt
ation

Flex
ibilit

yby
Cha

nge:
Ad-h

ocC
hang

es
Acti

vity
Com

plete
Mod

el

Loos
ely-s

peci
fied

Proc
essE

nact
men

t
Flex

ibilit
yby

unde
rspe

cifica
tion:

late
bind

ing,
late

mod
eling

Acti
vity

Com
plete

Mod
el

Loos
eMo

del
Subj

ectO
rient

edP
roce

ssE
nact

men
t

NoS
uppo

rtof
Flex

ibilit
y

Acti
vity

Com
plete

Mod
el

Data
-driv

enP
roce

ssE
nact

men
t

Flex
ibilit

yby
Inter

Task
Exec

ution
Orde

r
Flex

ibilit
yby

Und
ersp

ecific
ation

:Pa
rtial

Mod
eling

,La
teM

odel
ing

Arti
fact

Part
ialM

odel
Com

plete
Mod

el
Loos

eMo
del

121

Bibliography
[1] Signavio business transformation suite, https://www.signavio.com/products/business-

transformation-suite/.

[2] ActnConnect. http://www.actnconnect.de/.

[3] M. Adams, A. H. M. ter Hofstede, D. Edmond, and W. M. P. van der Aalst.
Worklets: A Service-Oriented Implementation of Dynamic Flexibility in Workflows,
pages 291–308. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[4] AristaFlow. http://www.aristaflow.com/.

[5] R. Bendraou, M. A. A. da Silva, M. Gervais, and X. Blanc. Support for deviation
detections in the context of multi-viewpoint-based development processes. In Pro-
ceedings of the CAiSE’12 Forum at the 24th International Conference on Advanced
Information Systems Engineering (CAiSE), Gdansk, Poland, June 28, 2012, pages
23–31, 2012.

[6] BonitaSoftware. http://www.bonitasoft.com/.

[7] M. da Silva, X. Blanc, and R. Bendraou. Deviation management during process
execution. In Proceedings of the 2011 26th IEEE/ACM International Conference on
Automated Software Engineering, ASE ’11, pages 528–531, Washington, DC, USA,
2011. IEEE Computer Society.

[8] P. Dadam and M. Reichert. The ADEPT project: a decade of research and
development for robust and flexible process support. Computer Science - Research
and Development, 23(2):81–97, 2009.

[9] M. Hajmoosaei, H. N. Tran, and C. Percebois. A user-centric process management for
system and software engineering projects. In presented at the 7th IESM Conference,
October 11–13, 2017, Saarbrucken, Germany, 2017.

[10] M. Hewelt and M. Weske. A Hybrid Approach for Flexible Case Modeling and
Execution, pages 38–54. Springer International Publishing, Cham, 2016.

[11] R. Hull. Artifact-Centric Business Process Models: Brief Survey of Research Results
and Challenges, pages 1152–1163. Springer Berlin Heidelberg, Berlin, Heidelberg,
2008.

[12] JBoss. jbpm, http://www.jbpm.org/.

[13] F. Krenn, C. Stary, and D. Wachholder. Stakeholder-centered process implemen-
tation: Assessing s-bpm tool support. In Proceedings of the 9th Conference on

122

Subject-oriented Business Process Management, S-BPM ONE ’17, pages 2:1–2:11,
New York, NY, USA, 2017. ACM.

[14] M. Kuhrmann and S. Beecham. Artifact-based software process improvement
and management: A method proposal. In Proceedings of the 2014 International
Conference on Software and System Process, ICSSP 2014, pages 119–123, New York,
NY, USA, 2014. ACM.

[15] V. Künzle and M. Reichert. Philharmonicflows: towards a framework for object-
aware process management. Journal of Software Maintenance and Evolution:
Research and Practice, 23(4):205–244, June 2011.

[16] A. Lanz, M. Reichert, and P. Dadam. Making business process implementations
flexible and robust: Error handling in the aristaflow bpm suite. In CAiSE’10 Demos,
June 2010.

[17] R. Matinnejad and R. Ramsin. An analytical review of process-centered software
engineering environments. In IEEE 19th International Conference and Workshops
on Engineering of Computer-Based Systems, ECBS 2012, Novi Sad, Serbia, April
11-13,2012, pages 64–73, 2012.

[18] MetasonicSuite. http://www.metasonic.de/.

[19] A. Meyer, N. Herzberg, F. Puhlmann, and M. Weske. Implementation framework
for production case management: Modeling and execution. In Proceedings of the
2014 IEEE 18th International Enterprise Distributed Object Computing Conference,
EDOC ’14, pages 190–199, Washington, DC, USA, 2014. IEEE Computer Society.

[20] D. Müller, M. Reichert, and J. Herbst. A new paradigm for the enactment and
dynamic adaptation of data-driven process structures. In 20th Int’l Conf. on
Advanced Information Systems Engineering (CAiSE’08), number 5074 in LNCS,
pages 48–63. Springer, June 2008.

[21] D. Müller, M. Reichert, J. Herbst, D. Köntges, and A. Neubert. Coreprosim: A tool
for modeling, simulating and adapting data-driven process structures. In Proceedings
of the 6th International Conference on Business Process Management, BPM ’08,
pages 394–397, Berlin, Heidelberg, 2008. Springer-Verlag.

[22] OASIS. Web Services Human Task (WS-HumanTask) Specification Version 1.1,
August 2010.

[23] OMG. Business Process Model and Notation (BPMN) Version 2.0.2, Dec. 2013.

[24] G. Redding, M. Dumas, A. H. M. ter Hofstede, and A. Iordachescu. A flexible,
object-centric approach for business process modelling. Service Oriented Computing
and Applications, 4(3):191–201, 2010.

123

[25] M. Reichert and B. Weber. Enabling Flexibility in Process-Aware Information
Systems: Challenges, Methods, Technologies. Springer, Berlin-Heidelberg, 2012.

[26] H. A. Reijers, S. Limam, and W. M. van der Aalst. Product-based workflow design.
Journal of Management Information Systems, 20(1):229–262, 2003.

[27] S. W. Sadiq, M. E. Orlowska, and W. Sadiq. Specification and validation of process
constraints for flexible workflows. Inf. Syst., 30(5):349–378, July 2005.

[28] H. Schonenberg, R. Mans, N. Russell, N. Mulyar, and W. M. P. van der Aalst.
Towards a taxonomy of process flexibility. In CAiSE Forum, volume 344 of CEUR
Workshop Proceedings, pages 81–84. CEUR-WS.org, 2008.

[29] M. Smatti, M. C. Oussalah, and M. Ahmed-Nacer. Supporting deviations on software
processes: A literature overview. In Software Technologies - 10th International
Joint Conference, ICSOFT 2015, Colmar, France, July 20-22, 2015, pages 191–209,
2015.

[30] B. Staudt lerner, S. Christov, L. Osterweil, R. Bendraou, U. Kannengiesser, and
A. Wise. Exception Handling Patterns for Process Modeling. IEEE Transactions
on Software Engineering, 36(2):162–183, Mar. 2010.

[31] F. Strecker, R. Gniza, T. Hollosy, and F. Schmatzer. Business-actors as base
components of complex and distributed software applications. In Proceedings of the
8th International Conference on Subject-oriented Business Process Management,
S-BPM ’16, pages 9:1–9:8, New York, NY, USA, 2016. ACM.

[32] W. M. P. van der Aalst. Process-aware information systems: Design, enactment,
and analysis. In Wiley Encyclopedia of Computer Science and Engineering. John
Wiley & Sons, Inc., 2008.

[33] W. M. P. van der Aalst, M. Pesic, and H. Schonenberg. Declarative workflows:
Balancing between flexibility and support. Computer Science - Research and
Development, 23(2):99–113, 2009.

[34] W. M. P. van der Aalst and M. Weske. Case handling: A new paradigm for business
process support. Data Knowl. Eng., 53(2):129–162, May 2005.

[35] I. T. P. Vanderfeesten, H. A. Reijers, and W. M. P. van der Aalst. Product-based
workflow support. Inf. Syst., 36(2):517–535, 2011.

[36] N. Zazworka, V. R. Basili, and F. Shull. Tool supported detection and judgment
of nonconformance in process execution. In Empirical Software Engineering and
Measurement, 2009. ESEM 2009. 3rd International Symposium on, pages 312 – 323,
2009/10// 2009.

124

Chapter 4

Change Aware Process
Enviroment

Contents
4.1 Problems of Unofficial Changes . 126

4.1.1 Example of an Unofficial Change 126
4.1.2 PDG as a Global View . 129
4.1.3 Discussion . 130

4.2 Change Impact Analysis Objectives 132
4.3 Change-aware Process Environment BAPE 133
4.4 Change Management Mechanism . 134

4.4.1 Change Analyzer Process . 136
4.4.2 Change Analyzer Component 138

4.5 Assessing the Impact of Change . 145
4.6 Related Work . 149

4.6.1 Process/Documentation Support 150
4.6.2 Decision Making Support . 150
4.6.3 Synthesis . 152

4.7 Summary . 154

This chapter introduces the change management support provided by our process
environment which enables process actors to report emergent changes, analyze the
possible impacts and inform the affected people by the changes. The challenges of
managing process changes along with the importance of PDG are presented in Section
4.1. We identify the essential objectives of our change management approach which are

125

discussed in Section 4.2. To support change management, architecture of our process
environment BAPE is extended as presented in Section 4.3. Section 4.4 introduces our
proposed change management process in order to handle change requests. The core step
of our process is regarding analyzing the impact of change which achieved by developing
a change impact analyzer component. Section 4.5 presents the feasibility of using some
metrics in order to enrich the result of change impact analysis. Section 4.6 studies some
essential works and compared them with our solution. Finally, Section 4.7 summarizes
this chapter.

4.1 Problems of Unofficial Changes
Nowadays, changes in SSE processes are almost inevitable due to evolving requirements,
resources and technologies. Changes occurring in a running task can affect, in a chaining-
fashion, other tasks either inside one organization or among different organizations.
Badly managed changes can lead to unwanted reworks and cause projects to fall behind
schedule and go over budget. Applying a holistic, structured approach to manage changes
is then crucial to avoid adding extra cost and risk to both the project and organizational
levels.

In [15], the authors classified changes existing inside companies into two types: official
and unofficial. An official change happens often at a company or product level and
requires to be handled by a formal protocol. Normally the process dealing with official
changes is rather well-defined and conducted in each company. An unofficial change
happens generally inside technical processes, during the pre-certification phases, as
backwards patching/debugging redesign processes [5] where process actors attempted
to fix a problem quickly during their work. This type of changes is often informal or
semi-formal and poorly managed due to the lack of coordination among process actors.
In this work we focus on managing such unofficial changes.

4.1.1 Example of an Unofficial Change

To illustrate the issues of unofficial changes, we consider the process of our industrial
partners as shown in the Figure 4.1.

The respective process can be applied to various projects initiated for different wiring
change demands corresponding to different specific testbenches. We discuss the impacts
of unofficial changes based on one of the most common situation that frequently occurs
during the modification of testbench wiring. We suppose that there is no any systematic
support for handling changes. The illustrating scenario is described as follows:

Execution scenario ∆
We assume that the company has launched three projects by enacting three process

126

Figure 4.1: Process of Modify Testbench Wiring

instances P1, P2 and P3 respectively for three wiring change demandsWCD1,WCD2
and WCD3. Particularly, we examine the process instance P1 initiated from change
demand WCD1 regarding the testbench TB1. We suppose that P1 shares some
artifacts and resources with other process instances. The main information along
with the execution scenario of P1 are respectively presented in Table 4.1 and Figure
4.2. We suppose that in P1, two instances of activity Purchase Component PC1
and PC2 are performed, the components C1 and C2 are produced and installed on
the testbench TB1. At that moment, the Wiring Team WT2 is performing his task
Wiring Components WC1 by consuming artifacts Instal Components IC1 and IC2.
Wiring Team WT3 involved in P2 is performing task Fix Component FC3 of his
activity Fix and Install component FIC3 in order to set up the component C1 on
the testbench TB2. Moreover, the Bench Coordinator BC3 and Wiring Team WT4
involved in P3 are waiting to use the Testbench TB1 in order to perform their tasks.

127

Table 4.1: Information of P1

Process Actors

Analyst = A1
Instrumentation Team = IT1, IT2
Supplier = {S1, S2}
Wiring Team = {WT1,WT2}
Electrical Designer = ED1
Bench Coordinator = BC1

Non-human resources TestBench = TB1
Components {C1, C2}
Shared Resources
& Artifacts

P1 ∧ P2 C1
P1 ∧ P3 TB1

Figure 4.2: Execution Scenario

Description of change scenario
In P1, the Wiring Team WT1 realizes a problem in the already produced Component
C1. Thus WT1 requires to change C1 by redoing his task FC1 which will result in a
new version of IC1.

