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Introduction 
Forests around the globe are assumed to be threatened by an increasing number of 

droughts in the near future (Bréda et al. 2006; Allen et al. 2010; Carnicer et al. 2011). 

Yet, forests are important global elements of the water and carbon cycle and society 

depends on a variety of forest ecosystem goods and services (Myers 1997). Future 

droughts triggering a decline in forest cover would, thus, have severe implications for 

the carbon and water cycles of the earth as well as potentially generate societal and 

economic problems (Ciais et al. 2005; Bonan 2008; Reichstein et al. 2013). 

Indeed, climate scenarios for the coming decades suggest a strong increase 

in summer drought frequency and temperatures (Kirtman et al. 2103). In Central Europe, 

decreasing summer precipitation along with increasing summer temperatures is 

projected to bear heat waves and drought events like those in 2003 and 2015 more 

frequently (Fischer et al. 2014). It is, however,  still unclear up to what degree those 

future drought events will threaten Europe’s temperate forests (Hartmann et al. 2015). 

 
A number of studies has investigated the effects of dry-spells and summer drought on 

the physiology of temperate tree species using different measurement techniques one of 

which is the comparative assessment of tree water deficit (Brinkmann et al. 2016). Tree 

water deficit (TWD) is a promising technical approach to quantify a tree’s water stress 

as it is a measure for the water loss of the stem during periods of progressively drying 

soil (Zweifel et al. 2001; 2005). It is calculated from stem diameter variations (SDV) at 

the basal part of the trunk, which are measured with sensitive girth tapes or point 

dendrometers (De Swaef et al. 2015). In these terms, TWD is the shrinkage of the tree’s 

trunk over time when water in the soil gets short. Shrinkage mostly occurs in the elastic 

bark tissues over the day when water demand in the atmosphere is high and is a result 

of the lag between transpiration and soil water uptake (De Schepper et al. 2012). It 

undergoes daily cycles with refilling and, thus, swelling of the tissues during night-time 

when water demand in the canopy is low (Zweifel & Hasler 2001). Usually, this night-

time refilling of tissues can account for shrinkage, i.e. the water loss, over the day when 

the soil is rich in water. Therefore, a tree will shrink over the day but not over a longer 

period of time as it will be able to refill its storage during the night. During dry periods, 

however, when water in the soil is short, water uptake during the night is strongly 
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impeded and tissues cannot re-fill to their previous water content leading to an overall 

shrinkage of the stem throughout the whole dry period (Zweifel et al. 2001). 

Being a measure for the progressive water depletion of tissues, TWD has 

been shown to correlate with water potential in saplings and small trees (Drew et al. 

2011; Ehrenberger et al. 2012). Yet, it is not clear whether TWD measured at the base 

of the stem is also tightly related to the canopy water status, i.e. foliar/branch water 

potentials, in mature and tall trees. A tight correlation between these two variables would 

be exciting as it would strongly facilitate the assessment of a tree’s canopy water status 

which can otherwise only be assessed by expensive or destructive methods like tree 

climbing, branch shooting or measurements from a canopy crane. Furthermore, since it 

is not clear whether radial increment growth is possible during periods of shrinking 

diameter (Zweifel et al. 2016), there is a need to test whether accounting for or 

neglecting radial growth in the calculation of TWD from SDV does affect the 

relationship with canopy water status. 

 

Besides this very recent technique to study changes in the water status of tall trees, the 

assessment of sap-flow density as a measure for transpiration has extensively been used 

to describe and compare the water use of trees during drought (Pataki et al. 2000; 

Hölscher et al. 2005; Leuzinger et al. 2005). The most frequently used variety of this 

technique is based on the thermal capacity of water that flows around a heating copper-

constantan thermocouple radially inserted into the sapwood (Granier 1985; 1987). The 

faster water is moving upward the stem, the more heat is convectively removed from the 

thermocouple which thereby gets cooled. By comparing the extent of cooling of this 

thermocouple to the temperature of an upstream axially aligned thermocouple that is not 

heating, the velocity of the upward water flow can be determined (Granier 1985). This 

measured water flux has widely been accepted as a reliable measure for transpiration 

(Granier 1987; Oren et al. 1999; Ewers & Oren 2000). 

As it is difficult and very time-consuming to assess a species-specific 

conversion factor for the calculation of sap-flow densities from the temperature 

differences between the two sensors, most studies have used the universal factor 

proposed by Granier (1985) until now. However, depending on the xylem anatomy of 

the respective species, radial differences in sap-flow speed and potential wounding 

effects after the insertion of the two sensor needles, the Granier sap-flow system may 
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considerably under- or overestimate water fluxes both over time and among different 

tree species (Clearwater et al. 1999; Lu et al. 2004; Gebauer et al. 2008; Wullschleger 

et al. 2011). Since sap-flow is often used to compare water use strategies among species 

and to scale up transpiration from the individual tree level to the forest or even the 

ecosystem level, it is very important to estimate the error introduced by not 

differentiating between species-specific particularities. 

 

Together with measurements of water potentials and stomatal conductance, the two 

discussed techniques have been used in order to characterise the physiological response 

of temperate forest trees to moderately or strongly drying soil (e.g. (Hölscher et al. 2005; 

Köcher et al. 2009). Most of these studies found a pronounced effect of drought, i.e. soil 

water limitation accompanied by a strong atmospheric water demand, on the species’ 

physiology with sap-flow and stomatal conductance decreasing by up to 80% in 

coniferous trees during dry spells and by 50% in broad-leaved trees during the summer 

heat drought of 2003 (Leuzinger et al. 2005; Brinkmann et al. 2016). Coniferous trees 

were always found to respond more sensitively to drought than broad-leaved trees and 

were, thus, categorised as more prone to drought-related health decline (Pataki et al. 

2000; Brinkmann et al. 2016). However, up to now, no study has ever shown if and how 

these observed physiological responses are related to serious impacts on health and 

survival in temperate trees. Thus, we are currently lacking knowledge on the imminence 

of a future increase in drought frequency for temperate European forest tree species. It 

would, therefore, be extremely helpful to relate the observed patterns in drought 

responses to the mechanisms discussed for drought-induced tree mortality. 

 

Among others, two different major concepts are discussed to explain forest die-offs and 

health decline due to drought: (i) the hydraulic failure and (ii) the carbon starvation 

hypothesis. 

The concept of hydraulic failure relates to the water transport through 

capillary conduits in the xylem of the trees. The basic assumption of this concept is that, 

during drought, water potentials in the xylem progressively decrease and approach a 

critical value at which, once reached, some water columns in the conduits that 

experience the strongest tensions cannot stand the respective forces anymore and 

spontaneously disintegrate (i.e., cavitation; Milburn 1973; Blizzard & J 1980; Tyree & 
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Dixon 1983). By reducing the hydraulic conductance of the stem, this might lead to a 

severed water supply of the leaves and eventually would result in a rapidly increasing 

number of cavitation events if transpirational demands do not decrease since the same 

pulling force would be exerted on a smaller number of water columns (Sperry 2000). 

This fatal potentiation of cavitation events was named ‘runaway embolism’ (Tyree & 

Sperry 1989) and is assumed to finally end in the complete hydraulic separation of leaves 

and roots and, therefore, the death of the tree. Until now, the hydraulic failure hypothesis 

has gained a lot of supporters and xylem embolism is assumed to be the major factor 

determining tree mortality due to drought by many authors (Brodribb & Cochard 2009; 

Urli et al. 2013; Barigah et al. 2013; Anderegg et al. 2016) while hydraulic traits of trees 

are seen as important determinants of a tree’s drought resistance (Delzon & Cochard 

2014; Bouche et al. 2014). 

The carbon starvation hypothesis, by contrast, does not assume a severed 

water supply of the tree to be the ultimate cause of tree mortality but focuses on the 

physiological consequences of water limitation for the carbon household (McDowell et 

al. 2008). Theory predicts that stomatal closure during prolonged drought episodes will 

impede carbon uptake to an extent that photosynthesis cannot meet the respirational 

demand of the tree eventually leading to tree death due to a complete depletion in 

exploitable carbon reserves (McDowell & Sevanto 2010). Since it would take some time 

for the tree to completely exhaust its carbon reserves, carbon starvation is thought to 

occur more likely during long-lasting drought episodes (McDowell 2011). The carbon 

starvation hypothesis, however, is difficult to examine since we do not know which 

concentration of non-structural carbohydrates (NSC) would mark the point of no return 

for trees (Sala et al. 2010). Moreover, NSC observations in trees that recently died from 

drought have only rarely been observed (Adams et al. 2017). In general, most studies 

find the carbon starvation hypothesis to be inferior to the hydraulic failure theory for 

drought-induced tree mortality (Sala 2009; Hartmann et al. 2013; Adams et al. 2017). 

Yet, there is a growing consensus among authors that both theories need to be integrated 

and examined for interactions (also with insect outbreaks) in order to make progress in 

understanding drought-induced tree mortality (McDowell et al. 2011; McDowell 2011; 

Sevanto et al. 2014; Hartmann et al. 2015; Hartmann 2015). 
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While criticism and uncertainties are high concerning the carbon starvation hypothesis, 

the hydraulic failure concept seems to be widely accepted at this point in time (Brodribb 

& Cochard 2009; Choat et al. 2012). In fact, studies have found rigid numbers of stem 

water potentials associated with different amounts of embolism-induced reduction in the 

stem to be related to tree death for different functional types of trees. For conifers, it is 

assumed that a stem water potential leading to 50% reduction of xylem conductance 

(P50) would be lethal for the tree (Choat 2013).  In angiosperm trees, this value is 

expected to be around an 88% loss of conductance (P88) (Urli et al. 2013). 

Yet, previous experiments from decades ago challenge this view. Studies 

have shown that saplings of different tree species only show a strong decrease in water 

potentials when losing distinctly more than 90% of their cross sectional area and manage 

the rest with varying stomatal conductance (Sperry et al. 1993; Hubbard et al. 2001). 

Another study did not find any effect of up to 91% reduced cross sectional area unless 

severe overlapping cuts were made closely together (Mackay & Weatherley 1973). 

These results were obtained under well-watered conditions and it is not sure whether 

they apply to dry conditions as well. However, theoretical considerations suggest that 

under very dry conditions the trees completely shut their stomata. Under these 

conditions, transpiration would only account for about 5 – 10 % (cuticular transpiration) 

of maximum transpiration or even less since a drying epidermis can additionally 

decrease the remaining hydraulic conductance by up to 50% (Körner 1995; Larcher 

2003). Whether this transpirational suction would be enough to break the water columns 

in the xylem can only be assumed and is a matter of debate. Also, the distinct localisation 

of embolism in the stem xylem can be doubted. A recent study in grapevine suggests 

that, under drought, embolism occurs first in petioles and leaves are shed before a 

significant amount of embolism could accumulate in the stem (Hochberg et al. 2017). 

This would definitely be a different case for a coniferous species that cannot shed its 

needles (e.g. Juniperus spec.) but if assumed that embolism occurs in the petioles first, 

then the water column in the stem would be relaxed and drought resistance would simply 

rest upon desiccation tolerance of the tree body.  It is, therefore, unclear whether we are 

using the right measures to determine a tree’s vulnerability to drought. 

 

The impact of drought on trees is not only defined by the strength of the drought (i.e., 

extent of soil drying and atmospheric water demand) but is also a determined by the 
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duration of the water limitation (Allen et al. 2010; McDowell 2011). However, the 

amount and duration of a drought that would be sufficient to heavily affect a tree’s water 

status is unclear. Since climate projections for Central Europe predict several-day wet-

spells to become less frequent (Fischer et al. 2014), single precipitation events might 

become more important for the trees during prolonged drought episodes if they could 

benefit the water status of the trees. Therefore, it is important to assess whether and to 

what extent such single-day precipitation events will benefit the trees during severe 

drought events and how long this beneficial effect would last. 

 

During my doctoral research from April 2014 until October 2017, I tested methods to 

assess the water relations of temperate trees during drought and comparatively 

investigated the physiological responses of six different temperate tree species to water 

limitations. I specifically addressed the following questions: 

 

1) Do stem diameter variations, and more specifically tree water deficit, 

measured at the base of the trunk of tall trees correlate to water potentials in 

the crown and if yes, by what kind of relationship are these two variables 

linked to each other? 

2) To what extent are sap-flow estimates deriving from Granier-type sensors 

influenced by inter- and intra-species differences in xylem anatomy and 

wounding effects after needle insertion? 

3) How close do mature trees in a temperate forest get to hydraulic failure 

and/or carbon starvation during naturally occurring severe drought events? 

4) Does the loss of 50% conductive sapwood area in the stem have a fatal 

impact on the water status of mature individuals of temperate tree species? 

5) To what extent can single low-amount drought-intermitting precipitation 

events benefit the water status of mature temperate trees? 

 

The chapters of this thesis specifically address one of these questions and represent 

independent manuscripts that either are published or are submitted for assessment in 

internationally acknowledged peer-reviewed journals. Since the specific manuscripts 

are envisaged for different journals the formatting and citation style differs among the 

single chapters and each chapter does have its own references section. References from 
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this introduction can be found at the end of this thesis after the Concluding discussion. 

Co-authors of each chapter are explicitly named on the title pages.  
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Abstract 

Direct evidence for the link between stem diameter variations (SDV) and the daily 

canopy water status, i.e. daily water potentials (Ψ), is rare, particularly for tall trees. It 

thus remains unclear up to what degree SDV readings are useful to estimate daily canopy 

Ψ. We measured SDV with point dendrometers at the stem base of tall, mature 

individuals of six European forest tree species in a near-natural temperate forest and 

compared them to daily canopy Ψ during the growing seasons of 2014 (wet) and 2015 

(dry). SDV were de-trended for growth with two different approaches leading to the so-

called tree water deficit (TWD). We found that midday Ψ can be predicted from TWD, 

independent of the growth-de-trending procedure to obtain TWD from SDV. Further, 

daily TWD was a better indicator for daily midday Ψ, particularly under dry conditions, 

than maximum daily shrinkage (MDS), another common quantity derived from SDV. 

Based on data from six temperate tree species, we conclude that TWD measured at the 

stem base is a consistent proxy for daily canopy midday Ψ of tall trees over the entire 

range of measured conditions. 

 

Keywords: drought, mature trees, maximum daily shrinkage, stem diameter variations, 

tree water deficit, water potential 
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Introduction 

Daily stem diameter variations (SDV) in trees have become a frequently-used and 

intensively-discussed research tool in plant eco-physiology (De Swaef et al. 2015). 

Measured by sensitive girth tapes or point dendrometers (e.g., Linear Variable 

Differential Transformers or potentiometers), SDV have been shown to be sensitive to 

both radial growth and the water-related shrinkage and refilling of the stem tissue 

(Kozlowski and Winget 1964). Radial growth means the irreversible radial expansion 

of the stem as a consequence of the development of newly formed sapwood and bark 

tissue cells but does not include secondary growth (cf. Cuny et al. 2015). Reversible 

radial stem shrinkage and expansion is caused by changing water contents of stem 

tissues, mainly the bark (De Swaef et al. 2015). 

Stem shrinkage and refilling typically follows a diurnal pattern with a 

minimum stem radius in the afternoon and a maximum stem radius in the early morning. 

It is proportional to the loss of water from elastic tissues and can cover up to 100% of 

the transpired water on a cloudy day (Zweifel and Hasler 2001, De Schepper et al. 2012). 

The shrinkage of tree stems has mostly been attributed to the water depletion of bark 

cells (i.e. living phloem, fibrous phloem and the living and dead cells of the phellem). 

This can be explained by dynamic flow-and-storage processes (based on Ohm’s law) 

driven by water potential (Ψ) gradients between the different compartments of the soil-

tree-atmosphere system (Kozlowski 1972, Zweifel et al. 2001, Steppe et al. 2006, De 

Swaef et al. 2015). Differences in Ψ induce a progressive water flow from the point of 

higher to the point of lower Ψ, i.e., a radial transport of water between the stem sapwood 

and the bark. During daytime, this results in water flow from the bark to the xylem 

inducing a water content-related shrinkage of the bark cells. During the night, water 

potentials and flows are reversed resulting in the rehydration and re-expansion of the 

bark cells. Depending on the species, the shrinkage of the stem can additionally be 

attributed to the elastic behaviour of the xylem (Sevanto et al. 2002, Zweifel et al. 2014, 

Pfautsch, Renard, et al. 2015, Pfautsch, Hölttä, et al. 2015). The xylem elasticity itself 

has been explained to be a function of wood density (Scholz et al. 2008) and/or specific 

tissue elasticity (Zweifel et al. 2014).  

In dry periods when soil water potential (Ψsoil) progressively decreases, Ψ in 

trees does not fully recover during night-time, which in turn slows down the rehydration 

of the bark tissue. In such cases, the elastic stem tissues are not completely refilled 
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during the night and the stem remains in a partly shrank state (Kozlowski and Winget 

1964, Zweifel et al. 2001). Over time, this can lead to a marked gross shrinkage of the 

stem. Several authors have thus proposed a link between SDV and the overall water 

status of the tree that is typically described by Ψleaf or Ψbranch (Klepper et al. 1971, 

Hellkvist et al. 1980, Irvine and Grace 1997, Ueda and Shibata 2001, Zweifel et al. 

2005). SDV reflecting canopy Ψ is of high interest because it could strongly simplify 

the assessment of the water status of tall trees, which otherwise can only be determined 

by accessing the canopy via tree climbers, branch-shooting or a canopy crane to measure 

Ψ in the crown. Most importantly, SDV could provide continuous information on tree 

water status when automated dendrometers are used, thereby providing high-resolution 

information on tree and forest health in experimental and monitoring studies (Zweifel 

2016). 

 
Figure 1 Exemplary stem radial growth curve during 60 days of the 2015 growing season and visualization 

of the different approaches for calculating tree water deficit (TWD) we used for our investigations. TWD1 

and 3 are relating to the daily maximum, TWD2 and 4 are referring to the daily minimum in stem diameter. 

Maximum daily shrinkage (MDS) is considered to be the difference between the daily maximum occurring 

in the first half and the daily minimum occurring in the second half of the day.  

Different approaches have been proposed for the calculation of SDV-derived 

variables reflecting the water status of a tree (Fig. 1). A frequently employed approach 
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to assess the daily water status of a tree via SDV uses the maximum daily shrinkage 

(MDS) of the tree stem (Conejero et al. 2007, Velez et al. 2007, Ortuño et al. 2010, 

Fernández and Cuevas 2010, Conejero et al. 2010, Puerto et al. 2013). Good linear 

relationships between MDS, Ψstem (measured with a psychrometer) and Ψleaf have been 

reported for grapevine, citrus, peach, and plum trees when assessed over relatively short 

time periods (a couple of weeks to a few months) under mostly well-watered conditions 

(DeSwaef et al. 2009, Ortuño et al. 2010, Fernández and Cuevas 2010). Significant 

relationships between MDS and Ψstem or Ψleaf have also been found in timber plantations 

and forests (Lassoie 1973, Braekke and Kozlowski 1975, Zweifel and Hasler 2001, 

Cermák et al. 2007, Deslauriers et al. 2007, Turcotte et al. 2011, King et al. 2013, Biondi 

and Rossi 2014). As an alternative to MDS, the progressive shrinkage of the stem over 

longer time periods called tree water deficit (TWD) (Hölttä et al. 2005, Zweifel et al. 

2005, Drew et al. 2011, Brinkmann et al. 2016), has been shown to also correlate with 

Ψstem and Ψleaf in tree species (McBurney and Costigan 1984, Milne 1989, Irvine and 

Grace 1997, Offenthaler et al. 2001, Daudet et al. 2005, Ehrenberger et al. 2012). In 

essence, TWD is the difference between the theoretical radius of a tree at full hydration 

and its current actual radius (Fig. 1). TWD is thus an indicator for the absolute water 

deficit of the stem. It equals zero when the tree’s tissues are fully hydrated. Therefore, 

and in contrast to MDS, TWD allows accounting for accumulated water deficits also 

over extended periods (few days to months) of drought. Despite the potential of SDV 

measurements, important uncertainties remain for the application of TWD and MDS as 

a proxy for canopy Ψ of tall and mature trees and a comparative empirical assessment 

of the relationship between different SDV-derived variables and canopy Ψ of mature 

trees is still missing. In particular, it remains unclear whether TWD could potentially be 

underestimated by a growth-induced stem radius increase during times of water deficit 

(Kozlowski 1972, Zweifel 2006, Chan et al. 2015, Mencuccini et al. 2017) and whether 

MDS is reliably applicable as a proxy for the water status of the canopy during longer 

dry periods (Intrigliolo and Castel 2007, Puerto et al. 2013). 

In addition to the above uncertainties, a mechanistic explanatory concept for 

the qualitative and quantitative assessment of daily tree canopy Ψ using TWD from 

automated stem diameter measurements does not exist yet. We propose here that the 

relationship between TWD and canopy Ψ follows a logistic pattern (Fig. 2): When 

canopy Ψ is close to zero and the tension in the stem is low, the living cells in the 
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corresponding tissues should be close to full turgescence and TWD, thus, close to zero 

(Fig. 2). The more negative canopy Ψ becomes, the more negative Ψstem at the base of 

the tree gets. However, this does not necessarily lead to an instantaneous and linear 

shrinkage of the bark tissue along the stem. This is, because the relationship between 

cell turgor and cell volume depends on the volumetric elastic modulus of the cell wall, 

which itself is a function of turgor pressure, and varies in its steepness with a steeper 

slope at low turgor pressures (Steudle and Zimmermann 1977, Franks et al. 2001). 

Therefore, we expect the trunk to start shrinking only slowly with the initial decrease of 

Ψstem. Only beyond this slow decrease in cell volume a linear phase of shrinkage will 

occur, where declining Ψstem reduces the turgor of the bark tissue cells. This linear part 

of the relationship lasts until the bark cells have mostly lost turgor and the protoplasts 

start to detach from the cell walls. From this point on, we expect TWD to asymptotically 

approach a maximum that cannot be further exceeded by water withdrawal from the 

bark cells. Since the volumetric elastic modulus of the bark cells can be expected to be 

species-specific, we assume inter-species differences in the logistic relationship between 

TWD and Ψ. 

In the work presented here, we set out to test the general relationship between 

daily stem shrinkage and canopy Ψ over two growing seasons in mature individuals of 

six different central European forest tree species. We tested (i) how strongly MDS and 

daily TWD correlate with daily pre-dawn and midday canopy Ψ (Ψpre-dawn and Ψmidday), 

(ii) whether the explanatory power of the relationship between daily TWD and daily 

canopy Ψ changes with different approaches to de-trend SDV for growth, and (iii) 

whether the general relationship between daily TWD and daily canopy Ψ is of a logistic 

nature with saturating TWD at very negative canopy Ψ.  

 



 21 

 
Figure 2 Scheme of the hypothesized logistic pattern of the relationship between canopy water potential (Ψ) 

and TWD. At high and low Ψ, TWD only slightly increases with declining Ψ. However, close to the point 

of 50% depletion of internal storage tissues (D50), there is a strong linear dependency of TWD on Ψ, 

suggesting high depletion rates and strong water flows from storage tissues to the sapwood. 

 

Materials and Methods 

Study site and study species 

The study was conducted in a mixed temperate forest 15 km south of Basel, Switzerland, 

at an elevation of 550 m a.s.l. (47°28’N, 7°30’E) during the growing seasons of 2014 

and 2015. We chose those two years because of their contrasting soil water availability 

(Supporting Fig. 1) to assess a range in TWD and Ψ as broad as possible. The soil of the 

site belongs to the Rendzina type and the shallow bedrock (starting at ~1 m depth) is 

calcareous. The site has a temperate humid climate with mild winters and moderately 

warm summers. Mean January and July temperatures are 2.1 and 19.2°C, respectively. 

Total annual precipitation of the region sums to ca. 900 mm. We measured air 

temperature, relative humidity, precipitation and solar radiation during both years with 

a weather station (Davis Vantage Pro 2, Scientific Sales Inc., Lawrenceville, NJ, USA) 

and recorded soil water potential (Ψsoil) at -20 cm depth and 20 cm distance from the 

stems of the investigated trees with a dielectric sensor (MPS-2, Decagon Devices, 

Pullman, WA, USA) on ten-minutes intervals. In 2014, we employed 20 Ψsoil-sensors 
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and 12 in 2015. The trees of the forest are between 100 – 130 years old and have been 

studied very intensively as part of the Swiss Canopy Crane Project (Pepin and Körner 

2002). The forest consists of deciduous and coniferous tree species dominated by Fagus 

sylvatica and Quercus petraea. Other species are Abies alba, Larix decidua, Picea abies, 

Pinus sylvestris and Carpinus betulus. Average tree height is between 35 and 40 m. For 

this study, we performed measurements on four mature individuals of the species C. 

betulus, F. sylvatica, L. decidua, P. abies, P. sylvestris and Q. petraea resulting in a total 

of 24 investigated trees (Tab. 1). L. decidua was only investigated in 2015. 

 
Table 1 Mean diameter at breast height (DBH) for the investigated tree species. 

Tree species DBH (mean ± SE, n = 4) 

Carpinus betulus 34.4 ± 7.4 cm 

Fagus sylvatica 60.0 ± 5.0 cm 

Larix decidua 50.1 ± 1.8 cm 

Picea abies 59.6 ± 3.1 cm 

Pinus sylvestris 51.4 ± 4.6 cm 

Quercus petraea 47.9 ± 3.5 cm 

 

Dendrometer measurements 

Each investigated tree was equipped with a point dendrometer (ZN11-T-WP, Natkon, 

Oetwil am See, Switzerland) installed at 2 m height at the north-east facing site of the 

stem. The electronic part of the dendrometer was placed on a carbon frame, which itself 

was anchored in the stem with three stainless steel rods, holding the pin of the 

dendrometer to point towards the center of the stem. In species with rough bark the 

surface of the dead bark beneath the pin of the dendrometer was carefully flattened to 

provide an undisturbed point of contact for the pin. Data were recorded every ten 

minutes with a logging node (Channel Node, Decentlab GmbH, Dübendorf, 

Switzerland) wirelessly transmitting onto a data logger (Base Station, Decentlab GmbH) 

and broadcasting the data to a server via cellular network. For visualization of the trees’ 

growth and radius variation on a species level (species means), we first calculated 

relative radius values for each individual tree to reduce noise in the species-specific 

mean radius curves resulting from small but significant differences in DBH. This was 



 23 

done by dividing the radius values by the overall maximum radius measured over both 

growing seasons (values given in %). 

 

Water potential measurements 

Pre-dawn water potential (Ψpre-dawn) and midday water potential (Ψmidday) were measured 

with a Scholander pressure bomb (Model 1000, PMS Instruments, Albany, OR, USA) 

on terminal shoots form the upper part of the sunlit crown of each investigated tree. A 

gondola operated by a canopy crane provided canopy access. We measured three, max. 

10 cm long shoots with three to four leaves (broad-leaved) or brachyblasts (L. decidua) 

in the deciduous species and current year shoots in the evergreen species (P. abies and 

P. sylvestris). The cut surface of the shoots was smoothened with a razor blade before 

measuring. We did not cover the leaves in tin foil before measuring. Ψmidday was assessed 

around noon on 28 days at an irregular interval throughout the two growing seasons. 

Ψpre-dawn was measured shortly before sunrise on nine days throughout the progressing 

drought in 2015. 

 

Calculation of MDS and TWD 

We determined maximum daily shrinkage (MDS) of absolute stem diameter variations 

(SDV) by calculating the differences between the daily pre-dawn maximum and the 

daily afternoon minimum in stem radius (Fig. 1). Tree water deficit (TWD) was 

calculated according to the two approaches of Zweifel et al. (2005 & 2016): In the first 

approach, an envelope curve is computed as a line connecting the running maxima in 

the absolute stem radius (red line, Fig. 1). This was obtained by calculating linear 

regression lines that interpolate between all the running maxima (the current and the 

next higher maximum) in stem radius over time. The difference between the respective 

value of the resulting line and either the daily maximum (early morning) or minimum 

(afternoon) in stem radius is then called TWD (TWD1 and TWD2 in Fig.1, 

respectively). This approach assumes that there is a constant, unimpeded radial growth 

rate (cell division and expansion) in the cambium of the stem over time no matter how 

much water-depleted the stem tissues become and how different environmental 

conditions are. In the second approach, a horizontal line from the current maximum stem 

radius is drawn to the next higher maximum stem radius in time. From there, this 

procedure is continuously repeated until the next respective maximum is reached 
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eventually terminating at the final maximum stem radius of the season. The obtained 

horizontal lines therefore always represent the value of the last maximum stem radius in 

time (blue line, Fig.1). The difference between the values of this line (i.e. the current 

potential stem radius maximum) and the current daily stem radius maximum or 

minimum is then calculated as TWD3 or TWD4, respectively. In this approach, it is 

assumed that growth only occurs during days when the radius exceeds the maximum 

radius of the previous period. In all four approaches to calculate TWD, TWD is an 

indicator for the absolute water deficit of the stem. It equals zero when the tree’s tissues 

are fully hydrated. TWD and MDS were obtained in the unit µm. 

In our analysis of the relationship between TWD and Ψ, we separately related 

Ψpre-dawn and Ψmidday with all SDV variables. When testing the specific shape of the 

relationship between TWD and Ψ we focussed on the relationship between TWD4 and 

Ψmidday because these showed the strongest relationship in the above analysis. In all 

regressions, we always plotted values of TWD against values of Ψ that were obtained 

on the same measurement day. 

