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ABSTRACT

In eukaryotic cells, remarkably orchestrated regulatory steps ensure the availability of proteins
and non-coding RNAs at the right spot, at the right time. While many of these steps, such as
splicing, have been well studied since decades, the choice of the mRNA 3’ end, which leads
to expression of one of the many possible primary transcripts from a single locus has been
recognized as key mechanism of post-transcriptional gene regulation only in recent years.

Transitions between cell states have been found to be associated with specific patterns of
change in poly(A) site usage, leading to coordinated changes in the length of 3’ untranslated
regions (3’ UTRs). As 3’ UTRs carry a plethora of cis-regulatory elements, their systematic
shortening or lengthening has global effects on the responsivity of the transcriptome to regu-
lation, which in turn affects essentially every aspect of RNA metabolism, including stability,
transport and translation. However, the mechanisms underlying alternative polyadenylation
(APA) under physiological or pathological conditions remain largely unknown. Likely, changes
in poly(A) site choice are caused by changes in the availability of regulators that bind in the
vicinity of poly(A) sites and impact their processing efficiency.

The projects summarized in this thesis were devoted to a better understanding of the
regulation of APA. Integrative analysis of a large number of data sets allowed us to establish
a comprehensive annotation of poly(A) sites in the human genome. Tools developed for the
projects described here could then exploit this resource to quantify and model the changes of
poly(A) site usage in different contexts. In particular, the application of PAQR to quantify 3’ end
processing from RNA-seq data and of KAPAC to relate the abundance of individual sequence
motifs to changes in poly(A) site usage led to intriguing insights into the regulation of APA in
cancer. For gliobastoma, a CU-dinucleotide repeat motif was most significantly associated
with the observed 3’ UTR shortening, an effect that is likely to be explained by the binding of
PTBP1, a factor previously known for its role in splicing regulation.

Together with HNRNPC, another splicing factor that was implicated in the regulation of
poly(A) site choice through analyses presented here, these results suggest an extensive coupling
between splicing and 3’ end processing. In particular, it appears that many regulators of both
mRNA maturation steps exist and remain to be uncovered. Previous results from glioma cell
lines indicated that PTBP1 levels directly affect proliferation and migration. Considering its
role in splicing and 3’ end processing, PTPB1 may emerge as an important regulator of gene
expression with direct implications for tumor progression in glioblastoma. Potentially, PTBP1
can serve as therapeutic target or diagnostic marker in brain tumor.

In summary, the work of this thesis illustrates how the deployment of computational tools
can condense the information contained in large-scale data sets into biologically relevant
results, shedding light on novel aspects of mRNA 3’ end processing in physiological and
pathological conditions. The uncovered regulators may be amenable to targeting by small
molecules, thereby restoring the RNA processing patterns specific to the healthy states.
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INTRODUCTION

The human body contains trillions of cells that share virtually the same genetic information.

This shared genomic blueprint enables the formation of 200 distinct cell types [1]. It is a

major challenge of modern biology to uncover the principles that guide the establishment of

such a complex cellular landscape starting from a single cell and based on a unique genome.

The transcriptional program has been recognized as a major determinant of a cell’s function

and state [2], distinct cell types having distinct transcriptomes. In eukaryotic cells, the set of

expressed transcripts depends on many factors, beyond those that regulate transcription. In

particular, gene expression is regulated at various co-transcriptional and post-transcriptional

levels [3]. The best-characterized step of mRNA processing is certainly alternative splicing:

co-transcriptional excision of introns is guided by various RNA-binding proteins (RBPs) which

are expressed in a cell type-specific manner, leading to the cell type-specific expression of

transcript isoforms, which differ in exon composition and function [4].

Similarly, much work in recent years has established that the processing of mRNA 3’ ends

also occurs at a variety of different sites, leading to transcript isoforms that sometimes only

differ in their 3’ untranslated regions (3’ UTRs) [5, 6, 7]. Except for the mRNAs encoding

replication-related histones [8], all mRNAs are matured through endonucleolytic cleavage

at the 3’ end and subsequent addition of a stretch of adenosines (the poly(A) tail) [9, 10, 11].

More than half of all human genes have multiple cleavage and polyadenylation (CPA) sites,

which are used in a context-dependent manner, a phenomenon which was called alternative

polyadenylation (APA) [7, 12, 13]. In the simplest case, APA only affects the 3’ UTR of a protein-

coding mRNA, so that some transcripts have short 3’ UTRs while others have long, frequently

much longer, 3’ UTRs. The choice of the 3’ UTR can have far-reaching implications for the fate

of the mRNA, because 3’ UTRs are hubs where cis-regulatory elements facilitate the binding
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CHAPTER 1. INTRODUCTION

of microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and RBPs, that in turn affect the

stability, localization and translational efficiency of the mRNA [14, 15, 16, 17]. The relevance of

3’ UTRs for gene regulation is underpinned by the observation that their median length has

increased during evolution from around 140 nucleotides (nt) in worms to 1200 nt in humans

[18, 19], paralleling the increase in overall genome size and organism complexity. Thus, 3’ UTR

length modulation through APA shapes the potential for the binding of interaction partners,

with effects for distinct aspects of an mRNA’s life cycle and functionality.

In recent years, APA has been recognized as a pervasive mechanism of regulating the

expressed transcriptome [7, 20]. Strikingly, changes in poly(A) site usage were shown to be

globally coordinated in relation to the cellular state [6, 21]. The observation that cancer cells,

similar to other highly proliferative cells, express transcripts with systematically shortened 3’

UTRs [22, 23] renewed the interest in APA, in particular in the context of human diseases.

The main focus of the work presented in this thesis was to unravel the regulation of poly(A)

site choice. The following sections review the current state of the field.

1.1 Core elements guiding 3’ end cleavage and polyadenylation

Cleavage and polyadenylation sites are defined by a specific configuration of cis-regulatory

elements that surround the actual processing (cleavage) site (CS) and enable the correct

assembly of the 3’ end processing machinery (Fig. 1.1). It is thought that the ‘strength’ of

poly(A) sites, which corresponds to the efficiency with which they are processed, is modulated

by the various cis-elements in a combinatorial manner [24]. The most conserved element is a

hexamer, typically AAUAAA, called poly(A) signal [25]. Genomic analyses uncovered seventeen

other close variants that likely serve as poly(A) signals in both human and mouse, because they

occur in a specific relationship to the CS, 21 nucleotides (nt) upstream (as will be discussed in

Chapter 2). However, the poly(A) sites with an upstream AAUAAA signal are by far the most

abundant and are processed with the highest efficiency [26, 27]. Poly(A) sites frequently have

a degenerate U/GU-rich downstream sequence element (DSE), which is located within 30

nt—sometimes even further downstream—from the CS, and stimulates 3’ end processing [28].

The cleavage of the pre-mRNA is carried out at a site between the poly(A) signal and the DSE,

often after a CA-dinucleotide [29]. However, the exact position of the cleavage site can vary

by several nucleotides depending on the individual context of cis-regulatory motifs [26, 30].

Finally, U-rich elements upstream of the poly(A) signal, often UGUA, aid in the recognition

of the poly(A) site [31]. From the multiple poly(A) sites of a given gene, the most distal was

generally found to have a more canonical composition in regulatory elements and to be most

efficiently processed [11, 32, 33].

Beside linear sequence motifs, the RNA structure [34, 35], the conformation of chromatin

[36] and the nucleosome positioning [37] were proposed to impose further constraints and
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thereby influence the pre-mRNA cleavage. Overall, research from several decades suggests

that poly(A) sites are defined by characteristic and conserved cis-regulatory elements, whose

precise sequence and constellation determines the efficiency with which the site is processed

[32, 38].

Figure 1.1: pre-mRNA maturation through cleavage and polyadenylation. The 3’ end pro-
cessing machinery assembles on the CTD of the RNAPII. An already transcribed proximal
poly(A) site (yellow bolt) was ignored as cleavage site. The main 3’ end processing sub-
complexes along with their corresponding cis elements are shown in the frame on the right-
hand side. The pre-mRNA part between the proximal and the processed distal poly(A) site
contains multiple binding sites for interaction partners, shown is the binding of two RBPs.
RNAPII - RNA polymerase II, CTD - C-terminal domain, RBP - RNA-binding protein, CPSF
- Cleavage and Polyadenylation Specificity Factor, CSTF - Cleavage Stimulation Factor, CFI -
Cleavage Factor I, CFII - Cleavage Factor II.

1.2 The 3’ end processing machinery

In spite of being a relatively simple two-step reaction, pre-mRNA maturation through CPA

involves a large and complex machinery [39]. Experiments using affinity purification uncovered

over 85 proteins that participate in pre-mRNA cleavage and polyadenylation [40], of which

about 20 form the core molecular machinery that selects and processes the poly(A) site (PAS)

[41]. These further form four highly conserved multisubunit protein complexes (shown in the

panel on the right-hand side of Figure 1.1). The cleavage and polyadenylation specific factor

(CPSF), consisting of CPSF1 (CPSF160), CPSF2 (CPSF100), CPSF3 (CPSF73), CPSF4 (CPSF30),
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WDR33 and FIP1L1, binds the poly(A) signal and cleaves the pre-mRNA. While binding of the

poly(A) signal was attributed for a long time to CPSF160 [42], recent evidence demonstrates

that PAS binding is due to WDR33 and CPSF4 [43, 44, 45, 46, 47]. CPSF3 contains the catalytic

domain that provides the endonuclease activity [48]. CPSF cooperatively acts together with the

heterotrimeric cleavage stimulation factor (CSTF) that contains the subunits CSTF1 (CstF50),

CSTF2 (CstF64) or its paralogue CSTF2T (CstF64τ) and CSTF3 (CstF77). The binding of CSTF

to the UG-rich DSE is achieved via a RNA recognition motif (RRM) domain of CSTF2. However,

it is unclear how CSTF2 is able to bind rather unspecific degenerate UG-rich sequence motifs

in the downstream region [49]. The cleavage factor I (CFI), a tetramer of two small NUDT21

(CFI 25) subunits and two large CPSF6 (CFI 68) and/or CPSF7 (CFI 59) subunits, binds to

UGUA motifs upstream of the CS. The interaction of CFI with UGUA alone can already initiate

CPA in the absence of a poly(A) signal [31]. The least well characterized complex of the core

machinery, cleavage factor II (CFII), is composed of CLP1 and PCF11 and might be involved in

the stabilization of the entire machinery [29]. In addition to the four protein complexes, the

core machinery also contains the proteins symplekin (SYMPK), the poly(A) polymerase (which

has three paralogues, PAPOLA, PAPOLB, PAPOLG) and the nuclear poly(A) binding protein

(PABPN1) [50, 51, 52].

1.3 Consequences of alternative polyadenylation

Most human genes express multiple isoforms, that differ not only in their internal exons, but

also in their 3’ end [7, 53]. Depending on the location of poly(A) sites relative to the coding

sequences, APA events can (1) alter the coding potential of transcripts, (2) change the terminal

exon or (3) alter only the length of the 3’ UTR [52]. The latter, most extensively covered in

the present dissertation, are presumed to serve mostly in remodeling post-transcriptional

regulatory interactions [54]. When the cleavage occurs at proximally located poly(A) sites, 3’

UTRs are shortened and binding sites for factors like RBPs are not included in the transcripts

which in turn affects various aspects of the mRNA life cycle.

Maybe the most extensively characterized examples involve changes in transcript stability,

depending on whether the transcript has a short 3’ UTR (due to processing at a proximal poly(A)

site) or a long 3’ UTR (when the processing occurs at a distal site). Short 3’ UTR transcripts are

slightly more stable than the corresponding long 3’ UTR transcripts [55, 56]. Often, 3’ UTRs

contain target sites for microRNAs (miRNAs). miRNAs are non-coding RNAs which repress

gene expression through mRNA destabilization [57]. The miRNA-mediated regulation is evaded

by short 3’ UTR isoforms [58], and this has been proposed as an explanation for the increase

in stability of short 3’ UTR isoforms [21]. Indeed, expression of short 3’ UTR isoforms lacking

miRNA binding sites has been associated with the upregulation of several oncogenes [22].

However, the generality of this pattern has been under debate, mainly because the expected
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changes in transcript abundance that should parallel the APA shifts were not found in several

studies (summarized in [59]). Moreover, in mouse fibroblasts a substantial fraction of APA

events produced shorter 3’ UTR isoforms that were less stable [55]. One putative mechanism to

explain partially contradictory findings involves the activity level of miRNAs which is generally

higher in cases of binding sites that are close to the 5’ or 3’ end of the 3’ UTR [60]. APA at a more

proximal site can thus strengthen the activity of a previously weak miRNA binding site rather

than only depleting binding sites [61]. Additionally, a screen for putative regulatory elements

revealed equally many activating and repressing elements in 3’ UTRs indicating that 3’ UTR

shortening can also result in the loss of regulatory elements with a positive effect on expression

[62].

Adenylate/uridylate-rich elements (ARE) are another class of cis-regulatory elements that

influence mRNA stability and reside mainly in the 3’ UTR. A variety of proteins (ARE-binding

proteins or AREBPs) can bind to these elements. Most AREBPs have a destabilizing effect on

the host mRNA [63], but examples of stabilization upon AREP binding are known [64]. Thus,

loss of AREBP binding sites upon 3’ UTR shortening should lead to increased gene expression,

similar to the loss of miRNA-mediated repression [65, 66].

3’ UTR isoforms are also exported from the nucleus with different efficiencies. Alu repeats, a

family of short interspersed elements (SINEs), were suggested as driving force for this effect [67],

as was incomplete splicing [68]. The longer isoforms tend to be more abundant in the nucleus,

an observation that matches findings that relate long transcripts with nuclear retention in

general [68, 69]. To date, it remains challenging to disentangle the effects of altered stability

from those of changes in nuclear export. APA and the choice of 3’ UTR also affect the movement

of the mRNA within the cytoplasm. For example in neurons, the subcellular localization of

transcripts can be 3’ UTR dependent. The isoform of brain-derived neurotrophic factor (BDNF)

with a short 3’ UTR is retained in the soma, whereas the long isoform is localized in dendrites

thereby facilitating an energy-efficient protein localization [70, 71]. Strikingly, it is not only

the transcript localization that changes through APA; Berkovits and Mayr showed that the

localization of the encoded protein can depend on the 3’ UTR of the mRNA, a mechanism

called 3’ UTR-dependent protein localization, or UDPL [72]. Only the long isoform of CD47

enables 3’ UTR mediated protein-protein interactions that lead to the shuttling of the protein

to the plasma membrane. The protein from the short isoform remains in the endoplasmic

reticulum (ER) despite having the very same amino acid sequence as the protein encoded by

the long 3’ UTR isoform.

Whether APA also affects the translation of the encoded protein has remained unclear,

even though translation is known to be under the control of RBPs that specifically bind to 3’

UTRs [73]. An initial study supported the notion that shorter transcripts are translated more

efficiently, as they lack repressive 3’ UTR elements [22]. The mean 3’ UTR length of isoforms

in the low polysome fraction was also found to be significantly longer than that of isoforms
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isolated from the high polysomes [74]. In active neurons, translational repression is mediated

through regulatory elements in extended 3’ UTRs, which is again indicative for a direct link

between translational capacity and 3’ UTR length [75]. However, a few genome-wide studies

did not find a global correlation between 3’ UTR length and protein abundance [55, 56]. On

the level of individual genes, the translational activity can differ significantly between short

and long isoforms, although sometimes in an unexpected manner [76]. Hence, the relation

of APA and translation is likely to be more complex than anticipated. The outlined examples

demonstrate the multifaceted effect of APA on various aspects of mRNA life cycle, with direct

implications on gene expression.

1.4 Regulators of poly(A) site usage

As the pervasiveness of APA as a means of regulating gene expression is becoming increasingly

clear, it is important to understand what regulates APA itself. Obviously, factors of the core

processing machinery are expected to influence the poly(A) site choice, their deregulation

leading to global changes in the 3’ UTR landscape. Indeed, the small interfering RNA-mediated

knock-down of either CPSF6 or NUDT21, both subunits of the CFI complex, leads to drastic

genome-wide 3’ UTR shortening [33, 77]. Nuclear and cytoplasmic poly(A) binding proteins

(PABPN1, PABPC1) influence poly(A) site usage in a similar fashion, depletion of either of

these factors resulting in higher usage of proximal poly(A) sites [78, 79]. 3’ UTR length is also

changing upon deregulation of CSTF2, a component of the CSTF complex, but in the opposite

direction: 3’ UTR shortening is induced by upregulation of CSTF2. One of the first functionally

relevant examples of APA, the immunoglobulin M (IgM) heavy chain switch from a membrane-

bound to a secreted form, is regulated by CSTF2: higher CSTF2 levels induce the usage of a

proximal poly(A) site, i.e. the expression of the short isoform, encoding the secreted form of the

protein [80, 81]. However, CSTF2 downregulation has a limited effect; only the simultaneous

downregulation of CSTF2 and its paralogue, CSTF2T, leads to a global shift towards more distal

poly(A) site usage [49]. FIP1L1, a subunit of the CPSF complex, and the CFII component PCF11

also strengthen the usage of more proximal sites, at least in mouse [79].

Beyond core 3’ end processing factors, poly(A) site choice is also sensitive to the abundance

of splicing specific factors like the U1 small nuclear ribonucleoprotein (U1 snRNP, short U1)

[82]. During cell activation, U1 becomes limited, which leads to premature cleavage at proximal

sites that are no longer masked by U1 [83]. Other splicing factors that also modulate APA are

muscleblind like splicing regulator (MBNL1/2) [84], the poly(C) binding protein (PCBP1) [85]

or the neuron-specific NOVA alternative splicing regulator 2 (NOVA2) [86]. The heterogeneous

ribonucleoprotein C (HNRNPC), another protein with a described role in splicing [87], is

discussed in Chapter 2, as we have recently found that HNRNPC also masks poly(A) sites,

preventing CPA. These results strongly suggest a tight coupling between splicing and 3’ end
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processing, an insight gained already through the multitude of reported interactions between

components of both machineries [52]. Additionally, whether NOVA2 acts as a repressor or

activator of splicing or CPA depends on the relative binding-position with respect to the splice

or poly(A) site [86]. An interesting emerging paradigm is that the position-dependent activity

for factors that regulate splicing as well as CPA is the same in both cases [88]. When NOVA2

binds close to a splice site or 3’ end, it interferes with the assembly of the processing machinery

and represses exon inclusion or poly(A) site usage, respectively. Similarly, PTBP1 represses

exon inclusion and poly(A) site usage if its binding outcompetes the binding of factors from

the canonical processing machinery [89, 90].

Apart from factors directly involved in either 3’ end processing or splicing, other proteins

like the cytoplasmic polyadenylation element binding protein 1 (CPEB1) have an effect on

poly(A) site usage. CPEB1, known to regulate translation in the cytoplasm, shuttles to the

nucleus and facilitates the usage of proximal poly(A) sites. Of note, the isoforms matured in this

way are also under translational control by CPEB1 in the cytoplasm. Hence, CPEB1 elegantly

couples the regulation of 3’ end processing and translation [91].

All described factors are assumed to act via sequence-specific binding to cis-regulatory

elements in the vicinity of poly(A) sites and the findings for NOVA2 even suggest an influence

of the relative position of binding. Hence, one can think of 3’ ends as combinations of sequence

motifs that determine the usage of the poly(A) sites; the efficiency of usage directly depends on

the prevalent motifs and their interaction partners. Chapter 3 follows this conceptual regime

and tries to gain insights into the regulation of APA by identifying sequence motifs that best

explain changes in 3’ end processing between conditions.

A previously proposed, though still poorly studied mechanism for regulating APA is the so

called “kinetic model” [92]. This model explicitly recognizes that RNAs are produced through

polymerization, which leads to a situation in which 3’ end processing sites emerge sequentially,

and are not available all at the same time to the 3’ end processing machinery. It is thus expected

that upstream poly(A) sites have more time to undergo processing compared to the distal sites.

Hence, the efficiency with which different poly(A) sites recruit the 3’ end processing complex,

coupled with the elongation rate of RNA polymerase II should govern the choice of poly(A)

sites [92]. Indeed, mutant fruit flies with a slow polymerase show preferential usage of proximal

poly(A) sites for several genes [93]. Another example of regulation of 3’ end processing in line

with the kinetic model involves DICER1 and EHMT2: both proteins influence the chromatin

landscape around the proximal poly(A) site of the ETNK1 gene causing the slow-down of RNA

polymerase II, which may be sufficient to facilitate the usage of the site [68].

Many modulators of poly(A) site choice have been identified already. Especially the effect

and contribution of components of the core processing machinery has become increasingly

clear. However, it remains elusive to which extent APA upon physiological changes of the cell

state reflects changes in expression of core 3’ end processing proteins or of other factors.
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1.5 Physiological and disease-related changes in poly(A) site use

The switch from the membrane-bound to the secreted form of the IgM heavy chain during B

cell activation [80] is one of the earliest described examples of APA in a physiological context.

Strikingly, changes in 3’ end processing during transitions from one cell state to another seem

to occur on a global scale. Proliferating cells such as activated T cells and cancer cells have

shorter 3’ UTRs than their naïve or normal counterparts [21, 22]. Conversely, 3’ UTRs undergo

lengthening during cell differentiation, for example in neurons [6]. APA was also found to

provide cell-type specificity to the expression of genes that are ubiquitously transcribed [19].

Genes that are expressed in multiple tissues tend to have alternative 3’ ends and their 3’ UTRs

are generally longer relative to genes that only have a single poly(A) site. Together with an

enrichment of cis-regulatory elements in the regions with differential inclusion into transcripts

(those between proximal and distal poly(A) sites), these observations suggest that multiple

poly(A) sites are related to more extensive post-transcriptional regulation of the corresponding

genes [94, 95].

Extensive changes in 3’ processing in cancers have been linked to tumorigenesis and

tumor invasiveness [23, 96]. More specifically, expression of shorter 3’ UTRs resulting from

preferential usage of more proximal poly(A) sites is thought to allow transcripts to escape

miRNA-dependent repression and to activate oncogenes [22]. In triple-negative breast cancer,

elevated protein levels of the oncogenes JUN and NRAS are a direct consequence of 3’ UTR

shortening which protects the mRNAs from destabilization through PUM1 binding [96]. Gener-

ally, a disproportionate enrichment of cis-regulatory motifs in 3’ UTRs of oncogenes and tumor

suppressor genes makes them particularly suited to regulation by APA [96]. Overall, multiple

studies put forth the concept that malignant transformation is coupled with 3’ UTR shortening

[22, 97, 98, 99]. However, some discrepancies were also reported. For example, although both

MCF7 and MDA-MB-231 are breast cancer cell lines, only MCF7 showed the expected APA

shift towards more proximal poly(A) site usage, whereas MDA-MB-231 exhibited rather 3’

UTR lengthening relative to a mammary epithelial cell line [100]. Similarly, an analysis of 114

selected oncogenes and tumor suppressors across several cancer cohorts did not reveal a clear

trend in APA, further arguing for a more complex pattern of APA in cancer [101]. Nevertheless,

the patterns of poly(A) site use are cancer-specific and proved to be sufficiently informative to

enable stratification of murine B cell leukemia samples into subgroups with different prognos-

tic [102]. Additional prognostic power beyond clinical markers was also reported for selected

APA events in a broader study of seven tumor types [98].

Besides cancer, APA has been associated with other disease as well. The poly(A) site usage

was shown to be sensitive to PABPN1, a protein with a pivotal role in autosomal-dominant

oculopharyngeal muscular dystrophy (OPMD) [78]. OPMD is caused by short triplet repeat

expansion mutations in PABPN1. These lead to a 3’ UTR shortening similar to that due to the

knock-down of PABPN1, suggesting that the APA events induced through the mutated PABPN1

8



1.6. GENOME-WIDE METHODS TO ANALYZE 3’ END USAGE

are relevant for the development of OPMD. Altered levels of NUDT21, a component of the core

machinery subcomplex CFI, were even more directly linked with disease. Individuals with a

copy number variation of NUDT21 have aberrant levels of MECP2, small changes of which

cause neuropsychiatric diseases. Increased NUDT21 levels, e.g. due to gene duplication, result

in an increased usage of the distal poly(A) site and expression of a longer MECP2 isoform,

which is inefficiently translated [103]. This highlights the role of NUDT21 as a relevant factor

for mental disability and neuropsychiatric disease. Similar to MECP2, a single APA event at

the cyclin CCND1 gene is disease-relevant. A point mutation introduces a strong poly(A)

signal (AAUAAA) that leads to premature CPA and the expression of a shorter but more stable

CCND1 isoform. The resulting increase in overall CCND1 mRNA levels was correlated with

high proliferation and shorter survival of strongly proliferative mantle cell lymphoma tumors

[104].

Clearly, APA profiles are cell state specific and undergo dynamical changes in a context-

dependent manner. As mentioned earlier, how these global changes are induced in physiologi-

cal conditions is largely unknown. Our own analysis of numerous patient data sets obtained

from The Cancer Genome Atlas (TCGA), as discussed in Chapter 3, not only finds global 3’

UTR shortening but also determines potential physiological APA regulators. For example, our

results implicate PTBP1, a known splicing regulator, as regulator of APA in glioblastoma (GBM).

1.6 Genome-wide methods to analyze 3’ end usage

Over the last two decades, technological improvements have drastically changed the way

3’ end processing is studied. After pioneering work done based on cloning [11], it was the

analysis of expressed sequence tags (ESTs), generated with oligo-dT primers, that enabled

large-scale studies of 3’ end processing [12]. Clusters of EST sequences were thus exploited

to identify alternative CPA sites contributing to a more accurate transcript annotation [105].

The first studies that reached the genome-wide scale were based on the microarray technology.

Despite the shortcoming of a limited set of probes, which were not optimally designed to

measure the relative usage of poly(A) sites, this technology enabled important insights, for

example into the global increase of proximal poly(A) site usage during T cell activation [21,

106]. Ultimately, high-throughput sequencing (HTS) is the method of choice to date, enabling a

quasi-comprehensive detection and quantification of poly(A) site usage. Once stable protocols

for transcriptome sequencing (RNA-seq) were established, a variety of methods specifically

devised to capture RNA 3’ ends was developed [29]. Perhaps not unexpectedly, each specific

method has its own bias, and the usage of poly(A) sites, determined with different methods,

is not always consistent. To overcome these limitations and provide a complete annotation

of poly(A) sites in the human and mouse genomes, we have recently undertook a study of

hundreds of sequencing libraries. The work that entailed this analysis is presented in Chapter 2.
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The vast majority of publicly available HTS data comes from standard RNA-seq experiments

rather than from 3’ end sequencing. To take advantage of this wealth of data for the study of

mRNA 3’ end processing, methods for quantifying relative poly(A) site usage directly from

RNA-seq data were proposed. Their biggest challenge is to cope with the non-homogeneous

read coverage along transcripts that can especially obscure sites of inefficient 3’ end processing.

The basic principle of all of the proposed methods is the segmentation of 3’ UTRs (or terminal

exons) into parts that end at individual 3’ end processing sites. Looking from the perspective

of an internal poly(A) site, there is one isoform that ends at this site and a longer isoform, that

extends beyond this PAS. Because both share the region upstream of the PAS, reads mapping

to this region are compatible with both isoforms. On the contrary, reads that map to the region

downstream of the PAS are only compatible with the long isoform. Early approaches used the

available transcript annotation to define the up- and downstream regions and quantified the

usage of the poly(A) sites by comparing the read counts within the corresponding regions [88,

107]. Methods that did not rely on pre-existing gene annotations, inferring alternative 3’ ends

(i.e. alternative transcript isoforms) de novo, were also developed. KLEAT is one such approach,

carrying out first a de novo transcript reconstruction and then estimating isoform abundances.

The abundances then serve as the input to compute relative usages of isoforms that only differ

in their 3’ ends [108]. A more prevalent approach to identify proximal cleavage sites seeks to

determine specific patterns of fluctuation in read density, an idea initially applied to probe

intensity measurements from microarray data [109]. Since the upstream region coverage is

a composite of reads from the short and the long isoform, a drop in read coverage together

with its position and extent should be indicative for the location and the relative usage of the

proximal poly(A) site. The PHMM tool uses a Hidden Markov Model [110] to implement this

approach, while ChangePoint deploys a generalized likelihood ratio statistics [111], IsoSCM a

Bayesian [112] and DaPars a regression model [23]. All of these methods have to apply rather

high thresholds to ensure a good specificity despite the high heterogeneity of the coverage

profile itself. Moreover, read density profiles from RNA-seq data are not well suited to identify

poly(A) sites with single nucleotide resolution. To overcome these problems, we developed a

method called PAQR, introduced in Chapter 3, that exploits the single nucleotide resolution

of data from 3’ end sequencing protocols in combination with read coverage fluctuations, to

infer and quantify high-confidence APA events from RNA-seq data.

In the light of the enormous effort that has been taken to establish RNA-seq data reposito-

ries from large-scale studies of patients or entire populations, methods that infer APA from

standard RNA-seq are highly desirable. Although their precision is still somewhat limited, they

remain the most promising approach until the next revolution of full transcript sequencing is

widely available.

10
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1.7 The importance of RNA integrity

To infer 3’ end usage based on RNA-seq read coverage profiles, the sequenced reads should

reflect the underlying transcript isoform abundances as precisely as possible. In the optimal

case, transcript bodies would be uniformly covered by RNA-seq reads so that transcript starts

or ends would be visible directly by an increase or drop in coverage, respectively. However, this

optimal coverage profile is hardly ever observed. Especially for sequence libraries prepared

from clinical samples, the uniformity in read coverage can be compromised by the degrada-

tion of RNA that occurs in the time between sample collection and RNA extraction [113, 114].

Depending on the specimen collection and storage conditions, RNA decay occurs to variable

extents, while the protocol used for library preparation can further amplify the resulting bias

[115]. In data sets such as those from the TCGA, where library preparation included selection

with oligo-dT, advanced RNA degradation resulted in severe 3’ end bias in read coverage [116].