To continue and finish his installation, WT1 wants to modify C1 which is out of
his responsibility. If the change was controlled, WT1 had to inform the Supplier S1 of

128

the problem and then wait for a new version of C1. However, in reality, in a loosely
controlled development environment, WT1 may change directly C1 without reporting
the change because (1) he cannot wait and (2) he does not know the concerned people
to notify them of the change.

In this example, the possible impacts of the change on C1 initiated by WT1 are:

• Impacts inside P1 Any change in C1 will immediately affect the process fragment
instance of Wiring Team WT2 who is wiring up the installed components IC1
and IC2 for testbench TB1. Changing C1 without notifying WT2 may lead to an
incompatible testbench TB1 which is obsolete and not corresponding to the real
component C1 supplied by S1. This change may require reworks of the supplier S1
to insure the consistency between the artifacts Component Requirement CR1 and
the Component C1.

• Impacts among other process instances As process instances share artifacts and
resources, the change inside one process instance may propagate through other
instances as well. For instance, the change on C1 in P1 leads to rework of Wiring
Team WT3 in order to install the new version of Component C1 on testbench TB2.
Additionally, the change causes reworking of the Wiring Team WT1 to install the
new version of C1 for the test bench TB1. Consequently, WT1 may have to keep
TB1 for a longer period. Because TB1 is also required in the Wiring Team and
Bench Coordinator process fragment instances of P3, the change in P1 can have
significant impact on P3. The impact concerning shared resources requires often
stressful and costly planning adjustments for the whole company.

4.1.2 PDG as a Global View

The impacts of the mentioned change scenario cannot be deduced from the process
(fragment) models as dependencies among process instances arise only at enactment-time,
e.g., list of concrete artifacts along with their states, the state of tasks and the shared
resources. By performing the analysis at the model-level we can deduce just some
coarse-grained impacts of change. For example, we can say that a change on the artifact
type Component will impact the tasks Fix Component and Wiring Components. But if
these activities have many concurrent task instances performed by different members of
wiring team, we cannot say exactly who and which task instances are affected. Moreover,
at the model-level, we cannot know the inter-process impacts via shared resources.

We emphasize the use of instance-level process information in order to establish a
global view on the state of all elements inside the development environment. As observed
in the examined process, while some of the dependencies existing among elements inside
one process instance can be easily extracted at build-time from the process model,
there are other dependencies which only emerge at enactment-time. It is especially the
case of dependencies among tasks which are instantiated multiple times and collection

129

of artifacts. It is also the case of dependencies via shared resources among different
running processes. In contrast to most of existing works which have concentrated on
the dependencies at process model-level [6, 10], our PDG describes dependencies at
enactment-time in the process instance-level, thus allows a more thorough change impact
analysis.

As mentioned in the previous chapter, PDG monitors the instances of process elements
enacted in the process environment as well as the relations among them. In fact, PDG
represents the process elements and the dependencies among them at enactment-time
(instance-level) and is progressively updated by the process engine to reflect always the
current state of the system. As in our approach process models are fragmented and are
progressively enacted during the project execution, PDG establishes the global view
of the system from separate process fragments at enactment-time via shared resources
among respective fragments. This global view provides the only base for analyzing
the impact of process change and determining the affected elements of the change,
e.g., process actors, artifacts, resources, etc. For an efficient storing and querying of
enactment-time process data, the PDG is implemented in a graph database. Thanks to
the graph structure of PDG, when a change request occurs, PDG provides a sound and
effective basis to traverse intra-process instances and inter-process instances based on
shared artifacts and resources in order to derive the affected elements. This is achieved
by developing traversal algorithms which look up PDG in order to extract affected
process elements.

Figure 4.3 illustrates the whole instance-level information of the process instance P1
and only parts of other process instances illustrating the dependencies among process
instances. For instance, we can see the dependencies among process fragments inside P1
through exchanging artifacts (e.g., Components C1 and C2 between process fragments of
Supplier and Instrumentation Team, FICD FICD1 between process fragments of Analyst
and Electrical Designer, etc.) and sharing resources (e.g., Testbench TB1 between process
fragments of Supplier, Instrumentation Team and Bench Coordinator).

We can also observe the dependencies among process instances via exchanging
artifacts (e.g., Component C1 between process fragments of Supplier in P1 and Wiring
Team in P2, Component C2 between process fragments of Supplier in P1 and Wiring
Team in P4) and sharing resources (e.g., Testbench TB1 between process fragments of
Supplier and Wiring Team in P1 and Wiring Team in P2).

4.1.3 Discussion

As observed, based on the information existing at instance-level, in order to thoroughly
assess change impacts, managing and analyzing changes should be done at instance-level
through whole system as the change impact propagates inside and among process in-
stances.

We are interested in this unofficial change and motivated by development environ-

130

Figure 4.3: PDG representing the process instances

131

ments where changes are handled manually and communication between concerned
actors is free and ad-hoc. In such environments, the poor coordination can lead to
unawareness of changes, and therefore to possible reworking. Our challenge is regarding
proposing a mechanism that helps coordinating better the process actors and therefore
managing unofficial changes more efficiently and systematically.

Notice that we don’t have the ambition to propose a complete solution for change
management. We are primarily interested in the change notification issue. Change
implementation is out of the scope of the presented work. We consider only changes that
affects the content of artifacts, i.e., producing a new version of artifact. Our objective is
to provide an effective assistance for coordinating process actors in order to keep their
artifacts consistent.

In the next section, we illustrate how the architecture of BAPE can be extended in
order to support the systematic change signals and usage of PDG information in order
to traverse the PDG to extract the affected elements of the change.

4.2 Change Impact Analysis Objectives
In our work, we seek to remedy the problem of unnoticed changes in order to permit
concerned people to anticipate and respond to changes so that they can avoid obsolete
works. The ultimate goal of our work is providing a Change-Aware Process Environment
being reactive to change requests but proactive to change implementations [25, 12]. We
identify three main objectives of such a Change-Aware Process Environment which are
described as follows:

• Capturing change requests The proposed approach should provide support for cap-
turing in a centralized and continuous way all change requests sent asynchronously
by various process actors. This requires consolidating the process management
mechanism and a change management mechanism. On the one hand a Process
Management System is needed to monitor process actors’ activities. On the other
hand a Change Management mechanism is needed to allow process actors signaling
change requests during their tasks executions.

• Analyzing change impacts The approach should provide a mechanism to enable
analyzing the potential impacts of a change on the whole system. The corresponding
analysis should not be limited to one process instance as the change impact can
be propagated through whole running processes via shared artifacts and resources.
In order to enable analyzing the impacts of change among process elements in a
timely and systematically manner, we need to integrate the process management
mechanism and the query mechanism on the run-time process data. This requires
a mechanism to represent dependencies existing among all process elements of the
system at enactment-time, and therefore provides process actors with information

132

of the whole development environment - what they cannot know from their local
viewpoint.

• Informing affected people of change As the change may impact other process actors
on their completed or running tasks, the proposed approach should provide support
for notifying process actors affected by the change in a timely manner which avoids
obsolete work result and save time and budget.

With respect to the aforementioned objectives, we proposed a change impact analysis
approach whose role is turning our process environment BAPE to a change-aware
process environment. The change-aware BAPE facilitates run-time change management
by providing three mechanisms for: capturing changes occurring in the development
environment, (2) analyzing change impacts and (3) informing affected process actors, all
in a timely and systematically manner. In the next, we explain how we implement our
solution in details.

4.3 Change-aware Process Environment BAPE
Our aim is to consolidate two mechanisms of process management and change manage-
ment to obtain a change-aware process environment that enables process modeling and
process enacting with the capacity of handling changes coming from running processes.
In the previous chapters, we thoroughly explained our solution for process management
by presenting our modeling and enactment approaches which were implemented in our
developed process environment BAPE.

The focus of this chapter is to provide a mechanism to turn BAPE into a change-
aware process environment. Figure 5.6 shows the architecture of the change-aware BAPE
including the extended (sub)components as illustrated in a gray color. The description
of the extended components are as follows:

1. End User UIs In addition to a set of user interfaces to allow process actors to
interact with the core process management system to model and enact their
activities/tasks, a new interface offering process actors the possibility to send a
change request during their task execution and also receiving change signals from
other process actors is developed. Thanks to this new functionality, process actors
can integrate emergent changes into the process execution, those are not described
in their process model. Also a new role Change Manager together with the specific
interface are defined to centralize the change requests coming from different process
actors and illustrating the result of the change impact analysis. Change Manager
can decide about the change (i.e., to accept or reject) and then inform affected
process actors.

2. Change Analyzer Component We use this component to implement our change
management policy, in particular the change impact analysis that traverses the

133

Figure 4.4: Architecture of Change-aware BAPE

PDG and extracts the elements potentially affected by the change request. The
result of the change impact analysis is an Impact Graph (IG) that gives some
information to help the process owners on the change implementation decision and
in informing the concerned elements in a timely and systematically manner.

In the next section, we present how BAPE facilitates the implementation of our change
management process to allow process actors signal their change requests and be informed
of the impact of their changes.

4.4 Change Management Mechanism
We remind that the change management provided in this study is regarding providing a
systematic mechanism to pursue three main objectives:

• Signalling an intentional change.

• Estimating the impact of the requested change.

134

• Notifying potential affected process actors of the change.

To achieve the aforementioned objectives, we defined a process Change Analyzer repre-
senting one possible policy to handle change requests asynchronously sent by process
actors. To integrate this new functionality into BAPE, we used the feature of UserEvent
defined in the task state machine illustrated in Figure 4.5a. As mentioned in Chapter
3, this event permits process actors to manage some specific user defined events while
executing their tasks. Thus, we consider the change request event as a user defined event
as illustrated in Figure 4.5.

(a) Generic user event mechanism

(b) Application of user event mechanism

Figure 4.5: User defined event in task state machine

By using the feature of UserEvent, concretely we define a UserEvent having eventType
as ChangeRequestEvent and eventData as a Change Request CR.

In a change request CR (changeInitiator, changedElement, changeResponsible, changed-
Type, changeEstimation, changeComment, changeAffectedElements, changeDecision):

• changeInitiator is the process actor who initiates the change.

• changedElement is the element that he wants to modify. The changedElement
must be one of the elements related to the changeInitiator ’s current task, e.g.,
input artifact.

• changeResponsible is the process actor who is responsible of the changed element,
i.e., the one who produced the artifact which required to be changed.

135

• changeType is the type of change that the changeInitiator has initiated. When
a change initiator signal a change, he can evaluate the strength of the change
and can make minor change for correcting small problems of an artifact without
causing reworking in other tasks. If he wants to evolve an artifact whose changed
content can result in reworking on other tasks, he has to make his change as major
change.

• changeEstimation is the initial temporal estimation for the delay caused by the
change which is given by the changeInitiator or changeResponsible.

• changeComment is the description of the change provided by changeInitiator and
changeResponsible.

• changeAffectedElements are the elements affected by the changedElement. This
property is the result of analysing the impact of change, i.e., impact graph (IG).

• changeDecision is the decision made by change manager after analyzing the impact
of change. The decision can be either accepting or rejecting the change request.

By considering the change management policy as a separate executable process, BAPE
allows different change management policies to be defined. Whenever a process actor
signals a change request, process engine enacts the corresponding change management
process and executes its activities. The advantage of BAPE is that it allows the change
management process to be defined separately from the core engine. This separation
allows different policies to be adopted without requiring modifying the core of process
engine.

In the next, we present our process as an example of a policy adopted to handle the
change requests.

4.4.1 Change Analyzer Process

This process comprises automatic activities which implement the algorithms to analyze
the impacts of a change and inform affected people. We defined the Change Analyzer
process as the handler of change request event as illustrated in Figure 4.5. Figure 4.6
illustrates our change management process comprising major implemented activities.
When a process actor initiates the ChangeRequestEvent, process engine triggers the event
CreateProcess (Change Analyzer Process) to execute the defined change management
policy.

The properties of the change request are filled step by step during the change man-
agement process. When a process actor triggers signals a change request, he evaluates
the change by determining the changeType as minor change or major change. As the
effect of corresponding transition, process engine initiates the corresponding user handler
which is the change management process.