 

Normalization of TWD and Ψmidday 

To fit a sigmoidal function into the relationships between Ψ and TWD, we normalized 

TWD for each species. This was done to facilitate the calculation of logistic parameters 

by the non-linear least squares function in R (nls()). We normalized TWD by dividing 

daily TWD values by the highest species-specific TWD value measured over both 

seasons. We call normalized TWD values from here on relative TWD. We also 

normalized Ψmidday in order to compare the sigmoidal relationships between Ψ and TWD 

across species. Since we did not have continuous data of Ψmidday over the two growing 

seasons we might have missed the most negative values for Ψ. It was therefore not 

possible to normalize the obtained values on the most negative measured values. To 

overcome this limitation, we calculated a reference minimum Ψ value for each species 

from the species-specific logistic relationship we found between relative TWD and 

absolute canopy Ψmidday. Given the asymptotic nature of the relationship between TWD 

and Ψ at very low values, we defined minimum Ψmidday to occur at a relative TWD value 

of 0.95. 
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Statistical analyses 

Statistical analyses and data visualization were done using R, version 3.3.2 (R 

Foundation for Statistical Computing, Vienna, Austria 2013), with its packages caTools 

(Tuszynski 2014), data.table (Dowle et al. 2015), ggplot2 (Wickham 2009), gridExtra 

(Auguie 2015), MPV (Braun 2015), scales (Wickham 2015), xts (Ryan and Ulrich, 

2014) and zoo (Zeileis and Grothendieck 2005). We tested if linear or logistic functions 

can better explain the relationships between daily TWD and daily Ψmidday. Linear fits 

between daily TWD/MDS and daily Ψmidday were obtained from linear models using the 

lm() function (y = mx + n), logistic fits were done using the nls() function with the 

equation 

(1)   ! = 	 $
$%	&'(∗(+,-) . 

The parameters a and b thereby determine the steepness of the curve (rate of bark 

depletion per MPa Ψ, a) and the inflection point of the function (Ψ at which 50 % of the 

bark is depleted, b). We assumed p < 0.05 to represent the level of significance for all 

statistical tests. To quantitatively evaluate if linear or logistic regressions best explain 

the observed relationships, we compared the R2 of the two functions. For this purpose, 

we transformed the logistic regression into a linear relationship by calculating the fitted 

values for Ψ and then relating them to the respective measured values of Ψ. Then we 

compared the R2 values of the resulting linear relationship with those of the linear 

regressions. For the evaluation of the best predictive power of either linear or logistic 

regressions, we calculated the predicted residual error sum of squares (PRESS) 

(Montgomery et al. 2015). 

 

Results 

The two investigated growing seasons differed in terms of their average meteorological 

conditions. The year 2014 was moist, and the year 2015 was one of the driest years on 

the central European weather record (Tab. 2, Supporting Fig. S1, Orth et al. 2016). 
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Table 2 Environmental conditions during the two growing seasons (May 1st to October 31st) of the study 

period. Precipitation is the sum of all events during the season. Ψsoil is the mean of 20 (2014) and 12 (2015) 

sensors at depth of -20 cm (± SD). Mean daily temperature and mean relative humidity are averages of daily 

means (± SD). 

Environmental variable 2014 2015 

Precipitation 551 mm 348 mm 

Ψsoil -0.043 ± 0.048 MPa -0.421 ± 0.330 MPa 

Mean daily temperature 16.8 ± 4.1°C 16.5 ± 6.0°C 

Maximum daily temperature 29°C 30.9°C 

Minimum daily temperature 5.5°C 2.5°C 

Mean daily rel. humidity 73.0 ± 12.5 % 67.9 ± 14.7 % 

 

Stem radius measurements showed a net growth in all species in both years and 

substantially more stem shrinkage during the dry periods in 2015 than in 2014 (Fig. 3). 

C. betulus, L. decidua and P. sylvestris showed relatively large stem shrinkage compared 

to their growth, whereas F. sylvatica, Q. petraea, and P. abies shrank much less in 

relation to their growth. 

Maximum daily shrinkage (MDS) generally covered the same range in both 

seasons for most species except for C. betulus and Q. petraea, which showed higher 

MDS in 2015 compared to 2014 (Fig. 4). In contrast, we observed strong differences in 

daily tree water deficit (TWD) between 2014 and 2015 for all species (Fig. 4). While 

daily TWD was moderate in 2014 it reached substantially larger values in 2015. Further, 

L. decidua and P. sylvestris showed higher TWD earlier in the dry year 2015 while TWD 

of the other species increased more gradually during the whole season. The absolute 

values of MDS and TWD were highly different among species: F. sylvatica and C. 

betulus had the smallest absolute shrinkage while the conifers (P. sylvestris, P. abies 

and L. decidua) showed the highest values (Fig. 4). 

 



 27 

 
Figure 3 Relative radius increment of the six species during the years 2014 and 2015. Note that periods of 

stem shrinkage are more or less visible depending on the relative strength of the shrinkage as compared to 

the overall growth increment which was especially strong in F. sylvatica and P. abies. Radius was measured 

with point dendrometers on the NE side of the trunks of 4 individuals of each species (n=4) at around 2 m 

height. Data are given ± SD. 

 

 

Values of Ψmidday found in the two growing seasons across species ranged 

from -0.66 ± 0.04 MPa (mean ± SD) in F. sylvatica to -2.7 ± 0.08 MPa (mean ± SD) in 

Q. petraea (Supporting Fig. S2). Ψmidday was less variable in the growing season of 2014 

than in 2015. In 2015, there was a decrease of Ψpre-dawn and Ψmidday throughout the 

summer (July – September) in most of the species. 
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Figure 4 Absolute maximum daily shrinkage (MDS) and daily tree water deficit (TWD4) of the six species 

during the growing seasons of 2014 and 2015 (n = 4 individuals per species). 

 

Linear regressions were used to test the relationship between different SDV 

variables and Ψpre-dawn and Ψmidday for each species. MDS strongly correlated with Ψmidday 

of Q. petraea, L. decidua and C. betulus but weakly with Ψmidday of P. abies. No 

correlations between MDS and Ψmidday were found for F. sylvatica and P. sylvestris. (Fig. 

5). When moist and dry periods were considered separately, the two relationships 

between MDS and Ψmidday were equal for the two species Q. petraea and L. decidua, 

similar for C. betulus, and inverse for P. sylvestris, F. sylvatica, and P. abies (Supporting 

Fig. S3). Ψpre-dawn did not correlate with MDS for none of the species (Fig. 5). 
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Figure 5 Explained variance (R2 values) and levels of significance (p) for the linear correlations between the 

different calculated absolute parameters of SDV and Ψmidday (md) and Ψpre-dawn (pd). Ψ was measured 

throughout the growing seasons of 2014 and 2015 at around 30-40 m height with a canopy crane, each time 

at nearly the same positions in the sunlit crown of the individuals. 

 

In contrast to MDS, we found strong correlations between daily TWD and 

Ψpre-dawn and Ψmidday for all species (Fig. 5). In general, TWD of F. sylvatica and P. abies 

showed better correlations with Ψpre-dawn, whereas TWD of C. betulus, Q. petraea and L. 

decidua exhibited stronger correlations with Ψmidday. For P. sylvestris there was no 

distinct difference between the correlations of TWD and the two canopy Ψ measures. In 

general, we found that TWD1 and 3 explained Ψpre-dawn almost equally well. The same 

was found for TWD2 and 4 concerning Ψmidday. Yet, TWD3 correlated slightly better 

with Ψpre-dawn than TWD1 and TWD4 showed a better correlation with Ψmidday than 

TWD2. Overall, the approach assuming no growth during stem shrinkage (TWD3 and 

TWD4) showed slightly better correlations to canopy Ψ.  

To test the shape of the relationship between TWD and Ψmidday we used 

TWD4, since it revealed the strongest correlation to Ψmidday. Logistic regressions 

between TWD4 and Ψmidday had a slightly higher explanatory power for most species 

than linear functions (Fig. 6, Tab. 3). Only for Q. petraea, the linear regression showed 

a slightly better R2 than the logistic regression. Interestingly, the slope of the logistic 

relationship between Ψmidday and TWD4 showed substantial variability across species, 
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with P. sylvestris exhibiting the steepest slope and Q. petraea showing the flattest slope 

at the point of inflection (Fig. 7A). We calculated the predicted residual error sum of 

squares (PRESS) for all relationships to compare the fit of the logistic and linear 

functions to the measured data. PRESS values suggested a better fit of the logistic 

regression than the linear regression for C. betulus and the three conifers. Only for F. 

sylvatica and Q. petraea, PRESS suggested a better fit for the linear regression. When 

tested across all species, the logistic regression between TWD4 and Ψmidday explained 

2% more of the variation than the linear regression (Fig. 7B, Tab. 3) indicating that both 

models are almost equally good predictors of TWD. Importantly, however, the PRESS 

value of the logistic regression was considerably smaller than the PRESS value of the 

linear regression, which suggests a generally better fit and higher predictive power of 

the logistic function compared to the linear one (Tab. 3). 

 

 

 
Figure 6 Logistic relationships between relative values of TWD4 and Ψmidday for the six species during the 

growing seasons of 2014 and 2015. Each point represents the mean of three measurements of Ψmidday in the 

crown of four individuals (n=4) and the mean relative TWD of four individuals (n=4). Relative TWD was 

calculated by dividing the respective absolute TWD value by the highest absolute TWD measured during 

the period of investigation. 
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Figure 7 A Comparison of the logistic relationships between Ψmidday and relative TWD4 among the different 

species (c.f. Fig. 6). B Logistic relationship between relative Ψmidday and relative TWD4 across all species 

during the growing seasons of 2014 and 2015. Relative Ψmidday was calculated by standardizing the absolute 

value on the value where the species-specific regression curves in Fig. 6 reach a relative TWD of 0.95.
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Discussion 

Relationship between SDV-derived measures and canopy Ψ 

We found that maximum daily shrinkage (MDS) was only correlated to Ψmidday for C. 

betulus, L. decidua and Q. petraea, but not (or only marginally significantly) for F. 

sylvatica, P. abies and P. sylvestris (Fig. 5). Furthermore, we did not find a consistent 

relationship between MDS and Ψpre-dawn for either species, suggesting MDS to be unable 

to take up the long-term changes in daily canopy Ψ induced by changes in soil water 

conditions. In contrast to the data we show here, several previous studies have shown a 

close relationship between MDS and Ψ for orchard trees with increasing MDS at 

decreasing Ψ (Fereres et al. 1999, Ortuño et al. 2006, Intrigliolo and Castel 2007) and 

MDS has been proposed to be a useful and reliable tool to assess tree water status for 

irrigation scheduling in orchard science (Ortuño et al. 2010, Fernández and Cuevas 

2010). Several of these studies have, however, also indicated variations in the quality of 

the correlations between MDS and Ψ depending on different phenological stages over 

the season, temperature, fruit load and tree size (Molz and Klepper 1973, Fernández and 

Cuevas 2010). Further, MDS has been shown to gradually decline when trees are 

experiencing poor water supply for extended periods of time (Klepper et al. 1973, 

Hinckley and Bruckerhoff 1975, DeSwaef et al. 2009, King et al. 2013). The reason for 

declining MDS with declining soil water supply is an insufficient tissue rehydration 

during night time, so that the stem undergoes a constant shrinkage (on a daily cadence) 

during dry periods. Since MDS is proportional to the volume of daily used storage water 

(Zweifel et al. 2000), poor night-time rehydration, and therefore declining storage water, 

will have a decreasing effect on MDS during dry periods. We therefore conclude that 

while MDS is a reasonable proxy for tree water status as long as the trees are well 

watered, it seems not to be a reliable predictor of daily canopy Ψ over longer time scales, 

in particular if these include dry periods. 

In contrast to MDS, we found consistently strong relationships between tree 

water deficit (TWD) and Ψmidday and Ψpre-dawn across the two growing seasons for all 

species (Fig. 5). TWD is calculated as the difference between the hypothetical maximum 

stem size under fully hydrated conditions (with the two variations of including or not 

including a linear growth fraction during periods of stem shrinkage) and the current 

actual stem size (Fig. 1). As such, TWD had been proposed to be a good measure for 

the absolute water loss from storage tissues of a tree stem previously (Zweifel et al. 
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2000) and our data show that this absolute water loss is indeed tightly linked to the 

overall water status, i.e. Ψpre-dawn and Ψmidday, of a tree. In a desiccation experiment. 

Cochard et al. (2001) demonstrated that the difference in Ψ between xylem and bark is 

closely related to the absolute shrinkage of branches of 18-year-old individuals of 

Juglans regia. Also, Drew et al. (2011) were able to show a relationship between TWD 

and Ψleaf in 10 m tall individuals of Callitris intratropica. Our study corroborates these 

findings and shows that the previously implied relationship between SDV and canopy 

Ψ according to Cochard et al. (2001) and Drew et al. (2011) is not only valid for small 

and medium sized trees but also for 30-40 m tall individuals of six different temperate 

tree species and that stem and canopy water relations are tightly coupled on a daily basis. 

It is interesting to note that during periods of continuous tree growth over 

several days, values for TWD4 equal those of MDS while differences between these two 

variables only become apparent during longer periods of stem shrinkage. Thus, the fact 

that TWD4 describes daily canopy Ψ better than MDS clearly points out the advantage 

of the TWD over the MDS concept during longer periods of stem shrinkage. TWD thus 

offers a simple approach to assess the daily water status of mature trees in experiments 

and monitoring studies and has the potential to substitute labour-intensive manual 

measurements of daily canopy Ψ, a particular challenge in tall trees. 

  

Growth-de-trending to extract TWD from SDV with little effect on findings 

It has been intensively discussed whether trees are able to grow during periods of stem 

shrinkage (Zweifel et al. 2016, Mencuccini et al. 2017). This indirectly raises the 

question whether growth during stem shrinkage might confound possible relationships 

between TWD and the tree’s water status. We employed different approaches to 

calculate TWD in order to assess the robustness of the relationship between daily TWD 

and canopy Ψ  with and without considering growth to occur during periods of stem 

shrinkage (Fig. 1). Two of the approaches assumed no growth during stem shrinkage 

(TWD3, 4) and two accounted for a linear and progressive growth during periods of 

stem shrinkage (TWD1, 2). We found that all of the applied approaches led to a strong 

relationship between daily TWD and canopy Ψ and that potential growth processes 

during times of stem shrinkage were either not existent or were small enough to not 

confound the relationship. 
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It is important to mention that the definition of growth used in our study is 

only accounting for primary growth leading to an increment in stem size. Not included 

are secondary growth processes which increase wood density without an impact on stem 

size (Cuny et al. 2015). Primary growth consists of cell division and cell elongation 

leading to an increase in stem radius. This expansion is proposed to be strictly limited 

by a water potential threshold below which cells are not able to expand and elongate due 

to low turgor pressure in the cambium (Génard et al. 2001, Larcher 2003, Steppe et al. 

2006). Our results might indeed support the theory that growth is only possible above a 

certain threshold Ψ (Hinckley and Bruckerhoff 1975, Zweifel 2006, Intrigliolo and 

Castel 2007) and that this threshold is associated with the onset of stem shrinkage. We 

would like to caution, however, that there is some evidence that plant cells are able to 

adapt their growth processes to low Ψ (Cosgrove 2005) and that cell division (but not 

elongation) might occur during periods of lowered Ψ and thus periods of stem shrinkage 

(Ruts et al. 2012, Zweifel et al 2016). Growth due to newly formed but not expanding 

cells is, however, relatively small and would be negligible when using SDV for 

estimating tree water status. 

 
Table 3 Statistical coefficients of the linear and logistic regression analyses on the relationship of (relative) 

TWD4 and Ψmidday for the six investigated species and the across-species (i.e. all species) relationship of 

relative TWD4 and relative Ψmidday during the growing seasons of 2014 and 2015. 

 Linear regression Logistic regression 

Species p R2 PRESS p R2 PRESS 

C. betulus < 0.001 0.85 0.70 < 0.001 0.86 0.13 

F. sylvatica < 0.001 0.43 0.50 < 0.001 0.46 0.77 

Q. petraea < 0.001 0.73 0.66 < 0.001 0.72 0.74 

L. decidua < 0.001 0.77 0.91 < 0.001 0.81 0.08 

P. abies < 0.001 0.55 0.80 < 0.001 0.56 0.30 

P. sylvestris < 0.001 0.50 2.65 < 0.001 0.55 0.16 

All species < 0.001 0.67 8.90 < 0.001 0.69 2.27 

 

 



 35 

General pattern of the TWD – canopy Ψ relationship 

We found that across all species, the logistic function explained more of Ψmidday as 

predicted from TWD than the linear function (Fig. 6, Tab. 3). This is true for both the 

explained variance (R2) but even more for the predictive power of the function (PRESS 

statistic). The difference in explanatory power between the two functions was also found 

at the species level for C. betulus, L. decidua, P. abies and P. sylvestris. No differences 

between the two functions were, however, found for F. sylvatica and Q. petraea (Tab. 

3). Our data are therefore in support of our hypothesis of a general logistic relationship 

between TWD and canopy Ψ, where TWD and canopy Ψ are decoupled at low and high 

canopy Ψ (Fig. 2). The decoupling of TWD and canopy Ψ has already been reported for 

Norway spruce trees by Zweifel et al. (2000). In addition to a non-linear relationship 

between cell size and cell turgor, the decoupling of TWD and canopy Ψ at very negative 

canopy Ψ could be the result of the cavitation of tracheids or vessels in the xylem and 

the associated loss in axial and radial conductance resulting in disproportionally lower 

Ψ in the canopy than  at the stem base (Hölttä et al. 2002, Steppe et al. 2015) thereby 

possibly preventing a too strong depletion of bark water storage (Vergeynst et al. 2015). 

Although our data are generally in support of the logistic function, it is 

important to note that our data for canopy Ψ of several species, in particular those of F. 

sylvatica and Q. petraea, fall mainly into the linear range of the logistic relationship 

between daily TWD and canopy Ψ. This is, although the summer 2015 was 

exceptionally dry (Orth et al. 2016) with canopy Ψ reaching low values for these species 

(Dietrich et al. unpublished data). This suggests that linear functions should be 

appropriate to predict Ψ from TWD as long as values for Ψ are not approaching zero or 

exceptionally negative values. Our data do caution, however, that for Ψ in the saturation 

regions of the curve especially during severe or extreme drought the use of linear instead 

of logistic functions for the continuous quantitative modelling of canopy Ψ from TWD 

will likely over- or underestimate Ψ. This is supported by the better PRESS (predictive 

power) statistic of the logistic function. 

Our data also show that the shape of the logistic relationship between daily 

canopy Ψ and daily TWD (steepness of the function) varies depending on the respective 

species (Fig. 6). This is explicable with different wood anatomies, i.e. different hydraulic 

resistances to water flow in the xylem of the species and different elastic properties of 

the tissues involved in shrinkage (Heine 1971, Steppe and Lemeur 2007). Plants with a 
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higher hydraulic resistance more readily exhibit more negative Ψ at the base of the stem 

leading to a faster depletion of the bark tissues and, thus, a steeper relationship between 

TWD and canopy Ψ. This can particularly explain the steeper curves in the three conifers 

which have a significantly higher vertical resistance to water flow than the other three 

species (Evert 2006). Hooke’s law further predicts differences in the shrinkage of the 

bark tissues to be dependent on the elastic modulus of the cell walls of the cells involved 

into shrinkage (Irvine and Grace 1997, Peramaki et al. 2001). Based on macroscopic 

considerations of the bark (e.g. bark rigidity) of the different tree species, we can expect 

clearly different elastic moduli. 

Given the different shapes of the relationship between daily TWD and 

canopy Ψ, we recommend species- and site-specific calibration curves. If possible, we 

also suggest to establish separate relationships for daily TWD with Ψpre-dawn and Ψmidday, 

since they might correlate better with different variants of daily TWD (c.f. Fig. 5) and 

to check the consistency of this relationship across DBH and age classes since tree 

hydraulics have been shown to change with time (Yoder et al. 1994, Hubbard et al. 

1999). Moreover, we recommend to work with absolute instead of normalized TWD 

values when continuously measuring SDV in a forest since reference values should 

preferably be the extreme values measured under very dry conditions to properly 

represent the range of Ψ that can be expected in a species. While additional assessments 

will further improve the predictive power of TWD values for canopy Ψ, our data show 

that TWD can yet be readily applied for the qualitative assessment of a tree’s daily water 

status without further calibrations. This is especially important if no quantitative 

relationships could be established because of a usually limited canopy access in large 

trees. 
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Fig. S1 Environmental data for the growing seasons 2014 and 2015. Dashed lines around mean daily temperature are minimum and maximum temperatures of the respective 

day. All variables except Ψsoil were measured with a weather station at the top of the canopy crane at 40m above ground. Ψsoil was calculated as the mean of the daily maxima 

of 20 (2014) and 12 (2015) sensors at a depth of -20 cm ± SD. 
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Fig. S2 Measured midday (blue circles) and pre-dawn (red circles) Ψ of the six species during the growing 

seasons of 2014 and 2015 (mean ± SD). Ψ was measured as the mean of three terminal shoots always nearly 

at the same positions in the sunlit crown of 4 individuals per species (n=4) around noon (midday) or shortly 

before sunrise (pre-dawn) with a scholander pressure bomb. Crown access was provided by a canopy crane. 

Note that the y-axis is twisted.
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Fig. S3 Relative maximum daily shrinkage (MDS) as related to Ψmidday in the six different species during the growing seasons of 2014 and 2015. Red circles represent values 

obtained while Ψsoil was below -0.25 MPa, blue circles are values measured at Ψsoil > -0.25 MPa. Statistical parameters can be obtained from Fig. 5. Relative MDS was calculated 

by dividing each absolute value by the highest measured value throughout the two growing seasons. 
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Chapter 2 

Quantification of uncertainties in conifer sap flow measured with the thermal dissipation 

method 
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Summary 

Trees play a key role in the global hydrological cycle and measurements performed with 

the thermal dissipation method (TDM) have been crucial in providing whole-tree water 

use estimates. Yet, different data processing to calculate whole-tree water use 

encapsulate uncertainties that have not been systematically assessed. 

 We quantified uncertainties in conifer sap flux density (Fd) and stand water 

use caused by commonly applied methods for deriving zero-flow conditions, dampening 

and sensor calibration. Their contribution has been assessed using a stem segment 

calibration experiment and four years of TDM measurements in Picea abies (L.) Karst. 

and Larix decidua Mill., growing in contrasting environments. Uncertainties were then 

projected on TDM data from different conifers across the northern hemisphere.  

 Commonly applied methods mostly underestimated absolute Fd. Lacking a 

site- and species-specific calibrations reduced our stand water use measurements by 

37% and induced uncertainty in northern hemisphere Fd. Additionally, although the 

inter-daily variability was maintained, disregarding dampening and/or applying zero-

flow conditions that ignored nighttime water use reduced the correlation between 

environment and Fd.  

 The presented ensemble of calibration curves and proposed dampening 

correction, together with the systematic quantification of data-processing uncertainties, 

provide crucial steps in improving whole-tree water use estimates across spatial and 

temporal scales.  



 54 

Introduction 

Accurate measurements of whole-tree water use are important as terrestrial plant 

transpiration plays a key role in the global hydrological cycle (Holbrook & Zwieniecki, 

2003; Schlesinger & Jasechko, 2014; Good et al., 2015; Fatichi & Pappas, 2017). 

Furthermore, measurements of whole-tree transpiration show great value in validating 

regional water-balance simulations (Wilson et al., 2001; Ford et al., 2007; Reyes-Acosta 

& Lubczynski, 2013), inter-specific comparison of stomatal conductance behaviour 

(Damour et al., 2010), modelling stable isotope enrichment (Song et al., 2013; Sutanto 

et al., 2014) and mechanistically explaining wood formation (De Schepper & Steppe, 

2010; Fatichi et al., 2014; Steppe et al., 2015). Whole-tree transpiration can be estimated 

by upscaling measurements of leaf-level transpiration or by partitioning eddy covariance 

flux tower data, which both require assumptions on crown and canopy architecture 

(Ansley et al., 1994; Hatton & Wu, 1995; Lawrence et al., 2007; Matheny et al., 2014; 

Fatichi et al., 2016). The development of heat-based sap flow methods applied at the 

tree-stem level avoids these issues, and has provided whole-tree water use estimates 

across a wide range of spatiotemporal scales (Swanson 1994; Smith & Allen, 1996; 

Kallarackal et al., 2013, Van de Wal et al., 2015). 

Since 1985 over 1200 studies have collected heat-based sap flow 

measurements, to assess the effect of environment on transpiration and quantify forest 

stand water use (Fig. 1a). Due to their low cost, ease of use, low energy requirement, 

and long-term measurement potential (Oliveras & Llorens, 2001; Lu et al., 2004), sap 

flow data generated with the thermal dissipation method (TDM; Granier et al., 1985, 

1987) far exceed any other method (Poyatos et al., 2016), including heat pulse velocity 

(Green et al., 2003), stem heat balance (Langensiepen et al., 2014), heat field 

deformation (Čermák et al., 2004), heat ratio method (Burgess et al., 2001) and trunk 

segment heat balance (Smith & Allen, 1996).  

TDM measures sap flux density (Fd) by inserting two axially aligned probes 

into the sapwood and determining the temperature difference between a continuously 

heated probe and the non-heated reference (expressed as ∆T [°C]). Fd is typically 

estimated by first calculating the proportional difference between measured ∆T (denoted 

as the unitless K [-]) and zero sap flow conditions (denoted as ∆Tmax; cf. Lu et al., 2004). 

Next, Fd is calculated from K, using a calibration curve (Ganier et al., 1985). Ignoring 

radial or circumferential profiles Fd can then be multiplied by the sapwood area to obtain 
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whole-tree sap flow and potentially upscaled to stand water use (Granier et al., 1987; 

Čermák et al., 1995; Matheny et al., 2014). Despite its simplicity, alternatives to process 

raw TDM measurements (cf. Fig. 1b) generate a range of potential Fd values, and 

subsequently cause uncertainty in the quantification of whole-tree and stand water use. 

Typically, one set of TDM probes is installed per tree, assuming this local measurement 

represents sap flow in the entire stem. Yet, in some cases, strong radial and 

circumferential variations in sap flow require the installation of additional probes at 

different sapwood depths or circumferential positions (Lu et al., 2000; Nadezhdina et 

al., 2002; Fiora & Cescatti, 2006; Saveyn et al., 2008), which is not always considered 

(54% of studies do not account for this variability; cf. rad./circ. variation in Fig. 1b). 

Next, it is frequently assumed that the probes are inserted into the sapwood, although 

measured ∆T can be altered when partially inserted into non-conducting heartwood (Lu 

et al., 2004). In spite of available correction methods (cf. Clearwater et al., 1999), 

heartwood-sapwood boundaries can often not be precisely defined and may vary 

considerably within the stem (17% of studies apply a correction; cf. heartwood presence 

in Fig. 1b; Longuetaud et al., 2006; Paudel et al., 2013). Finally, natural variations in 

thermal conditions may alter ∆T (Köstner et al., 1998; Do & Rocheteau, 2002; 

Vergeynst et al., 2014), which can be resolved, although this often requires more 

specialized, expensive and often energy demanding sap flow methods (e.g. Nourtier et 

al., 2011; Lubczynski et al., 2012; Vandegehuchte & Steppe, 2012). 

In addition to anatomical and morphological issues related to ∆T 

measurements, data-processing procedures to calculate Fd from ∆T present sources of 

uncertainty. First, zero-flow conditions (∆Tmax) have to be defined as a reference. The 

common practise is to assume that zero-flow conditions occur pre-dawn, neglecting 

nighttime activity (42% of the studies do not report the used zero-flow procedure; cf. 

∆Tmax in Fig. 1b). Yet, previous findings demonstrate nighttime transpiration (Caird et 

al., 2007; Novick et al., 2009; Berkelhammer et al., 2013). Due to the way in which K 

and Fd are calculated, a small change in nighttime activity could result in large offsets 

in daily Fd (Rabbel et al., 2016). This argues for the application of environmentally or 

tree physiologically based criteria to define when zero flow occurs (Regalado & Ritter, 

2007; Oishi et al., 2008). Second, it is often assumed that installation of the probes into 

living xylem tissue causes only slight dampening of the signal due to probes burrowing 

deeper into the wood and wounding response that could alter K (Moore et al., 2010; 
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Wullschleger et al., 2011; Wiedemann et al., 2016). Yet, most studies with a duration 

equal to or longer than one growing season (58% of studies; cf. duration in Fig. 1b) do 

not account for these effects (Lu et al., 2004). Finally, most studies use the empirical 

calibration curve established by Granier (1985) to calculate Fd (90% of studies; cf. 

calibration in Fig. 1b). Nonetheless, multiple studies contest its validity and propose 

species-specific calibrations (Bush et al., 2010; Steppe et al., 2010; Sun et al., 2012; Ma 

et al., 2017). Many different combinations of these data-processing procedures are 

applied in the literature (Fig. 1b), which might jeopardize climate-response analyses 

(Poyatos et al., 2005), inter-species comparisons (Kunert et al., 2010; Brinkmann et al., 

2016) or large-scale data collection initiatives (Poyatos et al., 2016). Although general 

reviews exist and individual data-processing procedures have been analysed, a 

systematic quantification on the impact of different combinations of data-processing on 

TDM sap flow data is lacking.  

In a systematic analysis, this study aims to quantify the impact of commonly 

applied data-processing procedures on sap flow estimates derived from single-point 

TDM measurements. In particular, in conifers, we (i) assess the effect of four commonly 

used methods to define zero-flow conditions on K, (ii) quantify the magnitude of K 

dampening and propose a correction, (iii) compare species-specific calibration curves to 

calculate Fd with previous studies, and (iv) quantify the uncertainty generated by 

combinations of these procedures on Fd, stand water use and inter-daily Fd variability 

compared to common practises. Four years of TDM sap flow measurements from Picea 

abies and Larix decidua, collected under contrasting field conditions in the Lötschental 

(Switzerland), were used for the uncertainty analysis. Additionally, a laboratory 

controlled stem calibration experiment was performed to analyse the heat dissipation 

properties of the wood and the results were compared with existing calibration curves. 