The most widely used metric to assess the degree of RNA degradation is called RNA integrity

number (RIN) and relies mainly on the amount of 18S and 28S ribosomal RNAs which is

evaluated based on the electropherogram of the isolated RNA [117]. To allow also post hoc

assessments of the RNA integrity from the library of sequenced reads, different methods were

proposed. In fact, all of them show a high correlation with the RIN scores for the set of test

samples that was used in the corresponding publication [115, 116]. Such methods are particu-

larly important in the context of large-scale data analyses of hundreds or thousands of samples

with largely variable backgrounds, like discussed in Chapter 3 for the APA analysis of TCGA

patient data. Unfortunately, it’s not clear whether coverage bias can be corrected sufficiently

at the computational level, to still be able to make use of the data and quantify transcript

abundances or poly(A) site usage. However, at the minimum, samples with low RNA integrity

can be excluded from further analysis which would otherwise distort the results. Despite a

missing consensus at which RNA integrity score RNA decay renders a sample as unusable, the

consideration of the metric at least ensures that samples with comparable RNA quality are

analyzed. The importance of this quality control step was demonstrated for the analysis of

gene expression: the estimated expression values vary in an RNA integrity dependent manner

[114].

Decades of work from the scientific community revealed APA as a pivotal mechanism of

post-transcriptional regulation of gene expression. Beyond identifying individual events of

biologically relevant poly(A) site switching, evidence for systematic APA changes on a genome-

wide scale has also emerged. To date, APA in different conditions, distinct cell types and states

could be characterized. Furthermore, the regulatory role of various factors has been explored.

Specific protocols to capture mRNA 3’ ends were instrumental for these analyses. The integra-

tion of the data sets from these studies, presented in Chapter 2, enabled a more comprehensive

11
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annotation of the genome-wide locations of CPA for mouse and human. The obtained atlas

proved as a helpful resource when we expanded the scope of our research to include also

the analysis of APA in samples for which only standard RNA-seq data are available, such as

those from cancer patients. This work, discussed in Chapter 3, aims to uncover regulators

of polyadenylation in human diseases, starting solely from the transcriptomics data that is

available. The initial results are encouraging, as they provide evidence for the involvement of

PTBP1 in APA in glioblastoma.

The work of this thesis contributed to the current understanding of alternative polyadeny-

lation by delivering resources and tools which we demonstrated to be instrumental in the

study of the regulation of poly(A) site choice in physiological and pathological conditions, at

an unprecedented detail.
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2.1 Abstract

Alternative polyadenylation (APA) is a general mechanism of transcript diversification in mam-

mals, which has been recently linked to proliferative states and cancer. Different 3’ untranslated

region (3’ UTR) isoforms interact with different RNA-binding proteins (RBPs), which modify the

stability, translation, and subcellular localization of the corresponding transcripts. Although

the heterogeneity of pre-mRNA 3’ end processing has been established with high-throughput

approaches, the mechanisms that underlie systematic changes in 3’ UTR lengths remain to be

characterized. Through a uniform analysis of a large number of 3’ end sequencing data sets, we

have uncovered 18 signals, six of which are novel, whose positioning with respect to pre-mRNA

cleavage sites indicates a role in pre-mRNA 3’ end processing in both mouse and human.

With 3’ end sequencing we have demonstrated that the heterogeneous ribonucleoprotein

C (HNRNPC), which binds the poly(U) motif whose frequency also peaks in the vicinity of

polyadenylation (poly(A)) sites, has a genome-wide effect on poly(A) site usage. HNRNPC-

regulated 3’ UTRs are enriched in ELAV-like RBP 1 (ELAVL1) binding sites and include those of

the CD47 gene, which participate in the recently discovered mechanism of 3’ UTR-dependent

protein localization (UDPL). Our study thus establishes an up-to-date, high-confidence catalog

of 3’ end processing sites and poly(A) signals, and it uncovers an important role of HNRNPC
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in regulating 3’ end processing. It further suggests that U-rich elements mediate interactions

with multiple RBPs that regulate different stages in a transcript’s life cycle.

2.2 Introduction

The 3’ ends of most RNA polymerase II-generated transcripts are generated through endonu-

cleolytic cleavage and the addition of a polyadenosine tail of 70–100 nucleotides (nt) median

length [119]. Recent studies have revealed systematic changes in 3’ UTR lengths upon changes

in cellular states, either those that are physiological [21, 83] or those during pathologies [23].

3’ UTR lengths are sensitive to the abundance of specific spliceosomal proteins [82], core

pre-mRNA 3’ end processing factors [33, 120], and polyadenylation factors [78]. Because 3’

UTRs contain many recognition elements for RNA-binding proteins (RBPs) that regulate the

subcellular localization, intracellular traffic, decay, and translation rate of the transcripts in

different cellular contexts (see, e.g., [58]), the choice of polyadenylation (poly(A)) sites has

important regulatory consequences that reach up to the subcellular localization of the resulting

protein [72]. Studies of presumed regulators of polyadenylation would greatly benefit from

the general availability of comprehensive catalogs of poly(A) sites such as PolyA_DB [20, 121],

which was introduced in 2005 and updated 2 years later.

Full-length cDNA sequencing offered a first glimpse on the pervasiveness of transcription

across the genome and on the complexity of gene structures [122]. Next-generation sequencing

technologies, frequently coupled with the capture of transcript 5’ or 3’ ends with specific

protocols, enabled the quantification of gene expression and transcript isoform abundance

[123]. By increasing the depth of coverage of transcription start sites and mRNA 3’ ends, these

protocols aimed to improve the quantification accuracy [6, 124, 125, 126]. Sequencing of mRNA

3’ ends takes advantage of the poly(A) tail, which can be captured with an oligo-dT primer.

More than 4.5 billion reads were obtained with several protocols from human or mouse mRNA

3’ ends in a variety of cell lines [6, 97], tissues [7, 127], developmental stages [128, 129], and

cell differentiation stages [53], as well as following perturbations of specific RNA processing

factors [33, 78, 85, 120, 130]. Although some steps are shared by many of the proposed 3’ end

sequencing protocols, the studies that employed these methods have reported widely varying

numbers of 3’ end processing sites. For example, 54,686 [20], 439,390 [7], and 1,287,130 [97]

sites have been reported in the human genome.

The current knowledge about sequence motifs that are relevant to cleavage and polyadeny-

lation (for review, see [11]) goes back to studies conducted before next-generation sequencing

technologies became broadly used [12, 27, 131]. These studies revealed that the AAUAAA hex-

amer, which recently was found to bind the WDR33 and CPSF4 subunits of the cleavage and

polyadenylation specificity factor (CPSF) [43, 44] and some close variants, is highly enriched

upstream of the pre-mRNA cleavage site. The A[AU]UAAA cis-regulatory element (also called
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poly(A) signal) plays an important role in pre-mRNA cleavage and polyadenylation [132] and is

found at a large proportion of pre-mRNA cleavage sites identified in different studies [12, 133,

134]. However, some transcripts that do not have this poly(A) signal are nevertheless processed,

indicating that the poly(A) signal is not absolutely necessary for cleavage and polyadenylation.

The constraints that functional poly(A) signals have to fulfill are not entirely clear, and at least

10 other hexamers have been proposed to have this function [27].

Viral RNAs as, for example, from the simian virus 40 have been instrumental in uncovering

RBP regulators of polyadenylation and their corresponding sequence elements. Previous

studies revealed modulation of poly(A) site usage by U-rich element binding proteins such as

the heterogeneous nuclear ribonucleoprotein (hnRNP) C1/C2 [135, 136], the polypyrimidine

tract binding protein 1 [90, 136], FIP1L1, and CSTF2 [136], and by proteins that bind G-rich

elements—cleavage stimulation factor CSTF2 [137] and HNRNPs F and H1 [138]—or C-rich

elements—poly(rC)-binding protein 2 [85]. Some of these proteins are multifunctional splicing

factors that appear to couple various steps in pre-mRNA processing, such as splicing, cleavage,

and polyadenylation [139]. The sequence elements to which these regulators bind are also

frequently multifunctional, enabling positive or negative regulation by different RBPs [137]. A

first step toward understanding the regulation of poly(A) site choice is to construct genome-

wide maps of poly(A) sites, which can be used to investigate differential polyadenylation across

tissues and the response of poly(A) sites to specific perturbations.

2.3 Results

2.3.1 Preliminary processing of 3’ end sequencing data sets

Protocol-specific biases as well as vastly different computational data processing strategies

may explain the discrepancy in the reported number of 3’ end processing sites, which ranges

from less than 100,000 to over 1 million [7, 20, 97] for the human genome. By comparing

the 3’ end processing sites from two recent genome-wide studies [7, 127], we found that a

substantial proportion was unique to one or the other of the two studies (Supplemental Table

A.1). This motivated us to develop a uniform and flexible processing pipeline that facilitates

the incorporation of all published sequencing data sets, yielding a comprehensive set of high-

confidence 3’ end processing sites. From public databases we obtained 78 human and 110

mouse data sets of 3’ end sequencing reads (Supplemental Tables A.2, A.3), generated with nine

different protocols, for which sufficient information to permit the appropriate preprocessing

steps (trimming of 5’ and 3’ adapter sequences, reverse-complementing the reads, etc., as

appropriate) was available. We preprocessed each sample as appropriate given the underlying

protocol and then subjected all data sets to a uniform analysis as follows. We mapped the

preprocessed reads to the corresponding genome and transcriptome and identified unique

putative 3’ end processing sites. Because many protocols employ oligo-dT priming to capture

15



CHAPTER 2. COMPREHENSIVE ANALYSIS OF 3’ END SEQUENCING DATA SETS

the pre-mRNA 3’ ends, internal priming is a common source of false-positive sites, which we

tried to identify and filter out as described in the Methods section. From the nearly 200 3’ end

sequencing libraries, we thus obtained an initial set of 6,983,499 putative 3’ end processing

sites for human and 8,376,450 for mouse. The majority of these sites (76% for human and

71% for mouse) had support in only one sample, consistent with our initial observations of

limited overlap between the sets of sites identified in individual studies and mirroring also

the results of transcription start site mapping with the CAGE technology [140]. Nevertheless,

we developed an analysis protocol that aimed to identify bona fide, independently regulated

poly(A) sites, including those that have been captured in a single sample. To do this, we used

not only the sequencing data but also information about poly(A) signals, which we therefore

set to comprehensively identify in the first step of our analysis.

2.3.2 Highly specific positioning with respect to the pre-mRNA cleavage site

reveals novel poly(A) signals

To search for signals that may guide polyadenylation, we designed a very stringent procedure

to identify high-confidence 3’ end processing sites. Pre-mRNA cleavage is not completely

deterministic but occurs with higher frequency at “strong” 3’ end processing sites and with low

frequency at neighboring positions [12]. Therefore, a common step in the analysis of 3’ end

sequencing data is to cluster putative sites that are closely spaced and to report the dominant

site from each cluster [12, 19, 33]. To determine an appropriate distance threshold, we ranked

all the putative sites first by the number of samples in which they were captured and then by

the normalized number of reads in these samples. By traversing the list of sites from those

with the strongest to those with the weakest support, we associated lower-ranking sites located

up to a specific distance from the higher-ranked site with the corresponding higher-ranking

site. We scanned the range of distances from 0 to 25 nt upstream of and downstream from the

high-ranking site, and we found that the proportion of putative 3’ end processing sites that are

merged into clusters containing more than one site reached 40% at ∼ 8 nt and changed little by

further increasing the distance (for details, see 2.5 Methods). For consistency with previous

studies [12], we used a distance of 12 nt. To reduce the frequency of protocol-specific artifacts,

we used only clusters that were supported by reads derived with at least two protocols, and

to allow unambiguous association of signals to clusters, for the signal inference we only used

clusters that did not have another cluster within 60 nt. This procedure resulted in 221,587 3’

end processing clusters for human and 209,345 for mouse.

By analyzing 55-nt-long regions located immediately upstream of the center of these 3’

end processing clusters (as described in the 2.5 Methods section), we found that the canonical

poly(A) signals AAUAAA and AUUAAA were highly enriched and had a strong positional prefer-

ence, peaking at 21 nt upstream of cleavage sites (Fig. 2.1A), as reported previously [12, 27].

We therefore asked whether other hexamers have a similarly peaked frequency profile, which
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would be indicative of their functioning as poly(A) signals. The 12 signals that were identified

in a previous study [27] served as controls for the procedure. In both mouse and human data,

the motif with the highest peak was, as expected, the canonical poly(A) signal AAUAAA, which

occurred in 46.82% and 39.54% of the human and mouse sequences, respectively. Beyond this

canonical signal, we found 21 additional hexamers, the second most frequent being the close

variant of the canonical signal AUUAAA, which was present in 14.52% and 12.28% of the human

and mouse 3’ sequences, respectively. All 12 known poly(A) signals [27] were recovered by our

analysis in both species, demonstrating the reliability of our approach. Further supporting this

conclusion is the fact that six of the 10 newly identified signals in each of the two species are

shared. All of the conserved signals are very close variants (1 nt difference except for AACAAG)

of one of the two main poly(A) signals, AAUAAA and AUUAAA. Strikingly, all of these signals

peak in frequency at 20–22 nt upstream of the cleavage site (Fig. 2.1A). Experimental evidence

for single-nucleotide variants of the AAUAAA signal (including the AACAAA, AAUAAU, and

AAUAAG motifs identified here) functioning in polyadenylation was already provided by Sheets

et al. [26]. The four signals identified in only one of each species also had a clear peak at the

expected position with respect to the poly(A) site, but they had a larger variance (Supplemental

Fig. A.1). Altogether, these results indicate a genuine role of the newly identified signals in the

process of cleavage and polyadenylation.

Of the 221,587 high-confidence 3’ end processing clusters in human and 209,345 in mouse,

87% and 79%, respectively, had at least one of the 22 signals identified above in their upstream

region. Even when considering only the 18 signals that are conserved between human and

mouse, 86% of the human clusters and 75% of the mouse clusters had a poly(A) signal. Thus,

our analysis almost doubles the set of poly(A) signals and suggests that the vast majority of

poly(A) sites does indeed have a poly(A) signal that is positioned very precisely with respect

to the pre-mRNA cleavage site. The dominance of the canonical poly(A) signal is reflected in

the sequence logos constructed based on all annotated hexamers in the human and mouse

poly(A) site atlases, generated as described in the following section and in the 2.5 Methods

section (Fig. 2.1B).

2.3.3 A comprehensive catalog of high-confidence 3’ end processing sites

Based on all of the 3’ end sequencing data sets available (for more details about the protocols

that were used to generate these data sets, see Supplemental Material) and the conserved

poly(A) signals that we inferred as described above, we constructed a comprehensive catalog of

strongly supported 3’ end processing sites in both the mouse and human genomes. We started

from the 6,983,499 putative cleavage sites for human and 8,376,450 for mouse. Although in

many data sets a large proportion of putative sites was supported by single reads and did not

have any of the expected poly(A) signals in the upstream region, the incidence of upstream

poly(A) signals increased with the number of reads supporting a putative site (Supplemental
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Figure 2.1: Hexamers with highly specific positioning upstream of human and mouse pre-
mRNA 3’ end cleavage sites. (A) The frequency profiles of the 18 hexamers that showed the
positional preference expected for poly(A) signals in both human and mouse. The known
poly(A) signal, AAUAAA, had the highest frequency of occurrence (left). Apart from the 12 sig-
nals previously identified (AAUAAA and motifs with the purple frame) [27], we have identified
six additional motifs (orange frame) whose positional preference with respect to poly(A) sites
suggests that they function as poly(A) signals and are conserved between human and mouse.
(B) Sequence logos based on all occurrences of the entire set of poly(A) signals from the human
(left) and mouse (right) atlas. (C) The (U)6 motif, which is also enriched upstream of pre-mRNA
cleavage sites, has a broader frequency profile and peaks upstream of the poly(A) signals, which
are precisely positioned 20–22 nt upstream of the pre-mRNA cleavage sites (indicated by the
dashed, vertical line).

Fig. A.2). Thus, we used the frequency of occurrence of poly(A) signals to define sample-

specific cutoffs for the number of reads required to support a putative cleavage site. We then

clustered all putative sites with sufficient read support, associating lower-ranked sites with

higher-ranking sites that were located within at most 12 nt upstream or downstream, as

described above. Because in this set of clusters we found cases where the pre-mRNA cleavage

site appeared located in an A-rich region upstream of another putative cleavage site, we

specifically reviewed clusters in which a putative cleavage site was very close to a poly(A) signal,

as these likely reflect internal priming events [6, 7, 56]. These clusters were either associated
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with a downstream cluster, retained as independent clusters, or discarded, according to the

procedure outlined in the Methods section. By reasoning that distinct 3’ end processing sites

should have independent signals to guide their processing, we merged clusters that shared all

poly(A) signals within 60 nt upstream of their representative sites, clusters whose combined

span was <25 nt, and clusters without annotated poly(A) signals that were closer than 12

nt to each other and had a combined span of at most 50 nt. Clusters >50 nt and without

poly(A) signals were excluded from the atlas. This procedure (for details, see the 2.5 Methods

section) resulted in 392,912 human and 183,225 mouse 3’ end processing clusters. Of note, even

though 3’ end processing sites that were within 25 nt of each other were merged into single

clusters, the median cluster span was very small, 7 and 3 nt for mouse and human, respectively

(Supplemental Fig. A.3). Supplemental Figures A.4A and A.5A show the frequency of occurrence

of the four nucleotides as a function of the distance to the cleavage sites for sites that were

supported by a decreasing number of protocols. These profiles exhibited the expected pattern

[12, 33, 141], indicating that our approach identified bona fide 3’ end processing sites, even

when they had limited experimental support.

The proportion of clusters located in the terminal exon increased with an increasing

number of supporting protocols (Supplemental Fig. A.4B, A.5B), probably indicating that the

canonical poly(A) sites of constitutively expressed transcripts are identified by the majority of

protocols, whereas poly(A) sites that are only used in specific conditions were captured only

in a subset of experiments. Although in constructing our catalog we used most of the reads

generated in two recent studies (>95% of the reads that supported human 3’ end processing

sites in these two data sets mapped within the poly(A) site clusters of our human catalog)

[7, 127], only 61.82% [127] and 41.38% [7] of the unique processing sites inferred in these

studies were located within poly(A) clusters from our human catalog. This indicated that a

large fraction of the sites that were cataloged in previous studies is supported by a very small

number of reads and lacks canonically positioned poly(A) signals. We applied very stringent

rules to construct an atlas of high-confidence poly(A) sites, and the entire set of putative

cleavage sites that resulted from mapping all of the reads obtained in these 3’ end sequencing

studies is available as Supplemental Data A.9 (human) and A.10 (mouse), as well as online

at http://www.polyasite.unibas.ch, where users can filter sites of interest based on the

number of supporting protocols, the identified poly(A) signals, and/or the genomic context of

the clusters.

2.3.4 3’ end processing regions are enriched in poly(U)

Of the human and mouse 3’ end processing sites from our poly(A) atlases, 76% and 75%,

respectively, possessed a conserved poly(A) signal in their 60 nt upstream region. That ∼ 25%

did not may support the hypothesis that pre-mRNA cleavage and polyadenylation do not

absolutely require a poly(A) signal [31]. Nevertheless, we asked whether these sites possess
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other signals, with a different positional preference, which may contribute to their processing.

To answer this question, we searched for hexamers that were significantly enriched in the 60

nt upstream of cleavage sites without an annotated poly(A) signal. The two most enriched

hexamers were poly(A) (p-value of binomial test <1.0 × 10−100), which showed a broad peak in

the region of -20 to -10 upstream of cleavage sites, and poly(U) (p-value <1.0 × 10−100), which

also has a broad peak around -25 nt upstream of cleavage sites, particularly pronounced in

the human data set (Fig. 2.1C). The poly(U) hexamer is very significantly enriched (p-value of

binomial test <1.0 × 10−100) in the 60 nt upstream regions of all poly(A) sites, not only in those

that do not have a common poly(A) signal (11th most enriched hexamer in the human atlas

and 60th most enriched hexamer in the mouse atlas) (Supplemental Tables A.4, A.5). Although

the A- and U-richness of pre-mRNA 3’ end processing regions have been observed before

[132], their relevance for polyadenylation and the regulators that bind these motifs have been

characterized only partially. For example, the core 3’ end processing factor FIP1L1 can bind

poly(U) [142, 143], and its knock-down causes a systematic increase in 3’ UTR lengths [79, 143].

2.3.5 HNRNPC knock-down causes global changes in alternative cleavage and

polyadenylation

Several proteins (ELAVL1, TIA1, TIAL1, U2AF2, CPEB2 and CPEB4, HNRNPC) that regulate

pre-mRNA splicing and polyadenylation, as well as mRNA stability and metabolism, have also

been reported to bind U-rich elements [144]. Of these, HNRNPC has been recently studied

with crosslinking and immunoprecipitation (CLIP) and found to bind the majority of protein-

coding genes [87], with high specificity for poly(U) tracts [87, 144, 145, 146, 147]. HNRNPC

appears to nucleate the formation of ribonucleoprotein particles on nascent transcripts and to

regulate pre-mRNA splicing [87, 145] and polyadenylation at Alu repeats [148]. We therefore

hypothesized that HNRNPC binds to the U-rich regions in the vicinity of poly(A) sites and

globally regulates not only splicing but also pre-mRNA cleavage and polyadenylation.

To test this hypothesis, we generated two sets of pre-mRNA 3’ end sequencing libraries

from HEK 293 cells that were transfected either with a control siRNA or with an siRNA di-

rected against HNRNPC. The siRNA was very efficient, strongly reducing the HNRNPC protein

expression, as shown in Supplemental Figure A.6. To evaluate the effect of HNRNPC knock-

down on polyadenylation, we focused on exons with multiple poly(A) sites. We identified

12,136 such sites in 4,405 exons with a total of 22,698,094 mapped reads (Supplemental Table

A.6). We calculated the relative usage of a poly(A) site in a given sample as the proportion

of reads that mapped to that site among the reads mapping to any 3’ end processing site in

the corresponding exon. We then computed the change in relative use of each poly(A) site in

si-HNRNPC–treated cells compared with control siRNA–treated cells. We found that HNRNPC

knock-down affects a large proportion of transcripts with multiple poly(A) sites, reminiscent of

what we previously reported for the 25- and 68-kDa subunits of the cleavage factor I (CFIm)
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[33, 120]. Out of the 5,152 poly(A) sites that showed consistent behavior across replicates, we

found 1,402 poly(A) sites (27.2%) to increase in usage, 1,378 poly(A) sites (26.7%) to decrease in

usage, and 2,372 poly(A) sites (46.0%) to undergo only a minor change in usage upon knock-

down of HNRNPC. To find out whether HNRNPC systematically increases or decreases 3’ UTR

lengths, we examined the relative position of poly(A) sites whose usage increases or decreases

most strongly in response to HNRNPC knock-down, within 3’ UTRs. The results indicated that

poly(A) sites whose usage increased and decreased upon HNRNPC knock-down tended to be

located distally and proximally, respectively, within exons (Fig. 2.2A).
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Figure 2.2: siRNA-mediated knock-down of HNRNPC leads to increased use of distal poly(A)
sites. (A) Relative location of sites whose usage decreased (brown), did not change (blue) or
increased (red) in response to HNRNPC knock-down within 3’ UTRs. We identified the 1000
poly(A) sites whose usage increased most, the 1000 whose usage decreased most, and the 1000
whose usage changed least upon HNRNPC knock-down; divided the associated terminal exons
into five bins, each covering 20% of the exon’s length; and computed the fraction of poly(A)
sites that corresponded to each of the three categories within each position bin independently.
Values represent means and SDs from the two replicate HNRNPC knock-down experiments.
(B) Smoothened (±5 nt) density of nonoverlapping (U)5 tracts in the vicinity of sites with a
consistent behavior (increased, unchanged, decreased use) in the two HNRNPC knock-down
experiments. (C) Cumulative density function of the percentage change in usage of the 250
poly(A) sites with the highest number of (U)5 motifs within ±50 nt around their cleavage
site (red) and of poly(A) sites that do not contain any (U)5 tract within ±200 nt (blue), upon
HNRNPC knock-down.
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We confirmed the overall increase in 3’ UTR lengths upon HNRNPC knock-down by com-

paring the proximal-to-distal poly(A) site usage ratios of exons that had exactly two polyadeny-

lation sites (replicate 1 p-value: 1.1 × 10−19; replicate 2 p-value: 3.1 × 10−61; one-sided Wilcoxon

signed-rank test) (Supplemental Figs. A.7,A.8). It was noted before that distal poly(A) sites are

predominantly used in HEK 293 cells [33]. Indeed, the proportion of dominant (>50% relative

usage) distal sites was 61.75% and 62.58%, respectively, in the two control siRNA–treated sam-

ples. However, this proportion increased further in the si-HNRNPC–treated samples to 64.16%

and 65.67%, respectively, consistent with HNRNPC decreasing, on average, the lengths of 3’

UTRs. Nevertheless, many 3’ UTRs became shorter upon this treatment as will be discussed in

more detail in the analysis of terminal exons with exactly two poly(A) sites (tandem poly(A)

sites) below.

As HNRNPC binds RNAs in a sequence-specific manner, one expects an enrichment of

HNRNPC binding sites in the vicinity of poly(A) sites whose usage is affected by the HNRNPC

knock-down. Indeed, this is what we observed. The density of (U)5 tracts, previously reported to

be the binding sites for HNRNPC [87, 144, 147], was markedly higher around poly(A) sites whose

usage increased upon HNRNPC knock-down compared with sites whose relative usage did not

change or decreased upon HNRNPC knock-down (Fig. 2.2B). No such enrichment emerged

from a similar analysis of untransfected versus si-Control transfected cells (Supplemental Fig.

A.9)). To exclude the possibility that this profile is due to a small number of regions that are very

U-rich, we also determined the fraction of poly(A) sites that contained (U)5 tracts among the

poly(A) sites whose usage increased, decreased, or did not change upon HNRNPC knock-down

(Supplemental Fig. A.10). We found, consistent with the results shown in Figure 2.2B, a higher

proportion of (U)5 tract-containing poly(A) sites among those whose usage increased upon

HNRNPC knock-down compared with those whose usage decreased or was not changed. To

further validate HNRNPC binding at the derepressed poly(A) sites, we carried out HNRNPC

CLIP and found, indeed, that derepressed sites have a higher density of HNRNPC CLIP reads

compared with other poly(A) sites (Supplemental Fig. A.11). Finally, we found that poly(A) sites

with the highest density of (U)5 tracts in the 100-nt region centered on the cleavage site were

reproducibly used with increased frequency upon HNRNPC knock-down relative to poly(A)

sites that did not contain any binding sites within 200 nt upstream or downstream (replicate

1 p-value: 2.4 × 10−36; replicate 2 p-value: 1.9 × 10−42; one-sided Mann-Whitney U test) (Fig.

2.2C). We therefore concluded that HNRNPC’s binding in close proximity of 3’ end processing

sites likely masks them from cleavage and polyadenylation.

2.3.6 Both the number and the length of the uridine tracts contribute to the

HNRNPC-dependent poly(A) site usage

If the above conclusions were correct, the effect of HNRNPC knock-down should decrease with

the distance between the poly(A) site and the HNRNPC binding sites. Thus we determined the
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mean change in usage of sites with high densities of poly(U) tracts at different distances with

respect to the cleavage site, upon HNRNPC knock-down. As shown in Figure 2.3A, we found

that the largest change in poly(A) site use is observed for poly(A) sites that have a high density

of poly(U) tracts in the 100-nt window centered on the cleavage site.
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Figure 2.3: The length, number, and location of poly(U) tracts with respect to poly(A) sites
influence the change in poly(A) site use upon HNRNPC knock-down. (A) Mean change in the
use of sites containing the highest number of (U)5 motifs within 100-nt-long regions located at
specific distances from the cleavage site (indicated on the x-axis) upon HNRNPC knock-down
(KD). Shown are mean ±SEM in the two knock-down experiments. Two hundred fifty poly(A)
sites with the highest density of (U)5 motifs at each particular distance were considered. (B)
Mean changes in the relative use of poly(A) sites that have 0, 1, 2, or more (≥ 3) nonoverlapping
poly(U) tracts within ±50 nt from their cleavage site. Distributions of relative changes in the
usage of specific types of sites were compared, and the p-values of the corresponding one-sided
Mann-Whitney U tests are shown at the top of the panel.

The apparent efficacy of HNRNPC binding sites in modulating polyadenylation decreased

with their distance to poly(A) sites and persisted over larger distances upstream (approximately

-200 nt) of the poly(A) site compared with regions downstream (approximately +100 nt) from
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the poly(A) site (Fig. 2.3A).

Although the minimal RNA recognition motif of HNRNPC consists of five consecutive

uridines [144, 146, 147], longer uridine tracts are bound with higher affinity [87, 145, 146].

Consistently, we found that, for a given length of the presumed HNRNPC binding site, the

effect of the HNRNPC knock-down increased with the number of independent sites and

that, given the number of nonoverlapping poly(U) tracts, the effect of HNRNPC knock-down

increased with the length of the sites (Fig. 2.3B).

2.3.7 Altered transcript regions contain ELAVL1 binding sites that mediate UDPL

As demonstrated above, binding of HNRNPC to U-rich elements that are located preferen-

tially distally in terminal exons seems to promote the use of proximal 3’ end processing sites.