136

Figure 4.6: Change analyzer process

The process starts with process engine which receives the change request sent by
process actor and sends the respective change requests to the change manager. The
procedure of change management is slightly different depending on the changeType,
i.e., minor change or major change. If the change is a minor change which do not
impose rework on other affected tasks and do not require to be further evaluated by
changeResponsible, change manager can request process engine to analyze the change
impact. To do so, process engine uses the Change Analyzer Component in order to
extract the affected process elements of the change and inform affected people, specially
the change responsible, i.e., one who produced the changed artifact. We explained
detailed traversal procedure of our Change Analyzer Component in the next section.

By choosing the major change, first, the changeResponsible must be identified in
order to precisely evaluate the change, e.g., reporting initial temporal estimation for
the rework. Thus, change manager requests from process engine to find the chang-
eResponsible. To do so, process engine uses Change Analyzer Component in order to
find the changeResponsible, sends the change request to him and receives the evaluated
change request and sends back to the change manager. By receiving the evaluated
change request, change manager requests process engine in order to analyze the impact
of change. Similarly, process engine invokes the Change Impact Analyzer whose role is
to traverse the PDG, extract the affected elements and send the result to the engine
which later is sent to the change manager. At this step, change manager requires to
make decision about the change based on the information provided from change impact
analysis. In fact, two situations may arise:

137

• In case change manager accepts the change, he can decide which affected tasks
requires to be reconfigured, i.e., to be reworked, aborted or undone and then inform
affected people of the change. Notice that, as the state of required artifacts may
already changed by other tasks, rework or undo a task may require first to modify
the state of required artifacts in the DBMS in order to enable process actors to
re-start their tasks. However, this action is out of scope of change management
process and is assumed to be done separately by change manager or process owner.

• In case change manager rejects the change, only the changeInitiator and chang-
eResponsible are informed of the change decision.

We summarize the whole procedure of our change-aware BAPE in the Figure 4.7.
In our change management process, the core activity is regarding the analyzing the

impact of change by identifying the affected elements of the change. The impacted
elements of the change are derived from traversing the PDG by Change Analyzer
Component. In the next section, we explain the traversal procedure of Change Analyzer
Component in details.

4.4.2 Change Analyzer Component

This component is the core of our change management proposal which is responsible
to catch the sent change request, analyzes the impact of the change described in the
and sends the result to the process engine in order to inform affected process actors of
change.

The sub-component Change Impact Analyzer carries out the impact analysis by
traversing the PDG from the changed element changedElement thorough possible types
of edges. The result of the traversal is a digraph so-called Impact Graph (IG) which is
an extraction of the global PDG but contains only the process elements impacted by the
change, e.g., process actors, artifacts instances, resources instances, etc. These elements
are detected by the emerging dependencies among enactment-time process elements in
the PDG based on shared data and resources.

The impact can be direct if an element works with the changed element, or indirect
if an element works with an element impacted by the change. Moreover, thanks to the
PDG that keeps trace of all elements in the development, we can have a thorough analysis
on different axes: by examining both nodes inside and outside of the changeInitiator ’s
process instances, we can identify the impacts on the elements in the scope of a process
instance or in other process instances; by examining all existing task nodes - completed
and current - we can know which elements are really impacted.

Our change-aware BAPE can handle change situations conform to two change
patterns correction and evolution. These patterns directly depend on the type of the
change which can be minor or major. In the next we describe each pattern in details.

138

Figure 4.7: Procedure of change-aware BAPE

139

4.4.2.1 Correction Pattern

As illustrated in the Figure 4.8, this pattern concerns a situation when a process actor
faces a minor change during his task t2 in order to produce its output artifact. To
continue his task, he needs to change (correct) his input artifact art1 which is produced
by the completed task t1. At the moment of change, tasks t3 and t4 are in parallel with
t2.

Figure 4.8: Correction Pattern

First, Change Impact Analyzer component carries out a backward analysis to detect
the completed elements concerned by the change that need to be informed but do not
need to rework on the changed element. Backward analysis is implemented by the
traversing the PDG through incoming data edge of changed element art1 that results in
t1.

Afterwards, it runs a forward analysis to deduce the current elements that can be
concerned by the change. Forward analysis is implemented by recursively traversing the
PDG through all outgoing edges of changed element. According to the pattern, based
on the shared artifact art1, forward analysis gives us t3 as an affected element. The
correction on the art1 can add delay time on completing task t2. Consequently, all the
tasks needing resource r1 (e.g., t4) will be impacted by the respective delay.

In order to illustrate an example of correction pattern, we consider the following
scenario that happens in our examined process.

140

Execution scenario θ
We imagine a same set-up as we had in scenario ∆.
We suppose that in P1, Electrical Designer ED1 is using artifact ES1 to produce
the artifact Electrical Design model. Moreover the artifacts Component Requirement
CR1 and CR2 are produced by Analyst A1, and Wiring Team WT1 and WT2 are
waiting for the test bench TB1 for commencing theirs tasks Supply Component SC1
and SC2.
We suppose that in P3, Wiring Team WT4 and Bench Coordinator BC3 are waiting
for the test bench TB1 for commencing theirs tasks respectively Wire Component
WC3 and Define Bench Specification DBS3.

Correction change scenario
The change happens in P1 when the Instrumentation Team IT2 faces a problem during
his task Define Bench Specification DBS1 to prepare the artifact Bench Specification
for TB1. This problem requires a minor change on his input artifact FICD1 which
had been previously produced by IT1 in the task Define Instrumentation Model
DIM1.

Table 4.2 shows the result of change impact analysis based on the correction pattern
regarding the respective scenario. As a result of impact analysis, the impacted actors
inside P1 (i.e., ED1, BC1, WT1 and WT2) as well as outside P1 (i.e., WT4 and BC3)
must be informed of the change. The figure 4.9 illustrates the impact graph extracted
from the traversal corresponding to this scenario.

4.4.2.2 Evolution Pattern

The pattern in Figure 4.10 presents a situation when a major change occurs, e.g.,
normally caused by the environment of the project. This major change is requested
on the artifact art1 which is previously produced by t1. The change necessitates the
rework of t1 by concretely creating a new task instance t′1 to modify art1 in order to
produce the new version of art1. As the consequence of such rework, other current or
completed tasks may feel considerable impact, i.e., completed tasks need to rework in
order to produce the artifacts coherent with the change and current/running tasks may
need more time regarding their task execution in order to integrate the change in their
current tasks.

As explained in the previous chapter, our process environment facilitates the rework
for process actors, i.e., process actors can create new activity/task instances. Therefore,
the change responsible can create t′1 as a new instance of t1 and initiates the change
request entailing the changed element art1. Change Impact Analyzer performs a forward

141

Table 4.2: Correction scenario

Pattern Element Process Element Status Responsible Process Actor

t1
DIM1 completed IT1
OIM1 A1

t2 DBS1 current IT2
t3 SEM1 current ED1

t4

FC1

current

WT1
FC2 WT2
WC3 WT4
DBC3 BC3

art1 FICD1 completed IT1

r1 TB1 current

WT1
WT2
WT4
BC3

Figure 4.9: Impact Graph of scenario θ

142

Figure 4.10: Evolution Pattern

analysis by traversing the PDG through outgoing data edges of changed element art1 to
detect all the elements that are dependent on art1. As shown in the Figure 4.10, this
analysis gives the list of impacted elements comprising the completed elements t2 and
art4 and the current task t4. However, the rework on art1 does not have any impacts
on elements t3, art2 and art3.

Normally, major changes require an in-depth analysis to better estimate the impact.
These changes may consider situations regarding system evolution or new business
regulations where the impact must be perceived on all current and completed process
elements. Thus, it is important to identify the relevant and irrelevant elements to a
change. This issue is especially demanding in the situation where the changed element
is a collection of artifact and is related to a task which has been enacted multiple times.
Concretely each instance of the task is consuming one element in the collection of artifact.
Concretely, if the type of art1 is collection and t2 has been enacted several times, when
reworking art1, it may happen that only some of its elements are modified. In this
case, it would be useful to identify which instances of t2 will be affected by the changed
elements in art1.

To better illustrate the evolution pattern we reconsider the execution scenario ∆
where a major change happens as following.

Evolution change scenario
In P1, the change happens when A1 needs to enact once again the task Specify
Component Requirements SCR to solely modify the previously completed artifact
CR1. Note that the task instance SCR1 has previously produced two artifacts CR1
and CR2 but in this scenario we suppose that only the element CR1 which is an

143

input of task instance SC1 is considered as the changeElement.

Table 4.3 shows respective scenario of the pattern Evolution which emphasizes
on the multi-instance elements. Figure 4.11 illustrates the IG corresponding to this
scenario that Change Impact Analyzer provides to the change manager by traversing the
PDG. The impacted actors are distinguished by the cause of impact: A1 as the change
responsible and S1 as the one has directly impacted, are affected by the change on their
artifacts concerning the components C1, BC3. WT4 in process instance P3 are affected
by sharing the testbench TB1 with WT1. Moreover, WT3 in P2 is also affected by using
the shared artifact C1. We can see that the actors S2 and WT2 in P1 and the actor WT5
in P4 who worked on the component C2 are not affected by the change.

Table 4.3: Evolution scenario

Pattern Element Process Element Status Responsible Process Actor
t1 SCR1 completed A1
t′1 SCR′

1 current A1

t2

SC1
completed

S1
FC1 WT1
FC3 WT3

t3

SC2
completed

S2
IC2 WT3
FC5 WT5

t4

WC1
current

WT1
DBS3 IT4
WC3 WT4

art1 CR1 completed A1
art2 CR2 completed A1

art3

C2
completed

S3
IC2 WT3
IC5 WT5

art4

C1
completed

S1
IC1 WT1
IC3 WT3

The obtained IG is considered as the base to conduct impact analysis at different
levels according to a specific need of the change manager. For instance, IG can show
only the dependencies at process, task, data or resource (process actor and non-human
resources) levels. Another analysis can be regarding the in-degree and out-degree of
the nodes of the IG. Obviously, a node with maximum in-degree is the most affected

144

Figure 4.11: Impact Graph of scenario ∆

element of the change and a node with maximum out-degree is considered as a crucial
element which propagates the change throughout other affected elements. These analysis
can be easily achieved by defining some queries that look up the IG from different
points of interest, i.e., by traversing the impact graph and extracting specific nodes
such as ProcessNodes, ArtifactNodes, etc. For instance, Figures 4.12a, 4.12b, 4.12c and
4.12d respectively illustrate dependencies at process, artifact, task and resource levels
regarding the impact graph of scenario ∆.

4.5 Assessing the Impact of Change
The IG stores the affected entities of the process change. In principal, we can go further
in such analysis by annotating the nodes of the IG with some interesting metrics defined
by user according to specific needs of change impact analysis [11]. The applied metrics
are necessary to derive the strength of side-effects of change on certain aspects. This
enrichment of IG can facilitate understanding of the impact of change for the change

145

(a) Impacted processes (b) Impacted artifacts

(c) Impacted tasks

(d) Impacted resources (human and non-human)

Figure 4.12: Impact Graphs of scenario ∆ in different levels

manager and help him on procedure of decision making about the change.
In order to illustrate the benefits regarding usage of metrics in evaluating the change,

we consider two following cases that may take place in the scenario ∆:

• Case 1 as a result of the change, Analyst A1 estimates two days for the rework
task SCR′

1 in order to produce the new version of CR1.

• Case 2 thanks to the availability of Analyst A1, the rework task SCR′
1 requires

only 3 hours to be completed. Also we assume that there is an idle testbench TB4
in the system.

The Impact Graph derived from both cases would be the same, however the impact
of the change in the case 1 is far more than in case 2. The reason is the delay time
that results from the rework in both cases. Moreover, importance and availability of
the resources affected by the change can be significant on estimating the strength of
the change impact. For instance, the change is propagated from P1 to P2 through only

146

available testbech TB1. Therefore, availability of testbench TB4 in case 2 can reduce the
impact of change between P1 and P2. Therefore, enriching the IG by useful information
can aid the process of decision-making about the change.

In our proposal we adopt the Quality of Service (QoS) metrics to assess the impact of
change. According to [2], QoS metrics can be classified into quantitative and qualitative
metrics. By applying the QoS metrics into process change context, we assume that
applicability of QoS metrics is entirely associated with the degree of change. This means
that quantitative metrics are more related to ad-hoc changes (changes at enactment-time)
and qualitative metrics are consolidated with changes that occur in the infrastructural
level. Since our work addresses the problem of unofficial changes at enactment-time, we
apply four quantitative metrics known as Artifact Completion Percentage, Delay Time,
Realization Cost and Resource availability. These metrics are defined as follows:

• Artifact Completion Percentage ACP For any affected artifact, the percentage of
its completion at the time of change can be estimated based on the duration of
execution of the task that produces it. For instance, if a task producing the affected
artifact is completed, the respective artifact will have the maximum impact.