Observed uncertainties were propagated to TDM datasets collected from conifers across 

the northern hemisphere to illustrate the importance of carefully selecting TDM data-

processing methods when estimating Fd.  
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Materials and methods 

Study design and site description 

To analyse the uncertainty caused by (i) data-processing procedures to calculate zero-

flow conditions, (ii) signal dampening and (iii) applied calibration curves on K, Fd and 

stand water use, we continuously monitored sap flow in 27 conifer trees in the 

Lötschental for four years. This inner Alpine valley in Switzerland (46°23′40″N, 

7°45′35″E) is covered by a mixed forest of deciduous Larix decidua Mill. and evergreen 

Picea abies (L.) Karst. We collected measurements from contrasting thermal and soil 

moisture conditions, as consistent differences in environmental conditions might 

promote nighttime activity and the magnitude of the dampening response. A total of five 

sites were selected along an elevational gradient, with colder conditions at higher 

elevations and contrasting dry and wet conditions in the valley bottom (Tab. 1; King et 

al., 2013).
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Table 1. Overview of sites and monitored trees. Mean ring width was calculated for the last 2 cm of wood, covering the extent of the inserted thermal dissipation probes. The 

three Larix decidua and Picea abies trees at each Lötschental site were continuously monitored from 2012-2015. Four trees from San Vito di Cadore were used for the cut stem 

segment calibration. See Table 2 for site coordinates and climatic conditions, indicated with LOT and the site code for the Lötschental and SVD for San Vito di Cadore. The - 

symbols indicates no data was available. 

 
Site Site code Elevation 

[m a.s.l.] 

Species Age 

[years] 

DBH 

[cm] 

Height 

[m] 

Sapwood thickness 

[cm] 

Ring width 

[cm yr-1] 

Switzerland, 

Lötschental 

 

N13W 1300 

(Wet) 

L. decidua 148 164 134  78 89 52  28 33 26  2.2 2.4 2.4  0.06 

 P. abies 85 81 109  81 63 81  30 34 34  9.1 6.9 9.0  0.26 

N13 1300  

(Dry) 

L. decidua 131 128 131  30 32 31  20 19 19  1.5 1.8 1.6  0.06 

 P. abies 90 93 87  31 37 48  15 20 19  2.5 5.3 5.1  0.13 

S16 
1600 

L. decidua 371 69 69  75 39 42  32 25 24  3.5 2.6 3.7  0.16 

 P. abies - 62 461  45 38 56  22 25 24  2.0 4.2 2.0  0.14 

S19 
1900 

L. decidua 200 326 170  48 49 36  24 22 26  3.2 1.8 2.6  0.08 

 P. abies 137 229 245  34 48 37  25 25 21  1.7 5.5 3.6  0.06 

S22 2200 L. decidua 269 280 295  47 56 46  18 17 17  2.4 3.1 1.8  0.09 

Italy,  

San Vito di Cadore 
1000 

L. decidua 28 91 30 62 15 17 16 18 17 19 15 20 2.9 1.7 1.6 1.1 0.12 

P. abies 50 35 73 28 16 16 20 12 18 16 14 9 3.1 5.0 3.3 2.8 0.13 
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A calibration curve was established for each tree species to calculate Fd using a 

laboratory calibration experiment on fresh cut-stem segments. The segments, collected 

from four trees per species, were harvested at the Centre for Studies on Alpine 

Environment of the University of Padova located in the Dolomite mountain region 

(Italy, San Vito di Cadore; Tab. 1), as harvesting stems in the Lötschental was 

logistically difficult. Although smaller in diameter, P. abies and L. decidua trees were 

selected with similar recent ring widths as observed in the Lötschental monitoring trees 

(Tab. 1).  

The uncertainty introduced through data-processing methods for zero-flow 

conditions and sensor calibration was calculated for TDM datasets collected across the 

northern hemisphere for three conifer genera (Tab. 2). This analysis included datasets 

from Europe and North America. In total, 131 individual trees from 18 sites were 

included with climatic conditions ranging from 1.4-19.8 °C mean annual temperature 

and 428-1452 mm mean annual precipitation (Tab. 2). 

 

Field measurements 

At each Lötschental site, three mature dominant trees per species were selected for 

continuous sap flow monitoring from May 2012 until October 2015 (Tab. 1). New TDM 

probes were additionally installed with a horizontal distance of 10-15 cm away from the 

initial probes on four trees to assess dampening effects (one per species at S19 and N13 

in June 2015). Environmental conditions were monitored at each site with a 15 to 60 

minute interval (King et al., 2013). A radiation-shield covered sensor was installed on a 

central tower (≈2.5 m above the ground) within the canopy to measure both air 

temperature (T [°C]) and relative humidity (RH [%]; Onset, USA, U23-002 Pro), used 

to calculate vapour pressure deficit (D [kPa]; cf. WMO, 2008). Soil volumetric water 

content was measured hourly with five sensors at 10 and 70 cm depth in the centre of 

each site (θ [%]; Decagon, USA, EC-5). Solar irradiance (Rg [W m-2]) was measured 

hourly in an open field at N13 using a micro-station (Onset, USA, H21-002 Micro 

Station) and pyranometer (Onset, USA, S-LIB-M003). Daily precipitation data was 

obtained from the nearest weather stations, where the distance to the site was used to 

calculate a weighted mean from the nine included stations (ranging from 6 to 43 km; 

Federal Office of Meteorology and Climatology MeteoSwiss). 
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For upscaling to whole-tree water use, sapwood thickness [cm] and ring 

width [mm] were measured from two increment wood cores taken perpendicular to the 

slope at breast height from the monitored trees (avoiding the slope-facing side with 

installed probes) and trees surrounding the site (cf. Peters et al., 2017). Sapwood area 

was used for upscaling Fd to whole-tree water use, while ignoring radial and 

circumferential variability. For upscaling to stand water use, diameter at breast height 

(DBH) measurements were taken from all trees within 20 m (at S22), 15 m (at S19 and 

S16) and 10 m (at N13 and N13W) radius fixed plots, and used in combination with 

sapwood allometric relationships (Fig. S1; cf. Čermák et al., 1995). 

Thermal dissipation method 

Sap flux density (Fd [cm3 cm-2 h-1]) was measured using commercially available TDM 

probes (cf. Granier 1985; Tesaf, University of Padova, Italy). Two 20 mm long stainless 

steel probes, with a 2 mm diameter, were radially inserted into the xylem, with a vertical 

distance of 10 cm on the slope-facing side of the stem at ≈1.6 m height. The temperature 

difference between the continuously heated upper and unheated lower probe was 

measured (∆T [°C]) and stored with a 15-minute resolution on a data logger (Campbell 

Scientific, USA, CR1000). The maximum ∆T (∆Tmax [°C]) was used to obtain K [-] 

according to Equation 1. K can be calibrated to obtain Fd using a power-type relationship 

with α [cm3 cm-2 h-1] = 42.84 (0.0119 [cm3 cm-2 s-1] × 3600) and β [-] = 1.231 (Granier 

et al., 1985), according to Equation 2. 

! =
∆$%&'	 − 	∆$

∆$
 

(1) 

  

*+ = , ∙ !.	

  

(2) 

∆T was corrected (denoted as ∆Tsw [°C]) for the proportion of the probe that was inserted 

in the sapwood (γ [cm cm-1]) versus the proportion in the inactive heartwood and used 

instead of ∆T in Equation 1 (Clearwater et al., 1999):  

 

∆$/0 =
(	∆$	 −	(2 − 3)	 ∙ 	∆$%&'	)

3
	

  

(3) 

Because our sensors were measuring over four years and the probes could progressively 

burrow deeper into the heartwood, γ was annually corrected for the ring width occurring 
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after the installation year. For this correction we assumed sapwood thickness remained 

constant.  

 

Zero-flow conditions 

Four methods to calculate zero-flow conditions (∆Tmax) were used, including the daily 

pre-dawn (PD; Lu et al., 2004), maximum moving window (MW; Rabbel et al., 2016), 

double regression (DR; Lu et al., 2004) and environmental dependent method (ED; 

Oishi et al., 2016). The PD method was applied by selecting daily maximum ∆T values 

occurring between 00:00 and 08:00 hours (GMT) when Rg was below 100 W m-2. For 

the MW method, maximum ∆Tmax was calculated during an 11-day window from the 

pre-dawn ∆Tmax values. The DR method was applied by calculating the mean over pre-

dawn ∆Tmax with a moving-window of 11-days, removing all values below the mean, 

and calculating a second 11-day moving window which was used as ∆Tmax. The ED 

method was applied according to Oishi et al. (2016), where pre-dawn ∆Tmax values were 

selected when T was < 1 °C or D was < 0.1-0.05 kPa for a period of two hours (D 

threshold depending on elevation). In addition, the coefficient of variation of pre-dawn 

∆T within this period should be below 0.5% to ensure selection of nights with stable 

zero-flow conditions. All ∆Tmax values were visually checked for drifts or outliers cause 

by low θ or low T. 

 

Signal dampening detection and correction  

First, data from long-term and newly installed probes were compared with linear 

regressions to demonstrate absolute offsets and daily maximum K variability. Second, 

the long-term data collected since 2012 was used to assess dampening for each 

monitored tree. Daily maximum K was used as the dependent variable within a 

Generalized Least Squares model (GLS in the “nlme” package for R software version 

3.2.00, R development core team 2013; Pinheiro et al., 2017), to account for high first-

order temporal auto-correlation (cf. Zuur et al., 2010). As independent variables, we 

selected daily maximum D, T, daily mean θ and day of year (DOY; to account for 

changes in leaf-phenological stages). Days with a daily maximum K <0.05 and 

precipitation >1 mm d-1 were excluded from the analysis, as these obstructed detection 

of the environmental relationships. The polynomial structure of the model was 

established using the Akaike Information Criterion (AIC), while accounting for 
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interactions between variables (e.g., high D coincides with low 5). Equation 4 was used 

to fit a function and calculate the residual K (Kres [-]; observed minus fitted values; cf. 

Tab. S1). 

 
6789 = resid	(	?@ABCDBEA + 	 		GH 	 ∙ IJH +			 GK 	 ∙ L +	GM 	 ∙ LK + 		GN 	 ∙ 5JH + 		GO 	 ∙ DOY +	GS 	 ∙ DOYK	)	  (4) (4) 

  

Monthly averages of Kres were calculated (to reduce first-order auto-correlation) and 

fitted to the mean time since installation (t [days]) with a third-order polynomial model 

to determine significant reductions in response to t.  

 For the study trees with a significant reduction in K (p <0.05), a tree-specific 

function was fitted to generate a correction curve. To avoid overfitting with 

environmental variables, used in subsequent analyses, we only included seasonality 

(DOY) and the time since installation (t) as independent variables for the correction 

curve. A nonlinear model was fitted to the daily maximum K, excluding rainy days and 

low values to generate the correction curve (Kcor; cf. Tab. S2): 

 

6TU7 =
(	V	 + 	W	 ∙ A	)

(1 + 	D	 ∙ A + Y	 ∙ 	AK)
+ 		B ∙ DOY + Z	 ∙ DOYK	

  

(5) 

The fitted parameters for t (with a, b, c and d) were used to correct K and scale it to the 

maximum value within the first year of installation (cf. Fig. S2 and S3). 

 

Stem segment calibration 

Calibration curves to calculate Fd were established by comparing gravimetrically 

induced flows through a stem segment against K measured with TDM probes. The stem 

segments, harvested in San Vito di Cadore, with a length of ~1 m (~50 cm above and 

below DBH), were transported to the laboratory in wet black plastic bags to prevent 

dehydration. Directly after harvesting, the stems were recut under water to ~25 cm in 

length and trimmed with razor blades to reopen closed tracheids. The stem segments 

were used for calibration within a Mariotte-based verification system (Steppe et al., 

2010). In short, a water-filled flask was connected to a plastic cylinder via flexible 

tubing, functioning as a siphon. The horizontal height of the flask was adjusted to deliver 
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a specific water flow to a cylinder attached to the top of the stem segment with installed 

TDM probes, producing a constant pressure head.  

Within a temperature-controlled environment, no water flow was applied 

during a 10 hour period to generate zero-flow conditions. Next, the stem segment was 

flushed with water for 2 hours until the readings stabilized. The water level was 

increased and then decreased in 2, 5, 10, 15, 25 and 30 cm (±0.5 cm) increments and 

kept constant at every level for 45 min (resulting in sap flux densities ranging from ~2-

45 cm3 cm-2 h-1). Finally, no flow was generated for 4 hours, after which post- and pre-

zero flow conditions were used to determine ∆Tmax with the TDM probes.  

A calibration curve was established by fitting a quadratic function between 

K and the gravimetric Fd (providing a better relationship compared to a power function; 

cf. Tab. S3 and S4). Mixed-effect modelling was applied to test for species-specific 

differences in the calibration parameters using the “lme4” R package (Bates et al., 2015), 

with the individual as a random factor. A literature review was performed on existing 

species-specific calibration curves in order to compare sampling locations, species, 

wood types, size of stem segments, sapwood properties, goodness-of-fit for the 

calibration curve and the calibration parameters. 

 

Uncertainty analysis and upscaling 

Uncertainty induced by different data-processing procedures on daily Fd and stand water 

use estimates was analysed by applying all available data-processing combinations on 

the Lötschental trees, including: (i) ∆Tmax calculation with PD, MW, DR or ED method, 

(ii) dampening or no dampening correction, and (iii) Granier’s original calibration or 

tree species-specific calibration. Absolute effects of all possible combinations on mean 

daily Fd (mean annual Fd in cm3 cm-2 d-1, averaged over all years of observation) and 

stand water use were calculated and compared to the commonly applied procedure 

(measuring for one growing season, using PD, no dampening correction and Granier’s 

calibration; Fig. 1b). Mean annual stand water use was calculated by averaging the 15-

minute Fd measurements per site and species and multiplying them by the species-

specific total sapwood area per site. For addressing inter-daily variability and the 

environmental response of Fd, daily Fd averaged per species and elevation was correlated 

against mean daily D (cf. Oren et al., 1999; Moore et al., 2010) with a third-order 

polynomial to obtain the changes in goodness-of-fit (expressed in R2).  
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Northern hemisphere TDM measurements (Tab. 2) were used to illustrate the 

relevance of selected data-processing procedures. As most datasets had a short 

monitoring period, no dampening correction was applied and measurements from first 

year after sensor installation were used (except for VAL and TIL due to data gaps; cf. 

Tab. 2). The 99th quantile was determined for the maximum daily Fd calculated for all 

individuals from K within a site (generated with the reported ∆Tmax method; cf. Table 

2), when using the different calibration curves available for softwood species, to avoid 

the effect of spurious outliers (excluding the steepest curves proposed by Lundblad et 

al., 2001). Additionally, for sites where ∆T values were provided, various daily Fd time-

series were calculated by using PD, MW or DR ∆Tmax and the softwood calibration 

curves (Tab. 2). The ED ∆Tmax method could not be applied due to the lack of high-

quality environmental data. Uncertainty was quantified by calculating the mean daily 

Fd, after which the difference from the most commonly applied data-processing 

procedure was determined. 
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Figure 1. Literature review of heat-based sap flow methods. The search terms; “Stem”, “Tree” and “Sap 

flow”, were used in Scopus and Web of Science (www.webofknowledge.com and www.scopus.com; 

accessed on 01-12-2016). (a) Temporal development of the (major) applied methods from 1985-2015, 

including: Thermal Dissipation Method (TDM), Heat Pulse Velocity (HPV), Stem Heat Balance (SHB), 

Heat Field Deformation (HFD), Heat Ratio Method (HRM), and Trunk Segment Heat Balance (TSHB). (b) 

Sankey diagram revealing the proportion of studies from 2010-2016 within forests and plantations using 

TDM measurements, grouped according to region, species and different assumptions (175 studies). We 

noted; 1) the study location, 2) the study tree species, 3) whether corrections were made for radial or 

circumferential variation (Rad./circ. cor.), 4) whether corrections were applied for probes inserted into 

heartwood (cf. Clearwater et al., 1999), 5) the temporal extent of the measurements (equal and longer or 

shorter than one growing season; Gr. Season), 6) whether the original (Granier et al., 1985) or a species-

specific calibration was used to calculate sap flux density, and 7) the assumptions for estimating zero-flow 

conditions (∆Tmax). Black bars indicate the most widely applied options.  
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Table 2. Overview of northern hemisphere sap flow measurements for the genera Picea, Larix and Pinus used for the uncertainty analysis. Latitude and longitude are provided 

in decimal degrees. Only dominant and co-dominant individuals are included within the analysis. Methods include: MW = moving window, DR = double regression and ED = 

environmental depended. The selected years, average DBH and number of individual trees are provided. Site conditions are described with elevation, mean annual temperature 

and total annual precipitation. No raw ∆T values were obtained for sites indicated with a * symbol.  

Site Country Lat. Long. Species Method Year DBH 
[cm] 

Trees 
[#] 

Elev. 
[m a.s.l.] 

Temp. 
[°C] 

Prec. 
[mm] 

Source 

Picea             

SOBS Canada 53.987 -105.118 Picea mariana ED 2016 12 9 598 1.4 428 Pappas et al.,  (in 
press) 

LOTS19 Switzerland 46.400 7.746 Picea abies ED 2012 40 3 1900 3.9 872 King et al., (2013) 

LOTS16  46.397 7.755    47 3 1600 5 872  

LOTN13W  46.400 7.764    75 3 1300 5.5 872  

LOTN13  46.392 7.761    39 3 1300 5.7 872  

SVD* Italy 46.450 12.214 Picea abies MW 2008 - 2 1050 7 866 V. Carraro et al., 
unpublished 

VISP Switzerland 46.303 7.741 Picea abies DR 2014 37 3 800 9.2 581 King et al., (2013) 

HOF Switzerland 47.467 7.500 Picea abies MW 2014 60 4 550 10.5 990 Pepin and Körner 
(2002) 

Larix             

SOBS Canada 53.987 -105.118 Larix laricina ED 2016 18 9 598 1.4 428 Pappas et al.,  (in 
press) 

LOTS22 Switzerland 46.400 7.743 Larix decidua ED 2012 49 3 2200 3.2 872 King et al., (2013) 

LOTS19  46.397 7.746    44 3 1900 3.9 872  

LOTS16  46.397 7.755    52 3 1600 5 872  
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Site Country Lat. Long. Species Method Year DBH 
[cm] 

Trees 
[#] 

Elev. 
[m a.s.l.] 

Temp. 
[°C] 

Prec. 
[mm] 

Source 

LOTN13W  46.394 7.764    73 3 1300 5.5 872  

LOTN13  46.392 7.761    31 3 1300 5.7 872  

SVD* Italy 46.450 12.214 Larix decidua MW 2008 - 2 1050 7 866 V. Carraro et al., 
unpublished 

VISP Switzerland 46.303 7.741 Larix decidua DR 2014 47 3 800 9.2 581 King et al., (2013) 

HOF Switzerland 47.467 7.500 Larix decidua MW 2015 50 4 550 10.5 990 Pepin and Körner 
(2002) 

Pinus             

SVD Italy 46.450 12.214 Pinus sylvestris MW 2008 - 2 1050 7 866 V. Carraro et al., 
unpublished 

VAL Spain 42.196 1.814 Pinus sylvestris MW 2004 19 10 1257 7.3 924 Poyatos et al., 
(2005) 

HIN Germany 53.332 13.192 Pinus sylvestris ED 2012 58 8 95 8 572 Ford et al., (2004) 

HOF Switzerland 47.467 7.500 Pinus sylvestris MW 2014 39 4 550 10.5 990 Pepin and Körner 
(2002) 

MTL USA 32.417 -110.725 Pinus strobiformis DR 2014 - 3 2573 11 800 Brown-Mitic et al., 
(2007) 

MTL USA 32.417 -110.725 Pinus ponderosa DR 2014 29 3 2573 11 800 

TIM Spain 41.333 1.014 Pinus sylvestris ED 2010 42 10 1018 11.3 664 Poyatos et al., 
(2013) 

TIL Spain 41.328 1.007 Pinus sylvestris ED 2010 38 9 1065 11.3 664 Aguadé et al., 
(2015) 

CAN Spain 41.431 2.074 Pinus halepensis ED 2011 34 3 270 15.2 608 Sánchez-Costa et 
al., (2015) 

UMBS* USA 45.600 -84.700 Pinus strobus MW 2015 22 4 236 5.9 796 Matheny et al., 
(2014) 

PER* USA 30.200 -89.300 Pinus taeda MW 2013 15 12 14 19.8 1452 Wightman et al., 
(2016) 
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Results 

Zero-flow conditions and the effect on K 

Offsets in ∆Tmax were observed between pre-dawn and other methods (PD in Fig. 2a), 

with the largest differences found in L. decidua. The criteria needed for the 

environmental dependent method to determine zero-flow conditions (including low 

nighttime D or T; ED in Fig. 2a) were in some cases not met for a period longer than 10 

days. In these cases, the pre-dawn method resulted in a strong reduction in daily 

maximum K (squares in Fig. 2b), as it does not allow for nighttime water use (circles in 

Fig. 2b). The moving-window method showed the highest daily maximum K (MW in 

Fig. 2b).  

 

Dampening effect on absolute value and inter-daily variability of K 

Comparison of new and long-term installed TDM probes at S19 and N13 (Fig. 3a), 

revealed that all L. decidua trees showed steeper slopes than the 1:1 line, indicating 

dampening of mean daily K although the slope was tree-specific (N13 = 1.42 in Fig. 3b 

and S19 = 3.41). For P. abies, one tree showed dampening (N13 = 3.13, cf. Fig. 3b), 

while another individual presented a shallower slope (S19 = 0.61), showing little 

reduction in mean daily K. However, similar variability of mean daily K was observed 

even after four years (average R2 ≈0.8, p < 0.05). 

Dampening of mean daily K was found in trees from both species monitored since 2012, 

after removing the influence of environmental factors (including D, T, θ, and DOY; Fig. 

S2 and S3). The residual standard error (RSE) revealed that appropriate fits with 

environmental factors were achieved for all trees (mean RSE of 0.074; cf. Tab. S1). 

Only 6 out of 27 trees did not show a significant reduction in monthly mean Kres (Table 

3). Although the goodness of fit varied among trees showing dampening (R2 ranges from 

0.17 to 0.95), on average a 31% reduction was found when comparing maximum daily 

K from 2013 with 2012 (K%2013-12 in Table 3). Within the first year of installation both 

L. decidua and P. abies showed a significant reduction ranging from approximately -

0.0003 to -0.0015 mean monthly Kres per days since installation (t; Tab. 3). By applying 

a non-linear function including t and DOY (seasonal term), the 15-minute K-values 

could be corrected for trees showing a significant reduction (cf. Table S2).
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Table 3. Descriptive statistics of linear regressions (Kres. = Int. + η1 t + η2 t2 + η3 t3), where monthly mean Kres (cf. Equation 4) for individual trees were fitted against time since 

installation (t [days]), when applying pre-dawn ∆Tmax. The slope indicates the reduction in mean monthly Kres for 2012 when fitting a linear function against t. Change in mean 

monthly K [%] from the first (2012) to the second (2013) year after installation, in addition to the second last (2014) and last year (2015) of monitoring. The - symbols indicates 

no data was available. 

Site Species Tree Int. η1 η2 η3 df R2 p Kres Slope2012 K 
%2013-12 

K  
%2015-14 

N13 P. abies 1 0.0633* -0.0003* 4.0E-07* -1.7E-10 29 0.41 0.000 -0.00043 -31 0 
2 0.0867* -0.0007* 1.2E-06* -6.7E-10* 25 0.40 0.001 -0.00046 -23 -26 
3 0.0481* -0.0002 2.0E-07 -8.7E-11 29 0.17 0.039 -0.00034 -17 -12 

L. decidua 1 0.2729* -0.0012* 1.3E-06* -4.3E-10 22 0.69 0.000 -0.00150 -38 10 
2 0.0797* -0.0004* 6.9E-07 -3.3E-10 20 0.24 0.035 -0.00068 -12 -10 
3 0.0809 -0.0009* 1.5E-06 -6.7E-10 28 0.06 0.186 -0.00029 -17 -23 

N13W P. abies 1 0.0596* 0.0002 -7.3E-07* 3.7E-10* 30 0.73 0.000 -0.00007 -7 -33 
2 -0.0208 0.0001 -2.1E-07 9.0E-11 30 0.07 0.843 0.00009 15 -1 
3 0.0512* 0.0001 -3.8E-07* 2.2E-10* 30 0.70 0.000 -0.00017 -26 -26 

L. decidua 1 0.1134* -0.0004 3.0E-07 -9.2E-11 20 0.47 0.001 0.00003 -22 -6 
2 0.1980* -0.0003 -4.8E-08 1.0E-10 21 0.72 0.000 0.00026 -32 -14 
3 0.1697* -0.0005 4.2E-07 -1.2E-10 20 0.66 0.000 -0.00027 -34 -10 

S16 P. abies 1 0.0795* -0.0002 4.9E-08 -4.7E-12 18 0.74 0.000 -0.00023 - 0 
2 0.0343 -0.0002 2.2E-07 -9.5E-11 29 0.03 0.276 -0.00005 -5 1 
3 0.1491* -0.0008* 1.3E-06* -6.9E-10* 23 0.75 0.000 -0.00089 -50 -42 

L. decidua 1 0.1232* -0.0008* 1.2E-06* -4.8E-10 15 0.68 0.000 -0.00052 - -2 
2 0.1687* -0.0008* 1.1E-06 -4.5E-10* 23 0.78 0.000 -0.00051 -49 -11 
3 0.2455* -0.0007* 1.2E-06* -7.1E-10 12 0.95 0.000 -0.00051 - -65 

S19 P. abies 1 0.0143 -0.0001 9.2E-08 -7.4E-11 19 0.00 0.422 -0.00090 -19 -15 
2 -0.0054 0.0001 -2.7E-07 1.6E-10 28 0.07 0.838 -0.00025 -10 3 
3 0.0347* -0.0001 1.2E-07 -3.9E-11 27 0.42 0.000 -0.00028 -33 3 

L. decidua 1 0.1202* -0.0006* 5.9E-07 -1.7E-10 14 0.79 0.000 -0.00110 -55 -20 
2 0.0191 -0.0001 -6.9E-08 8.8E-11 21 0.02 0.333 0.00028 -9 1 
3 0.1317* -0.0007* 1.1E-06* -5.0E-10 14 0.76 0.000 -0.00090 -52 -21 

S22 L. decidua 1 0.0239 0.0001 -2.4E-07 1.2E-10 17 0.39 0.010 0.00007 -8 -9 
2 0.1698* -0.0008* 7.9E-07* -2.4E-10 18 0.77 0.000 -0.00057 -48 6 
3 0.0916* -0.0005* 6.5E-07 -2.5E-10 17 0.45 0.004 -0.00028 -27 9 
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Figure 2. Widely applied zero-flow condition procedures and their implications on K for a Larix decidua 

tree at the S19 in the first week of June 2012. (a) Raw ∆T measurements (expressed in mV instead of °C; cf. 

Lu et al., 2004) and ∆Tmax determined by using the pre-dawn maximum (PD), an 11-day moving window 

(MW), the double regression method (DR) and the environmental dependent method (ED). (b) Implications 

of the different ∆Tmax methods on the resulting K (using Equation 1). Grey circles reveal times when 

nighttime sap flow activity could be expected and the implication on daily maximum K (grey squares).   
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Figure 3. Example of K (Equation 1) in function of time since installation (t [days]) for two trees at the site 

N13. (a) Mean monthly K for thermal dissipation method (TDM) probes installed at different times on the 

same tree. Open or closed circles indicate Larix decidua and Picea abies, while black and grey indicates the 

new and old sensor, respectively. (b) Linear correlation between daily mean K for the overlapping period 

between old and new TDM probes (installed in May 2012 and June 2015, respectively). Open and closed 

circles indicate the species as provided in (a).  
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Species-specific calibration and literature review 

The cut-segment experiment revealed a steeper calibration curve than proposed by 

Granier et al. (1985; Fig. 4). A quadratic polynomial function showed the best fit where 

α = 26.236 and β = 56.495 (R2 = 0.96, p <0.001). Despite P. abies showing a steeper 

relationship than L. decidua, no significant species-specific effect was found (cf. Table 

S4). Large variability in published calibration curves was apparent (Fig. 4) and on 

average a maximum K of 1.1 was generated (cf. Table S5). Ring-porous calibration 

curves were the steepest, followed by diffuse-porous and softwood species (Fig. 4). 

 
Figure 4. Calibration curves obtained from a cut-stem segment experiment and literature separated by wood 

type, including; softwood, diffuse-porous and ring-porous (cf. Table S5). A quadratic polynomial function 

best explained the calibration curve constructed in this study for both Picea abies and Larix decidua, where 

Fd = 26.236K +56.495K2 (R2 = 0.96, p <0.001). The Granier et al. (1985) calibration curve is highlighted as 

it is the most commonly applied calibration (cf. Fig. 1). 
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Large offsets in mean daily Fd throughout the year (growing season) were attributed to 
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1 for P. abies in comparison to our species-specific calibration (Fig. 5a). Lower mean 

daily Fd was found when using the PD zero-flow condition, while MW produced the 

highest values (Fig. 5a; change of 39 cm3 cm-2 d-1  for L. decidua and 13 cm3 cm-2 d-1 for 

P. abies), when using a species-specific calibration. Applying a dampening correction 

increased Fd by 61 cm3 cm-2 d-1 for L. decidua and 14 cm3 cm-2 d-1 for P. abies (when 

using a species-specific calibration). When considering the species-specific calibration, 

the ED method and dampening correction, on average 50, 53, 26, 34% and 14% of the 

total annual precipitation is transpired at N13, N13W, S16, S19 and S22, respectively. 