Analysis of a conservative set of tandem poly(A) sites showed that among the poly(A) sites

that were derepressed upon HNRNPC knock-down and that had at least one (U)5 motif within

-200 to +100 nt, two-thirds (390 sites, 67.2%) were located distally, leading to longer 3’ UTRs,

whereas the remaining one-third (190 sites, 32.8%) were located proximally leading to shorter

3’ UTRs (for examples, see Supplemental Figs. A.12, A.13). The altered 3’ UTRs contain U-rich

elements with which a multitude of RBPs such as ELAVL1,(also known as Hu Antigen R, or HuR)

could interact to regulate, among others, the stability of mRNAs in the cytoplasm [149]. To

determine whether the HNRNPC-dependent alternative 3’ UTRs indeed interact with ELAVL1,

we determined the number of ELAVL1 binding sites (obtained from a previous ELAVL1 CLIP

study) [150] that are located in the 3’ UTR regions between tandem poly(A) sites. As expected,

we found a significant enrichment of ELAVL1 binding sites in 3’ UTR regions whose inclusion

in transcripts changed in response to HNRNPC knock-down compared with regions whose

inclusion did not change (Fig. 2.4A).
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Figure 2.4: HNRNPC-responsive 3’ UTRs are enriched in ELAVL1 binding sites. (A) Fraction
of HNRNPC-responding and not-responding 3’ UTR regions that contain one or more ELAVL1
CLIP sites. The p-value of the one-sided t-test is shown. (B) Density of ELAVL1 CLIP sites
per kilobase (kb) in the 3’ UTR regions described above. The p-value of the one-sided t-test
is shown. (C) Model of the impact of A/U-rich elements (ARE) in 3’ UTR regions on various
aspects of mRNA fate [72]. (D) Density of A-seq2 reads along the CD47 3’ UTR in cells, showing
the increased use of the distal poly(A) site in si-HNRNPC compared with si-Control transfected
cells. The density of ELAVL1 CLIP reads in this region is also shown.

Moreover, the density of ELAVL1 binding sites and not only their absolute number was en-

riched across these 3’ UTR regions (Fig. 2.4B). Our results thus demonstrate that the HNRNPC-

regulated 3’ UTRs are bound and probably susceptible to regulation by ELAVL1.

Recently, a new function has been attributed to the already multifunctional ELAVL1 protein.

Work from the Mayr laboratory [72] showed that 3’ UTR regions that contain ELAVL1 binding

sites can mediate 3’ UTR-dependent protein localization (UDPL). The ELAVL1 binding sites in

the 3’ UTR of the CD47 molecule (CD47) transcript were found to be necessary and sufficient

for the translocation of the CD47 transmembrane protein from the endoplasmic reticulum (ER)

to the plasma membrane, through the recruitment of the SET protein to the site of translation.

SET binds to the cytoplasmic domains of the CD47 protein, translocating it from the ER to the

plasma membrane via active RAC1 (Fig. 2.4C) [72, 151]. By inspecting our data, we found that

the region of the CD47 3’ UTR that mediates UDPL is among those that responded to HNRNPC
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knock-down (Fig. 2.4D). Sashimi plots generated based on mRNA-seq experiments of HEK

293 cells transfected with si-Control or si-HNRNPC, respectively, confirmed the increased

abundance of the long 3’ UTR isoform of CD47 upon knock-down of HNRNPC. This analysis

also verified that the increased relative usage of distal poly(A) sites cannot be explained by

alternative splicing events (Supplemental Fig. A.14) but are the consequence of increased

usage of the distal poly(A) site upon knock-down of HNRNPC (Fig. 2.4D). To find out whether

HNRNPC can act as an upstream regulator of UDPL, we quantified the level of CD47 at the

plasma membrane of cells that underwent siRNA-mediated knock-down of HNRNPC and cells

that were treated with a control siRNA. Strikingly, we found that the CD47 level at the plasma

membrane increased upon HNRNPC knock-down (Fig. 2.5A; Supplemental Fig. A.15).

Figure 2.5: The knock-down of HNRNPC affects CD47 protein localization. (A) Indirect im-
munophenotyping of membrane-associated CD47 in HEK 293 cells that were treated either
with an si-HNRNPC (blue) or with si-Control (red) siRNA. Mean, median, and mode of the
Alexa Fluor 488 intensities computed for cells in each transfection set (top), with histograms
shown in the bottom panel. (B) Immunofluorescence staining of permeabilized HEK 293 cells
with CD47 antibody (left) or nuclear staining with Hoechst (right). Top and bottom panels
correspond to cells that were treated with control siRNA and si-HNRNPC, respectively.

Western blots for CD47 that were performed in HNRNPC and control siRNA-treated cells

ruled out the possibility that the increase in membrane-associated CD47 upon HNRNPC

knock-down was due to an increase in total CD47 levels (Supplemental Fig. A.16). We also

carried out an independent immunofluorescence analysis of CD47 in these two conditions

and again observed that the HNRNPC knock-down led to an increase in the plasma membrane

CD47 levels (Fig. 2.5B). Overall, our results suggest that HNRNPC can function as an upstream

regulator of UDPL.
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2.3.8 HNRNPC represses cleavage and polyadenylation at intronic, transcription

start site-proximal poly(A) sites

Up to this point, we focused on alternative polyadenylation (APA) sites that are located within

single exons. However, given that HNRNPC binds to nascent transcripts, we also asked whether

HNRNPC affects other types of APA, specifically at sites located in regions that in the GENCODE

v19 set of transcripts [152] are annotated as intronic. Indeed, we found that the HNRNPC

knock-down increased the use of intronic poly(A) sites that are most enriched in putative

HNRNPC-binding (U)5 motifs within ±50 nt compared with sites that do not have (U)5 tracts

within ±200 nt (p-values of the one-sided Mann-Whitney U test for the data from the two

replicate knock-down experiments are 1.4 × 10−30 and 5.1 × 10−29) (Fig. 2.6A).

Figure 2.6: HNRNPC knock-down leads to increased usage of intronic poly(A) sites. (A) The
change in the relative use of intronic poly(A) sites that did not contain any (U)5 within ±200 nt
and of the top 250 intronic poly(A) sites according to the number of (U)5 motifs within ±50 nt
around the cleavage site, upon HNRNPC knock-down. (B) Relative location within the gene of
the top 250 most-derepressed intronic poly(A) sites that have HNRNPC binding motifs within
-200 to +100 nt around their cleavage site and of the 250 intronic poly(A) sites that changed least
upon HNRNPC knock-down. (C) Screenshot of the KLHL3 gene, in which intronic cleavage
and polyadenylation was strongly increased upon HNRNPC knock-down.

These sites are predominantly associated with cryptic exons that are spliced in upon
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HNRNPC knock-down as opposed to exons whose splice site fails to be recognized by the

spliceosome leading to exon extension in HNRNPC-depleted cells (Supplemental Fig. A.17).

Importantly, only the intronic sites that responded to HNRNPC knock-down were strongly

enriched in (U)5 tracts immediately downstream from the poly(A) site (Supplemental Fig.

A.18). This indicates that these poly(A) site-associated motifs contribute to the definition of

these terminal exons. To further characterize the "masking" effect of HNRNPC on intronic

poly(A) sites, we binned poly(A) sites into five groups based on their relative position within

the host gene and asked how the position of sites within genes relates to their usage upon

HNRNPC knock-down. As shown in Figure 2.6B, we found that intronic poly(A) sites that

are most derepressed upon HNRNPC knock-down are preferentially located toward the 5’

ends of genes. We conclude that HNRNPC tends to repress the usage of intronic cleavage and

polyadenylation sites whose usage leads to a strong reduction of transcript length. Figure 2.6C

shows the example of the Kelch Like family member 3 (KLHL3) gene, which harbors one of the

most derepressed intronic poly(A) sites.

2.4 Discussion

Studies in recent years have shown that pre-mRNA cleavage and polyadenylation is a dy-

namically regulated process that yields transcript isoforms with distinct interaction part-

ners, subcellular localization, stability, and translation rate (for review, see, e.g., [13]). Specific

polyadenylation programs seem to have evolved in relation with particular cell types or states.

For example, APA and 3’ UTR lengths are developmentally regulated [153, 154, 155], and short

3’ UTRs are generated in proliferating and malignant cells [20, 21, 98]. The key regulators of

these polyadenylation programs are unknown. Reduced expression of the U1 snRNP [83] or

of the mammalian cleavage factor I (CFIm) components NUDT21 and CPSF6 [33, 120] can

cause a systematic reduction in 3’ UTR lengths, but only limited evidence about the relevance

of these factors in physiological conditions has been provided [23, 83]. Other factors that are

part of the 3’ end processing machinery and have systematic effects on polyadenylation are

the poly(A) binding protein nuclear 1 [78], which suppresses cleavage and polyadenylation;

the 64-kDa cleavage stimulation factor subunit 2 (CSTF2) component of the 3’ end cleavage

and polyadenylation complex, whose expression correlates with the preferential use of short 3’

UTRs in cancer cells [98]; and the retinoblastoma binding protein 6, whose reduced expression

results in reduced transcript levels and increased use of distal poly(A) sites [156].

Many experimental protocols to capture transcript 3’ ends and enable studies of the

dynamics of polyadenylation have been developed (for review, see [157]), and consequently,

a few databases of 3’ end processing sites are available [7, 20, 127]. However, none of these

databases has used the entire set of 3’ end sequencing data available to date, and thus, their

coverage is limited. In this study, we have developed a procedure to automatically process
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heterogeneous data sets generated with one of nine different protocols, aiming to identify

bona fide poly(A) sites that are independently regulated. Although most of the reads that

were used to construct the currently available databases [7, 127] map within the poly(A) site

clusters that we constructed, the differences at the level of reported processing sites are quite

large. This is largely due to the presence of many sites with very limited read support and no

upstream poly(A) signals in previous data sets. For example, focusing on the terminal exons

of protein-coding genes and lincRNAs from the UCSC GENCODE v19 Basic Set annotation,

the human atlas that we constructed has a higher fraction of exons with assigned poly(A) sites

compared with previous databases; 71.12% of all terminal exons of protein coding genes in

our atlas have at least one annotated poly(A) site in contrast to 66.26% and 62.69% for the

studies of Derti et al. [7] and You et al. [127], respectively. The coverage of the terminal exons of

lincRNAs is smaller overall but is clearly higher in our atlas (37.59%) compared with those of

Derti et al. [7] and You et al. [127] (29.57% and 24.51%, respectively) (Supplemental Fig. A.19).

The lower coverage of lincRNAs is probably due to their lower expression in comparison with

protein-coding genes [158] and to the fact that some of them are bimorphic, appearing in both

the poly(A)+ and poly(A)− fraction [159], and cannot be captured efficiently with protocols

that require the presence of a poly(A) tail.

Although for the mouse we did not have lincRNA annotations, the general trend of higher

coverage in our atlas compared with existing ones holds also for mouse genes (Supplemental

Fig. A.20; for detailed numbers, see Supplemental Tables A.7, A.8).

The 3’ end processing sites reported by other studies [7, 127] but missing from our atlas

have, on average, a substantially lower read support. Some were only documented by mul-

timapping reads, had features indicative of internal priming, or originated in regions from

which broadly scattered reads were generated.

By building upon a large set of 3’ end sequencing samples, we have analyzed the sequence

composition around high-confidence poly(A) sites to identify elements that may recruit RBPs

to modulate polyadenylation. We have identified sequence motifs that exhibit a positional

preference with respect to 3’ end cleavage sites almost identical to the canonical poly(A) signal

AAUAAA. Six of the 10 novel motifs that we found in each human and mouse data set are

shared. Not all the poly(A) sites in the atlas that we constructed have one of the 18 conserved

signals, which suggests that the set of poly(A) signals is still incomplete. However, with a more

comprehensive set of poly(A) signals, we have been able to more efficiently use data from

many heterogeneous experiments, thereby achieving a higher coverage of terminal exons and

annotated genes by poly(A) sites. Even though the poly(A) and poly(U) motifs are also strongly

enriched around poly(A) sites, they were not annotated as poly(A) signals due to positional

profiles divergent from what is expected for poly(A) signals. The general A- and U- richness in

the vicinity of cleavage and polyadenylation sites has been observed before [132], but the RBP

interactors and their role in polyadenylation remain to be characterized.
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Here we hypothesized that HNRNPC, a protein that binds poly(U) tracts [144, 146, 147]

and has a variety of functions including pre-mRNA splicing [87] and mRNA transport [160],

also modulates the processing of pre-mRNA 3’ ends. HNRNPC has originally been identified

as a component of the HNRNP core particle [161, 162] and found to form stable tetramers

that bind to nascent RNAs [163]. Systematic evolution of ligands by exponential enrichment

(SELEX) experiments have shown that HNRNPC particles bind to uninterrupted tracts of five

or more uridines [164], and studies employing CLIP indicated that longer tracts are bound with

higher affinity [87]. By sequencing mRNA 3’ ends following the siRNA-mediated knock-down

of HNRNPC, we found that transcripts that contain poly(U) tracts around their poly(A) sites

respond in a manner indicative of HNRNPC masking poly(A) sites. This is reminiscent of

the U1 snRNP protecting nascent RNAs from premature cleavage and polyadenylation, in a

mechanism that has been called "telescripting" [82, 83]. Indeed, HNRNPC seems to have at

least in part a similar function, because the knock-down of HNRNPC increased the incidence

of cleavage and polyadenylation at intronic sites, with a preference for intronic sites close to

the transcription start. It should be noted that these intronic sites are not spurious but have

experimental support as well as polyadenylation signals. Thus, the short transcripts that termi-

nate at these sites could be functionally relevant, either through the production of truncated

proteins or through an effective down-regulation of the functional, full-length transcript forms.

In terminal exons, U-rich poly(A) sites whose usage increased upon HNRNPC knock-down

tended to be located distally. In these transcripts, HNRNPC may function to "mask" the distal,

"stronger" signals, allowing the "weaker" proximal poly(A) sites to be used [165]. Interestingly,

the competition between HNRNPC and U2AF2 appears to regulate exonization of Alu elements

[145] and, furthermore, impacts polyadenylation at Alu exons [148]. These studies have empha-

sized the complex cross-talk between regulators that come into play during RNA splicing and

polyadenylation [11]. They also illustrate the striking multifunctionality of U-rich and A/U-rich

elements that are bound by various proteins at different stages to modulate processes ranging

from transcription termination [130] up to protein localization [72].

Initial studies that reported 3’ UTR shortening in dividing cells hypothesized that shortened

3’ UTRs harbor a reduced number of miRNA binding sites, the corresponding mRNAs being

more stable and having an increased translation rate [21, 22]. However, genome-wide measure-

ments of mRNA and protein levels in dividing and resting cells revealed that systematic 3’ UTR

shortening has a relatively minor impact on mRNA stability, translation, and protein output

[55, 56]. Instead, evidence has started to emerge that 3’ UTR shortening results in the loss of

interaction with various RBPs, whose effects are not limited to mRNA stability and translation

[54] but reach as far as the transport of transmembrane proteins to the plasma membrane

[72]. The CD47 protein provides a striking example of 3’ UTR-dependent protein localization.

However, the upstream signals and perhaps additional targets of this mechanism remain to be

uncovered. Here we have demonstrated that HNRNPC can modulate polyadenylation of a large
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number of transcripts, leading to the inclusion or removal of U-rich elements. When these

elements remain part of the 3’ UTRs, they can be subsequently bound by a variety of U-rich

element binding proteins, including ELAVL1, which has been recently demonstrated to play a

decisive role in the UDPL of CD47 [72]. Indeed, we found that the knock-down of HNRNPC pro-

moted the expression of the long CD47 3’ UTR that is accompanied by an increased membrane

localization of the CD47 protein. Although HNRNPC did not appear to target any particular

class of transcripts, nearly one-quarter (>23%) of the HNRNPC-responsive transcripts encoded

proteins that were annotated with the Gene Ontology category "integral component of mem-

brane" (GO:0016021). Thus, our results provide an extended set of candidates for the recently

discovered UDPL mechanism.

In conclusion, PolyAsite, available at http://www.polyasite.unibas.ch, is a large and

extendable resource that supports investigations into the polyadenylation programs that

operate during changes in cell physiology, during development, and in malignancies.

2.5 Methods

2.5.1 Uniform processing of publicly available 3’ end sequencing data sets

Publicly available 3’ end sequencing data sets were obtained from the NCBI GEO archive

(www.ncbi.nlm.nih.gov/geo) and from NCBI SRA (www.ncbi.nlm.nih.gov/sra). To en-

sure uniform processing of 3’ end sequencing data generated by diverse 3’ end sequencing

protocols, we developed the following computational pipeline (Supplemental Fig. A.21). First,

raw sequencing files were converted to FASTA format. For samples generated with protocols

that leave a 5’ adapter sequence in the reads, we only retained the reads from which the spec-

ified adapter sequence could be trimmed. Next, we trimmed the 3’ adapter sequence, and

when the protocol captured the reverse complement of the RNAs, we reverse complemented

the reads. Reads were then mapped to the corresponding genome assembly (hg19 and mm10,

respectively) and to mRNA and lincRNA-annotated transcripts (GENCODE v14 release for

human [152] and Ensembl annotation of mouse [166], both obtained from UCSC [167] in June

2013). The sequence alignment was done with segemehl with default parameters [168]. In cases

where the sex of the organism from which the sample was prepared was female, mappings to

the Y Chromosome were excluded from further analysis. For each read, we only kept the map-

pings with the highest score (smallest edit distance). Mappings overlapping splice junctions

were only retained if they covered at least 5 nt on both sides of the junction and they had a

higher score compared with any mapping of the same read to the genomic sequence. Based

on the genome coordinates of individual exons and the mapping coordinates of reads within

transcripts, next we converted read-to-transcript mapping coordinates into read-to-genome

mapping coordinates. For generating a high-confidence set of pre-mRNA 3’ ends, we started

from reads that consisted of no more than 80% of adenines and that mapped uniquely to the
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genome such that the last 3 nt of the read were perfectly aligned. Furthermore, we required

that the 3’ end of the read was not an adenine and collapsed the 3’ ends of the sequencing

reads into putative 3’ end processing sites. Finally, we filtered out those sites that showed

one of the following patterns: one of the AAAA, AGAA, AAGA, or AAAG tetramers immediately

downstream from the apparent cleavage site; or six consecutive or more than six adenines

within the 10 nt downstream from the apparent cleavage site. We empirically found that these

patterns were associated with many spurious poly(A) sites (for details on the entire pipeline,

see Supplemental Fig. A.21).

2.5.2 Clustering of closely spaced 3’ end sites into 3’ end processing regions

Putative 3’ end processing sites identified as described above were used to construct clusters to

(1) identify poly(A) signals, (2) derive sample-specific cutoffs for the number of reads necessary

to support a site, and (3) determine high-confidence 3’ end processing sites in the human and

mouse genomes. In clustering putative 3’ end processing sites from multiple samples, as done

for analyses 1 and 3, we first sorted the list of 3’ end sites by the number of supporting samples

and then by the total normalized read count (read counts were normalized per sample as reads

per million [RPM], and for each site a total RPM was obtained by summing these numbers

over all samples). In contrast, to generate clusters of putative reads from individual samples

(analysis 2), we only ranked genomic positions by RPM. Clusters were generated by traversing

the sorted list from top to bottom and associating lower-ranking sites with a representative site

of a higher rank, if the lower-ranked sites were located within a specific maximum distance

upstream (du) of, or downstream (dd ) from, the representative site (Supplemental Fig. A.22).

To determine a maximum distance between sites that seem to be under the same regulatory

control, we applied the above-described clustering procedure for distances du and dd varying

between 0 and 25 nt and evaluated how increasing the cluster length affects the number of

generated clusters that contain more than one site (Supplemental Fig. A.23). Consistent with

previous observations, we found that at a distance of 8 nt from the representative site, ∼ 40%

of the putative 3’ end processing sites are part of multisite clusters; this proportion increases

to 43% for a distance of 12 nt and reaches 47% at a distance of 25 nt. For consistency with

previous studies, we used du = dd = 12 nt [12, 127]. Only for the clustering of putative 3’ end

processing sites in individual samples, we used a larger distance, du = dd = 25, resulting in a

more conservative set of clusters, with a maximum span of 51 nt.

2.5.3 Identification of poly(A) signals

To obtain a set of high-confidence 3’ end processing sites from which to identify poly(A) signals,

we filtered the preliminary 3’ end clusters, retaining only those that were supported by data

from at least two protocols. For clusters with at least two putative sites, we took the center of

the cluster as the representative cleavage site. Then, we constructed the positional frequency
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profile in the -60 to -5 nt region upstream of the representative cleavage sites for each of the

4096 possible hexamers (Supplemental Fig. A.24A). We did not consider the 5 nt upstream of

the putative cleavage sites to reduce the impact of artifacts originating from internal priming

at poly(A) nucleotides, which are very close in sequence to the main poly(A) signal, AAUAAA

(see below for details on "PAS priming sites"). Before fitting a specific functional form to the

frequency profiles, we smoothed them, taking at each position the average frequency in a

window of 11 nt centered on that position, and we subtracted a motif-specific "background"

frequency which we defined as the median of the 10 smallest frequencies of the motif in the

entire 55-nt window. To identify motifs that have a specific positional preference upstream of

the cleavage site, we fitted a Gaussian density curve to the background-corrected frequency

profile with the "nls" function in R [169], assessing the quality of the fit by the r 2 value and by

the height:width ratio of the fitted peak, where the width was defined as the standard deviation

of the fitted Gaussian density (Supplemental Fig. A.24A). Alternative poly(A) signals should

have the same positional preference as the main signal, AAUAAA. However, when considering

60 nt upstream of the cleavage site, poly(A) signals can occur not only at -21 nt, which seems

to be the preferred location of these signals, but also at other positions, particularly when the

poly(A) signal is suboptimal and co-occurs with the main signal. Thus, we started from motifs

that peaked in the region upstream of the cleavage site (r 2 ≥ 0.6 for the fit to the Gaussian and

a height:width ratio ≥ 5) but allow a permissive position of the peak, between -40 to -10 nt.

Putative poly(A) signals were then determined according to the following iterative procedure

(Supplemental Fig. A.24B). We sorted the set of putative signals by their strength. The strongest

signal was considered to be the one with the lowest p-value of the test that the peak frequency

of the motif could have been generated by Poisson sampling from the background rate inferred

as the mean motif frequency in the regions of 100 to 200 nt upstream of and downstream

from the cleavage site. As expected, in both human and mouse data sets, the most significant

hexamer was the canonical poly(A) signal AAUAAA. Before every iteration, we removed all

sequences that contained the most significant signal of the previous iteration in the -60-nt

window upstream of the cleavage sites and repeated the procedure on the remaining set of

sequences. Signals with an r 2 value of the fit to a Gaussian ≥ 0.9 and a height:width ratio ≥ 4

were retained and the most significant added to the set of potential signals. The fitted Gaussian

densities of almost all of the putative poly(A) signals recovered with this procedure had highly

similar peak positions and standard deviations. Therefore, only signals that peaked at most 1

nt away from the most significant hexamer, AAUAAA, were retained in the final set of poly(A)

signals. The only hexamers that did not satisfy this condition were the AAAAAA hexamer in the

mouse and AAAAAA as well as UUAAAA in the human.
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2.5.4 Treatment of putative 3’ end sites originating from internal priming

Priming within A-rich, transcript-internal regions rather than to the poly(A) tail is known to

lead to many false-positive sites with most of the existing 3’ end sequencing protocols. We tried

to identify and eliminate these cases as described above. An underappreciated source of false

positives seems to be the annealing of the poly(T) primer in the region of the poly(A) signal

itself, which is A-rich and close to the poly(A) site [12, 165]. Indeed, a preliminary inspection of

cleavage sites that seemed to lack poly(A) signals revealed that these sites were located on or in

the immediate vicinity of a motif that could function as a poly(A) signal. To reduce the rate of

false positives generated by this mechanism, we undertook an additional filtering procedure as

follows (Supplemental Fig. A.25). First, every 3’ end site that was located within a poly(A) signal

or had a poly(A) signal starting within 5 nt downstream from the apparent cleavage site was

marked initially as "PAS priming site". Then, during the clustering procedure, each cluster that

contained a "PAS priming site" was itself marked as putative internal priming candidate, and

the most downstream position of the cluster was considered as the representative site for the

cluster. Finally, internal priming candidate clusters were either (1) merged into a downstream

cluster, if all annotated poly(A) signals of the downstream cluster were also annotated for the

internal priming candidate, or (2) retained as valid poly(A) cluster when the distance between

the representative site to the closest poly(A) signal upstream was at least 15 nt or (3) discarded,

if neither condition (1) nor (2) was met.

2.5.5 Generation of the comprehensive catalog of high-confidence poly(A) sites

2.5.5.1 Annotating poly(A) signals

The procedure outlined in the sections above yielded 18 signals that showed a positional

preference similar to AAUAAA in both mouse and human. These signals were used to construct

the catalog of 3’ end processing sites. We started again from all unique apparent cleavage sites

from the 78 human and 110 mouse samples (Supplemental Tables A.2, A.3), amounting to

6,983,499 and 8,376,450 sites, respectively. For each of these sites, we annotated all occurrences

of any of the 18 poly(A) signals within -60 to +5 nt relative to the apparent cleavage site.

2.5.5.2 Identification of 3’ end processing clusters expressed above background in

individual samples

For each sample independently, we constructed clusters of 3’ end processing sites as described

above. At this stage, we did not eliminate "PAS priming sites" but rather used a larger clustering

distance, of du = dd = 25, to ensure that "PAS priming sites" were captured as well. We kept

track of whether any 3’ end processing site in each cluster had an annotated poly(A) signal

or not. Next, we sorted the clusters by the total number of reads that they contained, and by

traversing the sorted list from top (clusters with most reads) to bottom, we determined the
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read count c at which the percentage of clusters having at least one annotated poly(A) signal

dropped below 90%. We then discarded all clusters with ≤ c read counts as not having sufficient

experimental support (for outlines how to determine sample-specific cutoffs, Supplemental

Fig. A.26). This allowed for an efficient filtering of reads presumably representing background

noise.

2.5.5.3 Combining poly(A) site clusters from all samples into a comprehensive catalog of

3’ end processing sites

By starting from the sites identified in at least one of the samples, we first normalized the read

counts to the total number of reads in each sample to compute expression values as RPM

and then merged all sites into a unique list that we sorted first by the number of protocols

supporting each individual site and then by the total RPM across all samples that supported

the site. These sites were clustered, and then internal priming candidates were eliminated as

described above. Closely spaced clusters were merged (1) when they shared the same poly(A)

signals or (2) when the length of the resulting cluster did not exceed 25 nt. The above procedure

could result in poly(A) clusters that were still close to each other but with a combined length

exceeding the maximum cluster size and that did not have any poly(A) signal annotated. To

retain from these the most likely and distinct poly(A) sites, we merged clusters without poly(A)

signals with an inter-cluster distance ≤ 12 nt and retained those whose total cluster span

was ≤ 50 nt. A small fraction of the clusters had a span ≥ 50 nt, with some even wider than

100 nt. These clusters were not included in the atlas. Finally, the position with the highest

number of supporting reads in each cluster was reported as the representative site of the

cluster (Supplemental Fig. A.27). The final set of clusters was saved in a BED-formatted file,

with the number of supporting protocols as the cluster score. A cluster obtained support

by a protocol if any of the reads in the clusters originated from that protocol. We used the

protein-coding and lincRNA annotations from the UCSC GENCODE v19 Basic Set for human

and the Ensembl mm10 transcript annotation from UCSC for mouse to annotate the following

categories of clusters, listed here in the order of their priority (which we used to resolve

annotation ambiguity):

• TE: terminal exon,

• EX: any other exon except the terminal one,

• IN: any intron,

• DS: up to 1000 nt downstream from an annotated gene,

• AE: antisense to an annotated exon,

• AI: antisense to an annotated intron,

• AU: antisense and within 1000 nt upstream of an annotated gene, and

• IG: intergenic
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2.5.5.4 Supplemental atlas versions

To provide more details on different aspects of the inferred poly(A) site clusters, additional

versions of the human and mouse atlas with extended information were generated. For human,

we established a version that annotated one of the above categories to every poly(A) site

cluster based on the UCSC GENCODE v19 Comprehensive Set annotation (not limited to

protein-coding and lincRNA-encoding genes). Moreover, for mouse and human, a version with

additional information about the tissues/cell types in which each poly(A) site was identified

was constructed. All versions are publicly available and online at http://www.polyasite.

unibas.ch.

2.5.5.5 Sequence logos of the identified poly(A) signals

The procedure described above was used again, this time to construct a version of the human

and mouse poly(A) site atlases that incorporated the entire set of 22 organism-specific poly(A)

signals, not just the 18 signals that were shared between species. Frequencies of all annotated

poly(A) signals (possibly more than one per poly(A) cluster) across all identified clusters were

calculated for the human and mouse catalog independently. FASTA files with poly(A) signals,

including their multiplicities in the data, were used with the Weblogo program [170] version

3.3, with default settings, to generate the sequence logos for human and mouse, respectively.

2.5.5.6 Hexamer enrichment in upstream regions of 3’ end clusters

We calculated the significance (p-value) of enrichment of each hexamer in the set of 3’ end

clusters (and their 60 nt upstream regions) of our human and mouse atlas relative to what

would be expected by chance, assuming the mononucleotide frequencies of the sequences

and a binomial distribution of motif counts.

2.5.5.7 Annotation of poly(A) sites with respect to categories of genomic regions

We used the genomic coordinates of the protein-coding genes and lincRNAs from the UCSC

GENCODE v19 Basic Set (human) and the Ensembl mm10 (mouse) annotations to annotate

our and previously published sets of poly(A) sites with respect to genomic regions with which

they overlap. A poly(A) site was assigned to an annotated feature if at least one of its genomic

coordinates overlapped with the genomic coordinates of the feature.

PolyAsite: For every poly(A) cluster annotated in our catalog, the entire region of the cluster

was used to test for an overlap with annotated genomic features.

PolyA-seq: Processed, tissue-specific data were downloaded as a BED file (http://www.ncbi.

nlm.nih.gov/geo/query/acc.cgi?acc=GSE30198). Poly(A) sites from nine and five

different samples were downloaded for human and mouse, respectively [7]. Mouse
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genome coordinates were converted to the coordinates of the Ensembl mm10 annotation

through LiftOver [171]. The genomic coordinates of all poly(A) sites (one position per

poly(A) site) were intersected with the annotation features.

APASdb: Processed, tissue-specific data for human poly(A) sites were downloaded from

http://mosas.sysu.edu.cn/utr/download_datasets.php. This included poly(A)

sites from 22 human tissues [127]. The genomic coordinates of all poly(A) sites (one

position per poly(A) site) were intersected with the annotation features.