• Delay time DT It corresponds to the delay time that a change causes as a result of
reworking. The delay time can be in occupying a resource, producing an artifact
and/or participation of an actor in other activities. As mentioned earlier, when a
process actor evaluates a change, he estimates the temporal delay regarding the
change, i.e., resulted from reworking. As IG entails the temporal information such
as task duration and start time of task instances, the delay time can be propagated
through IG.

• Realization cost RC It represents the cost of resources (process actors and non-
human resources) used to perform the tasks of the processes. The information
regarding the resources can be obtained from the Resource Management System
(RMS). Information about realization cost is highly domain-specific and each
company has their own strategy to estimate it. In our work, realization cost of a
resource res is defined as RCres which is sum of two elements [2]: labor cost LCres

is the cost associated with each role of the domain and resource expertise REres is
a factor to differentiate actors playing the same role based on their expertise or
non-human resources based on their quality.

• Resource availability RAres This metric represents the list of idle resources having
the same type as res at the time of change [28]. This information can be beneficial
in a situation that a change affects an actor or a non-human resource who is
participated in several process instances, e.g., testbench TB1 in case 2 of scenario
∆. At this situation, information of resource availability can help the change
manager to allocate the idle resource to one of the affected process instances in
order to decrease the impact of change.

147

By considering the above properties, we have defined sample realization cost RC for the
resources of the scenario ∆ for cases 1 and 2 (for the sake of simplicity, actor expertise
RE = 0 for all resources). The result is illustrated in Table 4.4.

In order to enrich the IG with mentioned metrics, we consider the task-level impact
graph. The enriched impact graph is defined as follows:

IG = (V, E)
∀eij ∈ E | eij = (ti, tj , DT, artListj , resListj) where
ti is the source TaskNode,
tj is the target TaskNode,
DT is the delay time,
artListj is the list of affected ArtifactNodes where each one has two properties
as the name and artifact completion percentage (ACP),
resListj is the list of affected ActorNodes and ResourceNodes where each one
has three properties as the name, realization cost RCres and resource availability
RAres.

Table 4.4: Resource information of scenario ∆ for cases 1 and 2

Resource RC RA(case1) RA(case2)

Human

Analyst 0.6 φ φ
Supplier 0.4 φ φ

Electrical Designer 0.7 φ φ
Wiring Team 0.3 φ φ

Instrumentation Team 0.5 φ φ
Bench Coordinator 0.7 φ φ

Non-human Testbench 0.9 φ TB4

The enriched task-level IGs of the scenario ∆ for cases 1 and 2 are illustrated
respectively in Figures 4.13a and 4.13b. Thanks to the enrichment, the change manager
can better assess the impact of change. This assessment is mainly about delay time,
affected artifacts with their completion percentage and resource cost and availability.
For instances, in case 1, delay time propagated through tasks is 2 days compared to case
2 where the delay time is only 3 hours. In both cases artifact completion percentage
is kept same. Another difference between two cases is regarding resource availability.
any change imposed on the testbench TB1 in case 1 that may be concerned as a crucial
resource (RAtestbench = ∅) can increase the strength of the change impact. Existence of
the testbench TB4 in case 2 may lead to allocation of the tasks WC3 and DBS3 of P2
to TB4 in order to cut the impact of change propagation in process instance P2. Based
on these assessment metrics, acceptance of the change in case 2 can be more reasonable
than in case 1 for the change manager.

148

(a) Case 1

(b) Case 2

Figure 4.13: Enriched task impact graphs of case 1 and case 2

4.6 Related Work
Change management can be tackled from different perspectives, such as process per-
spective, tool perspective and product perspective [15, 5]. According to [15], tools and
methods to support the change process can be divided into two groups: (1) those that
help managing the process or documentation of the process and (2) those which support
process actors in making decisions at a particular point in the engineering change process
(e.g. the risk/impact analysis phase).

149

We use this structure to discuss some similar works on the tool perspective in Business
Process, System and Software Engineering communities.

4.6.1 Process/Documentation Support

Computer-based tools have been recognized as an essential to support engineering
changes [13]. In terms of academic works, Chen et al. [3] proposed a tool to support
distributed engineering change management linking with concurrent engineering. Lee
et al. [17] introduced a prototype for collaborative environment for engineering change
management which combines ontology-based representations of engineering cases, case-
based reasoning for retrieval and a collaboration model. In business process community,
many of existing works on change management focus on proposing mechanisms to enable
process adaptation and changes propagation [24, 1, 19, 21]. However, these studies focus
on facilitating the change implementation but the analyzing impact of change is outside
the scope of their works.

4.6.2 Decision Making Support

A wide variety of techniques are used in the context of impact analysis and change
propagation [13, 26] in the engineering domain. There is currently no commercial
package that helps predict the effect of a change, however some work is being carried
out in academic institutions [15]. Eckert et al. [4, 9] based on a study conducted in
Westland Helicopters, identified two types of changes: the emergent changes and the
initiated changes. This particular study was based on the interviews conducted with
the company’s employees. They proved that by capturing the design knowledge and
experience (e.g. source of change, interdependencies between parts and systems, etc.),
in the form of experienced designers in the company, an automatic tool to identify the
engineering change propagation can be developed.

The respective work has further led to the development of a computer support tool
by Jarrat et al. [14] to identify the risk of a change. They apply the Change Prediction
Method (CPM) to realize how changes spread through out a product by using Design
Structure Matrix (DSM) as the basis of the product model. The tool uses a simple model
of risk, where the likelihood of a change propagating is derived from the past experience
in terms of their occurrence and the impact such changes would have. A product model
consisting of two numerical DSMs is created, which show the likelihood and impact of
change propagation occurring between directly connected components. A route counting
algorithm is then used to calculate the combined impact of change propagation, which is
the sum of the direct risk and indirect impacts. This technique has been used in many
other works [22, 16, 9, 18].

Reddi and Moon’s [23] approach is another dependency model technique, harvesting

150

dependencies in the early phases of design for use in later stages of the life cycle. It
captures the type of change at both initiator and target as well as the likeliness of the
specific change propagating between the two in terms of discrete levels (low, medium, or
high). Search algorithms iterate through the model to identify all possible propagation
paths.

Impact analysis of change is also an important topic in the research area of business
process domain. Fdhila et al. [6, 7] propose a change propagation approach to deal with
change in process choreographies. They apply Refine Process Structure Tree (RPST) to
define public and private models of involved partners as well as achoreography model.
When applying a change operation to a partner’s private model, they extract all message
exchange activities concerned by the change. The list of affected interactions is analyzed
to identify all affected partners involved. Then, for each of these partners, a relative
change computation is accomplished to determine the changes to be propagated. Then, a
negotiation phase is launched with each affected partner. Their work is solely restricted
to modeling-time by analyzing the models and extracting the affected partners and their
change impact analysis is limited to inside one process.

Muler et al. [20, 21] deal with logical failures management in inter-workflow
collaboration scenarios by investigating temporal and qualitative implications of workflow
adaptation. They propose a predictive strategy estimating whether constraints for
delivery times or result qualities will be violated due to the dynamic adaptation. Temporal
implications of an adaptation are determined by estimating the duration required to
execute the dynamically adapted workflow and by comparing it with originally fixed time
constraints. If temporal constraints are expected to be violated, affected collaboration
partners are informed immediately. For qualitative implication, they introduce so-called
quality-measuring objects. These numerical objects are used in workflow’s data flow in
order to measure the quality of result provided by the workflow. To this aim, they extend
the workflow model by adding communication nodes COMM-IN and COMM-OUT which
respectively specify when information has to be sent to some collaboration partners
and when information is expected to be received from some collaboration partners.
The metrics used in their approach are for deriving the essence of adaptation not for
measuring the impact of the adaptation. Impact of change among process instances
is not investigated as they consider only the impact of adaptation inside one process
instance.

Wang et al. [27] study the impact of change between services and business processes
which expose services to business partners. They develop a service-oriented business
process model, based on which the taxonomy of change types (i.e., service changes,
process changes) is provided. Then a generic solution for identifying, analyzing, and
reacting to various types of changes in business processes and services is also developed.
The prototype SCA (Service Change Analyzer) implements their change management
approach for analyzing the change impact. SCA focuses on a type of dependency that
multiple services are supported by a single business process. For each input service

151

change, the SCA calculates the impact scopes and provides suggestions for the possible
change impact patterns. These analysis result for a specific service change help developers
to understand the direct impact and also the cascading impact in services and their
supporting business processes.

4.6.3 Synthesis

Process support approaches focus on implementing the change by allowing process actors
to change the model and propagate the change to the running instances. They neglect
the fact that a change can impact other process elements particularly at enactment-time.

Decision making support approaches like us focus on investigating the impact of a
change. In the following, we define their shortcomings compared to our proposed change
management approach.

• Integrating the change management into process management Most presented
approaches lack the integration of change management into process managements.
Some only integrate change management into the modeling phase by enabling the
analysis the change impact in the model [6, 7, 23, 8].
In our approach, the change management is integrated with process management,
i.e., particularly enactment phase. This brings great advantages as:

– Signaling change in a systematic manner In our process environment, process
actors can easily signal a change request through their enactment UI. In
fact, we enable process actor to integrate emergent changes, which are not
described in their process model, into the process execution.

– Informing affected people in a timely manner After extracting the result of
impact analysis, our process environment aids change manager to inform all
affected people of the change. This result in avoiding producing the obsolete
work and reduce the cost of rework.

• Usage of enactment-time information Generally, the impact of a change is analyzed
based on the dependencies among process elements, i.e., dependencies based shared
artifacts and resources (human and non-human). Mostly all discussed works
analyze the impact of change based on dependencies at model-level [6, 7, 23, 8]. In
fact, by assuming a change happening in the model (e.g., a change on an artifact
definition), their approaches can extract affected process elements of the change
from the process model. The result will be regarding which task definitions and
which roles or resource definitions can be impacted by the change. This type of
impact analysis limits the precision of the analysis result. There are particular
information that uniquely emerge at enactment-time which make dependencies
among process elements, i.e., information regarding collection of artifacts, multi-
instance tasks, concrete resources (process actors, machines, etc). Moreover,

152

modeling-time analysis cannot provide any information about current state of
process element instances, i.e., task, artifact and resource states.
In our approach, impact analysis is conducted at instance-level. This leads to have a
more precise impact analysis where we can precisely extract concrete dependencies
among process elements, i.e., concrete artifacts and resources instances. This
is achieved via PDG which stores instance-level information regarding process
elements, particularly representing the instance-level dependencies among them.
Thanks to the graph structure of PDG and developed traversal algorithms, affected
process elements of the change can be efficiently extracted and informed.

• Analysis the impact of change inter and intra processes All discussed works limit
the impact analysis to one process(including its sub-processes). They neglect the
fact that a change can be propagated inside a process and among other processes as
well. In fact, several projects may share artifacts and resources where a change on
one can impact the others as well, e.g., a process actor or a resource who is planned
to be used in two process instances. In our approach, as the impact analysis is
conducted in a PDG having the global view of system, impact of changes can be
easily extracted among process instances (inter-process) based on their shared
artifacts or resources.

153

4.7 Summary
This chapter introduced our change management approach which provides support for
capturing in a centralized and continuous way all change requests sent asynchronously
by process actors. Then, we provide a mechanism to enable analyzing the potential
impacts of a change on the whole system and finally notifying process actors affected by
the change in a timely and systematically manner. To do so, we extended BAPE by
defining our change manage policy as a separate process and implemented its activities
which turn BAPE to a change-aware process environment. We extend the task state
machine in order to enable process actors to send change requests while executing their
tasks and developed interfaces to support the change. A Change Analyzer Component
implementing traversal algorithms (correction and evolution) were developed in order to
traverse the PDG and extract the affected elements of change which are illustrated in a
graph so-called Impact Graph (IG). The obtained IG is considered as the base to conduct
impact analysis at different levels according to a specific need of the change manager,
e.g., process, task, etc. We discussed the feasibility of going further in such analysis by
annotating the nodes of the IG with some interesting metrics such as resource cost or
delay time. By conducting the change impact analysis at instance-level, we can achieve
to a more precise and accurate analysis regarding affected process elements.