From all commonly applied TDM procedures (Fig. 1b) using a species-specific 

calibration generated the largest offset in mean annual stand water use, when 

considering only the first year of measurement (Fig. 6a; reduction from 286 mm to 207 

mm). Additionally, PD ∆Tmax showed consistently lower mean annual stand water use, 

which is mainly caused by the in- or exclusion of nighttime water use (Fig. 6b; reduction 

of 54 mm when considering MW). The effect of dampening is however not pronounced 

when considering the absolute values in the first year (Fig. 6a; reduction of 10 mm). 

Species-specific responses were observed in the relationship between mean 

D [kPa] and daily Fd (Fig. 5b). A third-order polynomial could explain up to 74% (p 

<0.001) of the variance for P. abies at N13W, when using PD, no dampening correction 

and Granier’s calibration, while for L. decidua this was only 36% (p <0.001). No distinct 

change in goodness of fit with D was observed when using Granier’s or species-specific 

calibration. Slight improvements in correlation strength were found when correcting for 

dampening (Fig. 5b; from 0.39 to 0.42 across species). The applied zero-flow conditions 

had little effect on P. abies, in contrast to L. decidua. Site-specific effects were found 

for P. abies where correlations with D were highest at N13W, followed by S19, S16 and 

N13. For L. decidua pre-dawn ∆Tmax showed the weakest correlation to D compared to 

the other methods (Fig. 5b). Additionally, when correlating nighttime D with nighttime 

Fd, only strong correlations were found for ED when considering L. decidua (R2 = 0.30), 

DR (0.21) and MW (0.22). 
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Figure 5.  Uncertainty analysis of data-processing procedures on mean daily Fd [cm3 cm-2 d-1] and inter-daily 

sap flux density variability (R2) arranged per species and Lötschental monitoring site. (a) The effect of zero-

flow condition (∆Tmax), dampening correction and calibration curve selection on mean daily Fd. Zero-flow 

condition methods include: PD = pre-dawn, MW = moving window, DR = double regression and ED = 

environmental dependent. Standard deviation induced by the individual trees is provided with the vertical 

lines in the boxes. (b) Goodness of fit (R2) for a third-order polynomial describing the relationship between 

D (daily mean [kPa]) and daily Fd when considering the Granier et al. (1985) calibration.   
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Uncertainty in sap flux density on northern hemisphere conifers  

Including uncertainty due to calibration (Fig. 4 softwood; excluding the steepest curve 

from Lundblad et al., 2001) had a strong effect on absolute Fd on the northern 

hemisphere dataset (Fig. 7a and b). The genus Pinus showed the lowest maximum Fd, 

ranging from 11 to 239 cm3 cm-2 d-1 (Fig. 7b), with highest uncertainty ranges at the 

PER and UMBS sites (Table 2). For the genus Picea, maximum Fd ranged from 35 to 

294 cm3 cm-2 d-1, with the greatest range at the SOBS and LOTS19 sites (Tab. 2). The 

genus Larix, the only deciduous conifer species in our study, showed the highest 

maximum Fd ranging from 56 to 967 cm3 cm-2 d-1.  

 When comparing mean daily Fd to the most commonly applied data-

processing, the different softwood calibration curves introduced an average uncertainty 

of 31 cm3 cm-2 d-1, across species (Fig. 7c). L. decidua showed the strongest offset of 51 

cm3 cm-2 d-1, which increased to 75 cm3 cm-2 d-1 when including the uncertainty induced 

by ∆Tmax methods (including PD, MW and DR). The ∆Tmax method alone (using a 

Granier calibration) induced an average uncertainty of 10 cm3 cm-2 d-1 across species. 

When considering the uncertainty generated by both the calibration curves and the ∆Tmax 

methods (with a mean uncertainty of ∆ 45 cm3 cm-2 d-1), it becomes apparent that sites 

with generally higher K values also have larger difference between individuals (Fig. 7c).   
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Figure 6. Effects of method combinations on average Lötschental stand water use [mm] for the first year of 

monitoring (2012). (a) Impact of data-processing assumptions compared to the most commonly applied 

method: pre-dawn zero-flow conditions (∆Tmax), no dampening correction and applying the Granier 

calibration. Data-processing procedures include; the application of a Species-specific or the Granier 

calibration, zero-flow conditions defined with the Moving window, Double regression (Double regr.), 

Environmental dependent (Env. depend.) or Pre-dawn method, and the absence (Uncorrected) or application 

(Corrected) of a dampening correction. (b) Contribution of nighttime sap flow for the different zero-flow 

condition methods to stand water use, when considering a species-specific calibration and dampening 

correction. The values correspond to the filled dots for the species-specific calibration when applying the 

dampening correction presented in (a), separated by site. 
  

●

175

250

325
St

an
d 

wa
te

r u
se

 [m
m

]
(a)

Calibration

Granier
Species−s

pecific Pre−dawn

Moving window

Env. depend.Double regr.

Zero−flow condition Dampening correction

Corrected

Uncorrected

●●

●●

●●●●

●●

●●

●●●●

●●

●●

●●●●

●●

●●●●

●●●●

●●

●● ●●

●●

●●●●

●●

●●

●●●●

●0

150

300

450

St
an

d 
wa

te
r u

se
 [m

m
]

N13 N13W S16 S19 S22

Nighttime (b)

Pr
e−

da
w

n
M

ov
in

g 
w

in
do

w
D

ou
bl

e 
re

gr
.

En
v.

 d
ep

en
d.



 77 

 
Figure 7. Uncertainty analysis on the northern hemisphere sap flow data. (a) Map indicating the included 

research sites and species. (b) Maximum of daily sap flux density (99th quantile of Fd [cm3 cm-2 d-1]) and the 

uncertainty generated by calibration curves (cf. softwood in Fig. 4) for three conifer genera; Picea, Larix 

and Pinus. The dots indicate Granier’s calibration for every individual tree, while the grey area is the 

maximum range generated by the different softwood calibration curves for all trees within the site (used 

zero-flow conditions are presented in Table 2). Additionally, reported literature values are described in 

Wullschleger et al., (1998) and Kallarackal et al., (2013). (c) Uncertainty of the mean daily Fd, when 

comparing commonly applied data-processing (Granier calibration and pre-dawn ∆Tmax) against other 

softwood calibrations (cf. Fig. 4) and ∆Tmax methods (PD, MW or DR; cf. Fig. 2). Positive uncertainty is 

determined when using the Granier calibration and different ∆Tmax methods (Granier - ∆Tmax), using different 

softwood calibrations with PD (Calibr. - PD) and when both are variable (Calibr. - ∆Tmax). Negative 

uncertainty is determined for Calibr. - PD, as the data was standardized to PD which provides the lowest 

values. Each dot connected by grey lines represents a site, in which the standard deviation induced by the 

individual trees is presented with horizontal black lines. A detailed descriptions of the sites is presented in 

Tab. 2.   
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Discussion 

We quantified uncertainties introduced by different data-processing procedures when 

calculating sap flux density (Fd) with the thermal dissipation method (TDM; Fig. 1a). 

Our results show that commonly applied data processing (using pre-dawn zero-flow 

conditions, absence of dampening correction and Granier’s calibration; Fig. 1b) likely 

underestimates Fd. Additionally, incorrect handling of zero-flow conditions and 

dampening of the signal may introduce inaccuracies in inter-daily variability of whole-

tree transpiration rates, although the temporal dynamics and relative inter-specific 

variability of Fd is well captured.  

 

Differences in Fd caused by zero-flow condition assumptions 

Determination of ∆Tmax requires informed assumptions on when zero-flow conditions 

occur (cf. Fig. 2). The effect of applying different methods for estimating ∆Tmax on mean 

daily Fd is most pronounced when comparing pre-dawn (PD) ∆Tmax, which produced the 

lowest values, to other zero-flow condition procedures (Fig. 5a). The moving-window 

(MW) method provides the highest absolute values in mean daily Fd. However, the MW 

method can be significantly affected by thermal drifts and changes in stem water content 

(Vergeynst et al., 2014), increasing ∆Tmax for an extensive temporal period and thus 

adding uncertainty (Rabbel et al., 2016). Also, for L. decidua the correlation with vapour 

pressure deficit (D) consistently decreased when using the PD method (e.g., from 0.40 

to 0.28 R2 for S19 when applying a dampening correction; Fig. 5b) in contrast to P. 

abies. Although the mechanism behind this species-specific difference is unclear, one 

explanation could be the larger water storage capacity of L. decidua which requires 

longer refilling during the night (Zweifel & Häsler 2001; Meinzer et al., 2009; Zheng et 

al., 2014). These results are in agreement with findings of Kavanagh et al. (2007) for L. 

occidentalis, showing the occurrence of nighttime transpiration which impacted ∆Tmax.  

Although it is difficult to differentiate between refilling of the storage tissue 

and actual nighttime transpiration (De Schepper and Steppe 2010), the improvement in 

correlation between daily Fd and D when not using the PD method suggests nighttime 

activity (Fig. 5b). Evidence for nighttime activity provided by flux tower data supports 

our findings (cf. Novick et al., 2009). Although in conifers the nighttime to daytime 

transpiration fraction is relatively small (≈5% of total stand water use), its inclusion has 

a profound effect on the annual stand water use (∆ 67 mm when comparing PD to MW 
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in Fig. 6b). When environmental measurements are available, it is advised to apply the 

environmental dependent (ED) method (Oishi et al., 2016), as it provides independent 

evidence for selecting periods with zero-flow conditions. If not available, the double 

regression (DR) method appears to perform well, as both daily Fd values and its intra-

daily variability lies closest to the ED method (Fig. 5), although being dependent upon 

the subjective selection of a window size.   

 

On the causes of apparent signal dampening  

We found a significant dampening in TDM-measured K, which reduces climate-Fd 

relationships (Fig. 5b), although inter-daily K variation appeared to be preserved (Fig. 

3b; Oliveras & Llorens, 2001). K decreased up to 55% after the first year of 

measurement (Table 3) and stabilized afterwards (e.g., Fig. 3a). Also, ∆T consistently 

increased, indicating a reduced heat dissipation from the upper probe to the surrounding 

sapwood. The signal dampening and increase in ∆T can be explained by either the sensor 

being burrowed deeper into wood with lower water conductance (Phillips et al., 1996; 

Beauchamp et al., 2013; Berdanier et al., 2016), or due to a wound reaction (Wiedemann 

et al., 2016). Although our probes are progressively grown deeper into the xylem, we 

find this alone unlikely to explain the strong dampening patterns observed only in the 

first year after installation. Additionally, the slow growth rates of the monitored trees 

(~1 mm year-1 while the probes are 20 mm in length; cf. Table 1) are not expected to 

cause burrowing rates which can explain a K reduction of >50%. Although visual 

confirmation of wound tissue formation or resin build-up is needed (cf. Marañón-

Jiménez et al., 2017), we hypothesize that wound reaction occurring in these coniferous 

species play a major role in altering the thermal properties and reduces the overall water 

conductance (Moore et al., 2010; Wullschleger et al., 2011).  

It is difficult to establish generally applicable corrections, as wound reactions 

are likely tree-specific and influenced by abiotic factors and phenology, among others 

(Wiedemann et al., 2016; Marañón-Jiménez et al., 2017). To avoid the effect of wound 

reaction a common practise is to reinstall the probes every year (Köstner et al., 1998; 

Moore et al., 2010). This however may cause issues due to circumferential variability 

(Oliveras & Llorens, 2001). We thus propose using our statistical correction procedure 

(Equation 5) which helped to isolate the dampening signal, when longer-term 

measurements are conducted, and only reinstalling sensors if circumferential variability 
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is low. However, caution is required for long-term installation with fast-growing 

species, as the probes will likely grow deeper into the heartwood, and for diffuse- or 

ring-porous species, as these may exert stronger radial variation in Fd (Beauchamp et 

al., 2013; Berdanier et al., 2016). Further studies should experimentally test the validity 

of our proposed correction to corroborate that it can be appropriately applied in 

monitoring studies, better revealing long-term effects (i.e., climatic) on plant water 

transport.  

 

Calibration curve comparison  

Our species-specific calibration curve demonstrates that Granier’s calibration (Granier 

et al., 1985) produces lower Fd for a given K (Fig. 4). This causes a change in the 

exponent of the TDM calibration curve (Equation 2; we used Fd = 26.236K +56.495K2) 

with implications for the magnitude of fluxes. In some cases, an underestimation of 50% 

was reported (Paudel et al., 2013), while we found a 37% underestimation (Fig. 5a; 

difference in stand water use of 71 mm yr-1). In softwood species, the steepest calibration 

curve was found by Lundblad et al., (2001), but caution should be taken as this 

calibration curve was established by comparing TDM and the trunk segment heat 

balance (TSHB), assuming that the latter has no methodological issues (Poyatos et al., 

2005; González-Altozano et al., 2008; Renninger & Schäfer, 2012). Cut-stem segment 

experiments also do not fully portrait natural conditions occurring in the stem, as there 

might be differences between applying suction or gravimetric pressure to generate flow 

(Fuchs et al., 2017), which should be investigated.   

No species-specific difference between P. abies and L. decidua was found in 

the calibration curves (Fig. 4). However, our literature review reveals steeper calibration 

curves for denser wood types, with the steepest curves found for ring-porous species 

(Fig. 4). The efficiency by which heat is conducted at different Fd is likely affected by 

wood anatomical properties (Wullschleger et al., 2011; Fan et al., 2018). Despite P. 

abies showing a smaller earlywood lumen area than L. decidua (Cuny et al., 2014; 

Carrer et al., 2017), thus a smaller proportion of water-filled tracheid to carry heat 

through conductive woody tissue, we did not find a significantly steeper curve. Also, 

when including species-specific wood density, no clear patterns were found for the 

steepness of the reviewed curves (results not shown). We hypothesise that the 

anticipated relationship between wood density and steepness of the calibration curve is 
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distorted by variability in local wood properties (e.g., smaller or wider rings that have 

specific anatomical features), which are affected by site conditions (Anfodillo et al., 

2013; Greenwood et al., 2017). Nevertheless, the most accurate estimation of absolute 

Fd is likely obtained when applying a site- and species-specific calibration curve.  

 

Implications of uncertainty for sap flow measurements 

When interested in the response of canopy conductance derived from sap flow 

measurements to environmental change (cf. Poyatos et al., 2013), the choice of zero-

flow conditions to determine ∆Tmax is important as it affects the inter-daily variability in 

Fd. As PD ∆Tmax showed consistently weaker correlations with D when considering 

diurnal Fd variability in the Lötschental (Fig. 5b), studies that apply methods which 

allow for nighttime sap flow activity are presumed to obtain more appropriate climate-

transpiration response patterns, although species dependent. Additionally, dampening 

occurring within the first year after installation could affect Fd-climate correlations, as 

they induced a consistent reduction in Fd which could be co-linear with other 

environmental variables.   

Whole-tree water use measured with TDM is commonly collected during one 

growing season and estimated by using PD ∆Tmax, no dampening correction and 

Granier’s calibration (Fig. 1b). When comparing this standard to other data-processing 

procedures for the Lötschental measurements, employing species-specific calibration 

curves caused the largest deviation in mean daily Fd and annual stand water use (∆ 27 

cm3 cm-2 d-1 in Fig. 5a and ∆ 79 mm in Fig. 6a). This uncertainty will most likely increase 

further when considering circumferential variation in Fd (Lu et al., 2000) and when 

upscaling from tree to stand water use (Čermák et al., 2004). Dampening appeared less 

relevant for stand water use when considering one growing season (Fig. 7a). Current 

studies applying PD ∆Tmax most likely underestimate annual stand water use compared 

to other methods, while causing only minute differences in nighttime transpiration (Fig. 

6b; cf. Rabbel et al., 2016).  

 The uncertainty generated by the calibration curve depends upon the range 

of K values measured within the individual, as the deviation between the curves 

increases with K (Fig. 4). Additionally, the uncertainty generated by ∆Tmax depends upon 

species-specific responses and site-specific environmental conditions which allow zero-

flow conditions. However, when considering the 131 northern hemisphere conifers, the 
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uncertainty in maximum Fd caused by the selected calibration curve remains substantial 

(Fig. 7b; using the reported ∆Tmax and ignoring dampening). Due to the power function 

shape of most softwood calibration curves (Fig. 4), large uncertainties are generated for 

species with high K such as the genus Larix which can be explained by many factors, 

including a deeper rooting system, greater access to soil resources, or its deciduous 

strategy (Anfodillo et al., 1998). Additionally, a link has been proposed between xylem 

structure in conifers and Fd, as wood with larger tracheids and lower density will be able 

to facilitate higher flow rates (Roderick & Berry 2001; Barbour & Whitehead, 2003).  

When comparing the combined uncertainty generated by calibration and 

∆Tmax methods against commonly applied data-processing (one growing season, Granier 

calibration and pre-dawn ∆Tmax), again the calibration curve appears to generate the 

largest uncertainty (on average 31 cm3 cm-2 d-1; Calibr.-PD in Fig. 7c). Yet, ∆Tmax 

methods contribute to an even larger uncertainty of 75 cm3 cm-2 d-1 (Calibr.-∆Tmax in Fig. 

7c). Besides large variations among trees, site conditions likely affected the Fd range, 

although this requires site-specific environmental measurements. When interested in 

absolute conifer-stand water use or inter-specific stomatal conductance response, TDM 

users should thus be critical about decisions regarding the calibration curve and 

detection of nighttime sap flow activity for conifers. Yet, as the calibration curve might 

be dependent on wood density, Fd estimates from trees with greater wood density and 

higher flow rates, like ring- and diffuse-porous species (Wullschleger et al., 1998), will 

likely show greater uncertainty.  

 

Conclusion and outlook 

TDM will likely remain widely applied and thus a blueprint on data processing and 

reporting should be established to avoid irreconcilable biases in Fd measurements. Here, 

we show that Granier’s generalized calibration, compared to site- and species-specific 

calibrations, might cause an underestimation of Fd. This in turn affects stand-level water 

use estimates and comparisons of site- and species-specific transpiration behaviour. 

Development of calibration curves is thus important for obtaining more accurate 

absolute Fd estimates. Also, allowing nighttime sap flow activity (avoiding the use of 

pre-dawn ∆Tmax) improved Fd-climate responses, although being species-specific and 

less severe compared to absolute effects on Fd. Finally, applying a dampening correction 
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is important for conserving Fd inter-daily variability, although the timeframe for the 

application of dampening corrections is still uncertain (Wiedemann et al., 2016).  

Indeed, independent whole-tree water use measurements are needed to 

further quantify all sources of uncertainty in TDM measurements (cf. Oishi et al., 2008). 

Besides data processing, variable sapwood thickness, radial and circumferential 

variability, changes in stem water content, and natural temperature gradients most likely 

increase uncertainty and should be systematically assessed in the future. However, 

recent progress on the development of free software tools for TDM data processing 

(Oishi et al., 2016; Ward et al., 2017) and upscaling (Berdanier et al., 2016) will lead to 

more harmonized, transparent, and reproducible sap flow data, better quantifying the 

associated uncertainties. This generalisation would then allow for the incorporation of 

uncertainty quantifications in the global pattern analyses of whole-tree water use. 
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Figure S1. Allometric relationships between diameter at breast height for Picea abies and Larix decidua 

(DBH), (a) sapwood width and (b) sapwood area. No significant fit was found for DBH versus sapwood 

width. Grey areas presents the Bayesian credible interval of the fitted function (cf.  Gelman & Hill, 2007).
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Table S1. General statistics for generalized least squares models, correcting for first order auto-correlation (using corAR1 correlation), when explaining K (pre-dawn ∆Tmax) 

with vapour pressure deficit (D [hPa]), temperature (T [°C]), soil moisture (θ [%]) and seasonality (DOY in day of year). For every tree the intercept (Int.) and slopes (ε) of the 

model are provided, in addition to the residual standard error (RSE), degrees of freedom (df) and temporal auto-correlation coefficient (Φ).  

Site Species Tree Generalized Least Squares – Linear model 
 Int. ε1 ε2 ε3 ε4 ε5 ε6 RSE df Φ 

N13W P. abies 1 

K
 =
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nt

. +
 ε 1

 D
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 +
 ε 2

 T
+ 
ε 3

 
T2  +

 ε 4
 θ-

1  +
 ε 5

 D
O

Y
 +

 ε
6 
D

O
Y

2  

-0.04 -0.0004* -5.71 0.0019 -4.7E-06 -0.03* 0.020* 0.07 532 0.95 
2 0.27* -0.0004* -15.93* 0.0002 2.8E-09 -0.04* 0.023* 0.05 540 0.81 
3 0.09 -0.0002* -6.08 0.0011 -2.6E-06 -0.02* 0.010* 0.05 530 0.95 

L. decidua 1 -1.70* -0.0004* -27.99* 0.0234* -5.4E-05* -0.02* 0.014* 0.08 402 0.94 
2 -2.58* -0.0005* 0.02* 0.0175* -4.1E-05* -0.01* 0.021* 0.13 374 0.98 
3 -1.95* -0.0006* 0.00* 0.0169* -3.9E-05* 0.03* 0.024* 0.10 412 0.98 

N13 P. abies 1 0.06 -0.0003* -1.79* 0.0003 -7.7E-07 -0.04* 0.013* 0.03 374 0.90 
2 0.09 -0.0006* -3.23* 0.0013 -3.4E-06 -0.06* 0.020* 0.06 414 0.91 
3 -0.06 -0.0006* -4.12* 0.0035* -8.1E-06* -0.05* 0.022* 0.06 486 0.88 

L. decidua 1 -1.80* -0.0008* -5.97* 0.0220* -5.1E-05* -0.02* 0.028* 0.15 435 0.94 
2 -0.76* -0.0001* -2.70* 0.0100* -2.3E-05* -0.03* 0.006* 0.06 384 0.97 
3 -1.96* -0.0012* -8.78* 0.0237* -5.2E-05* -0.02* 0.041* 0.13 437 0.88 

S16 P. abies 1 -0.02 -0.0004* -1.96* 0.0014 -3.8E-06 -0.02* 0.017* 0.07 298 0.95 
2 0.04 -0.0005* -3.35* 0.0019* -4.5E-06* -0.02* 0.017* 0.04 518 0.85 
3 -0.09 -0.0003* 0.20 0.0015 -3.8E-06 -0.01* 0.012* 0.07 410 0.97 

L. decidua 1 -1.08* -0.0004* 0.08 0.0112* -2.6E-05* 0.00 0.017* 0.07 281 0.96 
2 -0.75* -0.0001* 1.40* 0.0077* -1.8E-05* 0.00 0.006* 0.08 422 0.97 
3 -1.44 -0.0002* 0.57 0.0135* -3.0E-05* -0.01 0.010* 25.23 218 1.00 

S19 P. abies 1 -0.20* -0.0007* -3.36* 0.0036* -8.3E-06* -0.02* 0.027* 0.04 328 0.81 
2 -0.36* -0.0012* -0.88 0.0044* -1.1E-05* -0.02* 0.047* 0.08 477 0.79 
3 0.03 -0.0003* -1.42* 0.0012* -2.8E-06* -0.03* 0.011* 0.03 443 0.80 

L. decidua 1 -0.73 -0.0002 -1.37 0.0084* -1.9E-05* 0.00 0.005 0.08 248 0.92 
2 -2.03* -0.0003* -0.32 0.0217* -4.9E-05* -0.01* 0.012* 0.06 381 0.77 
3 -1.27* -0.0003* 0.06 0.0131* -3.0E-05* -0.01* 0.010* 0.08 268 0.96 

S22 L. decidua 1 -1.47* -0.0005* -2.61* 0.0155* -3.5E-05* -0.03* 0.016* 0.04 310 0.82 
2 -1.23* -0.0004* -4.71* 0.0137* -3.1E-05* -0.01 0.011 0.09 320 0.89 
3 -2.14* -0.0006* -0.46* 0.0223 -5.1E-05* -0.03* 0.018* 0.07 305 0.76 
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Table S2. General statistics for non-linear models when explaining the dampening effect K (pre-dawn ∆Tmax) with time since installation (t [days]) and seasonality (DOY in 

day of year). For every tree values of the variable (a-f) are provided, in addition to the residual standard error (RSE) and degrees of freedom (df). 

Site Species Tree Non-linear model 
 a b c d e f RSE df 

N13W P. abies 1 

K
 =
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 +

 b
 t)

 / 
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 +
 c

 t 
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D
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Y
 +

 f 
D
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0.14* 0.000* -0.001* 1.2E-06 2.1E-03 -5.46E-06* 0.038 527 
2 -0.33 0.001 1.137 4.2E-04 3.0E-03 -7.55E-06* 0.053 541 
3 0.14* 0.000 0.001 1.8E-06 1.1E-03* -3.16E-06* 0.028 437 

L. decidua 1 -1.39* -0.004 0.002 4.0E-08* 1.8E-02* -4.13E-05* 0.043 403 
2 -0.59* -0.001 0.001 7.6E-08 1.1E-02* -2.44E-05* 0.046 375 
3 -0.70* -0.002* 0.002* 6.0E-08 1.2E-02* -2.72E-05* 0.042 413 

N13 P. abies 1 0.28* 0.005* 0.039* 2.4E-06 2.6E-05 -7.39E-07* 0.023 375 
2 0.28* 0.002 0.011 -1.7E-06 3.9E-04 -2.07E-06* 0.058 415 
3 0.23* 0.003 0.020 1.8E-06 1.5E-03* -4.76E-06* 0.061 480 

L. decidua 1 -0.19* -0.005* 0.007* 1.1E-06* 9.7E-03* -2.35E-05* 0.094 436 
2 -0.31* -0.002 0.004 -3.6E-07 6.2E-03* -1.57E-05* 0.051 337 
3 -0.58* -0.005 0.006 8.9E-07 1.2E-02* -2.67E-05* 0.133 438 

S16 P. abies 1 0.17* 0.000* 0.000 -6.6E-07 1.1E-03* -3.27E-06* 0.031 277 
2 0.21* 0.001 0.007 -7.8E-07 0.6E-03* -2.29E-06* 0.040 519 
3 0.31* 0.000 0.006* -3.6E-06 0.6E-03* -2.30E-06* 0.024 324 

L. decidua 1 -0.64* -0.002 0.002 2.2E-07 9.7E-03* -2.24E-05* 0.036 282 
2 -0.11* -0.003* 0.005* 8.2E-07 5.6E-03* -1.30E-05* 0.023 407 
3 -1.01* 0.000* 0.000 0.0E-07 12.9E-03* -2.92E-05* 0.034 171 

S19 P. abies 1 0.28* 0.008 0.069* -5.4E-06 6.7E-04 -1.85E-06* 0.041 329 
2 -0.03 0.000 0.002 2.6E-06 5.0E-03* -1.23E-05* 0.062 478 
3 0.15* 0.000 0.011* -2.2E-06* 7.8E-04* -2.12E-06* 0.019 434 

L. decidua 1 0.02 -0.003* 0.010* 1.9E-06* 2.9E-03* -6.84E-06* 0.017 249 
2 -1.78* -0.003 0.001 5.2E-08* 2.1E-02* -4.64E-05* 0.043 382 
3 -0.39* -0.012* 0.018* -5.5E-07* 7.5E-03* -1.71E-05* 0.019 269 

S22 L. decidua 1 -1.12* -0.028 0.025 -1.2E-06 13.1E-03* -2.98E-05* 0.030 311 
2 -0.26* -0.002* 0.002* 8.3E-07* 6.0E-03* -1.32E-05* 0.032 321 
3 -1.71* -0.007* 0.003* 2.9E-07* 20.1E-03* -4.60E-05* 0.037 306 
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Table S3. Raw data of the cut-segment calibration experiment. Mean Fd [cm3 cm-2 h-1] against K measured at a specific water column height (level in cm, increasing or 

decreasing) with thermal dissipation method (TDM) for four stems from Larix decidua and Picea abies trees.   

Species Tree Level 
K 
mean Stdev. 

SFD 
mean Stdev.  Species Tree Level 

K 
mean Stdev. 

SFD 
mean Stdev. 

Larix 
decidua 1 L2 0.217 0.009 7.430 0.219  

Picea 
abies 1 L2 0.146 0.005 4.892 0.078 

  L5 0.198 0.007 7.119 0.275    L5 0.137 0.001 5.173 0.063 
  L10 0.189 0.005 6.998 0.329    L10 0.143 0.002 5.932 0.073 
  L15 0.182 0.005 6.603 0.338    L15 0.164 0.004 6.642 0.067 
  L25 0.187 0.003 6.984 0.240    L25 0.211 0.009 8.711 0.118 
  L33 0.190 0.003 7.293 0.151    L33 0.271 0.007 12.771 0.279 
  L-25 0.150 0.010 5.542 0.285    L-25 0.244 0.003 9.529 0.141 
  L-15 0.106 0.008 3.765 0.132    L-15 0.218 0.006 6.702 0.128 
  L-10 0.078 0.005 2.950 0.100    L-10 0.199 0.004 5.550 0.086 
  L-5 0.060 0.004 2.304 0.081    L-5 0.176 0.005 4.682 0.067 
  L-2 0.048 0.003 1.928 0.077    L-2 0.159 0.003 4.211 0.056 
 2 L5 0.441 0.012 24.795 0.370   2 L10 0.372 0.003 17.085 0.118 
  L10 0.474 0.006 27.047 0.409    L15 0.403 0.003 19.025 0.137 
  L15 0.491 0.003 28.997 0.458    L25 0.446 0.004 22.818 0.294 
  L25 0.538 0.003 33.718 0.450    L33 0.479 0.005 24.846 0.421 
  L33 0.567 0.003 36.908 0.558    L-25 0.434 0.008 19.548 0.643 
  L-25 0.510 0.009 29.828 0.716    L-15 0.355 0.005 13.995 0.417 
  L-15 0.425 0.009 22.217 0.608    L-10 0.296 0.011 10.989 0.363 
  L-10 0.367 0.010 17.911 0.440    L-5 0.235 0.011 8.575 0.259 
  L-5 0.303 0.008 14.182 0.355    L-2 0.190 0.010 7.146 0.223 
  L-2 0.267 0.006 11.878 0.285         
 3 L5 0.496 0.003 26.549 0.455   3 L2 0.427 0.007 24.179 0.190 
  L10 0.531 0.005 28.417 0.518    L5 0.453 0.004 25.682 0.217 
  L15 0.567 0.003 30.460 0.463    L10 0.486 0.006 28.725 0.213 
  L25 0.646 0.007 36.186 0.296    L15 0.511 0.002 31.866 0.215 
  L33 0.707 0.006 41.185 0.312    L25 0.570 0.003 38.080 0.335 
  L-25 0.664 0.009 36.071 0.497    L33 0.626 0.009 42.873 0.285 
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Species Tree Level 
K 
mean Stdev. 