2.5.6 Analysis of 3’ end libraries from HNRNPC knock-down experiments

2.5.6.1 Sequencing of A-seq2 libraries and quantification of relative poly(A) site usage

We considered all high-confidence A-seq2 [56] reads that mapped to a unique position in the

human genome (hg19) and that had 5’ ends that were located in a cluster supported by two

or more protocols. For our A-seq2 protocol, high-confidence reads are defined as sequencing

reads that do not contain more than two ambiguous bases (N), have a maximum A-content

of 80%, and the last nucleotide is not an adenine. By using our atlas of poly(A) sites that was

constructed considering the 18 conserved poly(A) signals, we calculated the relative usage

of poly(A) sites. We considered in our analysis all exons that had multiple poly(A) clusters

expressed at > 3.0 RPM in one or more samples. There were 12,136 such clusters. We considered

as "consistently" changing poly(A) sites those that had a change of at least 5% in the same

direction in both replicates. We considered as "consistently" unchanged poly(A) sites those

whose mean change and standard deviation across replicates were < 2%.

2.5.6.2 Determination of ELAVL1 binding sites that are affected by APA events taking

place upon HNRNPC knock-down

Determination of 3’ UTR regions that respond to HNRNPC knock-down: To identify putative

HNRNPC regulated regions, we have selected exons that had exactly two poly(A) sites, one

of which showing an increase in relative usage by at least 5% upon HNRNPC knock-down

and harboring a putative HNRNPC binding site ((U)5) within a region of -200 to 100 nt rela-

tive to the cleavage site. We considered as unchanged regions exons with exactly two poly(A)

sites, both of which changing < 5% upon HNRNPC knock-down. ELAVL1 binding site extrac-

tion from PAR-CLIP: We used data from a previously published ELAVL1 CLIP experiment

[150], Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) database

accession GSM714641. Enriched binding sites were determined by applying the mRNA site

extraction tool available on CLIPZ [172, 173] using the mRNA-seq samples with GEO accessions

GSM714684 and GSM714685 as background. CLIP sites with an enrichment score ≥ 5.0 were

translated into genome coordinates (hg19) using GMAP [174]. To identify ELAVL1 CLIP sites

located within transcript regions that are included/excluded through APA, we intersected the
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set of enriched ELAVL1 CLIP sites with genomic regions enclosed by tandem poly(A) sites

(located on the same exon) using BEDTools [175].

2.5.6.3 Determination of intronic poly(A) sites

To make sure that we can capture premature cleavage and polyadenylation events that might

occur spontaneously upon knock-down of HNRNPC and are therefore observable in the

HNRNPC knock-down samples only, for each sample we created clusters as described above,

using conserved poly(A) signals only. By analogy to tandem poly(A) sites within exons, we

calculated the relative usage of clusters within genes by considering all genes having multiple

poly(A) clusters that were expressed at > 3.0 RPM in one or more samples. There were 22,498

such clusters, 2,454 of which were annotated to be intronic. Finally, we determined the set of

sites that showed a consistent change upon HNRNPC knock-down as described above.

2.5.7 Experiments

2.5.7.1 Cell culture and RNAi

HEK 293 cells (Flp-In-293, from Life Technologies) were grown in Dulbecco’s modified Ea-

gle’s medium (DMEM; from Sigma) supplemented with 2 mM L-glutamine (Gibco) and 10%

heat-inactivated fetal calf serum (Gibco). Transfections of siRNA were carried out using Lipo-

fectamine RNAiMAX (Life Technologies) following the manufacturer’s protocol. The following

siRNAs were used: negative-control from Microsynth (sense strand AGGUAGUGUAUCGCCU-

UGTT) and si-HNRNPC1/2 (sc-35577 from Santa Cruz Biotechnologies), both applied at 20

nM in 2.5 mL DMEM on six-well plates.

2.5.7.2 Western blotting

Cells were lysed in 1 × RIPA buffer, and protein concentration was quantified using BCA

reagent (Thermo Scientific). A stipulated amount of the sample (usually 10 µg) was then used

for SDS gel separation and transferred to ECL membrane (Protran, GE Healthcare) for further

analysis. Membranes were blocked in 5% skim milk (Migros) in TN-Tween (20 mM Tris-Cl at

pH 7.5, 150 mM NaCl, 0.05% Tween-20). The following antibodies were used for Western blots:

Actin, sc-1615 from Santa Cruz Biotechnology; hnRNP C1/C2 (N-16), sc-10037 from Santa

Cruz Biotechnology (used at 1:1000 dilution); CD47, AF-4670 from R&D Systems (used at 1:200

dilution). HRP-conjugated secondary antibodies were applied at 1:2000 dilution. After signal

activation with ECL Western blotting detection reagent (GE Healthcare), imaging of Western

blots was performed on an Azure c600 system. Signal quantification was done with ImageJ

software.
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2.5.7.3 Immunofluorescence

For the immunofluorescence analysis, HEK 293 cells were transfected with either control siRNA

or siRNAs targeting HNRNPC as described under Cell Culture and RNAi, 48 h post transfection

cells were fixed with 4% paraformaldehyde for 30 min, permeabilized, and blocked with PBS

containing 1% BSA and 0.1% Triton X-100 for 30 min. Primary anti-CD47 antibody (sc-59079

from Santa Cruz Biotechnology) was incubated for 2 h at room temperature at a dilution of

1:100 in the same buffer. To visualize CD47 in cells, secondary antibody conjugated with Alexa

Fluor 488 was applied, while the nucleus was labeled with Hoechst dye. Imaging was performed

with a Nikon Ti-E inverted microscope adapted with a LWD condenser (WD 30mm; NA 0.52),

Lumencor SpectraX light engine for fluorescence excitation LED transmitted light source.

Cells were visualized with a CFI Plan Apochromat DM 60 × lambda oil (NA 1.4) objective, and

images were captured with a Hamatsu Orca-Flash 4.0 CMOS camera. Image analysis and edge

detection was performed with NIKON NIS Elements software version 4.0. All images were

subsequently adjusted uniformly and cropped using Adobe Photoshop CS5.

2.5.7.4 FACS analysis

FACS analyses of siRNA transfected cells were performed similar to immunofluorescence stud-

ies (see above) except that cells were not permeabilized prior to the treatment with antibody

against CD47 (sc-59079 from Santa Cruz Biotechnology). Analysis of Alexa Fluor 488 signal and

counts was carried out on a BD FACS Canto II instrument, and data were analyzed with the

FLOWJO software. An equal pool of siRNA samples from each transfection set was mixed for

the IgG control staining to rule out nonspecific signals.

2.5.7.5 PAR-CLIP and A-seq2 libraries

A-seq2 libraries were generated as previously described [56] and sequenced on an Illumina

HiSeq 2500 sequencer. The HNRNPC PAR-CLIP was performed as previously described [33]

with a modification consisting of preblocking of the Dynabeads-Protein A (Life Technolo-

gies), resulting in reduced background and higher efficiency of library generation. To this

end, Dynabeads were washed three times with PN8 buffer (PBS buffer with 0.01% NP-40),

and incubated in 0.5 mL of PN8-preblock (1 mM EDTA, 0.1% BSA from Sigma [A9647], and

0.1 mg/mL heparin from Sigma [H3393], in PN8 buffer) for 1 h on a rotating wheel. The pre-

block solution was removed and replaced by the antibody in 0.2 mL preblock solution and

rotated for 2-4 h. We used the goat polyclonal antibody sc-10037 against HNRNPC (Santa Cruz

Biotechnology). The 5’ adapter was GTTCAGAGTTCTACAGTCCGACGATC and the 3’ adapter

was TGGAATTCTCGGGTGCCAAGG.
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2.5.8 HNRNPC PAR-CLIP analysis

The raw data were mapped using CLIPZ [150]. For each poly(A) site, the uniquely mapping reads

that overlapped with a region of ±50 nt around the cleavage site were counted and normalized

(divided) by the expression level (RPKM) of the poly(A) sites host gene using the mRNA-seq

samples with GEO accession GSM714684. For Supplemental Figure A.11, normalized CLIP read

counts of poly(A) sites belonging to different categories of consistently behaving poly(A) sites

across replicates, as defined above, were used.

2.5.9 Analysis of mRNA-seq libraries from HNRNPC knock-down experiments

Publicly available libraries of HNRNPC knock-down and control experiments (two repli-

cates) that have been published recently [147] were downloaded from the sequence read

archive (SRA) database of the National Center for Biotechnology Information (accession

numbers SRX699496/GSM1502498, SRX699497/GSM1502499, SRX699498/GSM1502500, and

SRX699499/GSM1502501). After adapter removal, the FASTQ file containing the reads se-

quenced in sense direction was mapped using the STAR aligner with default settings [176].

2.5.9.1 Evaluation of novel exon vs. extended internal exon contribution to intronic

poly(A) sites

First we identified all poly(A) sites that were located in introns according to gene structures

reflected in the GENCODE v19 (human) transcript set and that were putative HNRNPC targets.

That is, they were consistently derepressed upon knock-down of HNRNPC (see above) and

contained putative HNRNPC-binding (U)5 motifs within -200 to +100 nt around their cleavage

site. For each of these intronic sites, we determined the closest upstream exon, here referred

to as u-exon. To find out whether this type of poly(A) sites represented the 3’ ends of novel

terminal exons or of extended versions of the u-exon, we calculated the ratio R = S+1
C+1 , where C

is the number of reads that map over the 3’ end of the u-exon (extending by at least 10 nt in the

downstream region), and S is the number of reads that map across a splice boundary, the 5’

splice site (ss) being within ±3 nt of the 3’ end of the u-exon and the 3’ end of the read mapping

upstream of the intronic poly(A) site. The C type of reads provide evidence for the extension of

the u-exon, whereas the S type of reads provide evidence for a novel terminal exon. In order to

prevent artifacts that may result from poorly expressed transcripts, we required the u-exon to

intersect with at least 10 reads within a sample, and we only included regions for which we had

at least three reads of either C or S type (or both). We used a pseudo-count of one for both read

types.
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3.1 Abstract

3’ Untranslated regions (3’ UTRs) length is regulated in relation to cellular state. To uncover

key regulators of poly(A) site use in specific conditions, we have developed PAQR, a method

for quantifying poly(A) site use from RNA sequencing data and KAPAC, an approach that

infers activities of oligomeric sequence motifs on poly(A) site choice. Application of PAQR and

KAPAC to RNA sequencing data from normal and tumor tissue samples uncovers motifs that

can explain changes in cleavage and polyadenylation in specific cancers. In particular, our

analysis points to polypyrimidine tract binding protein 1 as a regulator of poly(A) site choice in

glioblastoma.

3.2 Background

The 3’ ends of most eukaryotic mRNAs are generated through endonucleolytic cleavage and

polyadenylation (CPA) [11, 51, 178]. These steps are carried out in mammalian cells by a 3’ end

processing complex composed of the cleavage and polyadenylation specificity factor (which

includes the proteins CPSF1 (also known as CPSF160), CPSF2 (CPSF100), CPSF3 (CPSF73),

CPSF4 (CPSF30), FIP1L1, and WDR33), the mammalian cleavage factor I (CFIm, a tetramer of

two small, NUDT21 (CFIm 25) subunits, and two large subunits, of CPSF7 (CFIm 59) and/or

CPSF6 (CFIm 68)), the cleavage factor II (composed of CLP1 and PCF11), the cleavage stimula-
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tion factor (CstF; a trimer of CSTF1 (CstF50), CSTF2 (Cstf64) and CSTF3 (CstF77)), symplekin

(SYMPK), the poly(A) polymerase (PAPOLA, PAPOLB, PAPOLG), and the nuclear poly(A) bind-

ing protein (PABPN1) [51, 52]. Crosslinking and immunoprecipitation (CLIP) revealed the

distribution of core 3’ end processing factor binding sites in pre-mRNAs [33] and the minimal

polyadenylation specificity factor that recognizes the polyadenylation signal, consisting of the

CPSF1, CPSF4, FIP1L1, and WDR33 proteins, has been identified [43, 44].

Most genes have multiple poly(A) sites (PAS), which are differentially processed across

cell types [19], likely due to cell type-specific interactions with RBPs. The length of 3’ UTRs is

most strongly dependent on the mammalian cleavage factor I (CFIm), which promotes the

use of distal poly(A) sites [23, 33, 77, 79, 120]. Reduced expression of CFIm 25 has been linked

to 3’ UTR shortening, cell proliferation and oncogene expression in glioblastoma cell lines

[23], while increased levels of CFIm 25 due to gene duplication have been linked to intellectual

disability [103]. The CSTF2 component of the CstF subcomplex also contributes to the selection

of poly(A) sites [33, 49], but in contrast to CFIm, depletion of CSTF2 leads to increased use of

distal poly(A) sites (dPAS), especially when the paralogous CSTF2T is also depleted [49]. PCF11

and FIP1L1 proteins similarly promote the use of proximal poly(A) sites (pPAS) [79].

Many splicing factors modulate 3’ end processing. Most strikingly, the U1 small nuclear

ribonucleoprotein (snRNP) promotes transcription, masking poly(A) sites whose processing

would lead to premature CPA, through a "telescripting" mechanism [82, 83]. The U2AF65

spliceosomal protein interacts with CFIm [179] and competes directly with the heterogeneous

nucleoprotein C (HNRNPC) for binding to uridine (U)-rich elements, regulating the splicing

and thereby exonization of Alu elements [145]. HNRNPC represses CPA at poly(A) sites where

U-rich sequence motifs occur [118]. Other splicing factors that have been linked to poly(A)

site selection are the neuron-specific NOVA1 protein [86], the nuclear and cytoplasmic poly(A)

binding proteins [78, 79], the heterogeneous ribonucleoprotein K (HNRNPK) [180], and the

poly(C) binding protein (PCBP1) [85]. However, the mechanisms remain poorly understood. An

emerging paradigm is that position-dependent interactions of pre-mRNAs with RBPs influence

poly(A) site selection, as well as splicing [87]. By combining mapping of RBP binding sites with

measurements of isoform expression, Ule and colleagues started to construct "RNA maps"

relating the position of cis-acting elements to the processing of individual exons [181]. However,

whether the impact of a regulator can be inferred solely from RNA sequencing data obtained

from samples with different expression levels of various regulators is not known.

To address this problem, we have developed KAPAC (for k-mer activity on polyadenylation

site choice), a method that infers position-dependent activities of sequence motifs on 3’ end

processing from changes in poly(A) site usage between conditions. By analogy with RNA maps,

and to emphasize the fact that our approach does not use information about RBP binding

to RNA targets, we summarize the activities of individual motifs inferred by KAPAC from

different regions relative to poly(A) sites as "impact maps". As 3’ end sequencing remains
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relatively uncommon, we have also developed PAQR, a method for polyadenylation site usage

quantification from RNA sequencing data, which allows us to evaluate 3’ end processing

in data sets such as those from The Cancer Genome Atlas (TCGA) Research Network [182].

We demonstrate that KAPAC identifies binding motifs and position-dependent activities of

regulators of CPA from RNA-seq data obtained upon the knock-down of these RBPs, and

in particular, that CFIm promotes CPA at poly(A) sites located ∼ 50 to 100 nucleotides (nt)

downstream of the CFIm binding motifs. KAPAC analysis of TCGA data reveals pyrimidine-rich

elements associated with the use of poly(A) sites in cancer and implicates the polypyrimidine

tract-binding protein 1 (PTBP1) in the regulation of 3’ end processing in glioblastoma.

3.3 Results

3.3.1 Inferring sequence motifs active on PAS selection with KAPAC

As binding specificities of RBPs have only recently been started to be determined in vivo in

high-throughput [183], we developed an unbiased approach, evaluating the activity of all

possible sequences of length k (k-mers, with k in the range of RBP-binding site length, 3–6

nt [184]) on PAS usage. Briefly, we first compute the relative use of each PAS p among the P

poly(A) sites (P > 1) in a given terminal exon across all samples s, as

Up,s =
Rp,s∑P

p ′=1 Rp ′,s
, (3.1)

where Rp,s is the number of reads observed for poly(A) site p in sample s (Figure 3.1A). KAPAC

aims to explain the observed changes in relative poly(A) site usage Up,s in terms of the activity

of a k-mer k within a sample s and the excess counts (over the background expected based

on the mononucleotide frequencies; see section B.2.2.1) Np,k of the k-mer within a region

located at a specific distance relative to the poly(A) site p (Figure 3.1B, C). Running KAPAC for

regions located at various relative distances with respect to the PAS (Figure 3.1D) allows the

identification of the most significantly active k-mers as well as their location.
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Figure 3.1: Schematic outline of the KAPAC approach. (A) Tabulation of the relative usage of
poly(A) sites in different experimental conditions (here, control and treatment). (B) Tabulation
of k-mer counts for regions (blue) located at a defined distance with respect to poly(A) sites
p. (C) Based on the usage of poly(A) sites relative to the mean across samples and the counts
of k-mers k in windows located at specific distances from the poly(A) sites p, KAPAC infers
activities Ak,s of k-mers in samples s. cs,e is the mean relative usage of poly(A) sites from exon
e in sample s, cp is the mean log2-relative usage of poly(A) site p across samples, and ε is
the residual error. KAPAC ranks k-mers based on the absolute z-score of the mean activity
difference in two conditions (here, in control relative to treatment). (D) Fitting the KAPAC
model for windows located at specific distances relative to poly(A) sites, position-dependent
activities of sequence motifs on poly(A) site use are inferred.

3.3.2 KAPAC uncovers expected position-specific activities of RBPs on pre-mRNA

3’ end processing

To evaluate KAPAC we first analyzed PAS usage data obtained by 3’ end sequencing upon

perturbation of known RBP regulators of CPA. Consistent with the initial study of poly(C)

binding protein 1 (PCBP1) role in CPA [85], as well as with the density of its CCC—(C)3—
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binding element around PAS that do and PAS that do not respond to PCBP1 knock-down

(Figure 3.2A), KAPAC revealed that (C)3 motifs strongly activate the processing of poly(A) sites

located 25–100 nt downstream (Figures 3.2B, C; Supplementary Table B.1).

As in a previous study we found that the multi-functional HNRNPC modulates 3’ end

processing (see also Figure 3.2D), we also applied KAPAC to 3’ end sequencing data obtained

upon the knock-down of this protein. Indeed, we found that (U)n sequences (n = 3–5 nt) have

a strongly repressive activity on poly(A) site choice, which, reminiscent of HNRNPC’s effect

on exon inclusion [145], extends to a broad window, from approximately −200 nt upstream to

about 50 nt downstream of poly(A) sites (Figure 3.2E, F, Supplementary Table B.1). In contrast

to the density of (U)5 motifs, which peaks immediately downstream of poly(A) sites, KAPAC

inferred an equally high repressive activity of (U)5 motifs located upstream of the poly(A) site.

These results demonstrate that being provided only with estimates of poly(A) site ex-

pression in different conditions, KAPAC uncovers both the sequence specificity of the RBP

whose expression was perturbed in the experiment, and the position-dependent, activating, or

repressing activity of the RBP on poly(A) site choice.
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Figure 3.2: KAPAC accurately uncovers the activity of known regulators of poly(A) site
choice. (A) Smoothened (±5 nt) density of non-overlapping (C)3 motifs in the vicinity of
poly(A) sites that are consistently processed (increased or decreased use) in two PCBP1 knock-
down experiments from which 3’ end sequencing data are available [85]. Shaded areas indicate
standard deviations based on binomial sampling. (B) Difference of (C)3 motif activity inferred
by KAPAC in the two replicates of control (Ctrl) versus PCBP1 knock-down (KD) experiments
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3.3.3 The PAQR method to estimate relative PAS use from RNA-seq data

As 3’ end sequencing data remain relatively uncommon, we sought to quantify poly(A) site use

from RNA sequencing data. The drop in coverage downstream of proximal PAS has been inter-

preted as evidence of PAS processing, generalized by the DaPars method to identify changes in

3’ end processing genome-wide [23]. However, DaPars (with default settings) reported only

eight targets from the RNA-seq data obtained upon the knock-down of HNRNPC [147], and

they did not include the previously validated HNRNPC target CD47 [118], whose distal PAS

shows increased use upon HNRNPC knock-down (Figure 3.3A). Furthermore, DaPars quantifi-

cations of relative PAS use in replicate samples had limited reproducibility (Supplementary

Figures B.1, B.2), as did the motif activities inferred by KAPAC based on these estimates (Figure

3.3B, Supplementary Figure B.1). These results prompted us to develop PAQR, a method to

quantify PAS use from RNA-seq data (Figure 3.3C). PAQR uses read coverage profiles to pro-

gressively segment 3’ UTRs at annotated poly(A) sites. At each step, it infers the breakpoint

that decreases most the squared deviation from the mean coverage of a 3’ UTR segment when

dividing the segment in two regions with distinct mean coverage (Figure 3.3C and 3.6) relative

to considering it as a single segment with one mean coverage. A key aspect of PAQR is that

it only attempts to segment the 3’ UTRs at experimentally identified poly(A) sites, from an

extensive catalog that was recently constructed [118]. Using the HNRNPC knock-down data

set that was obtained independently [147] for benchmarking, we found that the PAQR-based

quantification of PAS use led to much more reproducible HNRNPC binding motif activity and

more significant difference of mean z-scores between conditions (−22.92 with PAQR-based

quantification vs. −10.19 with DaPars quantification; Figure 3.3B, D, Supplementary Figure

B.2). These results indicate that PAQR more accurately and reproducibly quantifies poly(A) site

use from RNA-seq data.
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3.3.4 KAPAC reveals a position-dependent activity of CFIm binding on cleavage

and polyadenylation

As KAPAC allows us to infer position-dependent effects of RBP binding on 3’ end processing,

we next sought to unravel the mechanism of CFIm, the 3’ end processing factor with a relatively

large impact on 3’ UTR length [33, 77, 79, 120]. We thus depleted either the CFIm 25 or the CFIm

68 component of the CFIm complex by siRNA-mediated knock-down in HeLa cells, and carried

out RNA 3’ end sequencing. As expected, CFIm depletion led to marked and reproducible

3’ UTR shortening (Figure 3.4A, see 3.6 for details). We found that the UGUA CFIm binding

motif occurred with high frequency upstream of the distal poly(A) sites whose usage decreased

upon CFIm knock-down, whereas it was rare in the vicinity of all other types of PAS (Figure

3.4B). These results indicate that CFIm promotes the processing of poly(A) sites that are located

distally in 3’ UTRs and are strongly enriched in CFIm binding motifs in a broad region upstream

of the poly(A) signal. KAPAC analysis supported this conclusion, further uncovering UGUA

as the second most predictive motif for the changes in poly(A) site use in these experiments,

after the canonical poly(A) signal AAUAAA (Figure 3.4C, Supplementary Table B.1), which is

also enriched at distal PAS [33]. Interestingly, the activity profile further suggests that UGUA

motifs located downstream of PAS may repress processing of these sites, leading to an apparent

decreased motif activity when CFIm expression is high.

We repeated these analyses on RNA-seq data obtained independently from HeLa cells

depleted of CFIm 25 [23], obtaining a similar activity profile (Figure 3.4D, Supplementary Table

B.2), including the apparent negative activity of sites that are located downstream on PAS

processing. These results demonstrate that CFIm binds upstream of distal PAS to promote

their usage, whereas binding of CFIm downstream of PAS may, in fact, inhibit processing of

poly(A) sites.
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shortening of 3’ UTRs upon CFIm depletion (asterisks indicate two-sided Wilcoxon signed-rank
test p-value < 0.0001). (B) Smoothened (±5 nt) UGUA motif density around PAS of terminal
exons with exactly two quantified poly(A) sites, grouped according to the log fold change of
the proximal/distal ratio (p/d ratio) upon CFIm knock-down. The left panel shows the UGUA
motif frequency around the proximal and distal PAS of the 750 exons with the largest change
in p/d ratio, while the right panel shows similar profiles for the 750 exons with the smallest
change in p/d ratio. (C) KAPAC analysis of CFIm knock-down and control samples uncovers
the poly(A) signal and UGUA motif as most significantly associated with changes in PAS usage
(n = 3727). (D) UGUA motif activity is similar when the PAS quantification is done by PAQR
from RNA sequencing data of CFIm 25 knock-down and control cells (n = 4287) [23].

3.3.5 KAPAC implicates the pyrimidine tract binding proteins in 3’ end

processing in glioblastoma

We then asked whether KAPAC can uncover a role of CFIm 25 in 3’ UTR shortening in glioblas-

toma (GBM), as has been previously suggested [23]. We found that while 3’ UTRs are indeed
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markedly shortened in these tumors (Figure 3.5A), UGUA was not among the 20 motifs that

most significantly explained the change in PAS usage in these samples. This may not be unex-

pected because, in fact, once a certain threshold of RNA integrity is met, normal and tumor

samples have CFIm expression in the same range (Supplementary Figure B.3).

Rather, KAPAC revealed that variants of the CU dinucleotide repeat, located from ∼ 25 nt

upstream to ∼ 75 nt downstream of PAS, are most significantly associated with the change

in PAS usage in tumors compared to normal samples (Figure 3.5B, Supplementary Table

B.3). Among the many proteins that can bind polypyrimidine motifs, the mRNA level of the

pyrimidine tract binding protein 1 (PTBP1) was strongly anti-correlated with the median

average length of terminal exons in this set of samples (Figure 3.5C). This suggested that

PTBP1 masks the distally-located, CU repeat-containing PAS, which are processed only when

PTBP1 expression is low, as it is in normal cells. Of the 203 sites where the CU repeat motif

was predicted to be active, 181 were located most distally in the corresponding terminal exons.

The PTBP1 crosslinking and immunoprecipitation data recently generated by the ENCODE

consortium [185] confirmed the enriched binding of the protein downstream of CU-containing,

KAPAC-predicted target PAS (Figure 3.5D), whose relative usage decreases in tumor compared

to control samples (Supplementary Figure B.4). Furthermore, the enrichment of PTBP1-eCLIP

reads was highest for the highest scoring PTBP1 targets (Figure 3.5E). A similar pattern of

PTBP1-eCLIP reads was obtained when the 200 PAS with the strongest decrease in relative

usage were considered instead of KAPAC-predicted targets. In contrast, no obvious enrichment

was observed for the 200 distal PAS with the least change in usage in glioblastoma compared to

normal tissue (Supplementary Figure B.5). Strikingly, KAPAC analysis of mRNA sequencing data

obtained upon the double knock-down of PTBP1 and PTBP2 in HEK 293 cells [186] confirmed

this hypothesized effect of PTBP1 on 3’ end processing (Figure 3.5F). These results implicate

PTBP1 rather than CFIm 25 in the regulation of PAS use in glioblastoma.
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Figure 3.5: Regulation of PAS choice in glioblastoma samples from TCGA. (A) Cumulative
distributions of weighted average length of 1172 terminal exons inferred by applying PAQR
to five normal and five tumor samples (see 3.6 for the selection of these samples) show that
terminal exons are significantly shortened in tumors. (B) Activity profile of CUCUCU, the
second most significant motif associated with 3’ end processing changes in glioblastoma
(number of PAS used in the inference n = 2119). The presence of the motif in a window from
−25 to +75 relative to PAS is associated with increased processing of the site in normal tissue
samples. (Continued on next page)

3.3.6 A novel U-rich motif is associated with 3’ end processing in prostate cancer

Cancer cells, particularly from squamous cell and adenocarcinoma of the lung, express tran-

scripts with shortened 3’ UTRs (Figure 3.6A, Supplementary Table B.4). The negative correlation

between the mRNA level expression of CSTF2 and the 3’ UTR length (Figure 3.6B) led to the
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Figure 3.5: (C) Expression of PTBP1 in the 10 samples from (A) is strongly anti-correlated (dark
colored points; Pearson’s r (rP ) = −0.97, p-value < 0.0001) with the median average length
of terminal exons in these samples. In contrast, the expression of PTBP2 changes little in
tumors compared to normal tissue samples, and has a positive correlation with terminal exon
length (light colored points; rp = 0.85, p-value = 0.002). (D) Position-dependent PTBP1 binding
inferred from two eCLIP studies (in HepG2 (thick red line) and K562 (thick blue line) cell lines)
by the ENCODE consortium is significantly enriched downstream of the 203 PAS predicted to
be regulated by the CU-repeat motifs. We selected 1000 similar-sized sets of poly(A) sites with
the same positional preference (distally-located) as the targets of the CU motif and the density
of PTBP1 eCLIP reads was computed as described in 3.6. The mean and standard deviation
of position-dependent read density ratios from these randomized data sets are also shown.
(E) The median ratio of PTBP1-IP to background eCLIP reads over nucleotides 0 to 100 nt
downstream of the PAS (position-wise ratios computed as in (D)), for the top 102 ("top") and
bottom 101 ("low") predicted PTBP1 targets as well as for the background set ("bg") of distal
PAS. (F) Activity profile of the same CUCUCU motif in the PTBP1/2 double knock-down (where
the motif ranked third) compared to control samples (two biological replicates from HEK cells,
number of PAS n = 2493).

suggestion that overexpression of this 3’ end processing factor plays a role in lung cancer [98].

Applying KAPAC to 56 matching normal-tumor paired, lung adenocarcinoma samples, we did

not find any motifs strongly associated with PAS use changes in this cancer. In particular, we

did not recover G/U-rich motifs, as would be expected if CSTF2 were responsible for these

changes [98]. This was not due to functional compensation by the paralogous CSTF2T, as the

expression of CSTF2T was uncorrelated with the 3’ UTR length (Figure 3.6C). Rather, the CSTF2-

specific GU repeat motif had highly variable activity between patients and between poly(A)

sites, which did not exhibit a peak immediately downstream of the PAS (Figure 3.6D), where

CSTF2 is known to bind [33]. Thus, as in glioblastoma, PAS selection in lung adenocarcinoma

likely involves factors other than core 3’ end processing components.