154

Bibliography
[1] AristaFlow. http://www.aristaflow.com/.

[2] J. Cardoso, J. Miller, A. Sheth, and J. Arnold. Quality of service for workflows and
web service processes. Journal of Web Semantics, 1:281–308, 2004.

[3] Y.-M. Chen, W.-S. Shir, and C.-Y. Shen. Distributed engineering change manage-
ment for allied concurrent engineering. Int J Comput Integr Manuf, 15(2):127–151,
2002.

[4] C. Eckert, P. Clarkson, and W. Zanker. Change and customisation in complex
engineering domains. Research in Engineering Design, 15(1):1–21, March 2004.

[5] C. Eckert, P. J. Clarkson, and W. Zanker. Change and customisation in complex
engineering domains. Research in Engineering Design, 15(1):1–21, 2004.

[6] W. Fdhila, C. Indiono, S. Rinderle-Ma, and M. Reichert. Dealing with change
in process choreographies: Design and implementation of propagation algorithms.
Information Systems, 49:1–24, April 2015.

[7] W. Fdhila, S. Rinderle-Ma, and M. Reichert. Change propagation in collaborative
processes scenarios. In 8th International Conference on Collaborative Computing:
Networking, Applications and Worksharing (CollaborateCom), pages 452–461, Oct
2012.

[8] T. I. Grantham-Lough K, Stone MC. Prescribing and implementing the risk in early
design (red) method. In Proceedings of ASME 2006 International Design Engineering
Technical Conferences, volume 4a, pages 431–439, Philadelphia, Pennsylvania, USA,
2006. American Society of Mechanical Engineers (ASME).

[9] M. Griffin, O. de Weck, G. Bounova, R. Keller, C. Eckert, and P. J. Clarkson.
Change propagation analysis in complex technical systems. Journal of Mechanical
Design, 131(8):081001, 2009.

[10] C. Gupta, Y. Singh, and D. S. Chauhan. Dependency based process model for
impact analysis: A requirement engineering perspective. volume 6, pages 28–33.
International Journal of Computer Applications, 2010.

[11] M. Hajmoosaei, H. N. Tran, C. Percebois, A. Front, and C. Roncancio. Impact
analysis of process change at run-time. In 24th IEEE International Conference on
Enabling Technologies: Infrastructure for Collaborative Enterprises, WETICE 2015,
Larnaca, Cyprus, June 15-17, 2015, pages 156–161, 2015.

155

[12] M. Hajmoosaei, H.-N. Tran, C. Percebois, A. Front, and C. Roncancio. Towards a
change-aware process environment for system and software process. In Proceedings
of the 2015 International Conference on Software and System Process, ICSSP 2015,
pages 32–41, New York, NY, USA, 2015. ACM.

[13] G. Huang and K. Mak. Computer aids for engineering change control. Journal of
Materials Processing Technology, 76:187 – 191, 1998.

[14] T. A. W. Jarratt, C. M. Eckert, P. J. Clarkson, and L. Schwankl. Product archi-
tecture and the propagation of engineering change. In 7th International Design
Conference (Design 2002), pages 75–80, 2002.

[15] T. A. W. Jarrett, C. M. Eckert, N. H. M. Caldwell, and P. J. Clarkson. Engineering
change: an overview and perspective on the literature. Research in Engineering
Design, 22(2):103–124, April 2011.

[16] S. F. KöNigs, G. Beier, A. Figge, and R. Stark. Traceability in systems engineering
- review of industrial practices, state-of-the-art technologies and new research
solutions. Adv. Eng. Inform., 26(4):924–940, Oct. 2012.

[17] H. J. Lee, H. J. Ahn, J. W. Kim, and S. J. Park. Capturing and reusing knowledge
in engineering change management: A case of automobile development. Information
Systems Frontiers, 8(5):375–394, 2006.

[18] S. Li and L. Chen. Pattern-based reasoning for rapid redesign: a proactive approach.
Research in Engineering Design, 21(1):25, 2009.

[19] M. Minor, R. Bergmann, S. Görg, and K. Walter. Towards case-based adaptation
of workflows. In Proceedings of the 18th International Conference on Case-Based
Reasoning Research and Development, ICCBR’10, pages 421–435, Berlin, Heidelberg,
2010. Springer-Verlag.

[20] R. Müller and E. Rahm. Dealing with Logical Failures for Collaborating Workflows,
pages 210–223. Springer Berlin Heidelberg, Berlin, Heidelberg, 2000.

[21] R. Müller, U. Greiner, and E. Rahm. Agentwork: a workflow system supporting
rule-based workflow adaptation. Data and Knowledge Engineering, 51(2):223 – 256,
2004.

[22] S. Oh, B. Park, S. Park, and Y. S. Hong. Design of change-absorbing system
architecture for the design of robust products and services. In J. A. Jacko, editor,
HCI (4), volume 4553 of Lecture Notes in Computer Science, pages 1110–1119.
Springer, 2007.

156

[23] K. R. Reddi and Y. B. Moon. A framework for managing engineering change
propagation. International Journal of Innovation and Learning, 6(5):461–476, 2009.

[24] M. Reichert and B. Weber. Enabling Flexibility in Process-Aware Information
Systems: Challenges, Methods, Technologies. Springer, Berlin-Heidelberg, 2012.

[25] H. N. Tran, M. Hajmoosaei, C. Percebois, A. Front, and C. Roncancio. Integrating
run-time changes into system and software process enactment. Journal of Software:
Evolution and Process, 28(9):762–782, 2016.

[26] I. Ullah, D. Tang, and L. Yin. Engineering product and process design changes:
A literature overview. Procedia CIRP, 56:25 – 33, 2016. The 9th International
Conference on Digital Enterprise Technology – Intelligent Manufacturing in the
Knowledge Economy Era.

[27] Y. Wang, J. Yang, W. Zhao, and J. Su. Change impact analysis in service-based
business processes. Service Oriented Computing and Applications, 6(2):131–149,
2012.

[28] J. Xu, C. Liu, X. Zhao, S. Yongchareon, and Z. Ding. Resource management for
business process scheduling in the presence of availability constraints. ACM Trans.
Manage. Inf. Syst., 7(3):9:1–9:26, Oct. 2016.

157

158

Chapter 5

Evaluation

Contents
5.1 Proof-of-Concept Prototype . 159

5.1.1 Overall Architecture . 160
5.1.2 Process Engine as Controller 160
5.1.3 End-User Interfaces . 161
5.1.4 Implementation of PDG . 169

5.2 Industrial Case Study . 172
5.2.1 Modeling and Enactment Evaluations 173
5.2.2 Change Management Evaluation 175

5.3 Summary . 180

This chapter introduces the prototype of our developed process environment BAPE
along with the experiments conducted with BAPE regarding process modeling, process
enactment and change management. The main components of BAPE are presented in
Section 5.1. Section 5.2 illustrates two experiments, regarding the real process of our
industrial partners, conducted with BAPE in the context of ACOVAS project. These
experiments evaluate the modeling, enactment and change management support provided
by BAPE. Finally, Section 5.3 summarizes this chapter.

5.1 Proof-of-Concept Prototype
To demonstrate the technical feasibility of the propose framework, this section presents
the proof-of-concept prototype of BAPE. It aims at demonstrating the functionalities

159

of BAPE and evaluating how end-users (e.g., process owner, process actor and change
manager) will perceive this framework.

5.1.1 Overall Architecture

BAPE is a Java-based tool developed based on PAC architectural pattern (Presentation-
Abstraction-Controller) [2, 3] as illustrated in the Table 5.1.

Table 5.1: BAPE’s components based on PAC pattern

PAC Pattern BAPE
Controller Process Engine

Abstraction
SPML Process models

Company Assets
PDG

Presentation

Modeling UI
Enactment UI

Change Management UI
Monitoring UI

In PAC pattern, controller is considered as the core. Usage of this pattern allows
us to separate out our application into two major components as Presentation and
Abstraction which can be replaced or worked on in relative isolation. This makes BAPE
an extensible and pluggable framework, which can be easily replaced and customized.
The Presentation and Abstraction components never speak to each other. The Controller
takes input, not the Presentation component. The Controller has all the business logic
and routing information. The Presentation component is essentially just a filter that
takes and display raw data that the Controller pushes through it. Because there is
a separation between the Presentation and the Abstraction, with a well-defined way
of communicating (through controller), this allows multiple presentations (i.e., user
interfaces or views) of the same underlying data.

5.1.2 Process Engine as Controller

The process engine is the heart of BAPE. It is a light-weight engine that executes
processes and can be deployed on almost any device that supports a simple Java Runtime
Environment (JRE).

According to PAC pattern, process engine as the controller plays the role of event
listener and handler. In BAPE, process engine mainly listens to two types of events as:

• Events initiated from different presentations such as modeling, enactment, change
management and monitoring.

160

• Events initiated from external systems such as DBMS and RMS.

Process engine acts as an interface between Abstraction and Presentation components
to handle all incoming events, manipulates data using the Abstraction component and
interacts with the Presentation component to render the final output. As an example, the
enactment events are defined in the process, activity and task state machines which are
implemented in the process engine and triggered from the enactment interface. The code
snippet 5.1 illustrates some implemented methods regarding the Controller, Abstraction
and Presentation components of BAPE.
Cont ro l l e r :

// t h i s method de f ined in the a c t i v i t y s t a t e machine , updates the PDG
// and enactment p r e s en ta t i on o f the r e s p e c t i v e p roce s s ac to r
pub l i c void updateAbstractionView (Act iv i tyCreateEvent event)

Abstract ion :

// t h i s method d e l e t e s an a c t i v i t y from the proce s s fragment model
pub l i c void d e l e t eAc t i v i t y (S t r ing process , S t r ing ro l e ,
S t r ing a c t i v i t y)

// t h i s method s t a r t s execut ion o f a task by v e r i f y i n g the s t a t e o f
// r equ i r ed a r t i f a c t s in the PDG
pub l i c boolean ta skS ta r t (long taskID , Lis t<Arti factType> a r t i f a c t s)

Pre senta t i on :

// t h i s method updates the a c t i v i t y i n s t anc e t ab l e by adding
// in fo rmat ion o f a new enacted a c t i v i t y i n s t ance
pub l i c void r e l oadAct i v i t y In sTab l e (Act i v i ty ac t In s)

// t h i s method prov ides the r e s u l t o f change impact in the impact
// ana l y s i s t ab l e
pub l i c void reloadChangeImpactAnalysisTable (ChangeRequest cr)

Code 5.1: Some specifications of PAC methods

5.1.3 End-User Interfaces

This section gives an overview of the user interfaces provided by the developed proof-of-
concept prototype. BAPE is comprised of four user-friendly interfaces as Modeling UI,
Enactment UI, Change Management UI and Monitoring UI. To develop the interfaces,
we investigated the usage of graphical (i.e., window-based) and textual (i.e., xtext editor)
forms. We chose graphical interfaces according to the feedback of our industrial partners.

161

However, as mentioned earlier, usage of PAC architecture makes it very easy to plug
other forms of presentations into BAPE.

Java provides a rich set of libraries to create graphical user interfaces in a platform
independent way. We adopt Java Swing API which is a part of Java Foundation Classes
(JFC) that is used to create window-based applications. Java Swing provides rich controls,
lightweight and highly customizable components which follow PAC architecture.

Each user interfaces exposes different functionalities of BAPE to end-users (i.e.,
process actor, process owner and change manager). For instance, users can model the
company assets and their fragments of process through Modeling UI ; they can enact their
processes and processes’ activities and tasks through Enactment UI ; they can manage
the change requests through Change Management UI and finally they can monitor their
process executions through Monitoring UI.

Notice that users have different types of accessibilities to these interfaces. In order
to provide better organization through the rights and accessibilities of users to BAPE’s
functionalities, we defined three types of users as:

• Process Owner has full access to make any changes, e.g., defining company assets,
enacting processes, monitoring processes, etc.

• Process Actor carries out the activities/tasks defined in a process model. He can
be either:

– Team Responsible has the right to define company assets and model and enact
the fragment of process belonging to his role.

– Executer has the right solely to enact process activities/tasks of his fragment
model.

• Change Manager has full access to the Change Management UI to handle and
analysis the change requests triggered by process actors.

In BAPE, all the information regarding end-users (i.e., name, role, email, password and
responsibility) is defined in the organizational model as illustrated in the Figure 5.1.
In the next, we explain the usability of each developed interface in details.