SFD 
mean Stdev.  Species Tree Level 

K 
mean Stdev. 

SFD 
mean Stdev. 

  L-15 0.603 0.010 29.521 0.542    L-25 0.580 0.010 36.444 0.484 
  L-10 0.525 0.009 25.067 0.437    L-15 0.521 0.008 29.225 0.258 
  L-5 0.457 0.005 21.055 0.354    L-10 0.484 0.003 25.309 0.306 
  L-2 0.412 0.005 18.298 0.311    L-5 0.444 0.004 21.935 0.306 
          L-2 0.399 0.005 19.433 0.321 
 4 L2 0.492 0.015 24.818 0.334   4 L10 0.366 0.006 17.515 0.176 
  L5 0.483 0.003 26.029 0.346    L15 0.390 0.005 19.294 0.171 
  L10 0.521 0.002 28.201 0.353    L25 0.430 0.004 23.298 0.230 
  L15 0.547 0.005 30.427 0.320    L33 0.455 0.003 26.330 0.244 
  L25 0.606 0.005 35.682 0.341    L-25 0.406 0.002 22.496 0.209 
  L33 0.654 0.004 39.537 0.454    L-15 0.340 0.005 17.781 0.210 
  L-25 0.606 0.007 33.910 0.476    L-10 0.300 0.005 15.506 0.190 
  L-15 0.523 0.009 27.026 0.326    L-5 0.260 0.006 13.138 0.131 
  L-10 0.470 0.007 23.309 0.343    L-2 0.242 0.004 11.920 0.199 
  L-5 0.417 0.007 19.722 0.293         
  L-2 0.376 0.010 17.396 0.244         
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Table S4. General statistics of linear mixed-effect modelling for the thermal dissipation calibration curves (K [-] against Fd [cm3 cm-2 h-1]). Effects of species was tested on the 

calibration curve while using the individual stems as a random factor (model 1) or excluding the species effect (model 2). Additionally, the power-type function proposed by 

Granier et al., (1985) is presented (model 3). The slope (Estimate), standard error of the slope (Std. error), frequentist statistics (t-value, p), goodness of fit [R2] and the Akaike 

Information Criterion (AIC) is provided. 

Model 
 

Formula (in R) Random effects Coefficients Estimate Std. error t-value p R2 AIC 

1 lmer( SFD ~ 0 + K * species + 
I(K^2) * species + (K | tree) ) 

Tree:  
Int. var. = 7.3  
K var. = 75.7 

K 25.82 10.59 6.08 0.050 0.96 267.8 
speciesLarix 0.47 2.53 3.89 0.862 
speciesPicea 3.95 2.67 5.83 0.190 
I(K^2) 52.34 11.85 7.60 0.003 
kn:speciesPicea -24.33 17.24 8.53 0.194 
speciesPicea:I(K^2) 44.48 21.79 10.88 0.066 

2 lmer( SFD ~ 0 + K + I(K^2) + 
(K | tree) ) 

Tree:  
Int. var. = 1.3 
K var. = 46.4 

K 26.24 1.56 16.85 <0.001 0.96 283.9 
I(K^2) 56.50 4.51 12.53 <0.001 

3  nls( SFD ~ α * K ^ β) None α 69.97 2.09196 33.45 <0.001 0.96 356.9 

β 1.364 0.04101 33.25 <0.001   
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Table S5. Literature review on calibration curves. We distinguish: DB = Deciduous Broad-leaved, EB = Evergreen Broad-leaved, EC = Evergreen Coniferous, DC = Deciduous 

Coniferous. Wood anatomical properties include, DP = Diffuse-porous, RP = Ring-porous, SW = Softwood, DRP =  Diffuse- to semi-ring-porous. For some of the measurements 

the standard error of the mean (SE) is provided. The symbol * indicates that the calibration curves is αK + βK2 instead of αKβ. All α values were recalculated to provide Fd in 

cm3 cm-2 h-1.  

Site Coordinate
s 

Species Leaf 
type 

Wood 
type 

n Diam
eter 
(cm) 
[SE] 

Sapw
ood 
area 
(cm2) 
[SE] 

Sapw
ood 

depth 
(mm) 
[SE] 

K 
range 

R2 α β Source 

USA; Gibbs Farm 83°35'W | 
31°26'N 

Liriodendro
n tulipifera 

DB DP       53.97
84 

1.2
31 

Bosch et 
al., 
(2014) Pinus 

elliottii 
EC SW       48.96

612 
1.2
31 

Pinus 
palustris 

EC SW       45.79
596 

1.2
31 

USA; Salt Lake 
Valley 

111°55'W | 
40°66'N 

Populus 
fremontii 

DB DP 6 5.08 
[0.15] 

16.02 
[1.01] 

12.8 
[1.46] 

0-6  42.84 1.2
3 

Bush et 
al., 
(2010) Tilia 

cordata 
DB DP 5 4.83 

[0.15] 
13.08 
[0.75] 

15.20 
[0.80] 

0-3  42.84 1.2
3 

Elaeagnus 
angustifolia 

DB RP 7 4.36 
[0.30] 

1.70 
[0.18] 

1.63 
[0.23] 

0-0.7 0.
86 

3348 1.6
5 

Gleditsia 
triacanthos 

DB RP 6 5.06 
[0.26] 

0.73 
[0.09] 

0.98 
[0.09] 

0-0.8 0.
8 

1105
2 

1.4 

Quercus 
gambelii 

DB RP 6 4.37 
[0.08] 

0.35 
[0.06] 

0.88 
[0.04] 

0-0.5 0.
85 

2091
6 

1.8
8 

Sophora 
japonica 

DB RP 6 4.47 
[0.22] 

0.51 
[0.12] 

1.08 
[0.14] 

0-0.55 0.
84 

4284 1.2
4 

France; Montfavet  Malus 
pumila 

DB DP 4    0-1 0.
97 

49.24
8 

1.2
99
71
4 

Cabibel 
& Co 
(1991) 

Quercus 
palustris 

DB RP 4    0-1 0.
97 

49.24
8 

1.2
99
71
4 
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Site Coordinate
s 

Species Leaf 
type 

Wood 
type 

n Diam
eter 
(cm) 
[SE] 

Sapw
ood 
area 
(cm2) 
[SE] 

Sapw
ood 

depth 
(mm) 
[SE] 

K 
range 

R2 α β Source 

Castanea 
sativa 

DB RP 4    0-1 0.
97 

49.24
8 

1.2
99
71
4 

  Quercus 
pedunculata  

DB RP     0-0.8  42.84 1.2
31 

Granier, 
(1985) 

Pinus nigra EC SW     0-1  42.84 1.2
31 

Pseudotsug
a menziesii 

EC SW     0-1.1  42.84 1.2
31 

UK; Swindon 1°42'W | 
51°36'N 

Acer 
campestre 

DB DP 3 6-23   0-1.1 0.
98 

46.44 1.4
6 

Herbst et 
al., 
(2007) Crataegus 

monogyna 
DB DP 5 6-23   0-0.8 0.

88 
73.44 1.3

87 
UK; Wytham Woods 1°20'W | 

51°47'N 
Fraxinus 
excelsior 

DB RP 5     0.
96 

728.2
8 

0.4
28 

Herbst et 
al., 
(2008)* 

Brasil; Piracicaba 46°38′W |  
23°33′S 

Eucalyptus 
grandis x 
urophylla 

DB DP 4    0-0.8 0.
95 

304.4
6 

1.6
06 

Hubbard 
et al., 
(2010) 

USA; Utah's Entrada 
Field Station 

 -109°12'E | 
38°47' N 

Tamarisk 
ramossisim
a Ledeb. × 
chinensis 

DB DP 11 4.15 
[0.2] 

4.45 
[0.77] 

5.8 
[0.6] 

0-1 0.
98 

86.4 1.1
6 

Hultine 
et al., 
(2010) 

Australia; Darwin 130°52'E | 
12°25'S 

Mangifera 
indica 

EB DP 1      42.84 1.2
31 

Lu & 
Chacko, 
(1998) 

Sweden; Norunda 
forest 

17°29'E | 
60°5'N 

Picea abies EC SW 2 22.1 
[2.7] 

290.5 
[35.5] 

78 
[13] 

0-0.20 0.
95 

248.8
32 

1.8
16 

Lundbla
d et al., 
(2011) Pinus 

sylvestris 
EC SW 3 21.2 

[2.4] 
214 

[61.4] 
57 

[1.3] 
0-0.30 0.

95 
252.8

28 
1.8
22 
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Site Coordinate
s 

Species Leaf 
type 

Wood 
type 

n Diam
eter 
(cm) 
[SE] 

Sapw
ood 
area 
(cm2) 
[SE] 

Sapw
ood 

depth 
(mm) 
[SE] 

K 
range 

R2 α β Source 

New Zealand; Huapai 174°30'E | 
36°48'S 

Agathis 
australis 

EC SW 1 19    0.
57 

42.84 1.2
31 

Macinnis
-Ng, et 
al., 
(2016) 

Panama; Santa Cruz 79°W | 
 9°N 

Pseudobom
bax 
septenatum 

DB DP 3 6.4 
[0.12] 

18.1 
[0.69] 

   42.84 1.2
31 

McCullo
h et al., 
(2007) 

Calophyllu
m 
longifolium 

EB DP 3 6.0 
[0.17] 

21.3 
[1.62] 

   42.84 1.2
31 

Germany; 
Grossfahner 

10°49'E | 
51°30'N 

Populus 
nigra × P. 
maximowicz
ii 

DB DRP 5 10.30 
[0.48] 

  0-0.8 0.
93 

126.7
56 

1.5
52 

Schmidt-
Walter et 
al., 2014 

USA; Whitehall 
forest 

83°21'W | 
33°54'N 

Fagus 
grandifolia 

DB DP 2 18 [3]    0.
70 

82.8 0.9
51
9 

Steppe et 
al., 
(2010) 

USA; Whitehall 
Forest 

83°21'W | 
33°54'N 

Liquidamba
r styraciflua 

DB DP 5 7.5 
[0.4] 

29.3 
[3.1] 

26 [1] 0-1.2 0.
89 

44.64 1.1
51 

Sun et 
al., 
(2012) Populus 

deltoides 
DB DP 5 7.5 

[0.4] 
29.3 
[3.1] 

27 [1] 0-0.7 0.
94 

43.56 1.1
41 

Quercus 
alba 

DB RP 5 7.5 
[0.4] 

29.3 
[3.1] 

28 [1] 0-0.4 0.
87 

46.08 1.4
7 

Ulmus 
americana 

DB RP 5 7.5 
[0.4] 

29.3 
[3.1] 

29 [1] 0-0.8 0.
95 

97.92 2.5
72 

Pinus 
echinata 

EC SW 5 7.5 
[0.4] 

29.3 
[3.1] 

30 [1] 0-0.9 0.
91 

36.36 1.3
03 

Pinus taeda EC SW 5 7.5 
[0.4] 

29.3 
[3.1] 

31 [1] 0-1.2 0.
88 

34.92 1.3
36 
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Site Coordinate
s 

Species Leaf 
type 

Wood 
type 

n Diam
eter 
(cm) 
[SE] 

Sapw
ood 
area 
(cm2) 
[SE] 

Sapw
ood 

depth 
(mm) 
[SE] 

K 
range 

R2 α β Source 

USA; Red Butte 
Canyon 

111°47'W | 
47°48'N 

Acer 
grandidenta
tum 

DB DP 1 5-6     198 1.0
2 

Taneda 
& Sperry 
(2008) 

Quercus 
gambelii 

DB RP 1 5-6     2084.
4 

1.3
8 

Italy; San Vito di 
Cadore 

 Larix 
decidua 

EC SW 4 16.5 
[0.6] 

71.9 
[6.7] 

18.4 
[3.9] 

0-0.72 0.
96 

26.23
6 

56.
49
5 

This 
study* 

 Picea abies EC SW 4 15.9 
[1.5] 

121.2 
[15.5] 

35.8 
[4.9] 

0-0.65 
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Figure S2. Example of the procedure to isolate the dampening effect for K (pre-dawn ∆Tmax) measured for a 

Picea abies tree at N13. (a) Residuals are calculated by subtracting the measurements from the model values 

constructed with environmental factors and seasonality. This model, explained in Table S2, uses daily 

maximum vapour pressure deficit (b), daily mean temperature (c), daily mean soil moisture (d) and a 

seasonality term (e) to explain the daily maximum K pattern. Then the residuals containing the dampening 

are explained with a non-linear model (f), after which this model is used on the raw values (black lines) and 

transformed to corrected values (grey lines).   
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Figure S3. Example of the procedure to isolate the dampening effect for K (pre-dawn ∆Tmax) measured for a 

Larix decidua tree at N13. (a) Residuals are calculated by subtracting the measurements from the model 

values constructed with environmental factors and seasonality. This model, explained in Table S2, uses daily 

maximum vapour pressure deficit (b), daily mean temperature (c), daily mean soil moisture (d) and a 

seasonality term (e) to explain the daily maximum K pattern. Then the residuals containing the dampening 

are explained with a non-linear model (f), after which this model is used on the raw values (black lines) and 

transformed to corrected values (grey lines). 
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Abstract 

1. World-wide, temperate forests are predicted to face an increase in the frequency and 

intensity of climate change-induced summer droughts and heat waves in the near future. 

Yet, it remains unclear how these climate-change related increases in drought and heat 

will affect forests, especially concerning interrelated effects of water relations like 

xylem embolism, and the carbon economy. 

2. Here, we tested the sensitivity of six temperate tree species to severe water limitation 

during three consecutive growing seasons including the exceptional 2015 central 

European summer drought and heat wave. Specifically, we assessed stem increment 

growth, sap flow, water potentials, hydraulic traits, and non-structural carbohydrate 

concentrations in leaves and branches to determine how mature temperate trees 

responded to this exceptional weather event and how the observed responses relate to 

variation in xylem embolism and carbon economy. 

3. We found that the trees’ pre-dawn water potentials reached their minimum values 

during the 2015 summer drought and decreased much more than during the other study 

years. Also, most species reduced their sap-flow by up to 80% during the 2015 summer 

drought and increment growth ceased with the onset of the drought. Midday water 

potentials decreased strongly during the drought, but levelled off at a species-specific 

low-point with decreasing soil water availability. Despite the strong responses in the 

trees’ growth and water relations, all species exhibited minimum leaf water potentials 

well away from values associated with severe embolism (P50). In addition, we detected 

no distinct decrease in non-structural carbohydrates in leaves, bark and stems during the 

drought event. Therefore, we conclude that although the six species responded sharply 

in their water relations, all trees exhibited water potentials that indicate for only a low 

amount of xylem embolism and showed no depletion of carbohydrate reserves in leaves 

and branches.  

4. Synthesis: This study shows that mature individuals of six common central European 

forest tree species strongly reacted to a severe summer drought by reducing their water 

consumption and stopping growth. At the same time, however, we found no indications 

for high amounts of xylem embolism or strong carbohydrate depletion in the trees. This 

suggests, that xylem embolism formation and carbohydrate reserve depletion are not 

routine in temperate trees during seasonal strong drought.  
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Introduction 

Current climate models predict an increased frequency and intensity of heat waves and 

drought events globally (Trenberth 2011) and for central Europe in particular (Fischer 

et al. 2014; Orth, Zscheischler & Seneviratne 2016). The consequences of the increased 

frequency and duration of heat waves and drought events for terrestrial forest 

ecosystems are predicted to be manifold (Reichstein et al. 2013). Among others, heat 

waves and drought events can disrupt the physiological and metabolic integrity of trees 

which in turn affects tree growth and can even cause large-scale tree mortality leading 

to forest dieback with severe consequences for the ecosystem goods and services (Allen 

et al. 2010; Carnicer, Coll & Ninyerola 2011; Williams, Allen & Macalady 2013). 

The physiological susceptibility of trees in the temperate forest biome to heat 

and drought is surprisingly poorly understood. Those studies that have assessed the 

water relations of temperate trees during naturally occurring drought indicate that 

mature trees respond very sensitively to drought (Hölscher et al. 2005; Köcher et al. 

2009; Hoffmann et al. 2011; Meinzer et al. 2013; Brinkmann et al. 2016). For example, 

Brinkmann et al. (2016) have shown that trees strongly reduced their sap flow for several 

weeks in response to low soil moisture. Also, during the 2003 centennial heatwave and 

drought in central Europe, various temperate tree species revealed a dramatic decline in 

sap flow for extended periods of time (Leuzinger et al. 2005). While these previous 

studies clearly showed the drought sensitivity of different temperate tree species, it 

remains unclear to what extent this drought response indicates a high vulnerability of 

these trees with respect to their physiological integrity. 

Besides other factors, xylem embolism and carbohydrate depletion are 

thought to be among the main processes that can compromise the physiological and 

metabolic integrity of trees during drought (McDowell 2011; Martínez-Vilalta, Lloret 

& Breshears 2012; Zeppel, Anderegg & Adams 2012; Mencuccini et al. 2015). Xylem 

embolism is the result of a disruption of the water column due to very high tensions in 

the xylem conduits (Sperry 2000). High levels of embolism are assumed to impair the 

water supply to the foliage and ultimately lead to tissue desiccation. While some studies 

suggest that xylem embolism might play an important role during exceptional and 

devastating drought events (Anderegg et al. 2016), it is still discussed whether xylem 

embolism is a common phenomenon in mature trees under non-lethal drought events 

(Cochard & Delzon 2013; Klein et al. 2016). The depletion of non-structural 
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carbohydrate pools has been suggested to result from the extended closure of stomata 

during drought leading to reduced photosynthesis and eventually a shortage of 

carbohydrate metabolites in the different tree tissues (Hartmann 2015). However, tree 

carbohydrate reserve pools were often only measured towards the end of drought periods 

(Galiano, Martinez-Vilalta & Lloret 2011; Adams & Zeppel 2017) or observed in 

seedlings under additional shading treatment (Hartmann, Ziegler & Trumbore 2013a; 

Hartmann et al. 2013b; Hartmann, McDowell & Trumbore 2015; Maguire & Kobe 

2015). Hence, most of the information on the vulnerability of temperate trees to xylem 

embolism and carbon depletion was obtained in experimental work or from very few 

scattered measurements throughout or at the end of a given period of time. Evidence is 

therefore needed, that document the physiological sensitivity of mature temperate trees 

during naturally occurring drought events, in particular with respect to xylem embolism 

and carbohydrate depletion. 

In the months July, August and September 2015, most parts of central Europe 

were hit by an exceptional heat wave and dry spell. The 2015 summer received one of 

the lowest rainfall amounts since 1901 and soil moisture was even lower than during the 

centennial heat wave of 2003 (Orth et al. 2016). The 2015 summer drought thus exposed 

forests to weather conditions which are predicted to regularly occur during central 

European summers by the end of this century. The impacts of the 2015 heat wave and 

dry spell on agriculture and human health were dramatic with substantial losses in yield, 

and an estimated number of 800 human fatalities that were attributed to the heat wave 

in Switzerland alone (FOEN, 2016). We took advantage of this exceptional climatic 

event and tested (i) how mature individuals of six different temperate tree species 

responded in their water relations and growth to the severe water limitation during the 

2015 summer drought, and (ii) determined the physiological integrity of these trees with 

respect to levels of xylem embolism and carbohydrate reserves or resources. 
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Material and methods 

Study site and study species 

We conducted our study from 2014 – 2016 in a diverse mixed forest 15 km south of 

Basel, Switzerland (47°28’N, 7°30’E), that was equipped with a canopy crane (Swiss 

Canopy Crane facility; Pepin & Körner, 2002). The forest is located at an elevation of 

550 m a.s.l. and has a stony rendzina-type soil based upon calcareous bedrock at ~1 m 

depth. The forest contains a mix of coniferous and deciduous tree species, dominated by 

Fagus sylvatica L. and Quercus petraea (Matuschka) Liebl. Other frequent species are 

Abies alba Mill., Larix decidua Mill., Picea abies (L.) Karst, Pinus sylvestris L. and 

Carpinus betulus L. (Pepin & Körner 2002). The trees of the forest are about 130 years 

old and between 35 and 40 m tall. We performed measurements on four mature 

individuals of the species C. betulus, F. sylvatica, L. decidua, P. abies, P. sylvestris and 

Q. petraea during the growing seasons of 2014, 2015 and 2016 (Mai 1 to October 31) 

resulting in a total of 24 study trees. L. decidua was only investigated in 2015 and 2016. 

The climate at the site is temperate-humid with mild winters and moderately 

warm summers (mean January and July temperatures of 2.1 and 19.2°C, respectively). 

Total mean annual precipitation of the region is 900 mm with two thirds of precipitation 

generally falling during the growing season (15 April – 31 October). We measured air 

temperature, relative humidity and precipitation during all three years with a weather 

station (Davis Vantage Pro 2, Scientific Sales Inc., Lawrenceville, NJ, USA) on ten 

minute intervals. We also recorded soil water potential (Ψsoil) at 20 cm depth with 

dielectric sensors (MPS-2, Decagon Devices, Pullman, WA, USA) on ten-minutes 

intervals. We employed 20 Ψsoil sensors in 2014 and 12 in 2015 and 2016. 

To put our three-year sampling campaign into the long-term climatic context 

of the site, we analysed precipitation and temperature data from 1900 until present for 

the weather station Basel-Binningen, which is located at 8 km from the research site. 

The data were provided by the Federal Office of Meteorology and Climatology (Zurich, 

Switzerland).  

 

Sap-flow measurements 

To determine the transpiration response of the species investigated to drought, we 

measured the sap flow of four individuals of each of the six study species from April 

2014 to October 2015. Sap-flow was measured with Granier-type heat dissipation 
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probes (SFS2-M, UP GmbH, Ibbenbüren, Germany) installed at the NE and SW sides 

of the tree stems. At the two insertion points of the sensor needles (at ca. 1.5 m stem 

height) the bark of the tree was carefully peeled off. Aluminium sleeves were inserted 

20 mm deep into the sapwood with a 10-cm vertical distance from each other. Then the 

greased sensor needles were inserted into the sleeves and sealed with Teroson MS 930© 

sealing adhesive from the outside. Sensors were protected from weather influences and 

solar radiation by a radiation shield made of thick bubble warp aluminium foil. During 

operation, the upper needle constantly heated the sapwood and measured temperature 

with a copper-constantan thermocouple, while the lower needle measured the ambient 

sapwood temperature. Sensor voltage values were recorded every ten minutes with a 

sensor node (Channel Node, Decentlab GmbH, Dübendorf, Switzerland), wirelessly 

transmitted to a data logger (Base Station, Decentlab GmbH) and then broadcasted to a 

server via cellular network. 

Data evaluation was done in compliance with the method of Granier (1985; 

1987) and the considerations of Peters et al. (Richard Peters et al., unpublished data). 

We calculated the temperature difference between the two needles (∆T) of each sap-

flow device from voltage values. In order to precisely estimate no-flux-conditions 

during night-time and account for night-time transpiration, no-flux-conditions were 

defined as the maximum ∆T (∆Tmax) during the night within a seven-day period. In case 

of a drift over time in ∆Tmax we applied a linear regression through ∆Tmax over 7 days 

and set ∆Tmax to the regression values if it was below the regression line. If the individual 

trees were found to exhibit a sapwood depth shorter than the length of the sensor needles, 

we performed a correction of ∆T to determine sapwood ∆T excluding the fraction of the 

probes that was inserted into non-conducting heartwood (Clearwater et al. 1999): 

∆"#$ = ∆&'(∆&)*+
, . 

where a and b are the fractions of the sensor needle in sapwood and inactive heartwood, 

respectively, and ∆Tsw  is the temperature difference between the sapwood proportions 

of the needles. 

Total sap-flow density u was calculated (Granier 1985; 1987) by 

- = ∆".,/ − ∆"
∆"  

where K is a dimensionless parameter, and subsequently 

1 = 119 ∗ 10'6 ∗ -7.9:7. 
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To make sap-flow values of both years comparable in our analysis, we corrected sap 

flow of each sensor per individual by the difference among the two years to account for 

year-to-year differences: We screened for days with similar environmental conditions 

(Ψsoil, VPD, PAR) in both summers of the two growing seasons and divided the mean 

daily maximum sap-flow of 2014 on these days by the respective mean of the 2015 

values. All maximum daily sap-flow values of 2015 were then multiplied with the 

resulting conversion factor. 

In our study, we only considered relative daily maximum sap-flow values 

which were calculated for each sensor by dividing the daily maximum absolute sap-flow 

by the 95th percentile of maximum sap-flow values throughout the respective growing 

season. We calculated the mean of both sensors per tree and then averaged these values 

to obtain mean values for each species (n = 4 per species). 

 

Water potential measurements 

To evaluate the water status of the trees, we measured midday (Ψmidday) and pre-dawn 

(Ψpre-dawn) leaf water potentials. Ψmidday was assessed around noon at an irregular interval 

throughout the two growing seasons (10 and 17 measurement campaigns in 2014 and 

2015, respectively). Ψpre-dawn was assessed shortly before dawn on nine days during the 

2015 growing season. Ψmidday and Ψpre-dawn were measured with a Scholander pressure 

bomb (Model 1000, PMS Instruments, Albany, OR, USA) on three ca. 15 cm long 

terminal shoots per tree with two to four leaves (broad-leaved) form the upper part of 

the sunlit crown. To obtain values for a species, we first averaged the three shoot 

measurements per tree and then averaged the means of the individual trees resulting in 

a total number of four replicates per species. 

 

Stem diameter variations and modeling of Ψ 

To determine the seasonal increment growth and the water deficit of the trees, we 

installed automated point dendrometers (ZN11-T-WP, Natkon, Oetwil am See, 

Switzerland) to assess diurnal and seasonal stem diameter variations (SDV). On each 

tree, one dendrometer was installed on the north-east facing side of the stem at ~ 2 m of 

height at the beginning of the study (April 2014). From diurnal SDV, we calculated tree 

water deficit (TWD) as described in Dietrich, Zweifel & Kahmen (2018). In brief, TWD 

is a measure for the water loss in the non-conducting tissue of the stem that is expressed 
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in the shrinking of the stem when transpiration of the tree exceeds water uptake of its 

roots. TWD equals zero when the tree is fully hydrated. TWD increases when the tree 

is exposed to progressive soil drying and cannot refill its non-conducting tissue during 

night-time. 

TWD has been shown to correlate with Ψ (Drew et al. 2011; Dietrich, 

Zweifel & Kahmen 2018). We thus employed TWD to model the seasonal variability of 

Ψmidday and Ψpre-dawn at a daily resolution for the 2014 – 2016 growing seasons. To do so, 

we employed linear functions that we empirically obtained for each of the six species 

from 27 and 9 observations of Ψmidday and Ψpre-dawn, respectively, and their corresponding 

TWD values (Dietrich, Zweifel & Kahmen 2018). We then used the derived functions 

for each species to model Ψmidday and Ψpre-dawn for each day of the study period on a 

species level. 

SDV were also used to calculate the daily increment growth for four 

individuals of each of the six species. We considered growth to occur only during 

periods of effective diameter increases, and assumed no growth during periods of stem 

shrinkage. Hence, during times of radial shrinkage, stem diameter was set to the last 

maximum measured before shrinkage for the calculation of daily increment growth. All 

individuals of a species were pooled to obtain a single mean stepwise-increasing 

increment growth curve per species. The stem increment data from all three years were 

standardized on the total increment growth from 2014 to 2016 and expressed as % 

growth of three years. 

 

PLC curves, P50/P88 and hydraulic safety margin 

A branch segment of about 35 cm length and 1 cm of diameter was collected from the 

sunlit crown of each of four individual trees per species before dusk in October 2015. 

The branch segments were directly wrapped into moist paper towels and stored in plastic 

bags at 4°C. Branch segments were sent to the Caviplace lab at INRA Bordeaux within 

a week, where they were stored at -4°C prior to measurements. Samples were then recut 

to 28 cm long segments under tap water. Centrifuge measurements were performed 

within three weeks using the Cavitron technique (Cochard 2002; Cochard et al. 2005). 

For Q. petraea, we collected branch segments of 1.2 m and performed maximum vessel 

lengths estimations on additional stems by injecting air at 2 bars and cutting the apical 

end of the water-immersed stem section until the air bubbles emerged. This procedure 
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allowed us to find that Q. petraea stems have a maximum vessel length of ~ 50 cm, 

which confirms that vulnerability curves in this species cannot be adequately 

constructed using the 27 cm diameter rotor, where a significant proportion of open-cut 

vessels surpass the center of the plant segment or even permeate through its whole 

length. Therefore all samples were re-cut under water at 1m and measured with a large 

rotor Cavitron. The stem segments were spun at different speeds thereby creating water 

potentials from moderate to very negative values within the segments. The hydraulic 

conductance of the stem segments at each generated water potential was measured and 

based on the initial conductance of the segment, the loss of conductance at the generated 

water potentials was calculated according to Wang et al. (2014).  