Exploration of other cancer types for which many paired tumor-normal tissue samples

were available revealed that U-rich motifs are more generally significantly associated with

changes in PAS use in these conditions (Supplementary Table B.3). Most striking was the

association of the presence of poly(U) and AUU motifs with an increased PAS use in colon

and prostate cancer, respectively (Figure 3.6E, F). These results indicate that KAPAC can help

identify regulators of 3’ end processing in complex tissues environments such as tumors.
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Figure 3.6: Analysis of TCGA data sets. (A) For TCGA data sets with at least five matching
normal-tumor pairs with high RNA integrity (mTIN > 70), the distributions of patient-wise
medians of tumor-normal tissue differences in average terminal exon lengths are shown. Except
the adenocarcinoma of the stomach (STAD), the median is negative for all cancers, indicating
global shortening of 3’ UTRs in tumors. (B) Among 56 matching lung adenocarcinoma (LUAD)-
normal tissue pairs (from 51 patients) where global shortening of terminal exons was observed,
the CSTF2 expression (in fragments per kilobase per million (FPKM)) was negatively correlated
(rP = −0.72, p-value = 2.5e−18) with the median of average exon length. (C) For the same
samples as in (B), no significant correlation (rP =−0.01, p-value = 0.89) between the expression
of CSTF2T and the median of average exon length was observed. (D) Activity profile of the
UGUG CSTF2-binding motif inferred from matched LUAD tumor-normal tissue sample pairs
(n = 1054). For visibility, 10 randomly selected sample pairs are shown instead of all 56. (E,F)
Activity profiles of UUUUU and AUU, the motifs most significantly associated by KAPAC with
changes in PAS use in colon adenocarcinoma (COAD, number of PAS n = 1294) (E) and prostate
adenocarcinoma (PRAD, number of PAS n = 1835) (F), respectively (11 tumor-normal tissue
sample pairs in both studies).
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3.4 Discussion

Sequencing of RNA 3’ ends has uncovered a complex pattern of PAS and 3’ UTR usage across

cell types and conditions, and particularly that the length of 3’ UTRs increases upon cell

differentiation and decreases upon proliferation [21, 154]. However, the responsible regulators

remain to be identified.

The knock-down of most 3’ end processing factors leads to short 3’ UTRs [79]. Paradoxically,

similar 3’ UTR shortening is also observed in cancers, in spite of a positive correlation between

expression of 3’ end processing factors and the proliferative index of cells [51]. This may

suggest that 3’ end processing factors are not responsible for 3’ UTR processing in cancers,

and that other regulators remain to be discovered. However, the possibility remains that 3’

end processing factors, although highly expressed, do not match the increased demand for

processing in proliferating cells. Although reduced levels of CFIm 25 have been linked to 3’

UTR shortening and increased tumorigenicity of glioblastoma cells [23], once we applied a

threshold on the RNA integrity in the samples to be analyzed, CFIm 25 expression was similar

between tumors and normal tissue samples (Supplementary Figure B.3). Thus, it seems that

an apparent low expression of CFIm 25 is associated with stronger 3’ end bias in read coverage

and partial RNA degradation (Supplementary Figure B.6). Consistently, our KAPAC analysis

of samples with high RNA integrity did not uncover the CFIm 25-specific UGUA motif as

significantly explaining the PAS usage changes in glioblastoma compared to normal brain

tissue. Of note, in the study of Masamha et al. [23] only 60 genes had significantly shortened 3’

UTRs in glioblastoma relative to normal brain, and only 24 of these underwent significant 3’

UTR shortening upon CFIm 25 knock-down in HeLa cells, in spite of 1453 genes being affected

by the CFIm 25 knock-down. However, applying KAPAC to five normal and five glioblastoma

tumor samples which showed most separable distributions of terminal exon lengths, we

uncovered a pyrimidine motif, likely bound by PTBP1, as most significantly associated with

changes in PAS use in these tumors. Our findings are supported by previous observations that

PTBP1 acts antagonistically to CSTF2, repressing PAS usage [90], and that increased PTBP1

expression, as we observed in glioblastoma tumors, promotes proliferation and migration in

glioblastoma cell lines [187]. Our analysis demonstrates that, de novo, unbiased motif analysis

of tumor data sets with high RNA integrity can reveal specific regulators of PAS usage.

In spite of mounting evidence for the role of CFIm in the regulation of polyadenylation at

alternative PAS in terminal exons, its mechanism has remained somewhat unclear. "Canonical"

PAS, containing consensus signals for many of the 3’ end processing factors including CFIm,

tend to be located distally in 3’ UTRs [33]. If core 3’ end processing factors bind to specific PAS

and select them for processing, reducing the concentration of 3’ end processing factors should

increase the stringency of PAS selection. Yet the siRNA-mediated knock-down of CFIm leads to

increased processing at proximal sites, and not to preferential processing of the "high-affinity",

distal PAS. Here we have found that CFIm indeed promotes the usage of distal PAS to which
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it binds, while CFIm binding motifs are depleted at both the proximal and the distal PAS of

terminal exons whose processing is insensitive to the level of CFIm. Therefore, the decreased

processing of distal PAS upon CFIm knock-down is not explained by a decreased "affinity" of

these sites. A model that remains compatible with the observed pattern of 3’ end processing is

the so-called "kinetic" model, whereby reducing the rate of processing at a distal, canonical

site when the regulator is limiting, leaves sufficient time for the processing of a suboptimal

proximal site [92]. Kinetic aspects of pre-mRNA processing have started to be investigated in

cell lines that express slow and fast-transcribing RNA polymerase II (RNAPII) [188]. Analyzing

RNA-seq data from these cells, we found that terminal exons that respond to CFIm knock-down

in our data underwent more pronounced shortening in cells expressing the slow polymerase

(Supplementary Figure B.7), in agreement with the kinetic model. Nevertheless, this effect was

also apparent for exons in which proximal and distal poly(A) sites were located far apart; it was

not limited to CFIm targets. Furthermore, the changes in 3’ UTR length in a sample from the

fast RNAPII-expressing cell line were surprisingly similar to the changes we observed for the

slow polymerase. Thus, current data do not provide unequivocal support to the kinetic model

underlying the relative increase in processing of proximal PAS upon CFIm knock-down.

Generalized linear models have been widely used to uncover transcriptional regulators

that implement gene expression programs in specific cell types [189, 190]. Similar approaches

have not been applied to 3’ end processing, possibly because the genome-wide mapping of 3’

end processing sites has been lagging behind the mapping of transcription start sites. Here we

demonstrate that the modeling of PAS usage in terms of motifs in the vicinity of PAS can reveal

global regulators, while the reconstructed position-dependent activity of their corresponding

motifs provides insights into their mechanisms. Interestingly, some of the proteins that we

touched upon in our study are splicing factors. This underscores a general coupling between

splicing and polyadenylation that has been long surmised (e.g. [179]), and for which evidence

has started to emerge [191]. Interestingly, the activities of splicing factors on poly(A) site choice

paralleled the activities of these factors on splice site selection. Specifically, we found that

both HNRNPC, which functions as an "RNA nucleosome" in packing RNA and masking decoy

splice sites [87], and PTBP1, which has repressive activity on exon inclusion [192], repress the

processing of the PAS to which they bind. This unexpected concordance in activities suggests

that other splicing factors simultaneously modulating 3’ end processing are to be uncovered.

Splicing is strongly perturbed in cancers [193], and the role of splicing factors in the extensive

change of the polyadenylation landscape remains to be defined.

Sequencing of RNA 3’ ends has greatly facilitated the study of 3’ end processing dynamics.

However, such data remain relatively uncommon, and many large-scale projects have already

generated a wealth of RNA sequencing data that could, in principle, be mined to uncover

regulators of CPA. We found a previously proposed method for inferring the relative use of al-

ternative PAS from RNA-seq data, DaPars [23], to have limited reproducibility, possibly because
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biases in read coverage along RNAs are difficult to model. To overcome these limitations, we

developed PAQR, which makes use of a large catalog of PAS to segment the 3’ UTRs and infer

the relative use of PAS from RNA-seq data. We show that PAQR enables a more reproducible as

well as accurate inference of motif activities in PAS choice compared to DaPars. PAQR strongly

broadens the domain of applicability of KAPAC to include RNA sequencing data sets that have

been obtained in a wide range of systems, as we have illustrated in our study of TCGA data.

As single-cell transcriptome analyses currently employ protocols designed to capture RNA 3’

ends, it will be especially interesting to apply our methods to single-cell sequencing data.

3.5 Conclusions

In this study, we developed PAQR, a robust computational method for inferring relative poly(A)

site use in terminal exons from RNA sequencing data, and KAPAC, an approach to infer se-

quence motifs that are associated with the processing of poly(A) sites in specific samples. We

demonstrate that these methods help uncover regulators of polyadenylation in cancers and

also shed light on their mechanism of action. Our study further underscores the importance of

assessing the quality of samples used for high-throughput analyses, as this can have substantial

impact on the estimates of gene expression.

3.6 Methods

3.6.1 Datasets

3.6.1.1 A-seq2 samples

3’ End sequencing data from HeLa cells that were treated with either a control siRNA or siRNAs

targeting the CFIm 25 and the CFIm 68 transcripts were generated as follows. HeLa cells were

cultured in DMEM (# D5671, Sigma Aldrich) supplemented with L Glutamine (#25030081,

ThermoFisher Scientific) and 10% fetal bovine serum (#7524, Sigma-Aldrich). For siRNA treat-

ment, cells were seeded in six well polystyrene-coated microplates and cultured to reach a

confluence of ∼ 50%. Subsequently, the cells were separately transfected with 150 picomoles

of siRNA, either control (sense strand sequence 5’ AGG UAG UGU AAU CGC CUU GTT 3’), or

directed against CFIm 25 (sense strand sequence 5’ GGU CAU UGA CGA UUG CAU UTT 3’) or

against CFIm 68 (sense strand sequence 5’ GAC CGA GAU UAC AUG GAU ATT 3’), with Lipo-

fectamine RNAiMAX reagent (#13778030, ThermoFisher Scientific). All siRNAs were obtained

from Microsynth AG and had dTdT overhangs. The cells were incubated with the siRNA Lipo-

fectamine RNAiMax mix for at least 48 h before cells were lysed. Cell lysis and polyadenylated

RNA selection was performed according to the manufacturer’s protocol (Dynabead™ mRNA

DIRECT™ Purification Kit, #61011, Thermo Scientific). Polyadenylated RNA was subsequently

processed and libraries were prepared for sequencing on the Illumina HiSeq 2500 platform as
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described earlier [118]. Sequencing files were processed according to Martin et al. [194] but

without using the random 4-mer at the start of the sequence to remove duplicates. A-seq2

3’ end processing data from control and si-HNRNPC-treated cells was obtained from a prior

study [118].

3.6.1.2 3’ end sequencing data pertaining to PCBP1

3’ End sequencing data from control and si-PCPB1-treated cells were downloaded from SRA

(accession: SRP022151) and converted to fastq format. Reverse complemented and duplicate-

collapsed reads were then mapped to the human genome with segemehl version 0.1.7 [168].

We did not use STAR for these data set because these libraries, generated by DRS (direct RNA

sequencing) had a high fraction of short reads that STAR did not map. From uniquely mapped

reads for which at least the last 4 nucleotides at the 3’ end perfectly matched to the reference,

the first position downstream of the 3’ end of the alignment was considered as cleavage site

and used for quantification of PAS use.

3.6.1.3 RNA-seq data from The Cancer Genome Atlas

BAM files for matching normal and tumor RNA-seq samples (the number which is listed in

Supplementary Table B.5) were obtained from the Genomic Data Commons (GDC) Data Portal

[195] along with gene expression values counted with HTSeq and reported in fragments per

kilobase per million (FPKM).

3.6.1.4 Other RNA-seq data sets

Publicly available raw sequencing data were obtained from NCBI’s Gene Expression Omnibus

(GEO) [196] for the studies of CFIm 25 knock-down in HeLa cells [23] (accession number

GSE42420), HNRNPC knock-down in HEK293 cells [147] (GSE56010), PTBP1/2 knock-down in

HEK293 cells [186] (GSE69656) and for HEK293 cells expressing mutated versions of POLR2A

that have overall different rates of RNAPII transcription elongation [188] (GSE63375).

3.6.1.5 PTBP1 CLIP data

PTBP1-eCLIP data generated by the ENCODE consortium [185] was obtained from the EN-

CODE Data Coordination Center [197] (accession numbers for the IP and control samples

from K562 cells ENCSR981WKN and ENCSR445FZX, and from HepG2 cells ENCSR384KAN and

ENCSR438NCK).

3.6.2 Processing of the sequencing data

Raw reads obtained from RNA-seq experiments were mapped according to the RNA-seq

pipeline for long RNAs provided by the ENCODE Data Coordinating Center [198] using the
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GENCODE version 24 human gene annotation. Raw reads from the study conducted by Guer-

oussov et al. [186] were additionally subjected to 3’ adapter trimming with cutadapt, version

1.14 [199] prior to mapping. Raw reads from eCLIP experiments carried out by the ENCODE

consortium for the PTBP1 were first trimmed with cutadapt version 1.9.1 [199], at both the

5’ and 3’ ends to remove adapters. A second round of trimming guaranteed that no double

ligation events were further processed. The reads were then mapped to the genome with

STAR, version 2.5.2a [176]. Detection and collapsing of PCR duplicates was done with a custom

python script similar to that described by Van Nostrand et al. [183]. BAM files corresponding to

biological replicates were then merged.

3.6.3 PAQR

3.6.3.1 Inputs

PAQR requires an alignment file in BAM-format and a file with all poly(A) sites mapped on

the genome, in BED-format. The assessment of RNA integrity (see below) also requires the

transcript annotation of the genome, in BED12-format.

3.6.3.2 Poly(A) sites

PAQR quantifies the relative use of poly(A) sites in individual terminal exons. We started from

the entire set of poly(A) sites in the PolyAsite resource [118], but this set can be exchanged or

updated, and should be provided as a BED-file to the tool. We converted the coordinates of the

poly(A) sites to the latest human genome assembly version, GRCh38, with liftOver [171]. Termi-

nal exons with more than one poly(A) site (terminal exons with tandem poly(A) sites, TETPS)

and not overlapping with other annotated transcripts on the same strand were identified based

on version 24 of the GENCODE [152] annotation of the genome. When analyzing RNA-seq data

that were generated with an unstranded protocol, PAQR does not quantify poly(A) site usage in

terminal exons that overlap with annotated transcripts on the opposite strand.

3.6.3.3 Quantification of PAS usage

The main steps of the PAQR analysis are as follows: first, the quality of the input RNA sequencing

data is assessed, to exclude samples with evidence of excessive RNA degradation. Samples

that satisfy a minimum quality threshold are then processed to quantify the read coverage

per base across all TETPS and poly(A) sites with sufficient evidence of being processed are

identified. These are called "used" poly(A) sites (or uPAS). Finally, the relative use of the uPAS

is calculated.
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3.6.3.4 Assessment of sample integrity

The integrity of RNA samples is usually assessed based on a fragment analyzer profile [117].

Alternatively, a post hoc method, applicable to all RNA sequencing data sets, quantifies the

uniformity of read coverage along transcript bodies in terms of a "transcript integrity number"

(TIN) [116]. We implemented this approach in PAQR, calculating TIN values for all transcripts

containing TETPS. For the analysis of TCGA samples and of RNA-seq samples from cells with

different RNAPII transcription speeds, we only processed samples with a median TIN value of

at least 70, as recommended in the initial publication [116].

3.6.3.5 RNA-seq read coverage profiles

For each sample, nucleotide-wise read coverage profiles along all TETPS were calculated

based on read-to-genome alignments (obtained as described above). In processing paired-end

sequencing data, PAQR ensured unique counting of reads where the two mates overlap. When

the data were generated with an unstranded protocol, all reads that mapped to the locus of

a specific TETPS were assumed to originate from that exon. The locus of each TETPS was

extended by 200 nt at the 3’ end, to ensure inclusion of the most distal poly(A) sites (see below).

To accurately quantify the usage of the most proximal PAS, when poly(A) sites were located

within 250 nt of the start of the terminal exon, the coverage profile was first extended upstream

of the PAS based on the reads that mapped to the upstream exon(s). Specifically, from the

spliced reads, PAQR identified the upstream exon with most spliced reads into the TETPS and

computed its coverage. When the spliced reads that covered the 5’ end of the TETPS provided

evidence for multiple splice events, the most supported exons located even further upstream

were also included (Supplementary Figure B.8).

3.6.3.6 Identification of the most distal poly(A) sites

From the read coverage profiles, PAQR attempted to identify the poly(A) sites that show evi-

dence of processing in individual samples as follows. First, to circumvent the issue of incom-

plete or incorrect annotations of PAS in transcript databases, PAQR identified the most distal

PAS in each terminal exon that had evidence of being used in the samples of interest. Thus,

alignment files were concatenated to compute a joint read coverage profile from all samples of

the study. Then, the distal PAS was identified as the 3’-most PAS in the TETPS for which: 1) the

mean coverage in the 200-nt region downstream of the PAS was lower than the mean coverage

in a region twice the read length (to improve the estimation of coverage, as it tends to decrease

towards the poly(A) site) upstream of the poly(A) site; and 2) the mean coverage in the 200-nt

region downstream of the PAS was at most 10% of the mean coverage from the region at the

exon start (the region within one read length from the exon start) (Supplementary Figure B.9).

For samples from TCGA, where read length varied, we have used the maximum read length
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in the data for each cancer type. After the distal PAS was identified, PAQR considered for the

relative quantification of PAS usage only those TETPS with at least one additional PAS internal

to the TETPS and with a mean raw read coverage computed over the region between the exon

start and distal PAS of more than five.

3.6.3.7 Identification of used poly(A) sites

PAQR infers the uPAS recursively, at each step identifying the PAS that allows the best segmenta-

tion of a particular genomic region into upstream and downstream regions of distinct coverage

across all replicates of a given condition (Figure 3.3C). Initially, the genomic region is the entire

TETPS, and at subsequent steps genomic regions are defined by previous segmentation steps.

Given a genomic region and annotated PAS within it, every PAS is evaluated as follows. The

mean squared error (MSE) in read coverage relative to the mean is calculated separately for the

segments upstream (MSEu) and downstream (MSEd ) of each PAS for which the mean coverage

in the downstream region is lower than the mean coverage in the upstream region. A minimum

length of 100 nt is required for each segment, otherwise the candidate PAS is not considered

further. The sum of MSE in the upstream and downstream segments is compared with the MSE

computed for the entire region (MSEt ). If (MSEu + MSEd ) / MSEt ≤ 0.5 (see also below), the

PAS is considered "candidate used" in the corresponding sample. When the data set contains

at least two replicates for a given condition, PAQR further enforces the consistency of uPAS

selection in replicate samples by requiring that the PAS is considered used in at least two of

the replicates and, furthermore, for all PAS with evidence of being used in a current genomic

region, the one with the smallest median MSE ratio computed over samples that support the

usage of the site is chosen in a given step of the segmentation. The segmentation continues

until no more PAS have sufficient evidence of being used. If the data consist of a single sample,

the segmentation is done based on the smallest MSE at each step.

To further minimize incorrect segmentations due to PAS that are used in the samples of

interest but are not part of the input set, an additional check is carried out for each TETPS in

each sample, to ensure that applying the segmentation procedure considering all positions

in the TETPS rather than the annotated PAS recovers positions that fall within at most 200 nt

upstream of the uPAS identified in previous steps for each individual sample (Supplementary

Figure B.10). If this is not the case, the data for the TETPS from the corresponding sample are

excluded from further analysis.

3.6.3.8 Treatment of closely spaced poly(A) sites

Occasionally, distinct PAS occur very close to each other. While 3’ end sequencing may allow

their independent quantification, the RNA-seq data do not have the resolution to distinguish

between closely spaced PAS. Therefore, in the steps described above, closely spaced (within
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200 nt of each other) PAS are handled first, to identify one site of the cluster that provides the

best segmentation point. Only this site is then compared with the more distantly spaced PAS.

3.6.3.9 Relative usage and library size normalized expression calculation

Once used poly(A) sites have been identified, library size-normalized expression levels and

relative usage within individual terminal exons are calculated. Taking a single exon in a single

sample, the following steps are performed: the mean coverage of the longest 3’ UTR is inferred

from the region starting at the most distal poly(A) site and extending upstream up to the

next poly(A) site or to the exon start. Mean coverage values are similarly calculated in regions

between consecutive poly(A) sites and then the coverage of an individual 3’ UTR is determined

by subtracting from the mean coverage in the terminal region of that 3’ UTR the mean coverage

in the immediately downstream region. As some of the poly(A) sites are not identified in all

samples, their usage in the samples with insufficient evidence is calculated as for all other sites,

but setting the usage to 0 in cases in which the upstream coverage in the specific sample was

lower than the downstream coverage. The resulting values are taken as raw estimates of usage

of individual poly(A) sites and usage relative to the total from poly(A) sites in a given terminal

exon are obtained.

To obtain library size normalized expression counts, raw expression values from all quanti-

fied sites of a given sample are summed. Each raw count is divided by the summed counts (i.e.,

the library size) and multiplied by 106, resulting in expression estimates as reads per million

(RPM).

3.6.3.10 PAQR modules

PAQR is composed of 3 modules: 1) a script to infer transcript integrity values based on the

method described in a previous study [116]—the script builds on the published software which

is distributed as part of the Python RSeQC package version 2.6.4 [200]; 2) a script to create the

coverage profiles for all considered terminal exons—this script relies on the HTSeq package

version 0.6.1 [201]; and 3) a script to obtain the relative usage together with the estimated

expression of poly(A) sites with sufficient evidence of usage. All scripts, intermediate steps, and

analysis of the TCGA data sets were executed as workflows created with snakemake version

3.13.0 [202].

3.6.4 KAPAC

KAPAC, standing for k-mer activity on polyadenylation site choice, aims to identify k-mers

that can explain the change in PAS usage observed across samples. For this, we model the

relative change in PAS usage within terminal exons (with respect to the mean across samples)

as a linear function of the occurrence of a specific k-mer and the unknown "activity" of this
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k-mer. Note that by modeling the relative usage of PAS within individual terminal exons we

will capture only the changes that are due to alternative polyadenylation and not those that

are due to overall changes in transcription rate or to alternative splicing. We are considering

k-mers of a length from 3 to 6 nt in order to match the expected length of RBP binding sites

[184].

KAPAC attempts to explain the change in the relative use of a given PAS in terms of the mo-

tifs (k-mers) that occur in its vicinity, each occurrence of a k-mer contributing a multiplicative

constant to the site use. Thus, we write the number of reads observed from PAS i in sample s as

Ri ,s =α∗exp(Ni ,k ∗ Ak,s), (3.2)

where Ni ,k is the count of k-mer k around PAS i , Ak,s is the activity of the k-mer in sample s,

which determines how much the k-mer contributes to the PAS use, and α is the overall level

of transcription at the corresponding locus. Then, for poly(A) sites in the same terminal exon

we can write their base 2 logarithm relative use log(Ui ,s) as a function of the number of k-mer

counts found in a defined window at a specific distance from the site i and the activity of these

k-mers:

log(Ui ,s) = Ni ,k ∗ Ak,s − log
( P∑

p=1
exp(Np,k ∗ Ak,s)

)
(3.3)

(see B.2.2.2 for a detailed derivation). By fitting the relative use of poly(A) sites to the observed

number of motifs around them, we can obtain the activities Ak,s for each k-mer k in each

sample s and calculate mean activity difference z-scores across treatment versus control pairs

of samples (see Figure 3.1 and B.2).

3.6.4.1 Parameters used for KAPAC analysis of 3’ end sequencing data

We considered terminal exons with multiple poly(A) sites within protein coding transcripts

(GRCh38, GENCODE version 24) whose expression, inferred as previously described [118], was

at least 1 RPM in at least one of the investigated samples. To ensure that the position-dependent

motif activities could be correctly assigned, exons containing expressed PAS that were closer

than 400 nt from another PAS were excluded from the analysis, as we applied KAPAC to regions

±200 nt around poly(A) sites. We randomized the associations of changes in poly(A) site use

with k-mer counts 100 times in order to calculate p-values for mean activity difference z-scores

(see B.2).

3.6.4.2 Parameters used for KAPAC analysis of RNA-seq data

All KAPAC analyses for RNA-seq data sets considered terminal exons with at least two PAS of

any transcripts from the GENCODE version 24 annotation of the human genome. Filtering

of the closely-spaced PAS, activity inference and randomization tests were done similar to

the processing of 3’ end sequencing libraries. No RPM cutoff was applied as the used PAS
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are already determined by PAQR. In the case of TCGA data analysis, mean activity difference

z-scores were inferred based on comparisons of tumor versus normal tissue. For the KAPAC

analysis of PTBP1/2 knock-down in HEK293 cells, double knock-down samples were consid-

ered as control and the actual control samples as treatment, since this comparison corresponds

directly to that in the GBM analysis (see also Figure 3.5C and Supplementary Figure B.11).

3.6.5 Average terminal exon length

An average terminal exon length can be calculated over all transcripts expressing a variant of

that terminal exon as

l̂ =
P∑

p=1
fp lp , (3.4)

where fp is the relative frequency of use of PAS p in the terminal exon and lp is the length

of the terminal exon when PAS p is used for CPA. To compare terminal exons with different

maximum lengths, we further normalize the average exon length to the maximum and express

this normalized value percentually. Thus, when the most distal site is exclusively used the

average terminal exon length is 100, while when a very proximal site is used exclusively, the

average terminal exon length will be close to 0 (Supplementary Figure B.12).

3.6.6 Average length difference

The difference in average length of a terminal exon between two samples is obtained by

subtracting the average length inferred from one sample from the average length inferred from

the second sample. 3’ UTR shortening is reflected in negative average length differences, while

3’ UTR lengthening will lead to positive differences.

3.6.7 Definition of the best MSE ratio threshold

Two studies of HNRNPC yielded 3’ end sequencing [118] and RNA sequencing [147] data of

control and si-HNRNPC-treated cells. We used these data to define a PAQR parameter (the

threshold MSE ratio) such as to maximize the reproducibility of the results from the two studies.

MSE ratio values ranging from 0.2 to 1.0 were tested (Supplementary Figure B.13). Relative

use of PAS was calculated based on the A-seq2 data sets as described before [118]. The RNA-

seq data were processed to infer PAS use with different MSE cutoffs, and we then calculated

average terminal exon lengths for individual exons in individual samples and also differences

in average exon lengths between samples. For the comparison of the RNA-seq based PAS

quantifications with those from A-seq2, we considered both the overall number of terminal

exons quantified in replicate data sets as well as the correlation of average length differences.

As shown in Supplementary Figure B.13 stringent (low) cutoff in MSE leads to few exons being

quantified with high reproducibility, but the number of quantified exons has a peak relative

to the MSE. At a threshold of 0.5 on MSE we are able to quantify the largest number of exons

68



3.6. METHODS

with relatively good reproducibility, and we therefore applied this value for all our subsequent

applications of PAQR.

3.6.8 Selection of normal-tumor sample pairs for analysis of 3’ UTR shortening

For the analysis of motifs associated with 3’ UTR length changes in cancers, we computed the

distribution of 3’ UTR length differences in matched tumor-normal samples. We carried out

hierarchical clustering of vectors of 3’ UTR length changes for each cancer type separately

(using Manhattan distance and complete linkage). We then identified the subcluster in which

the median change in 3’ UTR length was negative for all samples and that also contained the

sample where the median change over all transcripts was smallest over all samples. Samples

from these clusters were further analyzed with KAPAC.

3.6.9 Selection of normal-tumor pairs from GBM data

From the six normal tissue sample that had a median transcript integrity number > 70, five

had similar average exon length distributions (all of them being among the samples with the

highest median average length). We used these five normal tissue samples and selected five

primary tumor samples with similarly high TIN and the lowest median average exon length.

We then generated random pairs of normal-tumor tissue samples and analyzed them similarly

to paired samples from other cancers.

3.6.10 eCLIP data analysis

We predicted targets of the CU-repeat motif as described in B.2 and obtained a total of 203 tar-

gets. We either used the entire set or divided the set into the top half and bottom half of targets.

For each poly(A) site from a given set, the read coverage profiles of the 400 nt region centered

on the poly(A) site were constructed from both the protein-specific immunoprecipitation (IP)

experiment and the related size-matched control. At every position, we computed the ratio of

the library size normalized read coverage (RPM) in the IP and in the background sample (using

a pseudo-count of 0.1 RPM) and then average these ratios position-wise across all poly(A) sites

from a given set, considering any poly(A) site with at least a single read support in either of

both experiments. For comparison, we carried out the same analysis for 1000 random sets

of poly(A) sites with the same size as the real set, and then inferred the mean and standard

deviation of the mean read ratios at each position.

3.6.11 Motif profiles

Motif profiles were generated by extracting the genomic sequences (from the GRCh38 ver-

sion of the human genome assembly) around poly(A) sites from a given set, scanning these

sequences and tabulating the start positions where the motif occurred. The range of motif
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occurrence variation at a given position was calculated as the standard deviation of the mean,

assuming a binomial distribution with the probability of success given by the empirical fre-

quency (smoothened over 7 nucleotides centered on the position of interest) and the number

of trials given by the number of poly(A) sites in the set.

3.6.12 Selection of CFIm-sensitive and insensitive terminal exons

For terminal exons with exactly two quantified poly(A) sites that were expressed with at least

3 RPM in all samples (1776 terminal exons) we calculated the proximal/distal ratio. Next,

we calculated the average (between replicates) log10 fold change (in knock-down relative to

control) in proximal/distal ratio. The 750 terminal exons with the largest average log10 fold

change in the CFIm 25 and CFIm 68 knock-down experiments were selected as CFIm sensitive,

while the 750 with an average log10 fold change closest to zero were considered insensitive.