5.1.3.1 Modeling UI

Authorized users (i.e., process owner and team responsible) can easily define or update
the company assets and the process fragment models via SPML. Figure 5.2 illustrates
the developed user-friendly Modeling UI dedicated to the process owner (e.g., project
manager PM1) who has the maximum rights and access to define company assets and
process fragments models. For instance, Figure 5.2 illustrates modeling the Analyst pro-
cess fragment of process Modify Testbench Wiring as presented in Chapter 2. Generally,
Modeling UI comprises two panels which are described as follows:

162

Figure 5.1: BAPE’s organizational model

• Company Asset Definition This panel is comprised of several tables allowing an
authorized user to define first the list of processes. Second, for each process, he
selects the list of roles required to be involved in the respective process. Notice
that information regarding the roles are extracted from the organizational model.
Third, he defines the list of options, artifacts and resources needed in the process.
Finally, for each artifact he defines the list of possible states that the artifact may
pass through its life cycle. The company assets are stored in the process repository.

• Work Definition This panel is comprised of three tables which allows user to first
define the list of activities belonging to his role. Then for each activity, he defines
the list of options, tasks along with setting the tasks’ properties as defined in
SPML meta-model, e.g., kind (mandatory or optional), name, etc. For each task,
he selects the list of artifacts as defined in the company assets. For each artifact,
he selects the demanded state along with setting other artifact’s properties as
defined in the SPML meta-model. Each activity along with its tasks is added to
respective process fragment stored in the process repository.

Notice that the well-formedness rules defined for SPML are built-in in the modeling
interface and are verified in order to avoid inconsistencies in the process fragment models.
For instance, Figure 5.3 illustrates a situation where Instrumentation Team IT1 creates
a task with an input and output artifacts in which both artifacts have the same state.

163

Figure 5.2: Modeling UI

164

Figure 5.3: Verifying well-formedness rules regarding artifact’s states

5.1.3.2 Enactment UI

The enactment-time functionalities of BAPE is exposed to process actors through
Enactment UI as illustrated in the Figure 5.4. The Enactment UI is comprised of five
panels as following:

• Process Panel This panel enables process owner to trigger events regarding processes
as defined in the process state machine (i.e., events to create, complete and abort
process instances).

• Activity Panel This panel illustrates the list of activity definitions extracted from
the process fragment model along with the list of activity instances for each process
instance. A process actor can trigger events to create, abort or complete an activity
instance.

• Task Panel This panel illustrates the list of task definitions extracted from the
model along with list of running and waiting task instances for each activity
instance. Through this panel process actors are enable to create, start, complete
or abort their task instances.

• Artifact Panel This panel shows the list of input and output artifacts extracted
from the model which their values required to be set respectively before starting
and before completing the task instance.

• Change Panel This panel illustrates the information regarding change requests as
following:

165

Figure 5.4: Enactment UI

166

– List of change action requests which is regarding the change requests required
to be evaluated.

– List of change signals which is regarding informing the process actor who is
affected by a change.

5.1.3.3 Monitoring UI

This interface provides real time information about the state of process instances along
with their tasks and artifacts to authorized process actors (e.g., process manager). The
information of this interface is feed from data coming from the graph database PDG
via implemented queries. Every time the BAPE process engine updates the information
stored into PDG, the data becomes automatically available to the Monitoring UI.

As in our approach processes are fragmented and progressively modeled and enacted,
having a mechanism to show the emerging process models is very beneficial in order
to give process owners good visibility of the activities of organization and identifying
possible problems in the process. As mentioned earlier, PDG establishes the global view
of the system from separate process fragments at enactment-time via shared resources
among respective fragments. Therefore, to illustrate the emerging process model, the
Monitoring UI comprises a snapshot of PDG. Currently, we illustrate the global model
in the form of Neo4j graph which utilize a simple notation to represent nodes and
their relationships. For instance, Figure 5.5 illustrates the Monitoring UI of a Project
Manager by presenting run-time data about tasks, artifacts and snapshot of running
process instances. However, in the future versions of BAPE, we consider to illustrate the
global model in other forms to be more understandable and visualized for process actors.

5.1.3.4 Change Management UI

The change management functionalities of BAPE are exposed to the change manager
through Change Management UI as illustrated in the Figure 5.6. Concretely, Change
Management UI is comprised of two panels as:

• Change Request Panel This panel entails two tables as Change Action Requests
and Evaluated Change Requests. The former enables change manager to request
action from the change responsible in case the initiated change request is a major
change. The latter shows the list of minor changes or the major changes evaluated
by the change responsible which requires their impacts to be analyzed.

• Impact Analysis Panel This panel illustrates the result of impact analysis comprising
the affected elements, e.g., artifacts, tasks, process actors, impact percentage, etc.
It enables process manager to make decision about the change and reconfiguring
affected tasks and informing affected people of change. Note that affected people

167

Figure 5.5: Monitoring UI

168

Figure 5.6: Change Management UI

are notified by receiving the change signal in their change panel along with an
email.

5.1.4 Implementation of PDG

Generally, a process environment requires a data management mechanism in order to
store enactment-time information, i.e., information regarding processes, activities, tasks,
artifacts and resources instances. In BAPE, enactment-time information is stored in
PDG. To implement our PDG we explored the usage of NoSQL data management
system. We focused on systems proposing native graph data management. This section
introduces their main features and our implementation choice.

A graph database management system is an online database management system
with Create, Read, Update, and Delete (CRUD) methods that expose a graph data
model. Graph databases are generally built for use with transactional (OLTP) systems.
Accordingly, they are normally optimized for transactional performance, and engineered
with transactional integrity and operational availability.

A graph database stores data in a graph, uses nodes, relationships between nodes and
key-value properties instead of tables to represent information. By assembling the simple
abstractions of nodes and relationships into connected structures, graph databases enable
us to build arbitrarily sophisticated models that map closely to our problem domain.

169

This model is typically substantially faster for connected data sets and uses a schema-
less, bottoms-up model that is ideal for capturing ad-hoc and rapidly changing data
[7]. As illustrated in the Figure 5.7, structure of the graph database is defined as follows:

Figure 5.7: Structure of graph database

• A graph records data in Nodes which have Properties.

• Nodes are organized by Relationships which also have Properties. Relationships
connect and structure nodes. A relationship always has a direction, a label, and
a start node and an end node. There are no dangling relationships. Together, a
relationship’s direction and label add semantics to the structuring of nodes. Like
nodes, relationships can also have properties. The ability to add properties to
relationships is particularly useful for providing additional metadata for graph
algorithms, adding additional semantics to relationships (including quality and
weight), and for constraining queries at run-time.

• A Traversal navigates a Graph. It identifies Paths which order Nodes. A Traversal
is how you query a Graph, navigating from starting Nodes to related Nodes
according to an algorithm. In our case, we are interested in finding answers to
questions such as "if an event happens, what processes and partners are affected?"

170

• An Index maps Properties to either Nodes or Relationships.

• A Graph Database manages a Graph and the related Indexes.

Graph databases are applied in areas where information about data inter-connectivity
is more important, or as important as the data itself. In these applications, the data
and relations among the data, are usually at the same level. One compelling reason,
then, for choosing a graph database for our bottom-up approach is the importance of
existing dependencies among process instance elements. These dependencies are playing
the vital role in process engine’s synchronizations as well as the change impact analysis.
In the former, availability and connectivity of artifacts and tasks enable process engine
to provide synchronization. In the latter, dependencies enable more thorough traversing
over all process instance elements in order to extract affected elements of the change.
Finally, more efficient storing and querying of enactment-time process data is achieved
in graph database. For instance, queries are localized to a portion of the graph. As a
result, the execution time for each query is proportional only to the size of the part
of the graph traversed to satisfy that query, rather than the size of the overall graph.

To resume, introducing graphs as a modeling tool has several advantages as follows:

• as they depend less on a rigid schema, graph databases are more suitable to manage
ad hoc and changing data with evolving schemas,

• graph databases are often faster for associative data sets,

• graph databases map more directly to the structure of object-oriented applications,

• graph databases scale more naturally to large data sets as they do not typically
require expensive join operations.

In our proposal, PDG is implemented by using Neo4j [5]. Neo4j is an open-source
native and JVM-based graph database. The architecture is designed for optimizing fast
management, storage, and traversal of nodes and relationships. Neo4j provides true
data safety through ACID transactions and supports fast development of graph powered
systems.

Neo4j can be run in embedded as well as server mode. We used the Neo4j Core-
Java-API to develop a Neo4j embedded application in our process environment BAPE.
Neo4j provides access to the full range of APIs for creating and querying data: the Core
API, traversal framework, and the Cypher query language [7]. Using the Core API, we
can control the transactional life cycle, executing an arbitrarily complex sequence of
commands against the database in the context of a single transaction. The Java APIs
also expose the transaction life cycle, enabling us to plug in custom transaction event
handlers that execute additional logic with each transaction.

Neo4j offers two ways in order to query the data base as using pure Java traversal

171

APIs or using Cypher as a declarative graph query language that allows for expressive
and efficient querying and updating of the graph store. Cypher is a relatively simple
but still very powerful language. Complicated database queries can easily be expressed
through Cypher. This allows process owners to focus on their domain instead of getting
lost in database access and query the PDG from their interest points. However it requires
to know the Cypher language. In BAPE, we used Neo4j Cypher Java API in order to
query the PDG. For instance, code snippet 5.2 shows a simple query which finds all task
instances of a process instance MTW1 and returns only running task instances.
t ry (Transact ion ignored = db . beginTx () ;

Result r e s u l t = db . execute ("MATCH (processNode {name : ’MTW1’ })
− [: be long]−>() − [: c h i l d]−>(top)
WHERE top . s t a t e = ’ inProgres s ’
RETURN top . name , top . Id "))

Code 5.2: A simple query in Cypher

In the aforementioned code snippet, the MATCH clause which is the most common
way to get data from the graph is used. It traverses PDG through edges belong and child
with specifying a constraint to obtain active tasks instances and returns their name and
id.

5.2 Industrial Case Study
This section reports the use of BAPE for a case study along with the feedback of our
industrial partners about BAPE’s usability. The examined case study is a simplified
version of a real case study conducted in the context of the project ACOVAS. Our
contribution to the project has been providing tool support to model, control, monitor
and managing changes of existing system development complex processes.

To do so, we carried out our evaluations in two parts as modeling and enactment,
and change management, concretely regarding our examined process described in Figure
5.8.

Our evaluation has been carried out among three process environments as following:

• jBPM [4] A traditional process environment which is light-weight, fully open-source
(distributed under Apache license) and written in Java. It supports modeling (i.e.,
described in BPMN 2.0), enacting, and monitoring (business) processes throughout
their life cycle.

• AristaFlow [1] An adaptive process environment providing flexible PAIS (Process-
Aware Information System) for a large number of processes from different domains,
e.g., healthcare, disaster management, logistics, and software engineering. In
particular, at the process instance level authorized users may deviate from the
pre-modeled process if required (e.g., to deal with unforeseen situations). Examples

172

Figure 5.8: Process of Modify Testbench Wiring

of such ad-hoc changes include the dynamic insertion, deletion or movement of
one or multiple process activities.

• BAPE Our developed process environment enabling process actors to model,
enact and monitor their processes along with providing some degree of change
management support.

In the next, we explain our experiments in details.

5.2.1 Modeling and Enactment Evaluations

In order to carry out our modeling and enactment evaluations, we consider our examined
process and applied a simple setup for a process instance P1 including six process actors
who were teams responsible playing different roles in the process. Table 5.2 summarizes
the main information of process instance P1.

Our evaluation on modeling phase has been based on the required roles to partici-
pate into two sub-phases as process elicitation and process formalization. The former
concerns gathering domain knowledge to refine and elaborate the process and the latter
is regarding modeling the process using a formal modeling language. Both jBPM and

173

Table 5.2: Information of P1

Process Actors

Analyst = A1
Instrumentation Team = IT1
Supplier = S1
Wiring Team = WT1
Electrical Designer = ED1
Bench Coordinator = BC1

Non-human resources TestBench = TB1
Activated Options instrumentation
Artifacts {C1, C2}

ArtistaFlow adopt top-down methodology and respectively use BPMN [6] and Petri Nets
[9] as their modeling language. Hence, when using these two environments, we had to
play the role of process designer to model the process. Process actors from our industrial
partners used the BAPE environment to model themselves their process fragments.