We fitted a logistic function through each set of data points per individual 

and extracted the pressure values at 50% loss of conductivity (P50) and 88% loss of 

conductivity (P88) from the resulting percent loss of conductivity (PLC) curve. P50 and 

P88 were then averaged per species. We calculated hydraulic safety margins (∆Ψ) for the 

species examined by subtracting the P50 or P88 value from the minimum Ψmidday measured 

and modelled during the three growing seasons (Ψmin). In order to account for the 

proposed higher sensitivity of conifers over angiosperm trees to hydraulic failure (Choat 

2013; Delzon & Cochard 2014), we calculated ∆Ψ with P50 values to account for the 

three coniferous species (∆Ψ50), and with P88 to account for the three angiosperm species 

(∆Ψ88). 

 

Non-structural carbohydrates (NSC) 

NSC (i.e., starch, sucrose, fructose and glucose) were quantified in leaves, bark and 

xylem of sun-exposed 3- to 4-year-old branches in each of the four individuals of the 

six species (one branch per individual). Samples were collected throughout the summer 

of 2015. For chemical analysis in the lab we used a modified protocol after Wong (Wong 

1990). 8-12 mg of the dried (24 hours at 75°C) and finely ground plant tissue was 

extracted with 2 mL of distilled water in glass vials which were covered with marbles 

and boiled over steam at 100°C for 30 minutes. To degrade sucrose and convert fructose 

to glucose, an aliquot of 200 µL of the solution was treated with invertase, an isomerase 

from baker’s yeast. Then the glucose in the solution was converted to gluconate-6-

phosphate with glucose-hexokinase. The total amount of gluconate-6-phosphate (equal 

to glucose concentration) was determined with a 96-well multi-plate photometer 
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(Multiscan EX, Thermo Fisher Scientific, Waltham, MA, USA) at 340 nm. For the 

determination of starch concentrations, a fungal amyloglucosidase from Aspergillus 

niger was added to an aliquot of 500 µL of the remaining extract. The solution was put 

in a water bath at 49°C for 12 hours to progressively digest starch to glucose. The total 

glucose concentration in the solution was then determined with a photometer as 

described above. Starch concentration was calculated as the difference between the 

glucose concentrations with and without degradation of starch. Enzymes were purchased 

from Sigma-Aldrich (St. Louis, MO, USA) and solutions of glucose, fructose and 

sucrose as well as pure starch and a homogenized plant powder (Orchard leaves, Leco, 

St. Joseph, MI, USA) were used as standards and control of reproducibility. 

Statistical analyses 

Statistical analyses and data visualization were done using R, version 3.4.1 (R 

Foundation for Statistical Computing, Vienna, Austria 2013), with its packages zoo 

(Zeileis & Grothendieck, 2005), xts (Ryan & Ulrich, 2014), data.table (Dowle et al., 

2015), caTools (Tuszynski, 2014), scales (Wickham, 2015), gridExtra (Auguie, 2015) 

and ggplot2 (Wickham, 2009). We assumed a p < 0.05 as the level of significance for 

all statistical tests. For the regression analyses between Ψmidday and Ψsoil we used the nls() 

command with the function 

;.<==,> = ? ∗ @1 − A
BCDEF
G H. 

The parameters a and b thereby determine the saturation value and curvature of the 

function, respectively. For linear regressions between sensitivity of sap-flow to Ψsoil we 

used the lm() function. 

  



 119 

Results 

Environmental conditions 

For Central Europe, the 2015 summer had the lowest rainfall since 1901, and soil 

moisture was even lower than during the centennial heat wave of 2003 (Orth, 

Zscheischler & Seneviratne 2016). For our research site, the year 2015 was the second 

warmest year since climate recordings began in 1900 at a nearby climate station. These 

temperature extremes account for both, the mean annual temperature and the mean 

July/August temperature (Fig. 1 and 2). In addition, the summer (i.e. July to September) 

2015 was among the 10% of summers that exhibited the lowest rainfall amounts of the 

past 100 years with approximately 45% less precipitation in the months July – 

September compared to the long-term mean (Fig. 1 and 2). The extreme air temperatures 

in July, August and the beginning of September 2015 also caused VPD during this time 

to be substantially higher than in the same period in 2014 or 2016 (Fig. 1). High summer 

VPD in combination with low seasonal precipitation inputs resulted in substantial soil 

drying, where Ψsoil at -20 cm progressively decreased to -1.3 MPa in July, August and 

September 2015 and remained low throughout these months (Fig. 1). The extent of soil 

drying during the summer of 2015 becomes particularly apparent when compared to the 

same months in 2014 and 2016. While long-term soil moisture records do not exist for 

our research site, regional hydrological models suggest that soil moisture in NW 

Switzerland in the 2015 summer was within the lowest five percentiles compared to the 

summer mean since 1979 (Orth, Zscheischler & Seneviratne 2016). 

 The heat and drought of 2015, however, did not lead to any apparent signs 

of reduced health or mortality in the study trees. 
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Figure 1 Environmental data for the growing seasons 2014 - 2016. Dashed lines around mean daily 

temperature are minimum and maximum temperatures of the respective day. All variables except Ψsoil were 

measured with a weather station at the top of the canopy crane at 40 m above ground. Ψsoil was calculated as 

the mean of the daily maxima of 20 (2014) and 12 (2015 and 2016) sensors at a depth of -20 cm ± SD. 

 

 

 

 
Figure 2 Frequency distribution of annual precipitation, mean annual temperature and mean July and August 

temperature since 1900 at Binningen (Canton Basel County) in the vicinity of the study site. Red lines 

indicate the value of the year 2015. 
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Seasonal patterns of Ψpre-dawn and Ψmidday 

Modelled Ψpre-dawn values of the six species were in good agreement with measured 

values (R2 = 0.76; Supporting Fig. 1). Modelled seasonal variation in Ψpre-dawn differed 

substantially among the six species and among years (Fig. 3). Importantly, however, all 

species reached the most negative Ψpre-dawn of the three years during the 2015 summer 

drought (down to -2.1 MPa in P. abies) and exhibited the least negative minima in 2014. 

Also, Ψpre-dawn remained low throughout July, August and September 2015, indicating 

that the 2015 summer drought severely impacted the water availability of the trees for 

an extended amount of time. We observed substantial differences in Ψpre-dawn during the 

2015 summer drought among the six species, where Ψpre-dawn was particularly negative 

in C. betulus, F. sylvatica and P. abies, while P. sylvestris, L. decidua and Q. petraea 

showed less negative values. Variation in Ψpre-dawn among years ranged between 0.5 and 

1.5 MPa, and was higher in P. abies, C. betulus and F. sylvatica (above 1 MPa), while 

Q. petraea, P. sylvestris and L. decidua revealed comparably low amounts of variation 

(below 1 MPa). 

Modelled midday values for Ψ were also in good agreement with measured 

values (R2 = 0.71; Supporting Fig. 1). Similar to Ψpre-dawn, Ψmidday differed substantially 

among the six species and years and the most negative values for each species were 

reached during the 2015 summer drought (Fig. 3). C. betulus, F. sylvatica and P. abies 

reached their most negative Ψmidday towards the end of the 2015 summer drought, while 

Q. petraea, L. decidua and P. sylvestris exhibited Ψmidday values that were consistently 

low throughout the 2015 summer drought. During 2015, Q. petraea reached the most 

negative Ψmidday values of all species followed by L. decidua, F. sylvatica, P. abies, C. 

betulus, and P. sylvestris. In P. sylvestris, midday values turned out to vary only slightly 

throughout the 2015 summer drought, and unlike for the other species, no pronounced 

extreme values were observed (Fig. 3). 

To test if the Ψmidday values during the 2015 summer drought were saturating 

at minimum values, we plotted Ψmidday over Ψsoil for each species (Fig. 4). All of the 

species showed Ψmidday to level off with decreasing Ψsoil. This indicates that the species 

were still able to maintain a minimum Ψmidday despite the continuous decrease of Ψsoil 

during the investigated drought period. 
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Figure 3 Modelled pre-dawn and midday Ψleaf of the six investigated species during the summers of 2014 - 

2016. The values are derived from the relationship between pre-dawn and midday Ψleaf and tree water deficit 

measured at the base of the stem on 9 (pre-dawn) and 28 (midday) different days in the growing seasons of 

2014 and 2015 (pre-dawn only in 2015). 
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Figure 4 Relationship between modeled and measured midday Ψleaf and Ψsoil in the considered species during 

the summer part of the growing seasons (June 1 to September 30) in 2014, 2015 and the P50 values. P50 values 

were obtained from PLC curves deriving from centrifuge measurements on one branch of each individual of 

the respective species (pooled logistic regression through all measurement points per species).  

Hydraulic integrity 

P50 and P88 values varied significantly among the six species (Tab 1, Supporting Fig. 2). 

Q. petraea was the most embolism-resistant species (most negative P50 and P88 values), 

while P. sylvestris showed the least negative values for P50 and P88. 

Ψmidday of the different species was at least ~1 MPa higher than the measured 

P50 values throughout the whole study period (Fig. 4). Therefore, all species suffered 

from no or few embolism events (at most 10 % loss of conductance in branches), even 

during the 2015 summer drought (cf. Supporting Fig. 2). To determine the actual 

susceptibility of the study species to strong xylem embolism during the 2015 summer 

drought, we estimated the hydraulic safety margin (HSM, ∆Ψ) for each species, which 

is the difference between the minimum Ψmidday (Ψmin) of a respective species that was 

reached during the 2015 summer drought and the P50 (conifers) or P88 (angiosperms) 

value. HSMs ranged between 1.2 MPa in L. decidua and 3.8 MPa in Q. petraea (Tab. 

1). C. betulus showed a wide HSM similar to Q. petraea while F. sylvatica exhibited a 
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HSM which resembled more those of the coniferous species which generally exhibited 

safety margins slightly above 1 MPa (Tab. 1).  
 

Table 1 P50 and P88 values measured on branches from the sun-exposed canopy of the investigated species 

with the cavitron technique and hydraulic safety margins (∆Ψ) calculated as the difference between the P50/ 

P88 value and the most negative measured/modeled Ψ of the respective species. ∆Ψ values in given in 

brackets are regarded as less meaningful for the respective species than those given without brackets cf. 

(Choat 2013). For the assessment of P50/ P88 values, one branch per tree (n=4) was harvested before dusk 

during October 2015, stored at 4°C and sent to the Cavitron lab in Bordeaux within one week. Pressures at 

50 and 88% loss of conductance, respectively, were extracted from the resulting vulnerability curves. 

Species P50 (MPa) P88 (MPa) ∆Ψ50 (MPa) ∆Ψ88 (MPa) 

C. betulus -4.71 -5.83 (2.6) 3.7 

F. sylvatica -3.79 -4.62 (1.5) 2.3 

Q. petraea -5.13 -6.45 

 

 

(2.4) 3.8 

L. decidua -3.64 -4.7 1.2 (2.2) 

P. abies -4.01 -5.15 1.7 (2.8) 

P. sylvestris -3.31 -4.2 1.5 (2.4) 

 

Sap-flow 

For all species, daily maximum sap-flow remained consistently high throughout the 

2014 growing season (Fig 5). Values decreased only towards the very end of that 

growing season, which can be attributed to leaf senescence. In contrast, daily maximum 

relative sap-flow decreased strongly in most species with the onset of the 2015 summer 

drought (around DOY 180) and stayed low until the end of the season (Fig. 5). In C. 

betulus, F. sylvatica, P. abies and P. sylvestris, almost 80% reduction of maximum daily 

sap-flow was observed during the 2015 drought. L. decidua showed a reduction of about 

60%. The only exception was Q. petraea, which showed only a weak response to the 

2015 summer drought.  

 All of the species revealed their highest sap-flow at a VPD of around 0.5 – 

0.8 kPa (Supporting Fig. 3). The coniferous species generally showed a steeper decline 

of sap-flow with increasing VPD beyond 0.8 kPa than the angiosperm species of which 

Q. petraea showed the least intensive response (Supporting Fig. 3). P. abies and P. 

sylvestris reached sap-flow values close to zero at a VPD of ~3 kPa. All of the species 
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except Q. petraea showed a steep decline of sap-flow with decreasing Ψsoil at -20 cm 

soil depth, with P. sylvestris, P. abies, and F. sylvatica revealing the highest sensitivity 

(Supporting Fig. 3). 

 

 

 
Figure 5 Relative sap-flow of the six investigated species from June 1 to September 30 in 2014 and 2015 (n 

=  4 individuals per species ± SD) with a locally-fitted non-parametric regression (LOESS, green line). Sap-

flow was measured with two thermal dissipation probes on each individual on both the north- and the south-

facing site of the stem. L. decidua was only taken into account in 2015. 
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Figure 6 Non-structural carbohydrate concentrations (divided into starch and sugar) of leaf, bark and branch 

xylem in the six investigated species over the course of the 2015 summer drought (n = 4 individuals per 

species ± SD). 
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Non-structural carbohydrates 

NSC concentrations in leaves, bark and xylem differed substantially among species and 

organs but showed no general trend of declining values during the 2015 summer 

drought. In leaves, NSC values ranged from 15 mg g-1 dry weight in C. betulus to around 

5 mg g-1 in P. sylvestris (Fig. 6). In all species except Q. petraea, we observed slightly 

but non-significantly declining NSC values at the beginning of the 2015 summer 

drought, but either stable or increasing NSC concentrations throughout the two-month 

drought period. In bark tissues, NSC concentrations were in the same range as foliar 

NSC concentrations and showed similar temporal patterns as foliar NSC concentrations. 

As in leaves or bark tissues, we found that xylem NSC concentrations were either stable 

throughout the 2015 summer drought or declined slightly in the early summer but 

increased before the end of the drought (Fig. 6). Independent of the seasonal dynamics 

and drought, a clear difference in NSC concentrations was found in branch xylem 

between angiosperm and conifer species. While the angiosperms had high xylem NSC 

concentrations (with a high proportion of starch) of 8 to 20 mg g-1, the conifers only had 

low concentrations of around 2 mg g-1 (Fig. 6). 

 

Stem increment growth 

To determine if the 2015 summer drought impacted the stem growth, we investigated 

the progressive seasonal relative stem increment of the six species for the years 2014 – 

2016. The relative stem increment differed substantially among species and years (Fig. 

7). Interestingly, the 2015 summer drought had no consistent effect on total annual stem 

increment when comparing the increment of 2015 to 2014 or 2016. The onset of growth 

was similar among years in all species around DOY 120. Stem increment growth 

continued throughout the growing seasons 2014 and 2016 with the end of seasonal stem 

increment being variable among species and years. Importantly, however, stem growth 

in 2015 ceased sharply in all six species with the onset of the summer drought around 

DOY 180 and did not or only negligibly resume in the 2015 growing season (Fig. 7). 
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Figure 7 Basal increment growth of the six species during the study period (n = 4 trees per species ± SD). 

To obtain growth curves, we connected the maxima of continuously measured stem diameter variations. 

Therefore, only increases in diameter above the last measured maximum were considered as growth. 
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indicate that the midday water potential of leaves (Ψmidday) approached minimum values 

and that the trees responded by strongly reducing their sap flow (likely through stomatal 

closure) for several weeks during the drought event. Also, increment stem growth of all 

six species ceased sharply with the onset of the drought event and never resumed in that 

growing season. These findings indicate a high physiological sensitivity of all 

investigated temperate tree species to the 2015 summer drought. Importantly, however, 

minimum Ψmidday of all species were far from values that would cause pronounced xylem 

embolism in the branches. Also, NSC reserves in leaves, bark or twigs remained rather 

stable and did not indicate NSC depletion in either species throughout the drought 

period. Hence, despite its stark negative effects on gas exchange and growth, the 
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reserves. In summary, our data indicate a high sensitivity but a good physiological 

integrity of the hydraulic system and the carbon household of temperate tree species 

during the severe 2015 summer drought. 

 

Ψ, sap-flow and growth during the 2015 drought  

Low Ψsoil and Ψpre-dawn indicate that the high July, August and September 2015 

temperatures and the low 2015 growing season precipitation substantially reduced the 

water availability in the soil and that the forest experienced indeed an exceptional 

drought in the months July, August and September of 2015. In fact, Ψpre-dawn measured 

in the six species during the 2015 summer drought were in a similar low range as those 

observed in a previous study at the same site during the record-breaking 2003 centennial 

summer drought (Leuzinger et al. 2005). 

Ψmidday was also low and reached values of -1.9 MPa (P. sylvestris) to -2.8 

MPa (Q. petraea). These values are similar to minimum Ψmidday found in temperate tree 

species during natural and experimental soil drying (Lu et al. 1996; Maier-Maercker 

1998; Backes & Leuschner 2000; Köcher et al. 2009). Importantly, plotting Ψmidday 

against Ψsoil throughout the 2015 summer drought, revealed that Ψmidday levelled off at 

species specific minimum values (Fig. 3 and 4) and that transpiration was substantially 

down-regulated to avoid even more negative Ψmidday (Jones & Sutherland 1991; 

Lemoine, Cochard & Granier 2002; Helfter et al. 2007). It remains, however, unclear to 

which degree the stabilization of Ψmidday in the different species was caused by a 

regulation of stomatal conductance and cuticular transpiration or other changes in the 

conductivity of the hydraulic pathway such as changes in root conductivity, petiole 

embolism, or a decline of leaf hydraulic conductivity. 

Our data indicate that the 2015 summer drought pushed the study tree species 

into a range of Ψmidday values which were strongly regulated to avoid a further rapid 

decrease. However, far more negative Ψmidday have already been shown in temperate 

trees, suggesting that under extreme conditions when Ψpre-dawn decreases further, the 

physiological regulation of Ψmidday cannot keep up with a progressively drying soil 

(Breshears et al. 2009; Hoffmann et al. 2011; Martínez-Vilalta et al. 2014; Blackman et 

al. 2016; Meinzer et al. 2016). 

Interestingly, all species showing Ψmidday to level off with declining Ψsoil 

suggests that the physiological reaction to drought is rather uniform among the 
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temperate tree species investigated (Fig. 4, Supporting Fig. 3). Thus, a distinct 

classification of species into an iso- or anisohydric behaviour (Martínez-Vilalta et al. 

2014) is not suitable in this case. Moreover, the isohydry/anisohydry concept has not 

proved useful when comparing drought susceptibility among species (Martínez-Vilalta 

& Garcia-Forner 2016).  

 Corroborating the stabilization of Ψmidday at low Ψsoil, we found that the 

species examined substantially reduced their sap-flow throughout the 2015 summer 

drought which is likely to be a measure to stabilize Ψmidday. Except for Q. petraea, sap-

flow was down-regulated in all other species by up to 80% for several weeks. 

Consequently, the gas exchange of the species was severely impacted for an extended 

period of time. Similar down-regulation of sap-flow in response to declining soil 

moisture (cf. Supporting Fig. 3) has previously been described for a variety of temperate 

forest tree species (Irvine et al. 1998; Pataki, Oren & Smith 2000; Hölscher et al. 2005; 

Leuzinger et al. 2005; Brinkmann et al. 2016). However, in most cases, the respective 

drought periods were shorter, lasting only for a few days to weeks. Only during the 

extreme heat drought of 2003, Leuzinger et al. (2005) showed that sap-flow and stomatal 

conductance were decreased up to 50 and 80%, respectively, for several weeks, a 

situation, similar to the 2015 summer drought investigated here. 

Quite unexpectedly, we did not find an effect of the 2015 summer drought 

on total annual stem increment growth when comparing increment growth of 2015 to 

that of 2014 and 2016. The likely reason for the missing direct drought effect on annual 

growth is that spring growth in 2015 was substantial and exceeded that of the other two 

years (Fig. 7). However, the increment growth of 2015 ceased in all species with the 

onset of the drought while both 2014 and 2016 growth extended well beyond DOY 180 

in most species. 

It is an ongoing debate weather stem growth can occur during very negative 

Ψ and at times when there is a water deficit in the trunk (Zweifel et al. 2016). Our data 

suggest that there is no growth, which lines up with previous findings (Buell et al. 1961; 

Leuzinger et al. 2005; Pichler & Oberhuber 2007; Pflug et al. 2015). Our data also show 

that weather effects on annual tree growth depend not only on the intensity and duration 

of the event but also on the timing of the events and the environmental conditions that 

prevailed before (e.g. Zielis et al. 2014; D'Orangeville et al. 2018) . It is, however, 

important to note here that we only investigated basal increment growth. Aboveground 
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leaf flushes and branch growth as well as belowground root growth remain unknown in 

this study. 

 

Hydraulic integrity 

All species were far away from water potential values that seriously challenged the 

hydraulic system of the branches even at the low end of measured Ψsoil during the 2015 

summer drought (cf. Fig. 4, Tab.1). At most, 10% of branch conductive capacity should 

have been affected by embolism during that period. The hydraulic safety margins that 

we found in the current study (Tab.1) are within the range of values that Hoffmann et 

al. (2011) reported for temperate tree species of North America under moderate and 

strong drought. Although we cannot predict how the species we investigated in our study 

will behave during an even stronger drought than that of 2015, the fact that the Ψmidday 

of all species levelled off with declining soil moisture suggests that it would take a 

stronger decline in Ψsoil to induce substantially more negative Ψmidday values (combined 

with cuticular transpiration). By this means, the observed safety margins would only 

slightly be reduced for a range of further decreasing soil water availability until Ψmidday 

gets solely dependent on Ψsoil, and cuticular transpiration and stomatal leakiness. Our 

data, therefore, support the claims of Cochard & Delzon (2013) and Delzon & Cochard 

(2014) who stated that hydraulic failure is not routine in trees. Furthermore, our results 

are supported by a recent study on grapevine in which stomatal closure preceded 

embolism in leaves by days and leaves were shed before a significant amount of 

embolism did accumulate in the stem (Hochberg et al. 2017; cf. Charrier et al. 2018). 

However, we acknowledge that when Ψsoil gets extremely negative, the trees will not be 

able to significantly uncouple their Ψpre-dawn/Ψmidday from the decrease in Ψsoil as long as 

they do not take effective means to uncouple themselves from the soil matrix (cf. Cuneo 

et al. 2016). We conclude that the 2015 summer drought caused the tree species to 

significantly reduce their water loss but did not induce substantial amounts of xylem 

embolism in the branches of the trees. Therefore, xylem embolism is unlikely to disrupt 

the hydraulic integrity of the trees during the type of drought we investigated. 

 

Non-structural carbohydrates 

The NSC concentrations measured in leaves, bark and xylem of the six species 

throughout the 2015 summer drought are in the same range as NSC concentrations 
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measured in the same species (partly at the same location) in previous studies, when the 

trees were not exposed to drought (Körner 2003; Hoch, Richter & Körner 2003; Bazot 

et al. 2013). Given that NSC concentrations remained mostly constant throughout the 

2015 summer drought and the fact that the concentrations that we measured are in the 

same ranges as concentrations of not drought-stressed trees measured in previous years, 

we conclude that the carbon balance was not significantly impacted by the 2015 summer 

drought in any of the six investigated species. It is important to note, however, that the 

cessation of basal increment growth (strong sink reduction) could have prevented 

decreasing NSC values in the leaves and branches (Anderegg 2012). 

Overall, the response of NSC tissue concentrations to a 12-week-summer 

drought that we report here supports the increasing evidence from recent studies that 

NSC concentrations in trees are a very conservative and extremely resistant trait (cf. 

Weber et al. 2018) even under severe drought conditions. Previous studies investigating 

NSC concentrations in trees under drought revealed decreasing NSC concentrations 

only in potted seedlings or saplings (Mitchell et al. 2012; Adams, Germino & Breshears 

2013; Hartmann et al. 2013a) or in trees that were heavily impacted or died due to 

extreme drought (Galiano et al. 2011; Adams et al. 2017). Other studies described only 

small or no differences in NSC concentrations between drought-treated and control trees 

(Gruber et al. 2011; Klein et al. 2014; Rowland et al. 2015), while Galvez, Landhäusser 

& Tyree (2011), and Anderegg (2012) even reported an increase of NSC concentrations 

in Populus tremuloides under drought. The data we present here are thus supported by 

previous findings suggesting that a depletion of NSC is rather unlikely to affect the 

physiological integrity of temperate tree species during drought events such as we 

observed (e.g. Körner 2003; Rosas et al. 2013). 

 

Conclusion 

This study reports the effects of a severe 12-week summer heat drought on the water 

and carbon relations of mature individuals of six different temperate forest tree species. 

We observed that the 2015 summer drought dramatically affected the water relations 

and growth of the trees. However, our data do not suggest supported xylem embolism 

in branches or the depletion of carbon reserves throughout the drought. Hence, our 

results indicate that xylem embolism and declining carbohydrate reserves do not 

compromise the physiological integrity of temperate trees during the type of severe 
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drought we observed. We would like to caution, however, that a sequence of reoccurring 

drought events in subsequent growing seasons or a different timing of the drought could 

possibly lead to stronger effects on the hydraulic system or the carbohydrate reserves of 

trees. Further, effects such as pest infestation or herbivory are likely to impact the vigour 

of temperate European tree species during intense droughts. 
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Supporting Figure 1 Linear fits between modelled and measured Ψpre-dawn and Ψmidday. Modelled values are 

derived from an empirically derived function for the relationship between tree water deficit (TWD) and Ψ 

measured during the growing seasons of 2014 (11 independent midday data points per species) and 2015 (17 

independent midday and 10 independent pre-dawn data points per species). A more detailed description of 

the relationship between TWD and Ψleaf can be found in Dietrich et al. (in rev.). 
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Supporting Figure 2 Mean PLC curves of the different temperate tree species examined in this study. PLC 

curves were measured on four branch segments per species in the Cavitron Lab in Bordeaux. Branches were 

harvested in October 2015, stored cool and were recut under tap water before the measurements. 
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Supporting Figure 3 Relative sap-flow of the considered species during the growing seasons (May 1 to 

October 31) of 2014 and 2015 as related to VPD (A) and Ψsoil (B). The dashed green lines are boundary lines 

obtained from a LOESS (A) and a linear (B) regression through the 95th percentiles of sap-flow in categorical 

VPD and Ψsoil groups of 0.5 kPa and 0.05 MPa, respectively. 
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The water status of transpiring tree crowns depends on a hydraulic continuum 

from the soil matrix around roots to the sub-stomatal cavity of leaves, with a 

multitude of hydraulic resistors along this path. Although the stem xylem path may 

not be the most critical of these resistors, it had been suggested that a >50% 

interruption of that path by drought-stress induced embolization (air filling) of 

conduits is critical for tree survival 1. Here we show that cutting the sapwood of 

mature, 35 m tall trees in half hardly affects crown water status and transpiration. 

Counter expectation, this first adult tree sapwood interception experiment 

revealed that shoot water potential in the canopy (assessed by using a 45 m canopy 

crane) either remained unaffected (spruce) or became less negative (beech), 

associated with small reductions in leaf diffusive conductance for water vapour. 

We conclude that the stem xylem of these trees has a large overcapacity and the 

tree hydraulics debate requires a critical re-visitation. 

 

The currently used concept of critical threshold values for the loss of conductivity in 

tree xylem rests on a number of assumptions and is based on data either obtained from 

twigs of severely stressed trees in the field, the hydraulic conductivity of which was 

assessed in the lab2, or on experiments with pieces of twigs that were artificially 

embolized in a centrifuge 3. From such works it was concluded, that a 50% loss of xylem 

conductivity (PCL50) dramatically impairs the water supply of upstream plant organs, 

leading to tissue desiccation and eventually plant death, and is associated with a water 

potential (negative pressure) in the xylem of a cross-species average of -3.6 MPa in 

woody angiosperms and -5.6 MPa in gymnosperms4. These are exceptionally negative 

values indicating most severe stress. Currently, it is assumed that a 50% loss of 

conductivity corresponds to a 50% loss in conductive area which, recently, was often 

determined by micro CT imaging 5. If a 50% loss of conduits by air filling critically 

affects tree water status6, the same hydraulic stress should also become evident when 

tree trunks lose half of their conducting cross sectional area by a cut with a chain saw. 

 To test the hypothesis that a 50 % loss of conducting stem area leads to 

significant hydraulic constraints in trees, we selected eight similarly sized tall trees, four 

from each of the two species Fagus sylvatica (European beech) and Picea abies 

(Norway spruce), which had a conducting sap wood width of 20-30 mm (ca. 10 annual 

rings; Supplementary Fig. 1). In two individuals per species, we cut stems 65 mm deep, 
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over half of their circumference 1.8 m above ground (at ca. 9 a.m. on a bright day in 

mid-August, DOY 226), with the other two individuals serving as controls (Fig. 1). For 

static reasons, we could not cut the entire half of the stems, but the applied cutting depth 

was sufficient to reach well beyond the sapwood, and thus completely interrupting water 

transport within half the stem (Supplementary Fig. 1). The trees' water status was 

monitored before, during and after the cutting by sap flow gauges in the trunk, and by 

pressure chamber and porometer readings in the canopy (shoot water potential Y, and 

leaf diffusive conductance g), working from the crane gondola. Sap-flow sensors were 

installed in July (DOY 198) 10 cm centrally above the cut, directly opposite the cut, and 

3 m above ground, axially aligned with the two lower-position sensors (Fig. 1). Control 

trees were equipped with two sensors at 1.8 m above ground, placed opposite form each 

other. In the treatment trees, we added another set of sap-flow sensors horizontally 

aligned with the cut, 5 cm sideways from the edge of the cut, after the cut had been set 

in mid-September (DOY 263 – 268). 