3.7 List of abbreviations

TGCA cancer cohort abbreviations used in the previous chapter correspond to the following

full names:

BCLA: Bladder Urothelial Carcinoma

BRCA: Breast Invasive Carcinoma

COAD: Colon Adenocarcinoma

ESCA: Esophageal Carcinoma

GBM: Glioblastoma Multiforme

HNSC: Head and Neck Squamous Cell Carcinoma

KICH: Kidney Chromophobe

KIRC: Kidney Renal Clear Cell Carcinoma

KIRP: Kidney Renal Papillary Cell Carcinoma

LIHC: Liver Hepatocellular Carcinoma

LUAD: Lung Adenocarcinoma

LUSC: Lung Squamous Cell Carcinoma

PRAD: Prostate Adenocarcinoma

READ: Rectum Adenocarcinoma

STAD: Stomach Adenocarcinoma

THCA: Thyroid Carcinoma

UCEC: Uterine Corpus Endometrial Carcinoma
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3.8 Declarations

3.8.1 Availability of data and materials

3’ End sequencing data from HeLa cells treated with control siRNA or siRNAs directed against

CFIm 25 and CFIm 68 and generated with the A-seq2 protocol [194] have been submitted

to the NCBI Sequence Read Archive (SRA) [203] and are available under accession number

SRP115462. A-seq2 data pertaining to HNRNPC were obtained from SRA under accession num-

ber SRP065825. Direct RNA sequencing data from the PCBP1 study of Ji et al. [85] were obtained

from SRA with accession number SRP022151. RNA sequencing data from the studies involv-

ing CFIm 25 knock-down [23], HNRNPC knock-down [147], PTBP1/2 knock-down [186] and

RNAPII with altered elongation rate [188] were obtained from GEO [196], with accession num-

bers GSE42420, GSE56010, GSE69656, and GSE63375, respectively. Data from the eCLIP study

of PTBP1 were obtained from the ENCODE Data Coordination Center [197], having the follow-

ing accession numbers: ENCSR981WKN, ENCSR445FZX, ENCSR384KAN and ENCSR438NCK.

TCGA data (sample sets listed in Supplementary Tables B.4 and B.5) were obtained from the

GDC Portal [195], following permission. The source code of PAQR and KAPAC is available from

https://github.com/zavolanlab/PAQR_KAPAC.git. The snakemake pipeline to execute

PAQR and KAPAC as we have done in the manuscript, with input data pertaining to HNRNPC

as an example is available from https://doi.org/10.5281/zenodo.1147433. Both are dis-

tributed under the terms of the GNU General Public License as published by the Free Software

Foundation which permits the free redistribution and/or modification of the code.

3.8.2 Acknowledgements

We are grateful to the specimen donors and to the research groups that were part of the TCGA re-

search network for making these data available. We would like to thank Florian Geier for fruitful

discussions and sharing R code for regression models. Also, we would like to thank the sciCORE

team for their maintenance of the HPC facility at the University Basel and John Baumgart-

ner for his R implementation of Iwanthue (https://github.com/johnbaums/hues/blob/

master/R/iwanthue.R).

3.8.3 List of authors

The following authors have contributed to the work discussed in Chapter 3:

1. Andreas Johannes Gruber1 (Abbr.: AJG),

2. Ralf Schmidt1 (Abbr.: RS),

3. Souvik Ghosh1 (Abbr.: SG),

4. Georges Martin1 (Abbr.: GM),

5. Andreas R. Gruber1 (Abbr.: ARG),

71

https://github.com/zavolanlab/PAQR_KAPAC.git
https://doi.org/10.5281/zenodo.1147433
https://github.com/johnbaums/hues/blob/master/R/iwanthue.R
https://github.com/johnbaums/hues/blob/master/R/iwanthue.R


CHAPTER 3. DISCOVERY OF PHYSIOLOGICAL AND CANCER-RELATED REGULATORS OF APA

6. Erik von Nimwegen1 (Abbr.: EvN) &

7. Mihaela Zavolan1 (Abbr.: MZ)

1 Biozentrum, University of Basel, Klingelberstrasse 50-70, CH-4056 Basel, Switzerland

3.8.4 Authors’ contributions

The order of authors in the previous subsection (3.8.3) reflects the authors’ contributions, with

the first two authors (AJG and RS) contributing equally to this work. The last two authors are

principal investigators and thus their listing follows the opposite ranking.

AJG developed KAPAC, RS developed PAQR, SG and GM generated the 3’ end sequencing

data in HeLa cells, ARG contributed to the analysis of 3’ end sequencing data sets with KAPAC

and EvN contributed to the KAPAC model. AJG and RS analyzed the 3’ end and RNA sequencing

data sets. RS analyzed the TCGA data sets. Mihaela Zavolan contributed to model development

and analyses. AJG, RS, MZ wrote the manuscript with help from all authors.

3.8.5 Ethics approval and consent to participate

Authorization to use RNA-seq data from patient samples, which is obtained by the TCGA

Research Network, has been granted.

3.8.6 Funding

This work was supported by Swiss National Science Foundation grant #31003A_170216 to MZ

and by the project #51NF40_141735 (National Center for Competence in Research "RNA &

Disease").

3.8.7 Competing interests

The authors declare that they have no competing interests.

3.8.8 Additional files

Supplementary materials can be found in Appendix B.

72



C
H

A
P

T
E

R

4
DISCUSSION

Alternative polyadenylation (APA) has been emerged as an important mechanism for regulating

gene expression in higher eukaryotes [7, 12, 128, 141]. The characterization of individual APA

events elucidated the fundamental role of this mechanism in diverse cellular processes: From

the early example of the protein isoform switch of the IgM heavy chain during B cell activation

[80] to the formation of paraspeckles which depends on a short isoform of the long non-coding

RNA NEAT1 [180] to the 3’ UTR dependent protein localization of CD47 which is shuttled to

the plasma membrane only upon the translation of its long 3’ UTR isoform [72]. Apparently,

the impact of APA exceeds beyond the regulation of the RNA metabolism and modulates a

wide range of cellular functions. Yet, it was the detection of intriguing dynamics and systematic

alterations of 3’ end processing during cell state transitions that generated a new impetus in

the research of APA. Proliferating cells including cancer show a preferential use of proximal

poly(A) sites (PAS) while differentiating cells systematically express long isoforms matured

at more distal PAS’ [21, 22, 53, 154, 204, 205]. These insights unveiled APA as regulatory step

that putatively impacts the cellular state globally. Even though relatively little is known about

the underlying mechanisms that are responsible for APA in physiological contexts, pioneering

studies shed light on potential key regulators, best known being the CFI complex which is a

part of the core processing machinery. CFI knock-down has been shown by our laboratory and

others to cause global shifts of poly(A) site usage leading to genome-wide 3’ UTR shortening

[23, 33]. Subsequent results indicated far reaching consequences for APA events causes by CFI:

cell differentiation and reprogramming are sensitive to the levels NUDT21, a component of the

CFI complex [206]; NUDT21 levels were also implicated in the activation of oncogenes in liver

cancer [207] and in tumor growth of glioblastoma [23]; copy-number variations of NUDT21

were proposed as reason for mental disability [103]. Such findings promoted the tempting
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idea, that the cellular state can be modulated in a directed and specific manner by the targeted

manipulation of individual regulators of alternative polyadenylation.

The work of this thesis was devoted to a better understanding of the processes and regula-

tors that modulate APA. In recent years, various protocols to specifically sequence the 3’ ends

of polyadenylated mRNAs have been developed and applied in different biological contexts (a

summary of considered protocols can be found in Chapter A). The integrative analysis of the

corresponding data sets as presented in Chapter 2 resulted in a comprehensive atlas of poly(A)

sites for the human and the mouse genome. This resource provides experimentally supported

genomic sites of 3’ end processing with a single-nucleotide resolution, which opened the door

for analyses of biological aspects of APA.

The large number of individual 3’ends inferred from a wide range of conditions could

be exploited for the characterization of sequence motifs important for 3’ end processing in

unprecedented detail. The focus was on the poly(A) signal which is considered to be the

core sequence element for PAS recognition [11, 46]. The applied approach, developed during

these PhD studies, revealed additional conserved hexameric motifs that likely function in

cleavage and polyadenylation. An interesting question that emerges from these findings in

combination with recent insights into structural aspects of the binding of the CPSF complex

to AAUAAA [45, 47] is how CPSF can bind a wide array of eighteen or more sequence motifs

to guide the 3’ end processing reaction. It has been known for a long time that the presence

of variant poly(A) signals leads to less efficient cleavage [26]. This can be partially explained

through results on the structure of the CPSF-RNA complex that revealed a decreased binding

affinity of CPSF4 and WDR33 to AAGAAA (personal communication with Clerici et al.). A

mutation in the poly(A) signal of the HBA2 (α2-globin) that changes the canonical signal to

AAUAAg causes α-thalassaemia [208] while the AAcAAA mutation in HBB (β-globin) leads

to β-thalassaemia [209], both suggesting a complete disruption of the 3’ end processing at

those sites. In contrast, our analysis revealed the recurring availability of both signals upstream

of processed 3’ ends with the same positional preference as the canonical AAUAAA, clearly

suggesting cleavage and polyadenylation at these PAS. Maybe, processing of these sites can be

rescued by other auxiliary motifs in the up- and downstream regions [31] whereas the same

AACAAA or AAUAAG signal, acquired through a mutation, can render a PAS non-functional

in other sequence contexts. Apparently, input from multiple factors and sequence elements

determine the functionality and processing efficiency of poly(A) sites. The extended set of

poly(A) signals and their corresponding PAS provides valuable information about possible

sequence motif contexts of bona fide 3’ ends.

In a first application, the poly(A) site atlas facilitated the identification of HNRNPC as a

repressor of PAS usage. The heterotetramer had been implicated before mainly in the regulation

of splicing [87]. Here, it was demonstrated that HNRNPC levels affect 3’ end processing globally

and the 3’ UTR isoform of the CD47 transcript in particular. The corresponding CD47 protein
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was shown to undergo 3’ UTR dependent protein localization: only the protein translated from

the long transcript isoform is shuttled to the cell membrane whereas the protein from the

short form remains in the endoplasmatic reticulum [72]. Thus, HNRNPC acts as an upstream

regulator of this mechanism which makes the functionality of CD47 as cell surface protein

directly dependent on HNRPC levels. While this relation was described here in the context

of HNRNPC knock-down, it might be relevant also in physiological conditions: CD47 was

reported to be upregulated in cancer cells to inhibit phagocytosis [210], a function that requires

CD47 to reside in the plasma membrane, hence, that can be modulated by HNRNPC levels.

The results of this initial study brought the physiological contexts of APA into focus. Conse-

quently, the follow-up project aimed to better characterize the mechanisms responsible for

the dynamic APA changes in cancer. The constantly decreasing costs for high-throughput RNA

sequencing (RNA-seq) made this technology widely accessible and prompted collaborative

initiatives like The Cancer Genome Atlas (TCGA) to establish large-scale repositories of data

from matching normal and tumor tissue samples, with the number of cases per cancer type

being in the range of 100-1000 [182]. However, the RNA-seq data did not allow an immedi-

ate inference of PAS usage. Thus, to obtain accurate estimates, PAQR (polyadenylation site

quantification from RNA-seq) was developed, a method that quantifies 3’ end processing

events from RNA-seq data based on the distribution of sequencing reads along terminal exons.

Although the principle approach of PAQR to detect drops in read coverage that are indicative

of 3’ end processing was used before [98, 110, 111, 112], the nonuniform coverage profile leads

to many false positive hits and inaccurate usage estimates when utilized for the de novo PAS

detection. PAQR instead relies on the poly(A) site atlas and identifies genomic positions for

which a read coverage drop was in concordance with an annotated poly(A) site. This approach

made PAQR less susceptible to false positives and simultaneously gives it single nucleotide

precision in PAS usage quantification.

The processing of the TCGA data sets revealed an unexpected variability in read coverage

of the terminal exons across samples. In several cases the read distribution was very skewed

with an enrichment at the 3’ end of exons indicating advanced RNA degradation [115]. Sample

collection in clinical settings is often accomplished under conditions that are not optimal to

preserve the RNA. RNA degradation has been recognized as an important confounder in the

analysis of clinical samples [114, 116].

The analysis of quality-controlled samples from the TCGA provided further corroboration

for global 3’ UTR shortening of tumor compared to normal tissue across a large number of

cancer types [22, 98]. The application of a computational approach to infer sequence motifs

whose abundance is significantly associated with PAS usage changes (called KAPAC for k-mer

activity on polyadenylation site choice) was intended to unravel novel aspects of APA regulation

in cancer. Unexpectedly, KAPAC and further analyses revealed the polypyrimidine tract binding

protein 1 (PTBP1) as putative regulator of APA in GBM. Previously, mainly factors of the core 3’
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end processing machinery were proposed to regulate APA in cancer [23, 98, 99] whereas PTBP1

does not belong to this complex. Nevertheless, PTBP1 joins the rank of factors with observed

activity in splicing and 3’ end processing [90, 186, 192]. Moreover, its inferred repressive effect

on PAS usage upon binding matches the well-studied role in splicing to primarily prevent exon

inclusion [192]. PTBP1 is ubiquitously expressed across many although not all human tissues

and belongs to the subfamily of heterogeneous nuclear ribonucleoproteins that were reported

to regulate various aspects of mRNA metabolism including pre-mRNA processing or mRNA

export [211]. During neurogenesis, skipping of exon 9 leads to a reduced PTBP1 activity on

splicing regulation resulting in an alternative splicing program [186]. Moreover, PTBP1 levels

were found to correlate with clinical features of Parkinson’s disease and with the degree of

transformation of mammary epithelial cells indicating a potential role of PTBP1 for disease

[212, 213]. Evidently, PTPB1 is of physiological relevance and its regulatory activity affects the

cellular state.

Interestingly, elevated PTBP1 levels were associated with advanced proliferation and mi-

gration of glioma cell lines [187]. Similarly, another study linked 3’ UTR shortening in glioma

cell lines with anchorage-dependent growth and cellular invasion [23]. One interesting inter-

pretation of both results is to attribute a direct role of alternative 3’ end processing to cancer

progression and tumorigenesis. It will be of particular interest to clarify if APA events are driving

certain tumor characteristics or if they concomitantly emerge during cellular transformation. If

PTBP1 can directly impact tumorigenesis or tumor growth, it might be an potential therapeutic

target: Its modulation will have global consequences for the gene expression of cells due to its

involvement into splicing and 3’ end processing.

Additionally to novel insights into the regulation of APA in GBM, the presented approach

revealed a potential role for uridine-rich motifs in the control mechanisms of poly(A) site choice

for several cancers. Further analyses will be required to associate the identified motifs with the

factors by which they are bound and that exert the regulation of PAS usage. Promising advances

in this direction entail large-scale studies of RNA-protein interactions with crosslinking and

immunoprecipitation (CLIP) and similar approaches [183, 214]. CLIP consists in ultraviolet

light-induced crosslinking of RNA binding proteins (RBPs) to RNAs, precipitation of the RBP of

interest with a specific antibody, and sequencing of RBP-bound RNA fragments. This allows

one to infer positional information about the sites of interaction between RBP and RNA that

can be used subsequently to select enriched sequence motifs in these regions of binding. Such

short sequence elements can then be considered as specific binding sites for the corresponding

RBP [183]. Another method, called RNA Bind-n-Seq, incubates a purified RBP that contains a

streptavidin binding peptide tag with a pool of randomized RNAs and selects RNA bound to the

protein via magnetic beads. Finally, the short RNA fragments are sequenced and allow a more

direct investigation of binding motifs [215]. Both studies, CLIP and RNA Bind-n-Seq potentially

define the binding motifs for a near to complete set of RBPs. These can then be intersected
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with motifs revealed by our approach to draw conclusions about possible regulators.

However, not for all analyzed cancer types a clear and recurring motif was determined. This

might be due to the fact that PAS usage changes can not be sufficiently described through the

abundance of individual motifs. Another reason might be the intra-cancer heterogeneity of the

surveyed samples. Earlier reports indicated that PAS usage patterns are specific to individual

subtypes or that these patterns are even sufficiently characteristic for the classification of

cancer subtypes [96, 102]. Hence, combining all samples from a single cancer type in one

analysis might reduce the capacity to capture existing signals when the variability in 3’ end

processing patterns between distinct subtypes does not allow the inference of dominant whole-

cancer motif elements. Potentially, better results can be obtained through the prior selection

of a subgroup of samples which might be even identified by clustering the samples based on

poly(A) site usage, and separate analysis of individual subtypes.

The patterns of 3’ end usage may also change depending on the tumor grade. Earlier results

already indicated that the stratification of B cell leukemia in mice adds prognostic power [102].

Hence, the identification of APA events that correlate with the progression of tumors may

be exploited as diagnostic biomarkers, support the classification of cancer subtypes or even

serve as therapeutic targets. Especially for the last case, the comparison of APA patterns across

cancer types might help to reveal recurring and biologically relevant APA events that can be

used for the design of therapeutic agents suited for the treatment of different cancer types.

With HNRNPC and PTBP1, two factors that were before described as splicing regulators [87,

186, 192] were implicated in the regulation of APA in the presented projects. These findings

strongly support earlier reports of the involvement of splicing factors like U1 small nuclear

ribonucleoprotein (U1 snRNP, or simply U1) in the regulation of 3’ end processing [82] and

emphasize the extensive integration of both processes. Multiple interactions of core compo-

nents of the splicing and 3’ end processing machineries are known (for an overview see [52])

which for example promote the coordinated processing of the 3’ terminal intron and CPA [216,

217, 218]. The results of this thesis prompt a coupling of both regulatory mechanisms beyond

the interaction of factors directly involved in the RNA processing. Instead, they suggest that

splicing and 3’ end processing are regulated through the same factors and maybe even through

similar mechanisms. Further support for this theory comes for example from a study that

examined the binding specificity and the impact of binding for the neuron-specific regulator

NOVA2 [86]. It will require further effort to unravel the full scope of interdependence between

both mechanisms of post-transcriptional gene expression regulation.

Another feature that is shared between HNRNPC and PTBP1 is their repressive effect on

poly(A) site usage. Importantly, the presumed mechanism to regulate poly(A) site choice for

both factors differs in a crucial detail from the proposed model for U1: While U1 masks proxi-
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mal poly(A) sites to prevent premature cleavage during transcription [82], our analyses indicate

that HNRNPC and PTBP1 also repress the usage of distal poly(A) sites. From a mechanistic

point of view, this raises the question how the cell ensures the correct 3’ end processing when

the proximal poly(A) site was already transcribed and skipped from processing but the distal

poly(A) site is unavailable due to the binding of HNRNPC or PTPB1. It is completely unclear

whether the maturation of transcripts in such situation fails and they are decayed. Alternatively,

one can conjecture specific "connection" between the distal and a more proximal poly(A) site

that allows a delayed processing of the proximal site in such situation. Testing the validity of

both models is not easy because it requires detailed information about the processing events

on the level of single molecules. However, if available the method would be similarly suited to

examine the "kinetic model" which basically states that different PAS compete for processing

during transcription [92].

The prevalence of alternative polyadenylation in diverse physiological contexts provides

testimony for its relevance in modulating post-transcriptional gene expression regulation.

Despite major advances to characterize the PAS usage patterns and their changes in various

conditions, surprisingly little is known about the fundamental mechanisms that guide such

changes. The development and application of computational approaches in the course of

the presented projects provided novel biological insights and contributed to the discovery

of regulators of APA. With the prospective technological improvement of the current RNA-

seq methods, the read coverage profiles will become more accurate which will enhance the

ability to quantify poly(A) site usage based on such data. Moreover, the next revolution of

sequencing has already started and in the medium term single-molecule RNA sequencing

will be available. This technique will ease the identification and quantification of poly(A)

site usage drastically and will give much more accurate insights into the context dependent

changes in the transciptome. These novel sequencing methods are equally connected with

the expectation to enable the direct inference of RNA modifications. Hence, the technological

progress will drive the search for a different class of APA regulators other than trans-acting

factors that bind to sequence motifs. Already today, the methylation of adenosines (m6A), the

most abundant modification of mRNAs [219], was associated with 3’ end processing: the knock-

down of m6A writers was shown to cause APA [220]. Presumably, also other RNA modifications

are coupled with the post-transcriptional regulation of gene expression. Another factor with

elusive effect on the regulation of APA is the secondary structure. Maybe, sequencing full

transcripts will simultaneously allow to acquire information on the secondary structure of the

message. This would enable the analysis of the effect of structure elements on the processing

of poly(A) sites. In the prospect of upcoming developments, the presented results can only

be considered as a starting point for the analysis of alternative polyadenylation. However, the

obtained understanding of the data and their biological interpretation will equally support
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the interpretation of future results. Also, the large repertoire of available data sets will remain

a rich resource and may be re-evaluated in the light of novel insight that were obtained on

limited but more accurate measurements.

Especially the results on the regulation of PAS usage in GBM motivates future work on

cancer-related APA events in our laboratory and perhaps others. Altered poly(A) site usage

in cancer provides a highly relevant context for studying 3’ UTR based regulation and may

allow one to manipulate the behavior of cancer cells. Possibly, restoring the poly(A) site usage

pattern of tumor cells to match those of its normal counterparts would support a reconversion

of the cellular state.
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A.1 3’ end sequencing protocols

A.1.1 2P-Seq

In the 2P-Seq protocol, reverse transcription is accomplished by an anchored oligo(dT) primer.

The products of reverse transcription and PCR amplification are expected to have 20 As pre-

ceding the 3’ adapter. Libraries are sequenced in anti-sense direction with a custom primer.

Reads should be reverse complemented [55, 130].

A.1.2 3’-Seq

In the 3’-Seq protocol of Mayr and colleagues, reverse transcription is accomplished by an

anchored oligo(dT) primer. The products of reverse transcription and PCR amplification are

expected to have 17 As preceding the 3’ adapter. Libraries are sequenced in sense direction

requiring removal of the 3’ adapter sequence and preceding As to pinpoint the 3’ end [19].

A.1.3 3P-Seq

In the 3P-seq protocol, a biotinylated adapter is ligated to the end of the poly(A) tail via splint-

ligation. After partial digestion, poly(A) regions are captured with streptavidin and reverse

transcription is carried out only with dTTP. Most of the poly(A) tail is then removed through

RNase H digestion. Adapter ligation, reverse transcription and PCR amplification follow before

the library is sequenced in anti-sense direction. Consequently, pinpointing the 3’ end requires

the reads to be reverse complemented [18, 58].
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A.1.4 3’READS

3’ region extraction and deep sequencing (3’READS) is a protocol that utilizes a special primer

(45 thymidines followed by 5 uridines) to capture poly(A) containing RNA fragments. RNase

H digestion releases transcripts 3’ ends from the most of the poly(A) tail. Subsequently, the

fragments are subjected to adapter ligation, reverse transcription, and PCR amplification

before they are sequenced in anti-sense direction. The cleavage site is inferred as the first

non-A of the 3’ end of the read’s reverse complement [53, 79].

A.1.5 A-seq

In the A-seq protocol, reverse transcription is accomplished by an anchored oligo-dT primer.

The products of reverse transcription and PCR amplification are expected to have six As

preceding the 3’ adapter. Libraries are sequenced in sense direction requiring removal of the 3’

adapter sequence and preceding As to pinpoint the 3’ end [120].

A.1.6 A-seq (version 2)

The second version of the A-seq protocol has the following changes: (1) The steps of the

protocol are conducted such that the generation of adapter dimers is minimized. (2) Libraries

are sequenced in anti-sense direction and the mRNA cleavage site is inferred as the first

nucleotide after a stretch of 4 random nucleotides and 3 Ts [56].

A.1.7 DRS

In the direct RNA sequencing (DRS) protocol, 3’ ends of transcripts are hybridized to poly(dT)-

coated flow cell surfaces where antisense strand synthesis is initiated. This has the advantage

that no prior reverse transcription or cDNA amplification is needed [49, 85, 143, 221].

A.1.8 PAS-seq

In the PAS-Seq protocol, reverse transcription is accomplished with an anchored oligo-dT

primer. The products of reverse transcription and PCR amplification are expected to have 20

As preceding the 3’ adapter. Libraries are sequenced in anti-sense direction with a custom

primer requiring the reverse complement of the reads to pinpoint the 3’ end [6].

A.1.9 PolyA-seq

Library preparation for the PolyA-seq protocol includes the following steps: (1) Reverse tran-

scription, primed with an oligo-dT sequence, (2) second strand synthesis with random hexam-

ers linked to a second PCR primer, and (3) PCR amplification. Sequencing is accomplished in
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anti-sense orientation with a primer ending in 10 Ts and the resulting reads need to be reverse

complemented to pinpoint the pre-mRNA cleavage site [7, 84].

A.1.10 SAPAS

In the SAPAS protocol, reverse transcription is accomplished by an anchored oligo-dT primer.

The products of reverse transcription and PCR amplification are expected to have the sequence

AAAAAAGAAAAAAGAAAAAA preceding the 3’ adapter. Libraries are sequenced in anti-sense

direction with a regular primer requiring to trim 20 nucleotides from the 5’ end of reads and to

reverse complement reads to pinpoint the 3’ end [100, 127].

A.2 Supplementary Figures
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Figure A.1: Frequency profiles of the poly(A) signals that have been identified only in hu-
man (red) or mouse (blue).
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Figure A.2: Fraction of PAS’ with poly(A) signal. Fraction of the putative 3’ end sites with an
assigned poly(A) signal in their upstream region (60 to 10 nucleotides upstream) as a function
of the number of supporting reads per site (summed reads over all considered samples).
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Figure A.3: Distribution of cluster sizes. (A) human catalog (B) mouse catalog. The large
majority of clusters has a short span (less than 20 nt) in both human and mouse.
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Figure A.6: Expression of HNRNPC. Western blot showing the expression levels of HNRNP
C1/C2 and GAPDH in cells that were either untreated, or treated with either a control siRNA or
with si-HNRNPC (50 picomoles siRNA per well of a 6-well plate).
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Figure A.7: Scatterplot of the proximal distal ratio in control and knock-down of replicate 1.
Contour plot of the proximal-to-distal poly(A) site usage ratios in si-HNRNPC transfected
versus si-Control transfected HEK 293 cells in replicate 1. For each plot only exons having
exactly two expressed poly(A) sites were considered (2607 exons in total). The proximal-to-
distal ratio is significantly higher in cells treated with the control siRNA indicating that on
average 3’ UTRs tend to be elongated, rather than shortened, upon knockdown of HNRNPC.
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Figure A.8: Scatterplot of the proximal distal ratio in control and knock-down of replicate 2.
Contour plot of the proximal-to-distal poly(A) site usage ratios in si-HNRNPC transfected
versus si-Control transfected HEK 293 cells in replicate 2. For each plot only exons having
exactly two expressed poly(A) sites were considered (2607 exons in total). The proximal-to-
distal ratio is significantly higher in cells treated with the control siRNA indicating that on
average 3’ UTRs tend to be elongated, rather than shortened, upon knockdown of HNRNPC.
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Figure A.9: (U)5 motif count profiles. Smoothened (±5 nt) density of non-overlapping (U)5

tracts in the vicinity of sites with a consistent behavior (increased, unchanged, decreased use)
in untransfected (wild type, WT) compared to the si-Control transfected (CTRL) HEK 293 cells.
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Figure A.10: Abundance of the (U)5 motif around different sets of poly(A) sites. Relationship
between the (U)5 content around poly(A) sites and their behavior upon HNRNPC knock-down.
1000 poly(A) sites that increased most, decreased most or changed least (and reproducibly,
between the two replicate experiments) in usage upon HNRNPC knock-down were extracted,
and the fractions of each of these types of sites that had at least one occurrence of the (U)5

motif at the indicated distance from the poly(A) site were calculated. "u" and "d" indicate
upstream and downstream of poly(A) sites and the numbers indicate the boundaries (in nt) of
the windows relative to poly(A) sites.
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Figure A.11: HNRNPC CLIP reads around different sets of poly(A) sites. Number of HNRNPC
CLIP reads that intersect with a region of ±50 nucleotides around poly(A) sites belonging to
different categories (consistently decreased/unchanged/increased poly(A) site usage upon
HNRNPC knock-down). The number of HNRNPC CLIP reads was normalized by the expression
([RPKM]) of each poly(A) site’s host gene. Poly(A) sites that increase in usage have a significantly
higher CLIP read support compared to poly(A) sites that do not change in usage upon HNRNPC
knock-down (p-value <0.0007, two-sided Kolmogorov-Smirnov test).
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Gene: KIAA0368; Derepressed poly(A) site: chr9:-:114122973:TE

Gene: PHTF2; Derepressed poly(A) site: chr7:+:77586818:TE

Gene: ZNF200; Derepressed poly(A) site: chr16:-:3272325:TE

Control-siRNA transfected, replicate 1
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Figure A.12: Examples of genes with 3’ UTR lengthening upon HNRNPC knock-down.
Browser shots of A-Seq2 read densities within 3’ UTRs with distal poly(A) sites that are dere-
pressed upon knock-down of HNRNPC. The y-axis shows library size normalized read counts
per nucleotide.
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Gene: EPOR; Derepressed poly(A) site: chr19:-:11488441:TE

Control-siRNA transfected, replicate 1

Control-siRNA transfected, replicate 2

HNRNPC-siRNA transfected, replicate 1

HNRNPC-siRNA transfected, replicate 2

Gene: PPM1F; Derepressed poly(A) site: chr22:-:22276612:TE

Control-siRNA transfected, replicate 1

Control-siRNA transfected, replicate 2

HNRNPC-siRNA transfected, replicate 1

HNRNPC-siRNA transfected, replicate 2

Gene: AKIP1; Derepressed poly(A) site: chr11:+:8941097:TE

Control-siRNA transfected, replicate 1
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Figure A.13: Examples of genes with 3’ UTR shortening upon HNRNPC knock-down.
Browser shots of A-Seq2 read densities within 3’ UTRs with proximal poly(A) sites that are
derepressed upon knock-down of HNRNPC. The y-axis shows library size normalized read
counts per nucleotide.
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Sashimi plots of the CD47 locus as derived from mRNA-Seq data
region: chr3:107756068-107815808 (human genome version hg19)

(A)

Sashimi plots of the CD47 3'UTR locus as derived from mRNA-Seq data
region: chr3:107756992-107766867 (human genome version hg19)

(B)
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Figure A.14: Read coverage profiles from RNA-seq for the CD47 gene. "Sashimi" plots con-
structed from previously published (see [147]) mRNA-Seq data (2 replicates of 2 experiments)
obtained from HEK 293 cells that have been transfected with si-Control or si-HNRNPC, res-
pectively. After adaptor removal, paired-end reads were mapped applying the STAR aligner
with default settings [176]. The mappings were visualized (Sashimi plots) using the Integrative
Genomics Viewer (IGV) software [222].
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Figure A.15: FACS gating of HEK293 cells. For indirect immunophenotyping of membrane
CD47 levels in HEK 293 cells that were either treated with a control siRNA (left panel) or
with si-HNRNPC (right panel) a minimum of 10000 gated events was considered. The gate is
indicated.
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Figure A.16: Western blots of CD47 and Actin proteins. Cells were treated with either a control
siRNA or with si-HNRNPC for 72 hrs. Signals were quantified with the ImageJ software and
relative CD47 levels are reported with respect to Actin and control siRNA = 1.0.
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Figure A.17: Distribution of the ratios of splice-reads by non-splice reads at 5’ splice sites.
Cumulative distribution functions of the log2 ratios of spliced reads to reads that map beyond
the 5’ splice site (5’ss) of the closest, upstream located exon of each consistenly derepressed,
intronic poly(A) site. Intronic poly(A) sites are associated predominantly with the emergence
of new exons relative to the extension of internal exons, in both si-Control and si-HNRNPC
transfected cells. The HNRNPC knock-down causes a further significant shift towards novel
terminal exons created by splicing rather than by internal exon extension (replicate 1 p-value:
4.0e-06, replicate 2 p-value: 8.6e-03, two-sided Mann-Whitney U test). The numbers shown in
the legend (written in brackets) indicate the number of intronic poly(A) sites that were used to
construct this plot (for more details, see the Methods section).
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Figure A.18: Abundance of (U)5 motif around different sets of intronic poly(A)
sites.Smoothened (±5 nt) density of non-overlapping (U)5 tracts in the vicinity of intronic
poly(A) sites with a consistent behavior (increased or unchanged use) in the two HNRNPC
knock-down A-seq2 experiments.
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Figure A.19: Number of annotated features (based on the UCSC Basic Table of the GEN-
CODE v19 human (hg19) annotation) that are covered by sites from different atlases. (A)
Coverage of genes by sites from PolyAsite (present manuscript), PolyA-seq [7] and APASdb
[127]. A gene was considered covered if the genomic position of at least one poly(A) site was
within the genomic range of the gene. (B) Same as (A) but for the terminal exons from the
annotation.