Our evaluation on enactment phase was regarding the support provided by the exam-
ined environments based on two criteria: the requirements for process synchronization
and offered flexibility to deal with emerging situations which are not pre-defined in the
model. To do so, we simulated the enactment of our examined process and experiment
several execution scenarios. The enactment of the process in jBPM and ArtistaFlow
were done by our academic research team, whereas in BAPE, the enactment of the
process were conducted by industrial partners.

The result of our modeling and enactment evaluations is presented in the Table 5.3.

jBPM AristaFlow BAPE

Elicitation process designer
process actor

process designer
process actor process actor

Formalization process designer process designer process actor
Synchronization complete-defined complete-defined partial-defined
Flexibility late-binding ad-hoc adaptation loose-inter-task execution order

Table 5.3: Modeling and enactment phases evaluations

As learned from our experience, jBPM and ArtistaFlow require an important effort
and time to model the process for both process designer (to understand and to formalize
the process) and process actors (to describe the process in process terminology). It
was difficult to ask process actors learning BPMN or Petri Nets to model themselves
the process. Moreover, they had difficulty to understand the final model in BPMN.
Therefore, we spent four months through conducting several interviews with process
actors in order to obtain their operational process.

Six process actors playing different roles used BAPE in order to model the fragment

174

of their process. They got all required information regarding the process modeling
(introduce the SPML concepts such as option) and modeling tool aspects, through
holding a modeling session. During this session, we asked process actors to define the
company assets in order to resolve some wording issues regarding their shared process
information. Then each process actor started to model his own fragment of process. In
order to examine the simplicity of our modeling language, we played the role of facilitator
to observe possible modeling difficulties.

By proposing SPML with a user-friendly modeling interface developed in BAPE,
process actors conveniently defined their own executable processes fragments without
requiring any guide during modeling process. Process actors found the modeling process
straightforward and fast. They believed SPML was enough expressive in order to define
their working process. They found fragmented process modeling beneficial which avoided
bringing a cognitive overload to the related roles and made it easy for them to concentrate
on their own contribution to the process. Besides the benefits of our modeling approach,
process actors pointed a limitation regarding the visualization of their process fragment.

About process synchronization, while both jBPM and ArtistaFlow require that the
whole process is modeled before enactment so that the process engine knows how to
synchronize and coordinate the process’s activities/tasks, BAPE can enact a partially
modeled process. On process adaptation, the case study shows the rigidity of jBPM faced
to unforeseen enactment situations. jBPM only supports the late binding by allowing
to define ad-hoc sub-process in the model. ArtistaFlow supports better the inadequate
anticipation in process modeling by offering ad-hoc deviations from predefined process
models. However, the resulting adaptation may cause enactment inconsistencies.

BAPE does not propose a proper solution for process adaptation but offers a less
restrictive manner to perform activities so that adapt better to real circumstances. In
BAPE, at enactment-time, an activity can manage freely and separately its inner tasks
because the process model does not prescript the inter-task execution order. Furthermore,
thanks to the activity state-machine which allows an activity to listen to different task
events, an activity is reactive to specific execution contexts. Together, these characteris-
tics of BAPE gives more autonomy to process actors in order to control their processes,
e.g., facilitating the reworks and enabling variable ways to perform an activity.

5.2.2 Change Management Evaluation

Our evaluation on change management was regarding the supports of examined tools to
allow systematic and timely change signalling, impact analysis and informing of affected
people. To do so, we simulated the execution of our examined process and play out
several change scenarios. For instance, one of our examined scenarios is described as
follows:

175

Execution scenario ∆
We assume that the company has lunched three projects by enacting three processes
P1, P2 and P3. Particularly, we examine P1 initiated from change demand WCD1
regarding the testbench TB1. The main information about P1 as well as the execution
scenario are respectively presented in Table 5.4 and Figure 5.9. We suppose that
in P1, two instances of activity Purchase Component PC1 and PC2 regarding two
Component Requirements CR1 and CR2 are performed, the installed components IC1
and IC2 are produced and Wiring Team WT2 is wiring the respective components
on the testbench TB1. We suppose that at that moment, the Wiring Team WT3
involved in P2 is performing task Fix Component FC3 of his activity Fix and
Install component FIC3 in order to install the component C1 on the testbench TB2.
Moreover, the Bench Coordinator BC3 and Wiring Team WT4 involved in P3 are
waiting to use the Testbench TB1 in order to perform their tasks.

Figure 5.9: Execution Scenario ∆

Change scenario
In the P1, A1 realizes a modification on his already produced artifact CR1. Thus,
he enacts a new instance of task Specify Component Requirements SCR′

1 and signals

176

a major change on CR1.

Table 5.4: Information of P1

Process Actors

Analyst = A1
Instrumentation Team = {IT1, IT2}
Supplier = {S1, S2}
Wiring Team = {WT1,WT2}
Electrical Designer = ED1
Bench Coordinator = BC1

Non-human resources TestBench = TB1
Components {C1, C2}
Shared Resources
& Artifacts

P1 ∧ P2 C1
P1 ∧ P3 TB1

We summarize in Table 5.5 different types of impacts that should be analyzed
when a change occurs. The impact can be direct if an element works with the changed
element, or indirect if an element works with an element impacted by the change. Then
we point out which types of impacts that can be identified in three solutions: (A)
without supporting tools (like actual solution of our partners in project ACOVAS), (B)
with run-time information taken from a standard process environment (as jBPM or
AristaFlow) and (C) with information taken from our change-aware process environment
BAPE.

The Table 5.5 is not for comparing BAPE with the solutions (A) and (B), but to
show the contributions of BAPE in analyzing inter-processes change impacts, impacts
on tasks at different states (i.e., current, completed, potential) as well as in analyzing
indirect change impacts. Thanks to the PDG that keeps trace of all elements in the
development, we can have a thorough analysis on different axes: by examining both
nodes inside and outside of the changed process instances, we can identify the impacts
on the elements in the scope of a process instance or in other process instances; by
examining all existing task nodes - completed and current - we can know which elements
are really impacted. However, as in our approach the procedure of process modeling
is incremental, to analyse potential impacts of a change, we have to simulate possible
scenarios of process’s evolution. Figure 5.10 shows the change manager UI as a result
of analyzing the change impact of scenario ∆. All the information regarding affected
elements is extracted and illustrated in the panel, e.g., affected artifacts and tasks,
responsible, impact percentage, etc.

In contrast to BAPE where analysis and propagation of changes are systematic and
immediate, change impact analysis takes more time in the solution (A) and (B). In (A),
without supporting tools, changes propagation is done by human actors and often the

177

change request has to be passed through many organizational levels so that its impact
can be estimated. In (B), using only a standard process environment, impact analysis
can be done by complex queries on various process logs, but lacking the information
about the data and resources using by tasks, this analysis is rather limited.

Table 5.5: Simulation results

Impacts Impacted Tasks Scope
Intra-process Inter-processes

Direct
Current (A), (B), (C) (C)

Completed (A), (C) (C)
Potential (A), (C) (C)

Indirect
Current (C) (C)

Completed (C) (C)
Potential - -

Legend A B C
Without Tool supports jBPM/AristaFlow BAPE

Figure 5.10: Change impact analysis results of scenario ∆

The feedback of our partners on the preliminary change management results of
BAPE is positive. They affirmed the needs of managing unofficial changes during the

178

development process, especially for dealing with problems in testing phase where time
constrains are important, since physical and human resources are reserved and allocated.
In Acovas project, a resource planning tool is dedicated to reserve resources required
for system testing. Although additional works will be needed to develop a full solution
that can be integrated to the real environment of our partners, they found that BAPE
is helpful and motivated to continue working with us on the improvement of BAPE.

The development of the BAPE was carried out in six months. As illustrated in the
Figure 5.11, developing BAPE comprises 10500 lines of code constituting three major
modules in which abstraction and presentation modules comprise several sub-modules.

Figure 5.11: Number of code lines for BAPE

Our framework is based on the assumptions that a central graph database, a central
resource repository and an application server (e.g. jBOSS) are provided to support
process and change management in a distributed environment. However, due to the
security policies of our industrial partners, currently we could not deploy our prototype
directly in their real development environment. So we conducted the validation with the
participation of our partners on a simulated development environment on one central
machine.

Regarding the possible evolutions of the prototype BAPE, we consider adding
following functionalities:

• Deploying and running BAPE in a web/application server along with develop-

179

ing web-based modeling tools to allow using BAPE in a distributed working
environment.

• Integrating BAPE into process actors’s development tools, e.g., Eclipse, Github,
etc.

• Enabling definition of non-human tasks, e.g., script tasks and service tasks.

• Developing different types of SPML modeling editors, e.g., textual, diagram, etc.

• Improving process monitoring by adding different metrics and key performance
indicators.

• Visualizing the global model in different forms in order to provide better commu-
nication among process actors to assess how processes are doing.

We developed BAPE for our bottom-up approach. However, it is a viable proposition to
use its main components process engine and PDG in top-down activity-driven process
environments [8]. The former, requires adaptation of state machines to implement the
behavior of engine based on activity-driven enactment. The latter which has a graph
structure to store process instance elements, can easily represent activity-centric process
models. However, PDG structure must be extended in order to reflect the dependency
established by work-sequence relations in the model, i.e., adding a new type of edge to
associated task instances.

5.3 Summary
This chapter presented the technical aspect of our developed process environment BAPE
along with our conducted experiments regarding modeling, enactment and change impact
analysis. BAPE’s architecture is based on PAC pattern which makes BAPE an extensible
and pluggable process environment. BAPE comprises user-friendly interfaces to allow
process actors to model, enact and monitor their processes as well as manage changes.
The choice of graph database (Neo4j) to implement PDG brings an advantage to project
dependencies among process instance elements. We conducted our experiments with
participation of our industrial partners by usage of three process environments, i.e.,
jBPM, AristaFlow and BAPE. We received positive feedback from our partners. By
providing a user friendly and an expressive modeling language, process modeling was
straightforward and was not time and effort consuming. Our enactment experiment
was performed by simulating several execution scenarios to illustrate the flexibility and
possibility of enacting SPML fragment models. Finally, our experiments on change
impact analysis show the strength of BAPE in automatically deducing the change
impacts between and among process instances.

180

Bibliography
[1] AristaFlow. http://www.aristaflow.com/.

[2] J. Coutaz. Pac: An object oriented model for implementing user interfaces. SIGCHI
Bull., 19(2):37–41, Oct. 1987.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-oriented Software. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1995.

[4] JBoss. jbpm, http://www.jbpm.org/.

[5] Neo4j. Neo4j website : http://www.neo4j.com.

[6] OMG. Business Process Model and Notation (BPMN) Version 2.0.2, Dec. 2013.

[7] I. Robinson, J. Webber, and E. Eifrem. Graph Databases. O’Reilly Media, Inc., 2013.

[8] H. N. Tran, M. Hajmoosaei, C. Percebois, A. Front, and C. Roncancio. Integrating
run-time changes into system and software process enactment. Journal of Software:
Evolution and Process, 28(9):762–782, 2016.

[9] W. van der Aalst and C. Stahl. Modeling Business Processes: A Petri Net-Oriented
Approach. The MIT Press, 2011.

181

182

Chapter 6

Conclusion and Future Work

To better support process actors in managing their operational processes, we proposed
a user-centric approach that allows process actors to model and enact their fragments
of the process in a bottom-up manner. In our approach, the global view of the system
can be constructed dynamically at enactment-time to allow synchronizing activities
instantiated from different process fragments.

6.1 Contributions
Overall, the contributions of this thesis are:

• Artifact-centric Process Modeling The first contribution of this work is an executable
and structural process modeling language (SPML) based on the artifact-centric
paradigm. The proposed language eliminates the behavioral aspect in process
modeling and focuses only on the structural aspect. SPML emphasizes on the
data-flows perspective by describing in detail artifacts consumed and produced by
activities. Moreover, it offers the ease of use to process actors by decomposing the
process model into several role-based fragments and using concepts known by pro-
cess actors in their daily work. The simplicity of SPML facilitates its operational
semantics as well as the implementation of this semantic in the process environment.
An advantage of the bottom-up and artifact-centric modeling is that it is not nec-
essary to define the whole process from the beginning of the project. The process
fragments can be progressively defined during the project execution. Moreover, if
some process fragments are not provided, the rest of the process can be specified
and enacted independently to the missing parts. However, this feature is under the
condition of having a shared data management system between process actors and
external agents/systems. By inverting the direction and changing the perspective,
our bottom-up modeling approach makes process modeling realizable by process

183

actors and the result process models give them more autonomy in enactment phase.