While sap-flow above the cut was reduced to zero in both species following 

the treatment (Supplementary Fig. 2), sap-flow opposite the cut slightly increased in 

Fagus (but only around midday) and remained unchanged in Picea (Fig. 2a). However, 

when we assessed sap-flow 5 cm to the side of the cut, we found higher flow rates as 

compared to sensors opposite the cut (Fig. 2b). Flow rates next to the cut were 200% 

(Fagus) and 40% (Picea) faster than opposite the cut. The sensors 1.3 m above the cut 

showed only about 10% of the pre-treatment flow (Supplementary Fig. 2). Hence, 1.3 

m distance to the cut was too short to re-route sap flow back to the cut side of the stem. 
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Figure 1 (a) Position of sao flow sensors that were installed before the treatment. (b) Interruption of half of 

all conductive sapwood on 14 Agust 2017 (DOY 226) with a chain saw.
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Y in tree crowns on the day of the cut did not show any change in Picea and became 

less negative in Fagus around 2 p.m. (Fig. 2c). Initially, this counter-intuitive 

improvement of crown water status in Fagus could be explained by a relaxation of xylem 

tension due to the cut (the so-called 'Iwanoff effect', 7,8). However, the persistent lack of 

a drop of water potential in response to the reduction in functional sap wood over the 

following weeks (even a persistent relaxation in Fagus; Fig. 2d) suggests that the trees 

had no problem meeting their water demand with half the conductive area even during 

warm summer weather. 

Leaf conductance to water vapour was slightly but not significantly reduced 

on the day of the cut and on a sunny day in early September in the treated trees' upper 

crowns (Fig. 3, Supplementary Fig. 3). In Fagus, d13C analyses of leaf cellulose indicate 

that one of the treatment trees had consistently lower g even before the treatment 

(Supplementary Fig. 4). Yet, this stomatal response, had no significant effect on shoot 

net photosynthesis (An) in both, Fagus and Picea (Fig. 3). It is well known that small 

changes in g exert hardly any effect on photosynthesis when stomata are widely open, 

given that the maximum stomatal diffusion resistance represents only one fifth of the 

total resistance to CO2-uptake 9. Thus, we conclude that the stomatal responses to a 50% 

loss of conductive stem cross-sectional area did not significantly affect tree carbon 

capture (cf. Supplementary Fig. 5). 
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Figure 2 (a) Relative sap flow (half-hourly means) opposite the cut of treated and untreated trees during the 

first 18 days after cutting (n = 18 days ± SE). Sap flow was standardized by the mean of the maxima during 

the two-week pre-treatment period. (b) Mean absolute hourly sap flow of the subsequently installed sensors 

aligned sideways to the cut on 20 to 25 September 2017 (cut trees only). The inlet image shows the position 

of the sensors at the stem. (c) Shoot water potential on the first day of the experiment (14 August 2017; mean 

± SE). Means for three sun-exposed current-year branches per tree per hour (n = 3). (d) Midday shoot water 

potential in the canopy after the cut was set (mean ± SE for three sun-exposed branches per hour and tree. 

The cut was set on day 0 at 9:10 a.m. 
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Previous theoretical considerations predicted a severe reduction of Y with decreasing 

conductive area, leading to a so-called ‘runaway embolism’ 10 or the ‘embolism cycle’11. 

The results of our treatment, however, show that the downregulation of sap flux at 50 % 

loss of sapwood area is very small and operates via stomata directly, with shoot water 

potential either unaffected or less rather than more negative. In contrast, Fagus was 

shown to reveal minimum canopy Y of -2.5 MPa at the same site during the summer 

drought of 2015 12 (Supplementary Fig. 6). So, leaves must receive and process signals 

associated with the cut other than a permanent decrease in shoot Y. We can only assume 

that this signal is either of a chemical (e.g. release of abscisic acid [ABA] along the flow 

path) or physical (hydraulic) nature 13, or both. A brief reduction in leaf water status in 

a small fraction of the leaf tissue, like in the petiole or leaf veins, could trigger such a 

response (perhaps mediated by an ABA-release at leaf level13). Wounded tissue could 

exert a short-term signal but cannot explain a small though persistent effect as shown 

here 14. Shaded leaves might have responded even less than the sun-exposed leaves we 

studied. Therefore, the overall crown transpiration might have undergone even less 

reduction as suggested by our stomatal conductance measurements from top canopy 

foliage only. Finally, our sensors placed close to the cut edge indicate that the sensor 

directly opposite the cut did not capture the full speed of the re-routed sap flow, which 

occurred right near the edge, similar to what would happen at a barrier inserted into a 

river.
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Figure 3 Stomatal conductance and net photosynthesis of the two treated and two control 

individuals of the two species 25 days after the cut was set (means ± SE). We 

continuously measured three sun-exposed shoots per tree and hour throughout the day 

(n = 3) with a LI-COR4600 from a gondola on a canopy crane. We found no statistical 

differences among treatment and control trees. 
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Figure 4 Mean shoot water potential in the canopy plotted against mean relative sap flow 

(n = 2 individuals per species). The slope of the regression represents the entire hydraulic 

resistance in the soil-shoot path. The water potential at zero flux represents pre-dawn 

conditions plus the hydrostatic compound at 35 m height (-0.35 MPa). Regressions are 

significant at p < 0.001.
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The results of this experiment suggest a considerable over-capacity in the conduit 

system of mature tree trunk xylem. Accordingly, the classical sap-flow/Y plot revealed 

no overall increase in hydraulic resistance (slope of the regression, Fig. 4) which calls 

PLC measurements from micro CT-derived active conduit area into question. Over-

capacity in stem xylem is well known from practitioners in tree cultivation, who 

consider only a 90% or higher loss of bark and xylem as critical for tree survival15. 

Elazari-Volcani et al. 16 found no effect on cell turgor by severe root pruning and stem 

incisions, and Scholander et al. 17assumed no significant impact on the water supply of 

a tropical liana when the stem was cut by half. This suggests that evolution of the conduit 

system selected for a high degree of insurance (redundancy), presumably not only 

accounting for mechanical damage, pathogen impact or damage by ground fires, but also 

for static demands. Yet, cutting sap wood in half does reduce the potential conductive 

capacity across all conduit diameter classes, and thus, may represent a greater effective 

reduction of conductivity than under a drought-induced halving of conductivity (when 

large vessels will quit first), because we also removed half of all smaller conduits that 

can be expected to remain intact under stress. 

Perhaps, branch xylem rather than the trunk xylem represents a higher 

overall hydraulic constraint11, although this would be in conflict with the conservation 

of xylem cross-sectional area during branching (‘pipe model’18). A stem-cutting 

experiment in seedlings 19 revealed no effects on g and Y of transpiring leaves when 

branches were cut by up to 90%. Only when two short-distance (2-8 cm) transverse cuts 

were made, the authors observed severe effects. Other studies employed even more 

drastic treatments (several overlapping cuts) causing leaf mortality20,21. Similarly, 

introducing artificial embolism in stem xylem of Pinus ponderosa seedlings, 

continuously decreased stomatal conductance but only affected Y when 99% of the 

xylem was embolized, with Y dropping by only 0.6 MPa from -1.5 to -2.1 MPa 13. This 

drop in Y was far less than expected for a 50% or even 88% reduction in hydraulic 

conductance due to embolism 4,22. Our study does not disprove the appropriateness of 

PLC50 values for measuring xylem hydraulic vulnerability, but we question the direct 

causal linkage between PLC50 or PLC88 and tree death, as it is often assumed.  

In summary, our results for tall trees match the results of earlier branch cutting 

experiments, underlining that there is a lot of extra conduit area in tree sapwood. Such 
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an over-dimension of xylem capacity is likely to play a role for tree mechanics, as a 

safety margin in the case of pathogen impact (e.g. wilt deseases23), and perhaps, for cases 

of extreme drought stress, when sap flow becomes restricted to the small fraction of the 

narrowest conduits (tracheids). The main question in the ongoing debate about the 

causes for tree mortality during drought is the significance of a loss of conductive stem 

area in trees when soil moisture is severely reduced. Yet, in such situations the demand 

in conductive capacity approaches zero, as flux becomes reduced to rates of cuticular 

transpiration, or even less, when foliage is shed. So, paradoxically, the demand for 

xylem conducting capacity declines as drought stress increases. We argue that cuticular 

transpiration alone (commonly <1% of peak sap flow in taxa from potentially dry areas, 

represented by minimum leaf diffusive conductance 24) could not rupture all water 

capillaries in the stem xylem. So, the stem-system is unlikely representing the critical 

transfer resistance under severe drought. Unlike commonly assumed 25, the ultimate 

cause for a tree's death during drought would rather be the lack of radial moisture flow 

towards the root surface in the soil matrix, and as a consequence, shoot tissue 

desiccation. Rooting depth and species- and tissue-specific desiccation tolerance may 

be more likely to explain vulnerability during drought, with large diameter conduit 

cavitation a by-product or symptom rather than a cause.  
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Methods 

Study site and study species. The experiment was conducted in a diverse mixed forest 

in the vicinity of Basel, Switzerland (47°28’N, 7°30’E), at an elevation of 550 m a.s.l. 

using a canopy crane. The forest is a mix of needle- and broad-leaved tree species with 

individuals about 130 years old and stocking on a rendzina-type soil on calcareous 

bedrock26. The climate is humid temperate with mean July temperatures of 19.2°C and 

two thirds of the 900 mm mean annual precipitation falling during the growing season. 

Yet, the site is prone to summer drought 12,27,28. This destructive experiment took place 

shortly before the study site was abandoned and the crane became dismantled. Weather 

data were available from the close weather service station in Binningen (c. 8 km distant; 

Supplementary Fig. 7). On-site soil moisture was measured with a TDR probe (ML2 

ThetaProbe, Delta-T Devices, Cambridge, UK) at -10 and -20 cm at three different spots 

within freshly trenched soil profiles of -20 cm depth. Throughout the whole study 

period, soil water content did not drop below 25 % vol. 

 

Study design. We selected four similar size trees each of the species Fagus sylvatica 

and Picea abies and determined two treatment and two control trees per species. On the 

North-East facing sites of the stem (downwind the main storm direction), we marked 

half of the circumference of the treatment trees with white paint to guide the chain saw 

cut at 1.8 m. Four weeks before the treatment, all trees were equipped with 20 mm long 

Granier-type sap-flow sensors (SFS2-M, UP GmbH, Ibbenbüren, Germany) 10 cm 

above the planned cut (white line, 1.8 m) and directly opposite the cut (Fig. 1). On the 

treatment trees, additional sap-flow sensors at 3 m height were installed axially aligned 

above the lower two sensors. Later in the season, we added sap-flow sensors 5 cm aside 

the cut and halfway between this sensor and the sensor opposite the cut in the treatment 

trees. The dead bark at the two insertion points for the sensor needles was carefully 

removed and aluminium sleeves were inserted into machine-drilled 20 mm deep holes 
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at a 10-cm vertical distance from each other. Sensor needles were greased with a heat 

conducting paste, inserted into the sleeves and sealed with Teroson MS-930© sealing 

adhesive from the outside. We protected the sensors from environmental influences with 

radiation shields made of bubble warp aluminium foil. Data were recorded from July 

24th until September 25th every ten minutes with a sensor node (Channel Node, 

Decentlab GmbH, Dübendorf, Switzerland), wirelessly transmitted to a data logger 

(Base Station, Decentlab GmbH) and then broadcasted to a server via cellular network. 

 

Evaluation of sap-flow. Sap-flow data were analysed following Granier29,30. In order to 

estimate zero flux during night and account for night time transpiration, night time 

maxima in temperature difference (DTmax) were adjusted using the maximum during a 

seven-day period. We also performed a correction of the temperature difference in the 

sapwood (DTSW) to account for the narrow sapwood in the investigated individuals31. 

For our analyses, we calculated relative sap-flow values which were normalized by the 

mean of daily sap-flow maxima during the pre-treatment period. 

 

Shoot water potential. We measured shoot water potential (Ψ) with a Scholander 

pressure chamber (Model 1000, PMS Instruments, Albany, OR, USA) on three random 

terminal branches form the upper part of the sunlit crowns using the canopy crane. We 

cut ca. 15 cm long branchlets with two to four leaves (Fagus) or current-year shoots 

(Picea) with a razor blade immediately before measuring.  

 

Stomatal conductance. In Fagus, stomatal conductance (g) was measured with a 

Decagon SC-1 Leaf Porometer (Decagon Devices, Pullman, WA, USA), and in both 

Fagus and Picea with the conifer chamber of the LI-6400XT gas exchange system (LI-

COR, Lincoln, NE, USA), respectively on five (SC-1 Leaf Porometer) or three (LI-

6400XT) sun-exposed branches per tree at each measuring time. Leaves (Fagus) and 

branches (Picea) were kept and analysed for leaf area in the lab. We calculated single 

(projected) leaf area from weight using a species-specific conversion factor for the 

weight/leaf area relationship in both species at the study site. 

 

Sapwood depth. Sapwood depth was determined with an ink trial. One 10 cm deep core 

was taken with an increment corer on each tree and the hole was immediately filled with 
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a solution of black ink and sealed with Teroson MS-930© sealing adhesive. To guarantee 

a sufficient filling of the hole after sealing, more ink was injected through the sealing 

with a syringe and a needle until the ink started sprinkling out of the puncture. The 

puncture was sealed again straightaway. After half an hour, we took increment cores 1 

cm above the filled holes and measured the length of the core that was infiltrated with 

the black ink solution. From earlier work, we know that conducting sapwood depth in 

comparably-sized trees of Fagus sylvatica and Picea abies is about 6 and 4.5 cm, 

respectively32,33. 

 

Cellulose extraction. Cellulose extraction was done on five current-year leaves from 

different parts of the canopy of each individual of the two species after the protocol by 

Brendel 34. Leaves were harvested on 9 September 2017, taken to the lab, dried for 24 

hours at 75°C, and ground finely. The resulting powder was processed in filter bags 

(ANKOM Technology, Macedon, NY, USA), lipids and sugars were extracted by 

washing with toluene:ethanol (2:1) and DI water. Samples were bleached in an 

ultrasonic cleaner with an aqueous sodium chlorite/glacial acetic acid solution, rinsed 

with DI water afterwards, and dried at 50°C for two days. 

 

d13C measurements. Dry powder obtained from extracted cellulose of 5 sunlit current-

year leaves per individual from the upper part of the canopy was transferred into tin 

capsules and was analyzed in a Flash 2000 elemental analyzer coupled to a Delta V Plus 

continuous-flow isotope ratio mass spectrometer (IRMS) via a Conflo IV interface 

(Thermo Fisher Scientific, Bremen, Germany). Samples went through flash combustion 

at ca. 1800 °C in the presence of oxygen, before the emerging CO2 was fed into the 

IRMS. Stable isotope data were expressed in the delta notation (δ13C), relative to the 12C 

/ 13C ratio of Vienna Pee Dee Belemnite standard (R_VPDB = 0.0111797). 

 

Non-structural carbohydrates. NSC (i.e., starch, sucrose, fructose and glucose) were 

quantified in current-year leaves of sun-exposed branches in each individual of the two 

species (n = 4 leaves per individual). Samples were collected 9 September 2017, two 

weeks after the treatment took place. For chemical analysis in the lab, we used a 

modified protocol for enzymatic-photometric determination of low molecular weight 

sugars and starch35,36. 
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Statistics. We used R statistical software (http://cran.r-project.org) to test the difference 

between control and treatment trees applying a two-sample t-test as well as a Tukey’s 

range test in combination with an ANOVA (post-hoc) for each pair of data points. For 

diurnal sap-flow analysis, we divided the sap-flow measurements into three time periods 

(5-10h, 10-15h and 15-20h) and checked for significant differences between treatment 

and control with a two-sample t-test. Linear regression was used to investigate the 

relationship between hourly sap-flow and hourly Ψ and slopes of the regressions were 

compared by ANCOVA. 
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Supplementary Figure 1 Mean conducting sapwood depth in the four individuals of the respective study 

species (n = 4 ± SD). Sapwood depth was determined with an ink injection trial where a 10-cm deep wood 

core was taken with an increment corer and the remaining hole immediately filled with black ink. After one 

hour, a second core was taken ca. 1 cm axially above the first hole and the dyed part of the core was 

measured.
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Supplementary Figure 2 Pre- and post-treatment sap-flow for the different sensors on the investigated trees 

(n=2 trees). The upper two panels compare sensors between treatment and control, the lower panel shows 

the two sensors at 3 m height on the treated individuals. Sap-flow was standardized on the mean of the 

maxima of the respective sensor on the respective tree during the two-week pre-treatment period. The 

horizontal clack line marks the beginning of the treatment (cut).
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Supplementary Figure 3 Stomatal conductance of the two treated and the two non-treated individuals of 

Fagus sylvatica during the first day of the experiment (n = 3 leaves per tree ± SE). We continuously measured 

five sun-exposed leaves per tree and hour from a gondola on a canopy crane throughout the day. 

 
 
 
 

 
Supplementary Figure 4 δ13C of the treatment and control trees’ leaf cellulose (n = 5, means ± SD). Cellulose 

δ13C is independent from the treatment of the trees in this experiment since leaves were built long before the 

experiment took place. We only found a statistical different value of δ13C in Fagus2. Significances were 

obtained from a posthoc Tukey’s honest significance test.
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Supplementary Figure 5 Mean non-structural carbohydrates (NSC) of the two treated and untreated trees per 

species (n = 2). NSC were measured in 4 current-year leaves from sunlit branches in the upper crown of each 

tree which were harvested on 9 September 2017 (14 days after cutting, DOY 240) and dried for 24 h at 75°C 

 

 

Supplementary Figure 6 Boxplots of midday (n = 17) and pre-dawn (n = 9) leaf water potential of the study 

trees during the dry summer of 2015. Treatment trees are indicated by grey boxes. We only found a statistical 

difference between pre-dawn water potentials of Fagus1 and Fagus4 in a posthoc Tukey’s honest 

significance test. 
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Supplementary Figure 7 Environmental conditions at the MeteoSwiss weather station in Basel Binningen in 

direct vicinity of the study site during the experimental period and the preceding weeks. The period after the 

cutting took place is highlighted by a grey box. Rainfalls at the beginning of the treatment period happened 

during the night.
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Abstract 

Decreasing amounts of precipitation and more frequent dry periods will challenge 

temperate Central European forest trees in the future. In this scenario, single drought-

intermitting rainfall events might represent the only renewing water source for the trees 

during these episodes. We investigated the beneficial effects of low-amount drought-

intermitting precipitation events during the exceptionally dry summer of 2015 on the 

water relations of mature individuals of six different tree species in a near-natural 

temperate forest. We found the trees to strongly profit from drought-intermitting 

rainfalls with maximum daily sap-flow recovering already at amounts of c. 1.5 mm by 

up to 20% and tree water deficit and Ψmidday steadily profiting by up to 60% from rainfall 

amounts of 4.5 mm on. Duration of the rainfall-facilitated recovery was on average 3 

days in the coniferous species and Q. petraea but distinctly longer in C. betulus and F. 

sylvatica the latter of which reached a duration of c. 9 days on average. Hydraulic 

conductivity was found to partly explain the differences in TWD release among species. 

We conclude that drought-intermitting rainfall events have a strong facilitative effect on 

temperate tree species and may be an important stress relief potentially helping the trees 

to endure longer periods of severely restricted water supply. 

 

Key Words: mature trees, drought, recovery, tree water deficit, sap-flow, water potential  
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Introduction 

The frequency and intensity of heat waves and drought events is predicted to increase 

in Central Europe in the near future (Kirtmann et al. 2013). Prolonged droughts have 

been shown to strongly affect the functioning of forest ecosystems globally and to cause 

even large die-offs in tree populations if drought stress persists for extended periods of 

time (Breshears et al. 2009, Allen et al. 2010). Since forests provide important 

ecosystem services, fatal effects of future drought events on tree populations are likely 

to affect these services, for example by altering the regional and global carbon and 

hydrological cycles (Bonan 2008, Reichstein et al. 2013). 

The centennial heat waves and drought events in Central Europe during the 

summers of 2003 and 2015 are often referenced to as examples of weather scenarios that 

are predicted to occur more frequently in this region in the future (Orth 2016). Both 

events had strong impacts on the health of humans (FOEN, 2016) and on the functioning 

of ecosystems (Ciais et al. 2005, Leuzinger et al. 2005, Dietrich et al. in review). Several  

studies have investigated the impact of the 2003 and 2015 drought events on the water 

relations of temperate forests mainly focussing on effects on transpiration, tree water 

status and growth (Pataki et al. 2000, Hölscher et al. 2005, Leuzinger et al. 2005, Köcher 

et al. 2009, Dietrich et al. in review). The measures taken to investigate the trees’ 

responses involved sap-flow and water potential measurements as well as calculating 

tree water deficit from stem diameter variations. All of these studies found strong 

physiological responses of the trees to drought emphasising the physiological sensitivity 

of temperate tree species to such drought events. However, these strong physiological 

reactions have been shown to occur without any sign declining tree health (Dietrich et 

al., in review). 

Extended drought periods in Central Europe such as the 2003 or 2015 

summer droughts are typically interrupted by short and episodic rain events (Fischer et 

al. 2014). These rain events have no substantial impact on the water balance of the 

ecosystem, but could yet cause a short-term increase in tissue water supply and a relief 

in atmospheric water demand. The extent by which such short and episodic rain events 

can relieve the water status of mature trees is, however, unclear. Should temperate trees 

be able to use short and episodic rain events that occur during drought periods to relieve 

their water relations, this might be an important strategy to withstand as such longer 

periods of limited water supply and to avoid as such approaching thresholds of fatal 
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water stress. It is, however, unclear, if short and episodic rain events can indeed relax 

the water relations of drought stressed trees thereby leading to a mitigated risk of 

declining tree health under drought. 

In this study, we took advantage of the exceptional 2015 summer drought in 

a near-natural 130-year-old forest in North-Western Switzerland. With a precipitation 

amount of only 96.6 mm during the months of July and August, the summer of 2015 

was among the 10% driest summers of the past 100 years at our study site. Mean daily 

temperature averaged at 22°C throughout these two months and made the summer of 

2015 the second hottest on record. High temperature and mostly low relative humidity 

resulted in a high summer VPD which, together with the mostly scattered and low-

amount rainfall events that were not able to sufficiently re-wet the soil, caused Ψsoil to 

progressively dry down to -1.3 MPa throughout the period from beginning of July to 

mid-September. This provided a good setting to quantify the effects of single drought-

intermitting rainfall events on the water relations of temperate forest trees. To do so, we 

investigated (i) to what extent sap-flow, tree water deficit and leaf water potentials 

recovered from drought-intermitting low-amount precipitation events and (ii) from what 

rainfall amount on the trees start to benefit. We further tested (iii) how long the release 

of water stress lasted during the overall drought period. 

 

Material and Methods 

Study site and study trees 

The study took place during the growing season of 2015 in a near-natural forest in the 

vicinity of Basel, Switzerland (47°28’N, 7°30’E). The site is located at an elevation of 

550 m a.s.l. and experiences a temperate humid climate with a mean annual precipitation 

of ca. 900 mm two thirds of which fall during the growing season. Mean January and 

July temperatures are 2.1 and 19.2°C, respectively. Trees are stocking on a stony 1-m-

deep soil of the rendzina type underslung by calcareous bedrock. In 1999, a canopy 

crane was installed at this site (Pepin and Körner 2002). The forest consists of mature 

individuals from different species, including Fagus sylvatica L. and Quercus petraea 

(Matuschka) Liebl., which are the dominant part of the canopy. Other species are 

Carpinus betulus L., Larix decidua Mill, Picea abies (L.) Karst, Pinus sylvestris L. and 

Abies alba Mill. The trees are about 130 years old and the canopy reaches a height of 

35-40 m. 
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A weather station (Davis Vantage Pro 2, Scientific Sales Inc., Lawrenceville, 

NJ, USA) on top of the canopy crane recorded temperature, relative air humidity, 

radiation and precipitation on a ten-minute-interval throughout the growing season. We 

measured soil water potential (Ysoil) with matrix sensors (MPS-2, Decagon Devices, 

Pullman, WA, USA) at a depth of 20 cm, c. 1 m near the stems of 12 randomly chosen 

study trees distributed across the site. The site experienced a severe drought from July 

to mid-September during the growing season of 2015 in which our investigations took 

place. Strong VPD and low rainfall amounts led to soil water potentials decreasing down 

to -1.3 MPa (Fig. 1). From here on, we will refer to this drought event as the 2015 

summer drought. 

To test the influence of single short and episodic rainfall events on the water 

relations of the trees, we chose precipitation events that occurred during the 2015 

summer drought from DOY 180 to DOY 260. We only considered those events for the 

analyses that were preceded by at least one day with less than 1 mm precipitation in 

order to allow the trees to have experienced some extent of water deficit before the rain 

event occurred. To be included in the analyses, precipitation events also had to have at 

least an amount of 1 mm d-1 (as determined above the forest canopy). Precipitation 

amounts of less than 1 mm d-1 were also taken into account if they occurred within a 

timeframe of at most two hours but not if they occurred throughout longer time periods. 

This was done to exclude rain events from our analyses which hardly reached the trees 

because of the very low rainfall intensity and amount. 
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Figure 2 Daily precipitation and maximum daily soil water potential (± SD, n = 12 sensors at -20 cm) during 

the dry period in 2015 (grey-hatched). Precipitation was measured with a weather station on top of a canopy 

crane standing amidst the investigated trees. Soil water potential was measured with 12 sensors at 20 cm 

depth in between the trees. 

 

Sap-flow measurements 

We measured the sap-flow of all four individuals of the six species during the growing 

season of 2015 with Granier-type heat dissipation probes (SFS2-M, UP GmbH, 

Ibbenbüren, Germany) installed at the North-East and South-West sides of the stems. At 

the two insertion points of the sensor needles (ca. 1.5 m high) the bark of the tree was 

carefully peeled off. Aluminium sleeves were inserted 20 mm deep into the sapwood 

axially aligned at a 10-cm distance from each other. The sensor needles were slightly 

greased and then inserted into the sleeves. We sealed the insertion points with Teroson 

MS 930© sealing adhesive from the outside. Sensors were covered with radiation shields 

made of thick bubble warp aluminium foil to protect them from weather and radiation 

influences. Data was recorded every ten minutes with a sensor node (Channel Node, 

Decentlab GmbH, Dübendorf, Switzerland), wirelessly transmitted to a data logger 

(Base Station, Decentlab GmbH) and then broadcasted to a server via cellular network. 

Data evaluation was done after the method of Granier (Granier 1985, 1987). 

The temperature difference between the two needles (DT) of each sap-flow device was 

calculated from voltage values. In order to precisely estimate no flux conditions during 

nighttime and account for nighttime transpiration, no flux conditions were defined as 
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the maximum DT (DTmax) during the night within a seven-day period. If a drift in DTmax 

was observed, we applied a linear regression through DTmax over the period of drift and 

set DTmax to the regression values if it fell below the regression line. If the individual 

trees were found to exhibit a sapwood depth shorter than the length of the sensor needles 

(that was the case for L. decidua and Q. petraea), we performed a correction of DT to 

determine sapwood DT excluding the fraction of the probes that was inserted into non-

conducting heartwood (Clearwater et al. 1999). Total sap-flow density u was then 

calculated using the following two equations (Granier 1987):  

(1) - =	 ∆&)*+'	∆&
∆&  

and 

(2) 1 = 119 ∗ 	10'6 ∗	-7.9:7. 

The values from both sensors on a tree were averaged. For our analyses, we only 

considered relative daily maximum sap-flow values which were calculated by dividing 

the daily maximum absolute sap-flow by the 95th percentile of maximum sap-flow 

values throughout the growing season. Relative sap-flow values were averaged for each 

species. 

 

Tree water deficit and modelling of Y 

To determine the water deficit of the investigated trees, we installed automated point 

dendrometers (ZN11-T-WP, Natkon, Oetwil am See, Switzerland) to assess diurnal and 

seasonal stem diameter variations (SDV). On each tree, we installed a dendrometer on 

the north-eastern site of the stem at around 2 m of height in April 2014. Data was 

collected on a ten-minutes interval throughout the growing season of 2015. From SDV, 

we calculated tree water deficit (TWD) as the difference between the last maximum in 

stem diameter and the pre-dawn maximum diameter on each day as described in Dietrich 

et al. (2018) and Zweifel et al. (2016). In brief, TWD is a measure for the water loss of 

the stem. It equals zero when the tree is fully hydrated. TWD increases when the tree is 

subjected to progressive soil drying and cannot refill its storage tissues during night-

time leading to a progressive decrease of internal storage water. 

TWD has been shown to correlate with Ψ (Dietrich et al. 2018). Therefore, we employed 

TWD to model the variability of Ψmidday at a daily resolution for the 2015 growing 

season. To do so, we used linear functions that we empirically obtained for each of the 
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six species from 27 single observations of Ψmidday and the corresponding TWD values 

during the growing seasons of 2014 and 2015. We then used the derived function to 

model Ψmidday for each day of the study period. 

 

Calculation of recovery/releases and release duration 

To calculate the recovery of sap-flow, Ψmidday, and the release of TWD (x) in response 

to short and episodic rain events, we divided the absolute value of the difference between 

sap-flow, TWD, or Ψmidday after the precipitation event (yi) and the respective value 

before the event (yi-1) by the maximum (sap-flow, TWD) or minimum (Ψmidday) value of 

the season (ymax/min). The resulting values were multiplied with 100% to obtain 

percentage values: 

K = 	?LM(O< − 	O<'7)O.,//.<R
∗ 100	% 

Rain events were defined by filtering the respective precipitation data of the summer 

2015 for the days on which we detected short and episodic rainfall events as defined 

above. Since the TWD, sap-flow, and Ψmidday values were obtained once a day, the exact 

timing of a precipitation event was important to assess whether the respective variable 

had been influenced by the event on a respective day or not. Therefore, we identified the 

start and end of the precipitation events and determined the sap-flow, Ψmidday, and TWD 

values before and after the precipitation as follows: for pre-dawn TWD, which was 

measured at around 5 a.m. each day, the value after the precipitation event was 

considered the value of the day on which the last precipitation occurred before 5 a.m. 