97



APPENDIX A. SUPPLEMENTARY MATERIAL TO CHAPTER 2

0
40

00
0

8
00

00

total

PolyAsite

PolyA-seq

N
um

be
r 

of
 g

en
es

N
um

be
r 

of
 te

rm
in

al
 e

xo
ns

(A) genes (B) terminal exons

total

PolyAsite

PolyA-seq

0
20

00
0

40
00

0

Figure A.20: Number of annotated features (based on the ENSEMBL mouse (mm10) anno-
tation from UCSC) that are covered by sites from different atlases. (A) Coverage of genes by
sites from PolyAsite and PolyA-seq [7]. A gene was considered to be covered if the genomic
position of at least one poly(A) site was within the genomic range of the gene. (B) Same as (A)
but for the terminal exons from the annotation.
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Convert SRA to FASTA sratoolkit fastxfastq-dump fastq_to_fasta fastx_renamer

Sequence
of 5' adapter 

provided?

Remove 5' adapter and only 
keep those reads where the 

5' adapter was removed

yes

no

Remove 3' adapter

Collapse reads

in-house perl-script

in-house perl-script 

fastx fastx_collapser

Map to genome segemehlMap to transcriptome

samtoolsConvert SAM to BED bedtoolsConvert SAM to BED

Merge mapped reads
(exclude mappings to the Y chromosome if appropriate)

Select reads that ...

in-house perl-script 

Sequenced in
sense direction?

Remove reads that 
are too long

yes

no

in-house perl-script

Collapse reads into
3' end sites

Ignore 3' end sites predicted to originate from internal priming:

in-house perl-script

in-house perl-script

in-house perl-script

 - map to a unique position
   in the genome
 - the last 3 nucleotides of the 
   3' end of the read were 
   aligned without a mismatch 
   or indel
 - the read consisted of no more 
   than 80% As

- 6 consecutive As in the 10 nt window downstream of the cleavage site
- 7 or more As in the 10 nt window downstream of the cleavage site
- the sequence AAAA, AGAA, AAGA. or AAAG immediatley downstream 
  of the cleavage site

Figure A.21: Outline of the computational pipeline for processing 3’ end sequencing data.
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example
Chrom  Strand  Position  Exp1   Exp2  Exp3
 chr1    +         23      0      1     2
 chr1    +        820      1      0     0
 chr1    +        823      6     10     0
 chr1    +        825      3      9     1
 chr1    +       1044      2      0     0 

Traverse the list from top to bottom, 
define the first occuring site that has not
yet been assigned to a previous cluster
as representative site of a new poly(A)

site cluster.
Associate any weaker site with the 

new poly(A) cluster if the site is within 
a pre-defined distance of 

du nt upstream and dd nt downstream 
of the representative site.

Chrom  Strand  Position  #Exp  RPM
 chr1    +        825      3    13
 chr1    +        823      2    16
 chr1    +         23      2     3
 chr1    +       1044      1     2
 chr1    +        820      1     1

example

e 
 

 chr1    +        825      3    13
 chr1    +        823      2    16
 chr1    +         23      2     3
 chr1    +       1044      1     2
 chr1    +        820      1     1 chr1  +   820    825    30

Pool 3' end sites from 
multiple experiments 

and normalize the read 
count in each 

sample to reads 
per million (RPM)

Cluster sites from 
a single experiment

Cluster sites from
multiple experiments

Rank sites by number of
supporting experiments
and then by read count

Rank sites by read count

 chr1    +        825      3    13
 chr1    +        823      2    16
 chr1    +         23      2     3
 chr1    +       1044      1     2
 chr1    +        820      1     1 chr1  +  1044   1044     2

chr1  +    23     23     3
chr1  +   820    825    30

 chr1    +        825      3    13
 chr1    +        823      2    16
 chr1    +         23      2     3
 chr1    +       1044      1     2
 chr1    +        820      1     1 chr1  +    23     23     3

chr1  +   820    825    30

example

Figure A.22: Outline of the computational pipeline for clustering closely spaced 3’ end sites
into 3’ end processing regions. A toy example data set is used to illustrate the procedure.
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Figure A.23: Analysis results for the inference of distance parameters to associate individ-
ual 3’ ends into poly(A) site clusters. Evaluation of the distance parameters for clustering
closely spaced, putative 3’ end processing sites. du and dd refer to the distance upstream and
downstream of the representative site, respectively. Values in the plot denote the percentage of
3’ end processing sites that were part of a multi-site cluster when a particular set of distance
parameters was applied to cluster individual sites. While initially there is a steep increase in
the proportion of reads in clusters, a plateau is soon reached. Distances du = 12 and dd = 12
were chosen in this study.
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Generate position-
dependent (-60 

to -5 nts) frequency 
profile for each motif

Subtract 
background
frequency

of this region

Fit Gaussian
density curve

to motif frequency
profile

Filter out low quality signals 

A signal is considered of low quality if:

1. Peak position of the Gaussian is not
        within 40 to 10 nts upstream of the RS

2. Height:width ratio < 5 (first round)     
or

                            < 4 (iterations)

3. Poor fit of the profile to the Gaussian
                 r2 < 0.6 (first round)

or
                   < 0.9 (iterations)

Rank signals by peak height significance

Among all remaining signals
remove the most significant one (lowest 

p-value) and add it to the pool of
putative poly(A) signals.

Reduce set of poly(A) clusters

Remove all clusters that have 
the most significant signal

identified beforehand in the
region  60 to 0 nts upstream 

of the representative site.

any remaining
signal(s)?
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Figure A.24: Outline of the computational procedure that we used to identify poly(A) sig-
nals from poly(A) site clusters obtained from high-throughput sequencing of pre-mRNA 3’
ends.
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Chrom  Strand  Start  End   Rep reads
 chr1    +       15    29    17    27
 chr1    +       35    39    35    12
 chr1    +      820   825   823    30
 chr1    +     1044  1044  1044     2

example

Determine polyadenylation signal 
occurences in the -60 to +5 nts region 
of the representative site; flag putative

internal priming (IP) candidates

Chrom  Strand  Start  End   Rep reads  PAS
 chr1    +       15    29    17    27  ATTAAA@-4; IPcandidate
 chr1    +       35    39    35    12  ATTAAA@-22
 chr1    +      820   825   823    30  AATAAA@-21
 chr1    +     1044  1044  1044     2  NA

example

For IP candidates, annotate the most
downstream position as representative site

For every IP candidate, check wether 
the next non-IP downstream cluster 

shares all of it's poly(A) signals with the 
candidate. If yes, merge the two clusters

Cluster sites from
multiple experiments

For each cluster, annotate the position 
with the highest read count as the 

representative 3' end site

Chrom  Strand  Start  End   Rep reads  PAS
 chr1    +       15    29    29    27  ATTAAA@-16; IPcandidate
 chr1    +       35    39    35    12  ATTAAA@-22
 chr1    +      820   825   823    30  AATAAA@-21
 chr1    +     1044  1044  1044     2  NA

example

Chrom  Strand  Start  End   Rep reads  PAS
 chr1    +       15    39    35    39  ATTAAA@-22
 chr1    +      820   825   823    30  AATAAA@-21
 chr1    +     1044  1044  1044     2  NA

example

If IP candidate cluster was not merged: 
check the distance d from the newly 

annotated representative site to the closest 
poly(A) signal  within 60 nt upstream. 

Retain the site if d >= 15

Chrom  Strand  Start  End   Rep reads  PAS
 chr1    +       15    29    29    27  ATTAAA@-16; IPcandidate
 chr1    +      820   825   823    30  AATAAA@-21
 chr1    +     1044  1044  1044     2  NA

example

Chrom  Strand  Start  End   Rep reads  PAS
 chr1    +       15    29    29    27  ATTAAA@-16

Figure A.25: Outline of the strategy to evaluate poly(A) clusters potentially originating from
internal priming.
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Annotate poly(A) signals 
for all sites in each cluster

Chrom  Strand  Start  End   Rep reads  PAS
 chr1    +       23    23    23     3  ATTAAA
 chr1    +      820   825   823    30  AATAAA
 chr1    +     1044  1044  1044     2  NA

example

Rank clusters by total read count

Traverse the list from top to bottom 
and determine the read count cut-off 

at which less than 90% of the clusters 
have an annotated polyadenylation signal. 

Cluster sites from
a single experiment

Chrom  Strand  Start  End   Rep reads  PAS
 chr1    +      820   825   823    30  AATAAA
 chr1    +       23    23    23     3  ATTAAA
 chr1    +     1044  1044  1044     2  NA

example

Chrom  Strand  Start  End   Rep reads  PAS
 chr1    +      820   825   823    30  AATAAA
 chr1    +       23    23    23     3  ATTAAA
 chr1    +     1044  1044  1044     2  NA

example

Discard clusters whose total read count 
is equal or below the determined 
read count cut-off and exclude 

corresponding reads from further analyses.

Chrom  Strand  Start  End   Rep reads  PAS
 chr1    +      820   825   823    30  AATAAA
 chr1    +       23    23    23     3  ATTAAA

example

Figure A.26: Outline of the procedure that we used to filter out clusters that do not have
sufficient experimental support (sample-specific cut-off of read counts).
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Resolve internal priming candidates, 
merge clusters if they share the same

poly(A) signals or if the maximum cluster
length is <= 25

example
Chrom  Strand  Position  Exp1   Exp2  Exp3  PAS
 chr1    +         23      0      1     2   ATTAAA@-8
 chr1    +        820      1      0     0   AATAAA@-18
 chr1    +        823      6     10     0   AATAAA@-21
 chr1    +        825      3      9     1   AATAAA@-23
 chr1    +        840      2      0     0   NA

Pool 3' end sites from multiple experiments
and assign poly(A) signals

Define the sample-specific cutoffs 
and discard background reads

example
Chrom  Strand  Position  Exp1   Exp2  Exp3  PAS
 chr1    +         23      0      0     2   ATTAAA@-8
 chr1    +        820      0      0     0   AATAAA@-18
 chr1    +        823      6     10     0   AATAAA@-21
 chr1    +        825      3      9     0   AATAAA@-23
 chr1    +        843      0      0     0   AATAAA@-41

Chrom  Strand  Start  End   Rep reads  PAS
 chr1    +       23    23    23  0.56  ATTAAA@-8
 chr1    +      820   851   823 24.11  AATAAA@-21
 chr1    +      934   937   937  1.32  NA
 chr1    +      951   964   959  2.43  NA

example

Normalize reads by library size, 
traverse the list of 3' end sites,
generate pre-clusters, and flag 

internal priming candidates

Chrom  Strand  Start  End   Rep reads  PAS
 chr1    +       23    23    23  0.56  ATTAAA@-8
 chr1    +      820   825   823 19.23  AATAAA@-21
 chr1    +      843   851   850  4.88  AATAAA@-48

example

Convert clusters into BED-format, annotate 
support level and a type to each cluster

Find closely spaced clusters without 
annotated poly(A) signal, and delete them
if their combined size is larger than 25 nts

Chrom  Strand  Start  End   Rep reads  PAS
 chr1    +       23    23    23  0.56  ATTAAA@-8
 chr1    +      820   851   823 24.11  AATAAA@-21

example

Chrom  Start  End      ID       Sup Strand   PAS
 chr1    23    23  chr1:+:23:TE  3    +    ATTAAA@-8
 chr1   820   851  chr1:+:823:DS 6    +    AATAAA@-21

example

Figure A.27: Outline of the computational procedure that we used to combine 3’ end pro-
cessing sites from multiple experiments into a comprehensive catalog of 3’ end processing
clusters.
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A.3 Supplementary Tables

Table A.1: Number of poly(A) sites in different studies. Comparison of poly(A) sites that were reported by Derti et

al. [7] and You et al. [127] for different human tissues. Both of these studies reported only one genomic position per

poly(A) site cluster. To be more permissive in evaluating the overlap of these data sets, we first extended the poly(A)

sites from these data sets by 25 nt up- and downstream. A poly(A) site from one study was considered to overlap if

there was at least one cluster in the other data set such that both clusters overlapped each other by at least one

nucleotide. For each tissue we report both the number of poly(A) site clusters that overlapped as well as those that

were unique to a specific data set. In parentheses, the average number of reported reads for the underlying poly(A)

sites of the corresponding set of clusters is indicated.

PolyA-seq

clusters over-

lapping with

APASdb

clusters

APASdb

clusters over-

lapping with

PolyA-seq

clusters

PolyA-seq

unique

clusters

APASdb

unique

clusters

brain 31,356

(58.47)

30,856

(90.04)

57,754

(19.25)

23,827

(10.83)

kidney 23,793

(104.27)

23,090

(121.53)

71,152

(29.39)

12,006

(19.78)

liver 25,923

(175.45)

25,152

(116.98)

62,317

(16.23)

10,741

(7.26)

muscle 21,910

(151.16)

21,227

(123.36)

90,888

(17.03)

10,743

(37.56)

testes 34,810

(117.72)

34,057

(66.84)

80,258

(11.61)

34,860

(18.47)

Table A.2: Overview of the samples used to build the genome-wide catalog of 3’ end processing site in human.

series ID sample ID protocol tissue/cell type gender publication

GSE40859 GSM1003590 "DRS" "HeLa" F [49]

GSE40859 GSM1003591 "DRS" "HeLa" F [49]

GSE40859 GSM1003592 "DRS" "HeLa" F [49]

SRP025988 SRX388391 "DRS" "HeLa" F [143]

SRP022151 SRX275752 "DRS" "K562" F [85]

SRP022151 SRX275753 "DRS" "K562" F [85]

SRP022151 SRX275806 "DRS" "K562" F [85]

SRP022151 SRX275827 "DRS" "K562" F [85]

SRP003483 SRX026582 "SAPAS" "MDA-MB-231" F [100]

SRP003483 SRX026583 "SAPAS" "MCF-10A" F [100]

SRP003483 SRX026584 "SAPAS" "MCF-7" F [100]

GSE25450 GSM624686 "PAS-Seq" "HeLa" F [6]

GSE30198 GSM747470 "PolyA-seq" "Brain" NA [7]

GSE30198 GSM747471 "PolyA-seq" "Kidney" NA [7]

GSE30198 GSM747472 "PolyA-seq" "Liver" NA [7]

GSE30198 GSM747473 "PolyA-seq" "MAQC Brain" NA [7]

GSE30198 GSM747474 "PolyA-seq" "MAQC Brain" NA [7]

GSE30198 GSM747475 "PolyA-seq" "MAQC UHR" NA [7]

GSE30198 GSM747476 "PolyA-seq" "MAQC UHR" NA [7]

Continued on next page
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Table A.2 – continued from previous page

series ID sample ID protocol tissue/cell type gender publication

GSE30198 GSM747477 "PolyA-seq" "Muscle" NA [7]

GSE30198 GSM747479 "PolyA-seq" "Testis" NA [7]

GSE30198 GSM747480 "PolyA-seq" "UHR" NA [7]

GSE37037 GSM909242 "A-seq" "HEK293" F [33]

GSE37037 GSM909243 "A-seq" "HEK293" F [33]

GSE37037 GSM909244 "A-seq" "HEK293" F [33]

GSE37037 GSM909245 "A-seq" "HEK293" F [33]

GSE40137 GSM986133 "A-seq" "HEK293" F [120]

GSE40137 GSM986134 "A-seq" "HEK293" F [120]

GSE40137 GSM986135 "A-seq" "HEK293" F [120]

GSE40137 GSM986136 "A-seq" "HEK293" F [120]

GSE40137 GSM986137 "A-seq" "HEK293" F [120]

GSE40137 GSM986138 "A-seq" "HEK293" F [120]

SRP029953 SRX351949 "3’-Seq" "native B cells" NA [19]

SRP029953 SRX351950 "3’-Seq" "native B cells" NA [19]

SRP029953 SRX351952 "3’-Seq" "brain" NA [19]

SRP029953 SRX351953 "3’-Seq" "breast" F [19]

SRP029953 SRX359328 "3’-Seq" "embryonic stem cells

(H9)"

F [19]

SRP029953 SRX359329 "3’-Seq" "ovary" F [19]

SRP029953 SRX359330 "3’-Seq" "skeletal muscle" NA [19]

SRP029953 SRX359331 "3’-Seq" "testis" NA [19]

SRP029953 SRX359332 "3’-Seq" "MCF10A" F [19]

SRP029953 SRX359333 "3’-Seq" "MCF10A" F [19]

SRP029953 SRX359334 "3’-Seq" "MCF7" F [19]

SRP029953 SRX359335 "3’-Seq" "HeLa" F [19]

SRP029953 SRX359336 "3’-Seq" "HEK293" F [19]

SRP029953 SRX359337 "3’-Seq" "NTERA2" M [19]

SRP029953 SRX359339 "3’-Seq" "B-LCL cells" NA [19]

SRP029953 SRX359340 "3’-Seq" "MCF10A" F [19]

SRP029953 SRX359341 "3’-Seq" "MCF10A" F [19]

GSE52527 GSM1268942 "3P-Seq" "HeLa" F [58]

GSE52527 GSM1268943 "3P-Seq" "HEK293" F [58]

GSE52527 GSM1268944 "3P-Seq" "Huh7" NA [58]

GSE52527 GSM1268945 "3P-Seq" "IMR90" F [58]

GSE56657 GSM1366428 "DRS" "neuroendocrine tumor" F [221]

GSE56657 GSM1366429 "DRS" "neuroendocrine tumor" M [221]

GSE56657 GSM1366430 "DRS" "Pituitary" M [221]

SRP041182 SRX517334 "SAPAS" "testis" M [127]

SRP041182 SRX517333 "SAPAS" "ovary" F [127]

SRP041182 SRX517332 "SAPAS" "skeletal muscle" M [127]

SRP041182 SRX517331 "SAPAS" "adipose" M [127]

SRP041182 SRX517330 "SAPAS" "thymus" M [127]

SRP041182 SRX517329 "SAPAS" "small intestine" M [127]

SRP041182 SRX517328 "SAPAS" "pancreas" F [127]

SRP041182 SRX517327 "SAPAS" "liver" M [127]

SRP041182 SRX517326 "SAPAS" "prostate" M [127]

SRP041182 SRX517325 "SAPAS" "breast" F [127]

SRP041182 SRX517324 "SAPAS" "bladder" F [127]

SRP041182 SRX517323 "SAPAS" "uterus" F [127]

SRP041182 SRX517322 "SAPAS" "lung" M [127]

SRP041182 SRX517321 "SAPAS" "placenta" F [127]
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SRP041182 SRX517320 "SAPAS" "lymph node" M [127]

SRP041182 SRX517319 "SAPAS" "heart" M [127]

SRP041182 SRX517318 "SAPAS" "cervix" F [127]

SRP041182 SRX517317 "SAPAS" "kidney" M [127]

SRP041182 SRX517316 "SAPAS" "stomach" M [127]

SRP041182 SRX517315 "SAPAS" "spleen" M [127]

SRP041182 SRX517314 "SAPAS" "thyroid" F [127]

SRP041182 SRX517313 "SAPAS" "brain" F [127]

Table A.3: Overview of the samples used to build the genome-wide catalog of 3’ end processing site in mouse.

series ID sample ID protocol tissue/cell type gender publication

GSE30198 GSM747481 "PolyA-seq" "Brain" NA [7]

GSE30198 GSM747482 "PolyA-seq" "Kidney" NA [7]

GSE30198 GSM747483 "PolyA-seq" "Liver" NA [7]

GSE30198 GSM747484 "PolyA-seq" "Muscle" NA [7]

GSE30198 GSM747485 "PolyA-seq" "Testis" NA [7]

GSE54950 GSM1327166 "A-seq V2" "T cells" NA [56]

GSE54950 GSM1327167 "A-seq V2" "T cells" NA [56]

GSE54950 GSM1327168 "A-seq V2" "T cells" NA [56]

GSE54950 GSM1327169 "A-seq V2" "T cells" NA [56]

GSE46433 GSM1130096 "2P-Seq" "embryonic stem cells" NA [130]

GSE46433 GSM1130097 "2P-Seq" "embryonic stem cells" NA [130]

GSE46433 GSM1130098 "2P-Seq" "embryonic stem cells" NA [130]

GSE46433 GSM1130099 "2P-Seq" "embryonic stem cells" NA [130]

GSE46433 GSM1130100 "2P-Seq" "embryonic stem cells" NA [130]

GSE46433 GSM1130101 "2P-Seq" "embryonic stem cells" NA [130]

SRP025988 SRX304982 "DRS" "embryonic stem cell line

E14Tg2a"

M [143]

SRP025988 SRX304983 "DRS" "embryonic stem cell line

E14Tg2a"

M [143]

GSE44698 GSM1089085 "2P-Seq" "3T3" NA [55]

GSE44698 GSM1089086 "2P-Seq" "3T3" NA [55]

GSE44698 GSM1089087 "2P-Seq" "3T3" NA [55]

GSE44698 GSM1089088 "2P-Seq" "3T3" NA [55]

GSE44698 GSM1089089 "2P-Seq" "3T3" NA [55]

GSE44698 GSM1089090 "2P-Seq" "3T3" NA [55]

GSE44698 GSM1089091 "2P-Seq" "3T3" NA [55]

GSE44698 GSM1089092 "2P-Seq" "3T3" NA [55]

GSE44698 GSM1089093 "2P-Seq" "3T3" NA [55]

GSE44698 GSM1089094 "2P-Seq" "3T3" NA [55]

GSE44698 GSM1089095 "2P-Seq" "3T3" NA [55]

GSE44698 GSM1089096 "2P-Seq" "3T3" NA [55]

GSE52528 GSM1268946 "3P-seq" "heart" NA [58]

GSE52528 GSM1268947 "3P-seq" "muscle" NA [58]

GSE52528 GSM1268948 "3P-seq" "liver" NA [58]

GSE52528 GSM1268949 "3P-seq" "lung" NA [58]

GSE52528 GSM1268950 "3P-seq" "wat" NA [58]

GSE52528 GSM1268951 "3P-seq" "kidney" NA [58]

GSE52528 GSM1268952 "3P-seq" "heart" NA [58]

GSE52528 GSM1268953 "3P-seq" "muscle" NA [58]

GSE52528 GSM1268954 "3P-seq" "liver" NA [58]
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GSE52528 GSM1268955 "3P-seq" "lung" NA [58]

GSE52528 GSM1268956 "3P-seq" "wat" NA [58]

GSE52528 GSM1268957 "3P-seq" "kidney" NA [58]

GSE52528 GSM1268958 "3P-seq" "embryonic stem cells" NA [58]

GSE25450 GSM624687 "PAS-Seq" "ES" NA [6]

GSE60487 GSM1480973 "PolyA-seq V2" "MEF" NA [84]

GSE60487 GSM1480974 "PolyA-seq V2" "MEF" NA [84]

GSE60487 GSM1480975 "PolyA-seq V2" "MEF" NA [84]

GSE60487 GSM1480976 "PolyA-seq V2" "MEF" NA [84]

GSE60487 GSM1480977 "PolyA-seq V2" "MEF" NA [84]

GSE60487 GSM1480978 "PolyA-seq V2" "MEF" NA [84]

GSE60487 GSM1480979 "PolyA-seq V2" "MEF" NA [84]

GSE60487 GSM1480980 "PolyA-seq V2" "MEF" NA [84]

GSE62001 GSM1518105 "3READS" "NA" NA [79]

GSE62001 GSM1518106 "3READS" "NA" NA [79]

GSE62001 GSM1518107 "3READS" "NA" NA [79]

GSE62001 GSM1518108 "3READS" "NA" NA [79]

GSE62001 GSM1518109 "3READS" "NA" NA [79]

GSE62001 GSM1518110 "3READS" "NA" NA [79]

GSE62001 GSM1518111 "3READS" "NA" NA [79]

GSE62001 GSM1518112 "3READS" "NA" NA [79]

GSE62001 GSM1518113 "3READS" "NA" NA [79]

GSE62001 GSM1518082 "3READS" "NA" NA [79]

GSE62001 GSM1518089 "3READS" "NA" NA [79]

GSE62001 GSM1518090 "3READS" "NA" NA [79]

GSE62001 GSM1518102 "3READS" "NA" NA [79]

GSE62001 GSM1518103 "3READS" "NA" NA [79]

GSE62001 GSM1586365 "3READS" "NA" NA [79]

GSE62001 GSM1586366 "3READS" "NA" NA [79]

GSE62001 GSM1518096 "3READS" "NA" NA [79]

GSE62001 GSM1518097 "3READS" "NA" NA [79]

GSE62001 GSM1518098 "3READS" "NA" NA [79]

GSE62001 GSM1518072 "3READS" "NA" NA [79]

GSE62001 GSM1518073 "3READS" "NA" NA [79]

GSE62001 GSM1518074 "3READS" "NA" NA [79]

GSE62001 GSM1518075 "3READS" "NA" NA [79]

GSE62001 GSM1518076 "3READS" "NA" NA [79]

GSE62001 GSM1518077 "3READS" "NA" NA [79]

GSE62001 GSM1518078 "3READS" "NA" NA [79]

GSE62001 GSM1518079 "3READS" "NA" NA [79]

GSE62001 GSM1518080 "3READS" "NA" NA [79]

GSE62001 GSM1518081 "3READS" "NA" NA [79]

GSE62001 GSM1518083 "3READS" "NA" NA [79]

GSE62001 GSM1518084 "3READS" "NA" NA [79]

GSE62001 GSM1518085 "3READS" "NA" NA [79]

GSE62001 GSM1518086 "3READS" "NA" NA [79]

GSE62001 GSM1518087 "3READS" "NA" NA [79]

GSE62001 GSM1518088 "3READS" "NA" NA [79]

GSE62001 GSM1518091 "3READS" "NA" NA [79]

GSE62001 GSM1518092 "3READS" "NA" NA [79]

GSE62001 GSM1518093 "3READS" "NA" NA [79]

GSE62001 GSM1518094 "3READS" "NA" NA [79]
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GSE62001 GSM1518095 "3READS" "NA" NA [79]

GSE62001 GSM1518099 "3READS" "NA" NA [79]

GSE62001 GSM1518101 "3READS" "NA" NA [79]

GSE62001 GSM1518104 "3READS" "NA" NA [79]

GSE62001 GSM1586367 "3READS" "NA" NA [79]

GSE62001 GSM1518071 "3READS" "NA" NA [79]

GSE62001 GSM1518114 "3READS" "NA" NA [79]

GSE62001 GSM1586368 "3READS" "NA" NA [79]

GSE62001 GSM1518100 "3READS" "NA" NA [79]

GSE62001 GSM1586363 "3READS" "NA" NA [79]

GSE62001 GSM1586364 "3READS" "NA" NA [79]

SRP039327 SRX480169 "SAPAS" "thymus" NA [127]

SRP039327 SRX480179 "SAPAS" "thymus" NA [127]

SRP039327 SRX480205 "SAPAS" "thymus" NA [127]

SRP039327 SRX480212 "SAPAS" "thymus" NA [127]

SRP039327 SRX480221 "SAPAS" "thymus" NA [127]

SRP039327 SRX480227 "SAPAS" "thymus" NA [127]

SRP039327 SRX480229 "SAPAS" "thymus" NA [127]

SRP039327 SRX480250 "SAPAS" "thymus" NA [127]

SRP039327 SRX480287 "SAPAS" "thymus" NA [127]

Table A.4: Hexamer enrichment upstream of human poly(A) sites. The 100 most significantly enriched hexamers

(binomial test relative to what is expected given the mononucleotide composition of the region from -60 to 0 nt

relative to poly(A) site) in the human poly(A) site catalog.