• Data-driven Process Enactment As second major contribution of this thesis, we pro-
posed an approach to enact SPML process fragment models which are structurally
and partially defined. Our enactment approach comprises two main components:
a Process Dependency Graph (PDG) to store process instance elements and an
artifact-centric process engine that enables enacting and synchronizing SPML
processes. Due to similarity of PDG and SPML structures, we define a direct
mapping between PDG and SPML concepts which makes process deployment
very simple. Our process engine adopts a data-driven mechanism where the main
driver to progress an activity is the availability of artifacts in the demanded states.
The proposed process engine offers a user-centric control where process actors
have enough autonomy to decide the way they enact their processes. This au-
tonomy brings flexibility in order to handle foreseen and unforeseen situations
at enactment-time, e.g., rework, optional activities, etc. Moreover, we provide
an extension mechanism that enables adding new functionalities to our process
environment without requiring any modification on core process engine.

• Change-aware Process Environment As last contribution of this thesis, we proposed
a mechanism to integrate into our process management environment new function-
alities to analyze the monitored processes and provide end-users the global view
about the whole system. This contribution is especially necessary in a bottom-up
approach where each process actors, as in the real life, has just a partial view on
the system.
In the first time, we proposed a change management mechanism to provide system-
atic support to handle change requests. We turned our process environment to a
change-aware environment by using our extension mechanism. In this environment,
run-time changes - which are not described in the process model - can be inte-
grated into process enactment. By providing process actors with the possibilities of
notifying and analyzing changes, our environment allows them to handle changes
in a centralized and proactive way so that they can better anticipate and response
to changes. The key strength of this work is using run-time process information to
establish dependencies among processes elements. Thanks to PDG, the dependen-
cies which are hidden on the model and only emerge at enactment-time via artifact
exchanging or shared resources are revealed. By uncovering these dependencies,
we could provide a more thorough and precise analysis on the impacts of changes
inside or among process instance. This advantage should be particularly in areas
where the development involves often various teams in different domains and on
complex products.

• Bottom-up Artifact-centric Process Environment (BAPE) To validate our user-

184

centric and bottom-up approach, we developed a proof-of concept prototype BAPE.
BAPE offers user-friendly modeling interfaces and less restrictive manner to process
actors, respectively to defined conveniently their own executable process fragments
and to perform their activities so that adapt better to real circumstances. BAPE
was validated by our industrial partners through conducting several experiments
on their processes. The first feedback of our industrial partners regarding modeling,
enactment and change management is rather positive. They found our approach
end-user friendly and were satisfied about the given autonomy to model and enact
their processes and react to different situations at execution. They stated that
SPML is enough expressive to allow them defining their processes. They emphasized
the need of the provided change management support in their daily work where
a lot of rework and problems occur due to lack of systematic coordination and
communication among actors.

6.2 Limitations and Perspectives
Our work aims at making process management realizable by process actors with a
bottom-up approach which is more natural way for them to perform. To be able to
concentrate on the essential points on modeling and enacting solutions, we make a
strong assumption about the application context of this work: the operational process
in practice has to be already defined, the company assets have to be defined, aligned
and shared among process actors. In reality, such an ideal starting point is not always
easy to obtain and some preprocessing works are needed before applying BAPE. This
preparation requires process designers to explain how process actors should describe in
details their activities, task, artifacts (with explicit states). However, our experiences
show that this step is acceptable for process actors because it concerns principally their
domain knowledge.

Our study has unveiled several aspects that should be addressed by further research.

• Preventing possible modeling and enactment inconsistencies In our approach,
the global process model is progressively constructed by adding coming process
fragments at enactment-time. That is why the verification of conflicts (e.g., dead-
lock situations) in the process model can be difficult before enactment. To remedy
this problem, we are investigating the use of a separate state-machine for each
type of artifact to establish finer constraints on activities sequences via the states
of their exchanged artifacts. Such constraints can help us detect potential conflicts
each time a new fragment is integrated into the global process.

• Feasibility of integrating BAPE into actors’ development tools Currently, BAPE
provides process actors to model, enact and report the progress of their work.
However, it is beneficial to integrate BAPE into process actors development tools,

185

e.g., Eclipse, Github, office suits, testing tools, etc. This fact can bring down the
gap between process and existing tools for project operation.

• Supporting of non-human tasks Currently, our approach supports only human
tasks. However, we are investigating the usage of non-human tasks such as service
and script tasks. Our aim is to enable the usage of external services and most
importantly the possibility of controlling process engine by exposing process engines’
functionalities through its APIs. The latter can be achieved by task’s script in a
language that the engine can interpret and execute.

• Usage of process mining for process improvement A complete process environ-
ment should consider all three phases of modeling, enactment and improvement.
However, the focus of this work was only on modeling and enactment. As future
work, we consider using process mining techniques to construct the global process
model extracted from enactments of different process instances. Verification and
improvement then can be done on this extracted process model.

Overall, we will continue working on the BAPE environment to realize a more user-centric
and flexible process management technology that allows process actors perform their
daily work in a more natural and intuitive way.

186

List of Figures

1.1 Activity-driven and top-down process management 17
1.2 Bottom-up process management . 20
1.3 Structure of SPML . 22
1.4 Core of PDG structure . 23
1.5 Snapshot of PDG . 24
1.6 Process state machine . 25
1.7 Overview of BAPE architecture . 26
1.8 BAPE process environment . 28

2.1 Process of Modify Testbench Wiring . 37
2.2 An example of process refinement . 39
2.3 Process of Modify Testbench Wiring modeled in BPMN 40
2.4 Example of synthesizing local views (fragments) modeled in BPMN . . . 41
2.5 Execution scenario and the model supporting respective scenario 43
2.6 Structure of SPML . 48
2.7 SPML meta-model . 49
2.8 Process Fragment of Analyst . 51
2.9 Process Fragment of Instrumentation Team 51
2.10 Invalid Model of constraint taskOutputArtifact 52
2.11 Invalid Model of constraint taskOutputArtifactUsage 52
2.12 Invalid Model of constraint artifactStateNotSame 53
2.13 Invalid Model of constraint artifactStateMustExist 54
2.14 Invalid Model of constraint activityOptions 54
2.15 Invalid Model of constraint activityOptionalTask 55
2.16 Invalid Model of constraint taskOption 55
2.17 Invalid Model of constraint artifactOption 55
2.18 Sequence Pattern in SPML and imperative language 57
2.19 Parallelism Pattern in SPML and imperative language 57
2.20 Choice Pattern in SPML and imperative language 58
2.21 Complex scenario of choice pattern in SPML and imperative language . 58
2.22 Iteration pattern in SPML and imperative language 59
2.23 Multiple instance Pattern in SPML and imperative language 60

187

2.24 The proposed modeling process described as a map 60
2.25 Modeling Evaluation Criteria . 63
2.26 Process Fragment of Analyst . 73
2.27 Process Fragment of Supplier . 73
2.28 Process Fragment of Instrumentation Team 74
2.29 Process Fragment of Wiring Team . 74
2.30 Process Fragment of Electrical Designer 74
2.31 Process Fragment of Bench Coordinator 75

3.1 Architecture of BAPE . 85
3.2 Structure of PDG along with references to SPML 88
3.3 Indirect mappings between SPML and PDG 92
3.4 PDG representing the process fragments instances 94
3.5 Process State Machine . 97
3.6 PDG as a result of creating process instance 98
3.7 PDGs as results of completing process instance 99
3.8 Activity State Machine . 99
3.9 PDG as a result of creating an activity instance 100
3.10 PDGs as results of completing an activity instance 101
3.11 Task State Machine . 102
3.12 PDG as result of creating task instance 104
3.13 PDGs as results of starting task instance 105
3.14 PDGs showing results of task wake up 106
3.15 Task event transition of activity state machine 108
3.16 Enactment Procedure of Process Environment 112
3.17 Enactment Evaluation Criteria . 114

4.1 Process of Modify Testbench Wiring . 127
4.2 Execution Scenario . 128
4.3 PDG representing the process instances 131
4.4 Architecture of Change-aware BAPE . 134
4.5 User defined event in task state machine 135
4.6 Change analyzer process . 137
4.7 Procedure of change-aware BAPE . 139
4.8 Correction Pattern . 140
4.9 Impact Graph of scenario θ . 142
4.10 Evolution Pattern . 143
4.11 Impact Graph of scenario ∆ . 145
4.12 Impact Graphs of scenario ∆ in different levels 146
4.13 Enriched task impact graphs of case 1 and case 2 149

188

5.1 BAPE’s organizational model . 163
5.2 Modeling UI . 164
5.3 Verifying well-formedness rules regarding artifact’s states 165
5.4 Enactment UI . 166
5.5 Monitoring UI . 168
5.6 Change Management UI . 169
5.7 Structure of graph database . 170
5.8 Process of Modify Testbench Wiring . 173
5.9 Execution Scenario ∆ . 176
5.10 Change impact analysis results of scenario ∆ 178
5.11 Number of code lines for BAPE . 179

List of Tables

2.1 Synthesis of End-user Modeling Approaches 72

3.1 Properties of a ProcessNode . 89
3.2 Properties of an ActivityNode . 89
3.3 Properties of a TaskNode . 90
3.4 Properties of an ArtifactNode . 90
3.5 Properties of an ActorNode . 90
3.6 Properties of an ResourceNode . 90
3.7 Properties of a PerformEdge . 91
3.8 Properties of a DataEdge . 93
3.9 Information of P1 . 95
3.10 Synthesis of Enactment Approaches . 121

4.1 Information of P1 . 128
4.2 Correction scenario . 142
4.3 Evolution scenario . 144
4.4 Resource information of scenario ∆ for cases 1 and 2 148

5.1 BAPE’s components based on PAC pattern 160
5.2 Information of P1 . 174
5.3 Modeling and enactment phases evaluations 174
5.4 Information of P1 . 177

189

5.5 Simulation results . 178

190

	Abstract
	Résumé
	Contents
	Problematic and Contributions
	Basic Concepts of Process Management
	Process Modeling
	Process Enactment

	Problem Statement
	Objective and Contributions
	Outline

	Artifact-centric Process Modeling
	Challenges of Top-down Process Modeling
	Examined Process
	Observed Difficulties
	Discussion

	Artifact-centric Process Modeling Approach
	Structural Process Modeling Language (SPML)
	SPML Meta-model
	SPML Well-formedness Rules
	SPML Expressiveness

	Modeling Process
	Related Work
	Evaluation Criteria
	Modeling Objective
	Modeling Process
	Modeling Language

	Review of User-centric Modeling Approaches
	Participative Approaches
	Role-Based Modeling Approaches

	Synthesis

	Summary

	Appendices
	Artifact-driven Process Enactment
	Challenges of Enacting SPML Process Models
	Structurally and Partially Defined Processes
	User-centric Enactment

	Data-Driven and User-Centric Process Enactment
	Process Environment BAPE
	Process Dependency Graph PDG
	Structure of PDG
	Nodes of PDG
	Edges of PDG

	PDG Example

	Process Engine
	Process Instance Life cycle
	Activity Instance Life cycle
	Task Instance Life cycle
	Discussion

	Enactment Flexibilities
	Loose Inter-Tasks Execution Order
	Partial Modeling
	Examples of Enactment Flexibilities

	Related Work
	Evaluation Criteria
	Control
	Flexibility

	Review of Artifact-driven Enactment Approaches
	Case Handling
	Object and data aware Process Enactment
	Product-based Workflow Support

	Review of Activity-driven Enactment Approaches
	Traditional Process management
	Flexible Enactment by Change
	Loosely-specified Process Enactment
	Subject-oriented Process Enactment

	Synthesis

	Summary

	Change Aware Process Enviroment
	Problems of Unofficial Changes
	Example of an Unofficial Change
	PDG as a Global View
	Discussion

	Change Impact Analysis Objectives
	Change-aware Process Environment BAPE
	Change Management Mechanism
	Change Analyzer Process
	Change Analyzer Component
	Correction Pattern
	Evolution Pattern

	Assessing the Impact of Change
	Related Work
	Process/Documentation Support
	Decision Making Support
	Synthesis

	Summary

	Evaluation
	Proof-of-Concept Prototype
	Overall Architecture
	Process Engine as Controller
	End-User Interfaces
	Modeling UI
	Enactment UI
	Monitoring UI
	Change Management UI

	Implementation of PDG

	Industrial Case Study
	Modeling and Enactment Evaluations
	Change Management Evaluation

	Summary

	Conclusion and Future Work
	Contributions
	Limitations and Perspectives

	List of Figures
	List of Tables