This allowed to obtain two values of pre-dawn TWD one of which was unaffected by 

the precipitation event while the other one was affected. The amount of precipitation 

that fell in between was summed and considered as one event. In most cases, this was, 

in fact, only one event since precipitation often occurred during night-time (mostly due 

to thunderstorms). Since maximum daily sap-flow and Ψmidday were measured/obtained 

at ca. 2 p.m. on each day, we considered the values of sap-flow and Ψmidday on days with 

precipitation after 2 p.m. as the values before the precipitation event and the values on 

days with the last precipitation before 2 p.m. as the values after the precipitation event.  

To obtain sap-flow recovery values as clean as possible, we only chose pairs of 

subsequent days for the analysis on which the day after the rainfall exhibited a similar 
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maximum daily VPD than the day on which the precipitation event occurred (range of 

± 5 mbars). This was the case in seven out of eleven events. 

 To estimate the duration of the TWD release after each precipitation event, 

we calculated the difference in days between the day after the precipitation event and 

the next following day on which 75% of the TWD the respective tree revealed on the 

day before the respective precipitation event was reached again. In some cases, there 

were precipitation events following each other on a relatively short time-scale, thereby 

progressively decreasing TWD with the result that TWD was affected by more than only 

one precipitation event before reaching 75% of its previous values again. This affected 

the release duration after every precipitation event. Since conditions were the same in 

every species, we do not think that this had a significant impact on inter-species 

differences. Also, we observed no differences when decreasing the amount of TWD to 

be reached after the precipitation events from 75 to 50 %. 

 

Hydraulic conductivity 

To determine the hydraulic conductivity of the xylem of the respective species, we 

harvested one branch segment of about 35 cm length and 1 cm of diameter from the 

sunlit crown of each of three individual trees per species before dusk in October 2015, 

directly wrapped it into moist paper towels and stored it in plastic bags at 4°C. Branch 

segments were sent to the Caviplace lab at INRA Bordeaux within a week, where they 

were stored at -4°C prior to measurements. Samples were then recut to 28 cm long 

segments under tap water. Centrifuge measurements were performed within three weeks 

using the Cavitron technique (Cochard 2002, Cochard et al. 2005). The stem segments 

got spun at different speeds thereby creating water potentials from moderate to very 

negative values within the segments. We took the hydraulic conductivity of the stem 

segments at full initial conductance (water potentials > -1 MPa). We did not take values 

for Q. petraea into the analysis since the method to measure stem segments of long-

vesseled species was quite new and absolute values for hydraulic conductivity could not 

be trusted at the time of measurement. 

 

Statistical analyses 

Statistical analyses and data visualization were done using R, version 3.4.1 (R 

Foundation for Statistical Computing, Vienna, Austria 2013), with its packages zoo 
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(Zeileis and Grothendieck 2005), xts (Ryan and Ulrich 2014), data.table (Dowle et al. 

2015), caTools (Tuszynski 2014), scales (Wickham 2015), gridExtra (Auguie, 2015) 

and ggplot2 (Wickham 2009). We assumed a p < 0.05 as the level of significance for all 

statistical tests. For the regression analyses between TWD release and Ψmidday recovery 

and the amount of intra-drought rainfall we used the lm() command with a linear 

function forced through the origin. For the analysis on sap-flow recovery, we used the 

nls() function with the formula 

TAUVWATO	 = 	? ∗ (1 − 	A
X*EYZ*FF

G ). 
The parameters a and b thereby determine the saturation value and curvature of the 

function, respectively. To analyze the relationship between mean TWD release and 

hydraulic conductivity, we fitted the values using a second order polynomial function 

within a generalized linear model with the glm() command. Statistical comparison of the 

mean duration of TWD among the species was done with a posthoc Tukey’s range test. 

 

Results 

Intermittent rain events during the summer drought of 2015 

The summer drought of 2015 was intermitted by 16 rainfall events out of which 11 met 

our criteria. Rainfall events  had an average amount of 6 mm. Maximum rainfall amount 

was 12 mm and minimum rainfall was less than 1 mm per day. The impact of different 

rainfall events on Ψsoil differed and ranged from only minor influences to a partly re-

wetting of the soil matrix (from -0.8 to -0.4 MPa, and from -1.2 to -0.5 MPa; Fig. 1). 

However, no rainfall event could completely saturate the soil matrix and Ψsoil quickly 

decreased again after each drought-intermitting rainfall event (Fig. 1). 

 

Sap-flow, TWD and Ψmidday during the 2015 summer drought 

Maximum daily sap-flow during the 2015 summer drought showed a clear decrease with 

drying soil in all species except Q. petraea (Fig.2). Towards the end of the drought 

(around DOY 260), most species except for Q. petraea, exhibited sap-flow reduced by 

up to 80% compared to the maximum values of the season. This underlines the impact 

of the 2015 summer drought on Central European tree species.  

 Pre-dawn relative TWD showed a strong variation throughout the 2015 

summer drought reaching its highest values towards the end of the drought when the soil 
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was driest (around DOY 255). This was in all species except P. sylvestris which reached 

its highest TWD values already at the beginning of the drought around DOY 190 – 220 

and stayed around these values throughout the drought (Fig. 2). 

 Modelled Ψmidday showed a good correlation with measured values 

(Supporting Fig. 1) making it a reliable estimate of the trees’ water status throughout the 

2015 summer drought. In the broad-leaved species, Ψmidday showed a wider range of 

values than in the coniferous species but the course over time was very similar in all 

species (Fig. 2). All species exhibited their lowest Ψmidday between DOY 240 and 260 

with F. sylvatica and Q. pertraea reaching Ψmidday as low as -2.5 and -2.8 MPa, 

respectively. L. decidua and especially P. sylvestris kept variation in Ψmidday very small 

always oscillating around -2 and -1.8 MPa, respectively. 
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Figure 3 Daily maximum relative sap-flow (mean of 4 trees with 2 sensors each ± SD), daily pre-dawn 

relative tree water deficit (mean of four individuals ± SD) and modelled midday branch water potential of 

the studied tree species throughout the drought in 2015. Precipitation > 1 mm is indicated by dashed vertical 

lines. 

Drought release after rainfall 

Both angiosperm and coniferous species were able to recover their sap-flow following 

short and episodic rain events to values up to 50% of the seasonal maximum (Fig. 2). 

Interestingly, even low intensity rain events with < 2 mm triggered a moderate sap flow 

recovery of ~10%, indicating that the trees responded with an increase in stomatal 

conductance. The degree of recovery increased with the amount of drought-intermitting 

precipitation but did not exceed 30% following 4 mm of precipitation input (Fig 3). 
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Therefore, an asymptotic function was found to fit the relationship between sap-flow 

recovery and precipitation amount (Fig. 3). We found no difference in the increase with 

rain volume between angiosperm and coniferous species. 

 Short and episodic rain events during the drought period had a clear 

decreasing impact on TWD in all species. As for sap flow, even low-intensity rain events 

of less than 2 mm already triggered a TWD release, which was, however, small. Yet, at 

around 4.5 mm of precipitation, TWD was able to recover by on average 30%. TWD 

release steadily increased with the amount of precipitation up to a maximum of c. 50% 

at rainfalls of around 10 mm and we found a linear function to significantly fit the data 

(Fig. 3). However, from theoretical considerations, the relationship between TWD 

release and precipitation amount should saturate at a TWD release of 100 %. 

Interestingly, we further found that the severity of TWD before the rainfall was a 

significant determinant of TWD release following short and episodic rain events with a 

stronger recovery at low TWD (ANOVA, p < 0.001). We found no significant effect of 

species or phylogenetic groups (angiosperm/conifer) on TWD release following short 

and episodic rain events. 

 Ψmidday recovered following short and episodic rain events during the drought 

by up to 1 MPa in C. betulus, F. sylvatica, Q. petraea and P. abies around DOY 225 

and 265 (Fig. 2). The relationship between the recovery of Ψmidday and rainfall amount 

was also found to be significant (Fig. 3). As for TWD, the relationship should in fact be 

saturating at a given recovery of Ψmidday with increasing rainfall amounts. The values we 

found, however, seem to fall into the linear part of the overall relationship. The trees 

were able to progressively recover Ψmidday with increasing amount of rainfall with on 

average 15% recovery already at amounts slightly less than 5 mm in the angiosperm 

species. However, as for TWD, precipitation events below 4 mm did only have a small 

effect on Ψmidday. The highest recovery reached by a coniferous species was 18% at 8 

mm precipitation. Angiosperm and coniferous species exhibited significantly different 

slopes of the linear regression lines with angiosperm species showing a greater recovery 

with increasing rainfall amounts than the conifers (p < 0.01, Fig. 3). We neither found 

an effect of Ψmidday on the preceding day nor species-specific influences on the recovery 

of Ψmidday after short an episodic rainfall events. 
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Figure 3 Regression analysis between the percentage recovery of sap-flow, release of pre-dawn tree water 

deficit (TWD) and recovery of midday branch water potential after precipitation events with impact on soil 

water potential and the respective amount of precipitation. Each data point represents one individual tree on 

one single day after a low amount precipitation event in sap-flow and TWD correlations. Branch water 

potential was modelled on a species level and is therefore lacking replication. The regression lines are 

encompassed by the 95th percentile confidence interval (grey area). All regressions we found were significant 

at p < 0.01 (sap-flow) and p < 0.001 (TWD and Ψmidday). Significances for the difference between angiosperm 

and coniferous species are given in the upper right corner of each panel. 
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Duration of TWD release 

We found that the TWD release following short and episodic rain events lasted between 

2 and 9 days. Duration of TWD release was significantly correlated with the amount of 

precipitation across all species (p < 0.001, two-way ANOVA). We also observed 

significant differences in the mean duration of TWD release after drought-intermitting 

rainfalls among species (Fig. 4). With around a 9-day mean duration of TWD release, 

F. sylvatica exhibited by far the longest release of all investigated species. C. betulus 

revealed a bit more than half of that amount. P. abies and Q. petraea averaged at around 

four and three days, respectively, while L. decidua and P. sylvestris showed the shortest 

duration with two and a half and two days, respectively. 

 

 

Figure 4 Mean duration for the alleviation of tree water deficit after intermittent rainfall events during 

drought for the different tree species. Duration is calculated as the time elapsed since a rain event until 75% 

of the preceding TWD is reached again. Values are means of individual means for the dry period of 2015 (n 

= 4 trees per species ± SD). A posthoc Tukey’s range test revealed significant differences among species 

(letter combinations above the columns). 

Hydraulic conductivity and TWD release 

A second order polynomial function was found to fit the significantly increasing 

relationship of mean TWD release during the 2015 summer drought with increasing 
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a lower hydraulic conductivity. However, we find the relationship to saturate at high 

values for hydraulic conductivity indicating that the increase of TWD release with 

hydraulic conductivity is only significant at low conductivities. A one-way ANOVA 

revealed the relationship between hydraulic conductivity and TWD release to be 

significant at p < 0.01. 

 

 
Figure 5 Second order polynomial regression analysis between the percentage release of tree water deficit 

(TWD) after chosen precipitation events and the hydraulic conductivity of branches of the respective species. 

Each data point represents the hydraulic conductivity of one branch of one individual tree and the species 

mean of TWD release. The regression line is encompassed by the 95th percentile confidence interval (grey 

area). 

Discussion 

Our study shows that the water relations of temperate tree species are able to recover 

from drought stress in response to short and episodic rain events that occur during 

exceptional summer droughts. Sap-flow recovered by a mean of 10% already at low 

amounts of drought-intermitting precipitation (< 2 mm). Also TWD and Ψmidday  

recovered following drought-intermitting rainfall amounts by up to 30% (TWD) and 

15% (Ψmidday) on average. The recovery of water relations lasted for a mean of 5 days 

per drought-intermitting precipitation event. The duration of TWD release was 

significantly correlated with the amount of rainfall and was highly different among 

species. F. sylvatica exhibiting the longest while P. sylvestris revealed the shortest mean 

release duration. Hydraulic conductivity was found to explain differences in water stress 

recovery among species to a certain extent. 
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The 2015 summer drought and its physiological impact on temperate tree species 

2015 was a very dry summer with a heat wave that was exceptional to Central Europe 

(Orth et al. 2016) and Switzerland in particular (FOEN 2016, Dietrich et al. in review). 

Low rainfall amounts caused progressively decreasing Ψsoil down to -1.3 MPa, which 

show that the 2015 summer drought was a strong and long-lasting drought event that 

triggered severe water limitation in the soil. We saw sap-flow to decrease throughout 

the drought and TWD to increase at the same time. This emphasizes the water limitation 

of the trees during the 2015 summer drought. Decreasing sap-flow rates and increasing 

TWD have been shown in several studies before in temperate tree species throughout a 

drought or dry-spell (Hölscher et al. 2005, Köcher et al. 2009, Brinkmann et al. 2016) 

indicating that these are very common physiological reactions of the trees to soil drying. 

An up to 80% decrease in sap-flow, however, has only been observed during exceptional 

drought periods (Leuzinger et al. 2005). We therefore conclude that the trees we 

investigated in this study were indeed strongly water-limited during the summer drought 

of 2015. This is further corroborated by Ψmidday falling into the range of the most negative 

measured values in temperate species both in literature and at the site (Lu et al. 1996, 

Maier-Maercker 1998, Backes and Leuschner 2000, Leuzinger et al. 2005, Köcher et al. 

2009). Nevertheless, short and episodic rain events were scattered across the summer 

and occurred several times during the 2015 summer drought. They partly re-wetted the 

soil but never completely saturated the soil matrix. These scattered low-amount 

precipitation events during the 2015 summer drought provided an ideal setting to study 

their effects on the stress release of the water relations of temperate tree species. 

 

Water uptake and drought release 

Here, we only measured precipitation amounts on top of the canopy crane towering the 

forest canopy. Therefore, we were not able to distinguish between intercepted rain and 

throughfall. However, with an LAI of 5 m2 m-2 ground area at our site, 1 – 2 mm of 

precipitation during a rain event can be expected to be intercepted by the canopy 

(Crockford and Richardson 2000). Therefore, we were surprised by the fact that we saw 

an effect of small precipitation amounts of around 1 – 2 mm on both Ψsoil and 

physiological variables in the trees. This could be due to the fact that the studied forest 

contains gaps in the canopy. By this means, and because the soil was very dry, even very 
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low-amounts of precipitation could affect the soil matrix, indicated by few sensors 

which led to a very slight increase in mean Ψsoil.  

Since uptake of precipitation water by plants can occur via roots or via direct 

absorption of the intercepted rain water by the leaves (Sherriff and Meidner 1975, 

Jackson et al. 2000), foliar water uptake could further have led to responses in the 

physiological variables already at low amounts of precipitation. Katz et al. (1989) and 

Breshears et al. (2008) have shown that trees can take up substantial amounts of water 

via their leaves during dry periods. Thus, in our study, the recovery effect is possibly a 

mix of rainfall taken up by leaves and roots, respectively. With increasing amounts of 

precipitation, however, water uptake through roots is likely to have gained a greater 

proportion because the intercepted amount of water by leaves cannot increase beyond 

these 1 – 2 mm, at least not during high rainfall rates and short rainfall duration since 

the surplus water would run off the leaves quickly and fall to the ground. Yates et al. 

(1995) observed the effect of leaf moistening on leaf water potential to be a function of 

time with the recovery process taking up to 10 hours or even 1.5 days (but see Katz et 

al. 1989). This underlines that water uptake through leaves is a slow process and short 

rainfall events during otherwise hot summer weather are, thus, not likely to have a great 

effect on leaf water status since the water intercepted by the leaves would quickly 

evaporate back into the atmosphere. However, this is likely to be dependent on the 

thickness of the respective leaf and its cuticula. Leaf water uptake being a long-lasting 

process indicates that measuring the benefits of drought-intermitting precipitation via 

leaf water uptake strongly depends on the timing of measurements with measurements 

taken directly after the precipitation event probably being least meaningful. We 

therefore conclude that our study preferentially captured the effects of root water uptake 

since this should lead to relieved water status way faster than the wetting of leaves. 

Moreover, the point of measurement in our study was the trunk base. Water is more 

likely to faster reach tissues at the trunk base if it is taken up by roots not by leaves 

simply because the distance to the point of measurement is way shorter. A replenishment 

of stem tissues at the base of the trunk by water taken up in the canopy would require 

reversed sap-flow. At such low amounts of intercepted water, a reversed sap-flow is 

unlikely to occur but is also very hard to measure (Burgess et al. 2001). The point of 

measurement at the base of the trunk is further more likely to capture the water status of 

the whole tree (Zweifel et al. 2001) rather than only the water status on a branch level 
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as investigated by previous studies (Katz et al. 1989, Breshears et al. 2008). Thus, we 

are confident that our results represent the whole tree recovery rather than only canopy 

recovery from water stress. 

We see that that rainfall amounts around the interception volume (1 - 2 mm) 

have a strong impact on sap-flow indicating that water uptake by leaves might have an 

increasing effect on transpiration. This is puzzling, since we measured sap-flow at the 

base of the trunk. The only explanation we find is that a recovered water status on the 

branch level would trigger stomatal opening because of a higher water content in the 

leaves but we would expect this effect to diminish very fast. Sap-flow was generally 

least recovered of all three physiological variables that we assessed and recovery values 

saturated with increasing amounts of rainfall. This could be due to long-term ABA-

regulated stomatal conductance during the drought (Comstock 2002). Therefore, we 

think that most of the trees were not able to strongly up-regulate sap-flow due to 

hormonal constraints (Edwards and Dixon 1995). By this means, the ABA-mediated 

decrease in stomatal conductance could be hindering the trees to greatly increase 

photosynthesis following intra-drought precipitation events but favour a longer retention 

of the up-taken water within the tissues. However, since CO2 uptake is not linearly 

connected to stomatal conductance (Larcher 2003) assimilation was probably not 

strongly affected by the reported changes in sap-flow. This is supported by the stable 

non-structural carbohydrate concentration in the leaves of the study trees during the 

2015 summer drought (Dietrich et al. in review). 

TWD and Ψmidday showed comparatively strong releases/recoveries only from 

4.5 mm on which indicates for soil water uptake being more important for those two 

measures. In fact, a strong sap-flow recovery but only little TWD release or Ψmidday 

recovery at very low amounts of precipitation could be interrelated as an increase in sap-

flow which strongly depletes the water storage (Zweifel and Hasler 2001) thereby 

possibly leading to a mitigation of the release effect. However, TWD was measured in 

the early morning and should therefore be decoupled from sap-flow on the same day. 

 The duration of TWD release was longest by far in F. sylvatica. This could 

be due to a relatively high recharge of stored water after a precipitation event but sap-

flow rates possibly kept low by intensive ABA signalling from the roots. A short 

duration of TWD release in the coniferous species could in this case be explained by a 

smaller total amount of water taken-up during the re-wetting events which would be lost 
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after shorter time periods because of stronger increased sap-flow after precipitation 

events. A weaker water uptake could be related to the hydraulic conductivity of the trees’ 

xylem tissues. Indeed, we find the conifers to have a lower hydraulic conductivity 

possibly slowing their water uptake and disadvantaging them towards their angiosperm 

neighbours (Meidner and Sheriff 1976). As mentioned above, differences in soil-to-root 

transfer resistance could further make the difference among species (Larcher 2003). The 

short TWD release duration in Q. petraea, however, seems counter-intuitive given its 

efficient ring-porous hydraulic architecture and water transport physiology. However, 

the use of summer precipitation might further depend on rooting depth and differential 

soil water use (Flanagan et al. 1992, Williams and Ehleringer 2000). Q. petraea is 

discussed to take its water from deeper soil layers allowing this species to keep up 

transpiration during drought when others need to shut stomata (Leuschner et al. 2001, 

Zapater et al. 2011). Thus, the precipitation water will be taken up but also very quickly 

be transpired again because of the high overall transpiration rates in Q. petraea. 

Increasing TWD in a tree which has access to deep soil water might be due to a night-

time redistribution of deep soil water to shallow soil layers by hydraulic lift instead of 

night-time refilling of storage tissues (Zapater et al. 2011). Thus, a tree can have a high 

water deficit, while still being connected to sufficient water sources. 

In general, our study shows that the investigated tree species substantially 

profited from drought-intermitting rainfalls in 2015. All three investigated physiological 

response variables showed strong stress releases after precipitation events throughout 

the investigated period (Fig. 2). Indeed, it has been shown that trees quickly recover 

from water stress when receiving precipitation at the end of a drought event (Fereres et 

al. 1979, Gallé et al. 2007). Previous investigations relate, however, to rainfalls or 

watering treatments that almost fully hydrated the soil matrix. We show that rainfall 

amounts from 4.5 mm on can substantially recover the water relations of mature trees 

and therefore assume that single drought-intermitting rainfall events that surpass this 

amount can be an important stress relief during extended periods of drought as assumed 

for future temperate climates. This, in turn, could add to the high resistance to drought-

related mortality found for the studied species at the same site (Dietrich et al. in review). 
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Conclusions 

This study investigated the beneficial effects of short and intermittent precipitation 

events that occurred during a severe drought event on the water relations of mature 

individuals of six different temperate tree species in a near-natural forest. During the 

exceptionally dry summer of 2015, we found the trees to strongly profit from short 

drought-intermitting rainfalls with maximum daily sap-flow recovering already at 

amounts of c. 1.5 mm by up to 20% and tree water deficit and Ψmidday profiting even 

more from rainfall amounts of 4.5 mm on. Duration of the recovery by drought-

intermitting precipitation events was on average 3 days in the coniferous species and Q. 

petraea but distinctly longer in C. betulus and F. sylvatica the latter of which reached a 

duration of c. 9 days on average. Hydraulic conductivity was found to partly explain the 

differences in TWD release among species. We conclude that drought-intermitting 

rainfall events have a strong facilitative effect on temperate forest tree species and may 

be an important stress relief potentially helping to endure longer periods of severely 

restricted water supply. 
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Supporting Figure 1 Linear fits between modelled and measured Ψmidday. Modelled values are derived from 

an empirically derived function for the relationship between tree water deficit (TWD) and Ψ measured during 

the growing seasons of 2014 (11 independent midday data points per species) and 2015 (17 independent data 

points per species). A more detailed description of the relationship between TWD and Ψleaf can be found in 

Dietrich et al. (2018). 
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Concluding Discussion 
This work aimed at assessing the physiological responses of six temperate Central 

European tree species to summer water limitation which is expected to occur more 

frequently in a future Central European climate (Fischer et al. 2014). Most of the work 

in this thesis was carried out in a near-natural 130-year-old forest that was equipped with 

a canopy crane thereby providing easy access to the crowns of the trees. My 

investigations took part during the growing seasons (1 May to 31 October) of four 

subsequent years from 2014 to 2017 one of which comprised an exceptional summer 

that was the second hottest and among the 10% direst summers on record. During this 

time, I assessed physiological parameters that are closely related to tree water relations 

and could therefore provide information on the trees’ responses to low water availability. 

Specifically, I measured stem diameter variations with point dendrometers and sap-flow 

with Granier-type heat dissipation probes at the base of the tree trunks and quantified 

leaf water potentials in the canopy. During the dry summer of 2015, I additionally 

measured non-structural carbohydrate concentrations in leaves and the bark and xylem 

of branches. During the last growing season of my investigations, I tested the impacts 

of a 50% loss of conductive area in the stem on the water status of the two major tree 

species Fagus sylvatica and Picea abies, which is assumed to be an important 

determinant of drought-related mortality in trees. 

As a result of this work, my co-authors and I were able to show that there is 

a close relationship between stem diameter variations, i.e. tree water deficit, measured 

at the base of the trunk and branch water potentials in the crown of the trees (Chapter 

1). This is an exciting result as it facilitates the extensive assessment of the crown water 

status of tall trees by measurements at the base of the trunk. Costly and labour-intensive 

assessments of crown water status like tree climbing, branch shooting or canopy crane 

sampling therefore can be dispensable in the future. However, to model water potentials 

in the crown, calibration measurements would be needed which inevitably require the 

measurement of branch water potentials over at least one season to determine the 

species-specific parameters of the relationship between tree water deficit and branch 

water potentials. Yet, since we showed the relationship to be very close and linear 

throughout most of the range in branch water potentials, the variation in tree water 

deficit itself could be used as a measure for the water status of the trees and no calibration 
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would be needed. Caution should be used, however, at very low and very high tree water 

deficit values as the relationship with branch water potential was shown to change in 

these ranges and a very mild increase in TWD would imply a strong change in branch 

water potentials and, thus, canopy water status. 

 Another important physiological variable that reflects a plant’s response to 

water availability is transpiration, most often estimated by sap-flow measurements. The 

sap-flow data measured in the coniferous species on my study site contributed to a 

project that assessed potential errors in sap-flow values obtained by the most frequently-

used Granier-type heat dissipation method (Chapter 2). We were able to show that 

ignoring species-specific characteristics of water conduction and wounding effects after 

sensor insertion could lead to a substantial error in sap-flow estimations by up to 90 mm 

yr-1. This supports previous studies that presumed errors in sap-flow measurements 

(Clearwater et al. 1999; Wullschleger et al. 2011) and highlights the importance of the 

assessment of species- and site-specific calibration curves to obtain reliable absolute 

values for absolute sap-flow. If calculations account for wounding effects, however, the 

assessment of normalized, species-specific relative sap-flow allows for comparative 

assessments among different species without bearing a big error potential. 

 The methods investigated in the first two chapters of this thesis especially 

allowed for assessing the physiological responses of the six investigated temperate tree 

species to severe water limitation during the 2015 summer drought (Chapter 3). All 

species could be shown to reveal a strong physiological response to soil drying with sap-

flow being down-regulated by up to 80%. The only species that showed a minor 

response in sap-flow was Quercus petraea. However, all species revealed strongly 

negative leaf water potentials similar to minimum values that have been shown for the 

respective species before (Maier-Maercker 1998; Backes & Leuschner 2000; Leuzinger 

et al. 2005; Köcher et al. 2009) and asymptotically approached those minimum values 

with decreasing soil water potential indicating for a physiological response (i.e., 

stomatal closure) to prevent water potentials from a further decrease. By this means, all 

species were able to retain a broad hydraulic safety margin and operated far from fatal 

xylem embolism in the stem. Moreover, the species did not show substantial decreases 

in non-structural carbohydrates in leaves, bark and xylem tissues. This underlines that 

the carbon balance of the trees was not impacted by the drought and that the trees were 

far from carbon starvation. The trees being far from both hydraulic failure and carbon 



 205 

starvation suggests that the observed physiological responses are not related to the two 

discussed mechanisms of drought-related tree mortality and that the trees respond to 

drought way before getting severely threatened (Sala 2009; Hochberg et al. 2017). 

Severe summer drought events like those in 2003 and 2015 are, thus, not likely to 

seriously harm Central European forests in the future. However, this study could not 

account for potential interactions with insect damage and drought recurrency rate 

(McDowell et al. 2011; Anderegg et al. 2015; Schwalm et al. 2017). While insect 

damage still remains an opaque factor in tree mortality scenarios, drought recurrence 

can be assumed to impact the trees if its frequency exceeds the recovery time of the trees 

after a respective drought event (Schwalm et al. 2017). 

The hydraulic failure hypothesis for drought-related tree mortality is a 

controversial theoretical framework implying that once losing 50% or 88% of their 

hydraulic conductance during a drought, respectively, trees are not able to recover and 

eventually die (Choat 2013; Urli et al. 2013). However, this could never be directly 

shown in a study. We only see tree mortality to correlate with water potentials evoking 

the respective amount of loss in conductance (Adams et al. 2017). Our investigation of 

the impact of a 50% loss of conductive area on the water status of trees showed that the 

trees’ water status does not suffer from such an amount of loss in conductance (Chapter 

4). Water potentials in the crown stayed unchanged or even got less negative indicating 

for a relaxation of the trees’ water status. However, the trees slightly closed stomata 

which indicates for a mechanism beyond steady changes in leaf water potential that 

regulates stomatal conductance (Hubbard et al. 2001). Our results are consistent with 

previous studies showing that the stem xylem of trees is a highly redundant system as 

lots of conductive area can be lost before the tree sees a severe water stress (Mackay & 

Weatherley 1973; Sperry et al. 1993; Saliendra et al. 1995; Hubbard et al. 2001). A loss 

of 50% or 88% hydraulic conductance is therefore unlikely to lead to the death of a tree 

during drought, especially because water demands are much lower during drought than 

under high water availability (Larcher 2003). 

Since exceptional summer droughts like those in 2003 and 2015 have always 

been intermitted by short low-amount rainfall events, these events could potentially 

generate a short-term relief from water stress in trees. Therefore, we examined the 

drought stress recovery by short drought-intermitting rainfall events of the investigated 

trees during the 2015 summer drought (Chapter 5). The trees were found to greatly 
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benefit from these intermittent rainfall events with strong recovery responses from 

rainfall amounts of c. 4.5 mm on. The time of water stress release was highly different 

among species of which Fagus sylvatica showed the longest duration of stress release. 

It is therefore likely that drought-intermitting rainfall events help the trees to stay out of 

the range of life-threatening impacts on water status and carbon balance. 

Altogether, the results of this work indicate that temperate Central European 

tree species hold a strong resistance to severe summer drought events such as the events 

in the years 2003 and 2015. An increase in the frequency of such summer drought events 

would therefore not lead to severe damage as long as not accompanied by pronounced 

insect attacks (Anderegg et al. 2015). However, as soon as the interim period of two 

subsequent drought events would become shorter than the recovery time that the trees 

need after a drought event (in Central Europe c. 6 - 12 months; Schwalm et al. 2017), 

the trees might get severely threatened. 
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