hexamer -log p-value

AATAAA 122788.1

AAATAA 42670.49

AAAAAA 33960.3

ATAAAA 33379.19

TAAAAA 24249.76

AAAATA 21755.03

AAAAAT 19162.31

TTAAAA 16451.96

ATAAAT 14493.43

AAAAAG 14079.72

TTTTTT 13455.43

ATTAAA 12302.28

TAAAAT 11913.92

GCCTGG 11751.91

ATAAAG 11628.45

CCTGGG 11165.77

TTTTCT 10964.83

TGTTTT 10879.94

CCAGCC 10729.18

AAAATG 9002.596

CAGCCT 8279.236

CTTTTT 8043.175
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AGAAAA 7959.7

TTTCTT 7707.476

CTGGGC 7594.283

AAAGAA 7535.008

AAGAAA 7519.484

AAATGT 7297.44

GAAAAA 7156.527

AGCCTG 7106.297

TTTAAA 7019.924

TTTTTC 6929.253

TTTTGT 6754.398

CCTCCC 6622.351

TTGTTT 6515.799

TTCTTT 6484.465

TTTTAA 6444.964

TTTCTG 6351.61

CAATAA 6137.289

TAAATG 5913.602

TTTTTG 5750.779

AAAAAC 5741.94

TAAATA 5719.061

TCTTTT 5691.07

ATTTTT 5690.314

CTCCAG 5609.213

CAAAAA 5564.294

TTTGTT 5252.513

TTTTTA 5163.368

CTGTCT 5128.945

TGTGTG 5124.415

AAAACA 5094.2

CCCAGC 5042.282

TTCTGT 5016.795

CTCTGT 4984.282

ATAAAC 4984.15

CTCCCC 4866.824

TATTTT 4738.292

AAAAGA 4679.872

TTTCCT 4662.104

CTGCTG 4550.984

TTTTCC 4286.656

CCTGGC 4259.37

CCTGCC 4236.644

CTGCCT 4207.258

CTGTTT 4086.569
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CCCTCC 4082.152

GGAAAA 4078.892

ACAGAG 4074.031

CTGTGT 4001.796

TCTGTG 3969.594

GTTTTT 3911.444

CCCAGG 3869.135

TGTCTC 3865.269

GCCTCC 3851.923

TGCTTT 3843.789

TGCCTG 3713.514

CTTCCC 3708.302

CCCCAG 3686.223

TAATAA 3629.887

TTTCTC 3577.619

TGGAAA 3574.17

TAAAAG 3557.743

TGCTGT 3532.84

TTTATT 3526.132

CCCCCA 3524.531

TCCAGC 3520.258

GAATAA 3458.727

GCTGTG 3405.909

TCTCTG 3392.311

CCACTG 3378.823

CCTCTG 3304.089

TTTCCC 3297.584

GGGAGG 3271.045

CATTTT 3270.061

TTCCTG 3266.088

CTGCCC 3236.691

CTTTCT 3230.07

CAGAGC 3226.857

CTGTGG 3207.589

Table A.5: Hexamer enrichment upstream of murine poly(A) sites. The 100 most significantly enriched hexamers

(binomial test relative to what is expected given the mononucleotide composition of the region from -60 to 0 nt

relative to poly(A) site) in the mouse poly(A) site catalog.

hexamer -log p-value

AATAAA 78344.66

AAAAAA 33032.07

AAATAA 28932.12

ATAAAT 17302.62

ATAAAA 14803.36
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TAAAAA 12938.72

TTAAAA 10366.85

TAAATA 10122.15

AAAAAG 8097.119

ATTAAA 7668.254

CAGTGT 6974.536

ATAAAG 6855.813

AAAATA 6839.607

ACAGTG 6185.573

CTGCCT 5763.978

TGTTTT 5692.668

TGTCTG 5583.763

CCTCCC 5520.302

TTTAAA 5008.553

GTGTAC 4968.018

GTGTGT 4958.019

GACAGC 4933.256

TAAAAT 4914.887

AAAAAT 4852.199

CCTCTG 4693.22

TAATAA 4460.155

CTTCTG 4436.615

TGTGTG 4411.729

CTGAAG 4159.753

TGTACT 4135.415

TTGTTT 3858.373

TTTTGT 3721.03

ATAAAC 3683.916

CCTGCC 3667.125

GTGTCT 3663.924

TTTTCT 3652.31

TGCCTC 3617.359

CTACAG 3575.848

AAAGAA 3570.49

GCTACA 3527.289

TTCTGG 3512.262

CTGTCT 3499.525

TTTGTT 3488.113

CTCCCC 3386.621

AGACAG 3353.467

TCTGAA 3231.828

ACAGCT 3161.227

CTGGTG 3148.898

AAATCT 3076.442
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TCTGCC 3032.614

AAATGT 3023.56

CTGTGT 2979.327

CTCTGC 2974.548

AGTGTA 2935.839

CAATAA 2867.629

TTTCCT 2843.454

GGTGTG 2836.151

TGTGTC 2810.496

CCTGTC 2803.988

TTTTTT 2748.095

CCCTGT 2719.253

TGAAGA 2718.407

CTTCCT 2690.973

AAGAAA 2651.799

AAAAGA 2636.556

CCCTCC 2573.799

CTGCTG 2560.113

TTTCTT 2559.386

GCTGGG 2522.802

AAAAAC 2519.491

TCTCTG 2486.791

TCTGTG 2482.156

TTTCTG 2480.577

AAACCC 2460.335

AGCTAC 2456.855

TTTTAA 2438.885

TGCTGG 2436.94

CCTGGG 2436.371

GTCTGA 2414.336

TGCTGT 2412.297

CTCTGT 2361.324

TTCTGT 2360.056

GTGCTG 2358.721

AAAATG 2341.729

CAGCTA 2295.836

CCCTCT 2275.77

TACAGT 2265.152

TGTCTC 2255.793

TAAATG 2252.428

CTCCTG 2230.726

TTCTTT 2206.821

AAAACA 2176.917

CTGGGA 2176.094

Continued on next page

114



A.3. SUPPLEMENTARY TABLES

Table A.5 – continued from previous page

hexamer -log p-value

TGCCTG 2171.784

CTCTTC 2161.823

GCCTCC 2150.538

GCTGTG 2141.131

TAAATC 2138.624

ACCCTG 2131.258

CCTGTG 2111.563

Table A.6: Summary statistics of 3’ end sequencing libraries (A-Seq2 protocol [56]) for control-siRNA and

HNRNPC-siRNA transfected HEK 293 cells.

control-

siRNA

repli-

cate 1

(ID:

29765)

HNRNPC-

siRNA

repli-

cate 1

(ID:

29766)

control-

siRNA

repli-

cate 2

(ID:

32682)

HNRNPC-

siRNA

repli-

cate 2

(ID:

32683)

Number of reads

sequenced

55,274,416 47,917,208 68,650,218 78,065,144

considered high-

confidence reads that

mapped to a unique

position in the

genome

6,836,446 9,265,965 13,818,252 15,319,388

Number of reads

assigned to tandem

poly(A) site clusters

having >1 protocol

support

2,991,716 4,115,507 6,989,361 8,601,510

Number of reads

assigned to

sample-specific

clusters

2,976,577 4,107,667 6,893,361 8,529,512

Table A.7: Overview of the number and the proportion of features annotated in the human genome that are

covered by poly(A) sites from different atlases.

total PolyAsite PolyA-seq APASdb

covered

sites

percentage covered

sites

percentage covered

sites

percentage

genes
protein

coding

21,232 18,139 85.43 % 17,742 83.56 % 16,724 78.77 %

lincRNA 7,048 4,160 59.02 % 3,745 53.14 % 2,387 33.87 %
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total PolyAsite PolyA-seq APASdb

covered

sites

percentage covered

sites

percentage covered

sites

percentage

terminal

exons

protein

coding

59,869 42,579 71.12 % 39,670 66.26 % 37,533 62.69 %

lincRNA 7,153 2,689 37.59 % 2,115 29.57 % 1,753 24.51 %

Table A.8: Overview of the number and the proportion of features annotated in the mouse genome that are

covered by poly(A) sites from different atlases.

total PolyAsite PolyA-seq

covered

sites

percentage covered

sites

percentage

genes 43,054 22,988 53.39 % 21,088 48.98 %

terminal

exons

92,351 38,529 41.72 % 31,903 34.55 %
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A.4 Supplementary Data

Please request the data from the author or access it online at:
http://genome.cshlp.org/content/suppl/2016/07/04/gr.202432.115.DC1/Supplementary_Data_S1.bed

Table A.9: Supplemental Data Human

Please request the data from the author or access it online at:
http://genome.cshlp.org/content/suppl/2016/07/04/gr.202432.115.DC1/Supplementary_Data_S2.bed

Table A.10: Supplemental Data Mouse
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Figure B.1: DaPars estimates usage of many putative PAS at the cost of accuracy. (A) Repro-
ducibility of PAS usage changes in replicates of HNRNPC knock-down compared to control
samples computed based on DaPars PAS usage estimates. (B) The reproducibility strongly
increases when only sites that are also quantified by PAQR are considered (number of sites
differs slightly, as sometimes, multiple DaPars sites are closely spaced and considered as one
site by PAQR. (C) Reproducibility of PAS usage changes in replicates of HNRNPC knock-down
compared to control samples computed based on PAQR PAS usage estimates.
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Figure B.2: Accuracy of estimates of relative PAS usage by DaPars and PAQR. (A) Log-fold
changes in the relative usage of the distal poly(A) sites in the HNRNPC knock-down experiment
[147] and a CFIm 25 knock-down experiment [23] were calculated with DaPars and PAQR. The
number of quantified sites that overlapped with the set of distal PAS quantified by A-seq2
differed between the methods. The Pearson correlation coefficients were always positive and
significant but were larger for the PAQR-based quantification. (B) This is also the case when
focusing on the PAS quantified by all three methods. (C) PAQR-based quantification of PAS
usage yields more significant and reproducible KAPAC-inferred motif activities compared to
the DaPars-based quantification. Shown is the profile of the UUUUU motif which was ranked
highest based on the A-seq2 quantifications, and third based on DaPars quantifications. (D)
KAPAC-inferred motif activity profile for UGUA, the binding motif of CFIm, which was ranked
13th, in the KAPAC analysis based on the DaPars PAS usage quantifications of control and
CFIm 25 knock-down samples [23]. Note also that with DaPars-based quantification the motif
activity remain positive also in the region downstream of PAS, which was not the case when
KAPAC used A-seq2-based quantification.
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Figure B.3: CFIm 25 and 68 expression estimates (in FPKM) and corresponding average
exon lengths of the ten selected GBM samples.
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Figure B.4: Distribution of relative usages of poly(A) sites for GBM and normal brian tissue
samples. Analysis of PTBP1 activity in CPA in glioblastoma. Cumulative densitity functions for
the relative usage of the 203 PAS inferred by KAPAC to be targets of the PTBP1-binding UCUC
motif in glioblastoma. The CDFs are shifted to the left in tumors, indicating decreased relative
usage of the sites carrying the PTBP1-binding motif when the regulator has high expression
(see Figure 3.5 in the main text).
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Figure B.5: Position-dependent densities of PTBP1-eCLIP reads observed in two studies (in
the HepG2 (thick red line) and K562 (thick blue line) cell lines). (A) Median per-nucleotide
ratio of eCLIP read densities from the foreground (PTBP1-IP) and the background (size matched
control) samples in regions around 200 distal poly(A) sites that changed least between GBM
and normal tissue samples (mean change between selected random pairs of tumor-normal
samples). (B) Same as (A) but for the 200 poly(A) sites with the strongest mean decrease in
usage in GBM tumors compared to normal brain samples.
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Figure B.6: Partial RNA degradation can lead to apparent reduction in gene expression level.
(A) Screen shot of the NUDT21 (CFIm 25) locus coverage in four different RNA-seq tumor
samples from the TCGA glioblastoma cohort, shown in the IGV [222] browser. The samples
were selected based on their NUDT21 expression according to the FPKM values reported
by the Genomic Data Commons (GDC) Data Portal (https://portal.gdc.cancer.gov/). The
top two profiles (in red) are from samples with the lowest estimated NUDT21 expression
(FPKM), whereas the two profiles at the bottom correspond to samples withe highest estimated
NUDT21 expression. The median transcript integrity numbers (mTIN) computed over the
entire transcriptome for the corresponding samples are also shown on the right side of the
profiles. (B) Scatter plot of NUDT21 gene expression estimates (FPKM) obtained the Genomic
Data Commons (GDC) Data Portal (https://portal.gdc.cancer.gov/) and mTIN values [116],
indicative of RNA degradation in the samples, shows the positive correlation between apparent
expression level and RNA integrity. Normal tissue samples are in blue, tumor samples in red.

124



B.1. SUPPLEMENTARY FIGURES

average length

cu
m

ul
at

iv
e 

fr
ac

tio
n 

of
 t

er
m

in
al

 e
xo

ns

400 terminal exons with tandem poly(A) sites
(longest proximal-distal distance)

average length

cu
m

ul
at

iv
e 

fr
ac

tio
n 

of
 t

er
m

in
al

 e
xo

ns

(C) (D)

wild type (replicate 2)
wild type (replicate 1)

slow Pol-II (replicate 1)
slow Pol-II (replicate 2)
fast Pol-II (replicate 1)

two-sided wilcoxon
signed-rank test pval:

vs
vs

1.267e-15
1.516e-12

vs 1.657e-15

two-sided wilcoxon
signed-rank test pval:

vs
vs

8.876e-11
9.382e-6

vs 7.962e-9

400 terminal exons with tandem poly(A) sites
(shortest proximal-distal distance)

401 terminal exons with multiple
poly(A) sites (CFI-targets)

cu
m

ul
at

iv
e 

fr
ac

tio
n 

of
 t

er
m

in
al

 e
xo

ns
0.

2
0.

0
0.

4
0.

6
0.

8
1.

0

average length

200 40 60 80 100

vs
vs

9.386e-23
4.236e-18

vs 1.758e-23

two-sided wilcoxon
signed-rank test pval:

cu
m

ul
at

iv
e 

fr
ac

tio
n 

of
 t

er
m

in
al

 e
xo

ns
0.

2
0.

0
0.

4
0.

6
0.

8
1.

0

average length

vs
vs

2.01e-10
1.413e-07

vs 2.756e-06

two-sided wilcoxon
signed-rank test pval:

320 terminal exons with multiple
poly(A) sites (no CFI-targets)

(A) (B)

200 40 60 80 100

200 40 60 80 100

0.
2

0.
0

0.
4

0.
6

0.
8

1.
0

0.
2

0.
0

0.
4

0.
6

0.
8

1.
0

200 40 60 80 100

Figure B.7: Cumulative distribution functions of average terminal exon length computed
across the entire transcriptome from RNA-seq data sets obtained from cells expressing RNA
polymerase II (RNAPII) mutants that effect the transcription elongation rate [188]. The
color scheme is preserved throughout the figure. (A) Distributions of average length for 401
CFIm-responsive terminal exons. (B) Distributions of average length for a set of control exons,
that did not show a large and consistent change in length upon CFIm knock-down. (C) Cu-
mulative density functions of average length of 400 terminal exons with the largest distance
between proximal and distal poly(A) site (among all the terminal exons that we quantified). (D)
Complementary to (C), this panel contains the average length distributions for 400 terminal
exons with the smallest distance between the proximal and the distal site.
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Figure B.8: Schematic representation of the procedure used to compute the coverage up-
stream of the poly(A) site in situations when the poly(A) site is close to the start of the ter-
minal exon. (A) Based on all reads that align with splicing into the terminal exon of interest,
the upstream exon(s) of the major splice variant is(are) inferred. The procedure is repeated
until a sufficiently long upstream exonic region is reconstructed (B) The read coverage profile
is calculated for all inferred upstream exons. (C) The read coverage profile of the terminal exon
is then extended upstream by the coverage profile(s) of the inferred upstream exon(s).
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Figure B.9: Schematic representation of the features used to define the most distal poly(A)
site in a terminal exon.
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Figure B.10: Schematic representation of the final consistency check of PAQR. In a final pass
of PAQR, the segmentation procedure is applied to every position within the terminal exon,
identifying segments with evidence of distinct coverage. If the best segmentation point falls
outside of 200 nt-long regions ending at the used poly(A) sites defined as described in the main
manuscript, the exon is discarded from the analysis (bottom right panel).
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Figure B.11: Expression levels of PTBP1/2 mRNAs in HEK293 cells. PTBP1 is shown in red
and PTBP2 in blue, the HEK 293 cells were treated as indicated by the x-axis labels (data from
[186]). These samples were used to infer PTBP1/2 activity in polyadenylation in a human cell
line (see Figure 3.6 from main text).
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Figure B.12: Schematic illustration of the calculation of average terminal exon length.
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Figure B.13: Comparisons of poly(A) site quantifications based on A-seq2 (SRP065825) and
on RNA-seq (GSE56010) data sets. Quantifications based on RNA-seq data were done for
different mean squared error (mse) ratios used to define processed poly(A) sites. (A) Com-
parisons of the A-seq2 quantifications based on samples SRX1436120 and SRX1436124 (siRNA
control and si-HNRNPC replicate 1) with the RNA-seq quantifications based on GSM1502498
and GSM1502500 (replicate 1) as well as GSM1502499 and GSM1502501 (replicate 2). The
left panel shows the number of terminal exons with more than one poly(A) sites for which
the same set of poly(A) sites was quantified in the A-seq2 samples as well as the RNA-seq
samples. For the right panel, differences in average length (between control and HNRNPC
knock-down) computed for individual exons either based on A-seq2 or RNA-seq data were
correlated. Shown are Pearson’s correlation coefficients (rP ). (B) Same as shown for (A) except
that the quantification of terminal exon lengths from RNA-seq data was compared with the
A-seq2-based quantification ( samples SRX1436128 and SRX1436130 (replicate 2)).

B.2 Supplementary methods

B.2.1 Inference of poly(A) site usage from mRNA sequencing data

The drop in coverage by RNA sequencing reads within a 3’ UTR has been interpreted as

evidence for an internal poly(A) site [111]. However, the read coverage per position along the 3’
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UTR varies quite widely, which makes it difficult to distinguish small drops in coverage that

are due to the use of proximal poly(A) sites to fluctuations that occur for unknown reasons.

In contrast, the read coverage generally ends abruptly in the region downstream of the gene,

which makes the distal sites easier to detect. Nevertheless, methods that exploit drops in the

average coverage of 3’ UTR segments to infer proximal poly(A) site usage have been developed.

In particular, the DaPars method [23] has been used in multiple studies that attempted to

infer regulators of polyadenylation. Attempting to quantify poly(A) site usage in two systems

in which both 3’ and RNA sequencing data were available, we found that DaPars quantifies a

large number of putative poly(A) sites internal to 3’ UTRs, of which only a very small number

are deemed to have signficantly different expression changes when a specific regulator of

3’ end processing is depleted by siRNA-mediated knock-down (8 of 24021 for the HNRNPC

knock-down and 1265 of 26520 for the CFIm knock-down). This prompted us to develop the

alternative, PAQR method, which differs from DaPars in two main aspects. First, PAQR uses

an extensive database of poly(A) sites that have been determined experimentally, and does

not define poly(A) sites based on the coverage profile from RNA-seq. Aside from presumably

avoiding some false positive sites, this approach has the advantage that it allows us to infer

position-dependent motif activities. If the location of poly(A) sites had some uncertainty,

this would propagate to the location of the active motifs. Second, PAQR only aims to identify

terminal exons in which there is significant usage of more than one poly(A) site. Thus, terminal

exons in which internal poly(A) sites are used only to a small extent, which does not stand out

of the fluctuations in coverage along the 3’ UTR, are reported by PAQR as "single poly(A) site"

exons.

As shown in Supplementary Figure B.2, when we compare the DaPars-based and PAQR-

based quantifications of distal poly(A) site usage changes in individual exons from RNA se-

quencing data, with the usage changes determined by 3’ end sequencing, we obtain system-

atically higher correlations for PAQR. This is not only due to DaPars reporting more exons,

because the correlations remain higher for the set of exons that are quantified by all three

methods (3’ end sequencing, DaPars-based and PAQR-based quantification of RNA seq data).

Consistent with the improved quantification of usage by PAQR, the absolute values as well

as the significance of the motif activities that we infer with KAPAC, are higher when we use

PAQR-based quantifications of poly(A) site usage than when we use DaPars quantifications

(B.2C and D).

B.2.2 K-mer Activity on Polyadenylation Site Choice (KAPAC)

KAPAC, standing for k-mer activity on polyadenylation site choice, aims to identify sequence

motifs (of length k = 3−6 nucleotides (nt), hence k-mers) that can explain changes in poly(A)

site (PAS) use across conditions (e.g. in samples in which the expression of a potential regulator

has been perturbed). It models the change in the use of alternative PAS within a transcript as a
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linear function of the occurrence of specific k-mers and the unknown regulatory impact (also

called "activity") of these k-mers.

B.2.2.1 Determination of k-mer counts within defined regions relative to poly(A) sites

For a defined window relative to the poly(A) site we count the occurrences of a specific k-mer

k. As we aim to identify general regulators of poly(A) site use, we discard k-mers that are found

in less than 1% of all poly(A) sites. As we seek to identify factors that act in a tissue/condition-

specific manner on a subset of transcripts, we calculate the number of k-mers that are found

in ’excess’ of what is expected to be found per chance within a sequence window (region) of

interest based on the (mono)nucleotide composition of regions around poly(A) sites. Consider-

ing a region of ±200 nt around poly(A) sites from the PolyAsite atlas (human genome hg38)

[118] we have obtained the following base (B) frequencies fB :

• Adenine: f A=0.2973

• Cytosine: fC =0.1935

• Guanine: fG =0.2007

• Uracil: fU =0.3084

Using the determined base frequencies fB we then calculated the probability to find a k-mer

kL of length L at a specific position as follows:

P (kL) =
L∏

l=1
fB ,l (B.1)

whereat fB ,l is the frequency of base B observed at position l . Using equation (B.1) we then

calculated how many counts of k-mer kL are expected to be found in a region rW of length W

given the observed base frequencies (see above):

N e
k = P (kL)∗ (W −L) (B.2)

Finally, for a specific region (of length L) relative to a poly(A) site i we calculate the number of

"excess" counts Nk,i by subtracting the number of expected counts of k-mer k (N e
k ) from the

number of counts observed within the region N o
k,i :

Nk,i = f +(N o
k,i −N e

k ) = max(0, N o
k,i −N e

k ) (B.3)

We use the "excess" counts determined for k-mer k within a defined region relative to poly(A)

site i to explain the relative usage of the site observed within a sample s (see below).

B.2.2.2 Derivation of k-mer activities from genome-wide changes in poly(A) site use

We use a simple linear model that tries to explain PAS use as a function of the number of

occurrences of each k-mer within a defined region in close proximity to the cleavage site and
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the activity of the k-mer within this region. Specifically, we define the relative use of a poly(A)

site i from a terminal exon with P poly(A) sites in sample s, Ui ,s as

Ui ,s =
Ri ,s∑P

p=1 Rp,s
, (B.4)

Ri ,s being the number of reads from the poly(A) site i in sample s. We relate Ri ,s to the tran-

scription rate from the corresponding locus through the parameter α, the number Ni ,k of

occurrences of k-mer k within a specific region relative to the poly(A) site i (see section B.2.2.1,

equation B.3) and the activity Ak,s of k-mer k within sample s:

Ri ,s =α∗exp(Nk,i ∗ Ak,s). (B.5)

Combining equations B.4 and B.5 gives:

Ui ,s =
exp(Nk,i ∗ Ak,s)∑P

p=1 exp(Nk,p ∗ Ak,s)
, (B.6)

or, in log-space, the relative use of poly(A) site i in sample s can be written as:

log(Ui ,s) = log

(
exp(Nk,i ∗ Ak,s)∑P

p=1 exp(Nk,p ∗ Ak,s)

)

= log
(

exp(Nk,i ∗ Ak,s)
)
− log

( P∑
p=1

exp(Nk,p ∗ Ak,s)
)

= Nk,i ∗ Ak,s − log
( P∑

p=1
exp(Nk,p ∗ Ak,s)

)
(B.7)

We can define the mean of the log of the relative use 〈log(Ut ,s)〉 of a poly(A) site from

terminal exon t with Pt poly(A) sites, in sample s as:
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〈log(Ut ,s)〉 =
∑Pt

i=1 log(Ui ,s)

Pt

=
∑Pt

i=1

(
Nk,i ∗ Ak,s − log

(∑Pt
p=1 exp(Nk,p ∗ Ak,s)

))
Pt

=
∑Pt

i=1

(
Nk,i ∗ Ak,s

)
−Pt ∗ log

(∑Pt
p=1 exp(Nk,p ∗ Ak,s)

)
Pt

=
∑Pt

i=1

(
Nk,i ∗ Ak,s

)
Pt

− log
( Pt∑

p=1
exp(Nk,p ∗ Ak,s)

)

=

(∑Pt
p=1 Nk,p

)
Pt

∗ Ak,s − log
( Pt∑

p=1
exp(Nk,p ∗ Ak,s)

)
= 〈Nk〉t ∗ Ak,s − log

( Pt∑
p=1

exp(Nk,p ∗ Ak,s)
)

(B.8)

where 〈Nk〉t is the mean count of k-mer k across the poly(A) sites of terminal exon t . We

can obtain the per "terminal-exon-centered" log relative use δi of poly(A) site i in sample s by

combining equations (B.7) and (B.8):

δi ,s = log(Ui ,s)−〈log(Ut ,s)〉

= Nk,i ∗ Ak,s − log
( Pt∑

p=1
exp(Nk,i ∗ Ak,s)

)
−〈Nk〉t ∗ Ak,s + log

( Pt∑
p=1

exp(Nk,i ∗ Ak,s)
)

= Nk,i ∗ Ak,s −〈Nk〉t ∗ Ak,s

= (Nk,i −〈Nk〉t )∗ Ak,s

= N̄k,i ∗ Ak,s

(B.9)

where N̄k,i are the per "terminal-exon-centered" site counts of k-mer k at poly(A) site i

from terminal exon t .

As we are interested in finding k-mers that can explain changes in poly(A) site use between

samples (e.g. control vs. knock-down) we finally calculate the change of the per "terminal-

exon-centered" log relative use δi ,s relative to the mean use across samples:
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δ̄i ,s = δi ,s −〈δi 〉 = (Ni ,k −〈Nk〉t )∗ Ak,s − (Ni ,k −〈Nk〉t )∗〈Ak〉
= (Ni ,k −〈Nk〉t )∗ (Ak,s −〈Ak〉)
= (Ni ,k −〈Nk〉t )∗ Āk,s

(B.10)

whereas Āk,s is the activity of each k-mer k relative to the mean activity across samples

〈Ak〉 and 〈δi 〉 is the mean relative use of poly(A) site i across samples which is defined as:

〈δi 〉 = (Ni ,k −〈Nk〉t )∗〈Ak〉 (B.11)

with 〈Ak〉 being the mean activity of motif k across samples.

Substituting the per "terminal-exon-centered" counts into equation (B.10) we find that the

relative use of poly(A) site i in sample s should satisfy

δ̄i ,s = N̄k,i ∗ Āk,s +ε (B.12)

which allows us to obtain a fitted activity Ãk,s and a corresponding error σ̃k,s for each k-mer

k in sample s, using a standard least-squares approach to solve the simple linear regression

model (equation (B.12)).

B.2.2.3 Ranking of k-mers

For each pair of treatment-control samples tcp (or tumor versus (matched) normal tissue) we

calculate for each k-mer k an activity difference z-score:

ztcp,k = Ãk,contr ol − Ãk,tr eatment√
σ̃2

k,contr ol + σ̃2
k,tr eatment

(B.13)

We then combine the data from multiple replicates (or multiple patients) by calculating a

mean activity difference z-score (Zk ) considering all treatment-control pairs:

Zk =
∑TC P

tcp ztcp,k

TC P
(B.14)

where T C P is the number of treatment versus control pairs of samples (tcp). KAPAC ranks

k-mers by their absolute mean activity difference z-scores.
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B.2.2.4 Determination of significant mean activity difference z-scores

Given that real sequences have compositional biases that are difficult to model, we evaluate

the significance of an inferred mean activity difference z-score (Zk ) for k-mer k (see equation

(B.14)) using a randomization approach. Namely, we randomize the associations of changes

in poly(A) site use with k-mer counts, by randomizing the expression values of individual

poly(A) sites across the genome and then calculating the relative use of poly(A) sites according

to equation (3.1). We fit the model, repeating the procedure (e.g. 100 times). Then, for each

k-mer k, we calculate the p-value of the real mean activity difference z-score (Zk ), assuming

a Gaussian distribution of the score for the k-mer, with mean and variance determined from

the randomized runs. KAPAC reports the obtained p-value, the Bonferroni adjusted p-value

(taking into account the total number of considered k-mers) as well as the p-value obtained by

conducting a Shapiro-Wilk normality test on the mean activity difference z-scores from the

randomized runs.

B.2.3 K-mer rankings and activity plots presented in Figures 3.2–3.6 of the main

manuscript

As 3’ end processing factors generally bind at defined distances with respect to the processing

site, we have performed the KAPAC analysis independently for regions located at specific

distances from the poly(A) sites. We have used windows of 50 nt, sliding by 25 nt at a time

(’Sliding Window Approach’). A similar analysis could be implemented for windows extending

to defined distances upstream or downstream of the PAS (’Extending Window Approach’).

To identify the most active k-mers across all regions, we used for each k-mer the highest

absolute mean activity difference z-score (Zk , see equation (B.14)) across all regions, as a

ranking criterion. k-mers with a Bonferroni adjusted p-value ≥ 0.05 were not considered (e.g.

Supplementary Table B.3).

B.2.4 Prediction of "targets" of the CU-rich repeat motif used for the

PTBP1-eCLIP data analysis

We evaluate the "quality" of a target, containing a specific motif inferred to be active in samples

of interest, by comparing the log likelihoods of the model that includes the counts ki ,s of the

motif k in the putative target region p and sample s and a model that does not. The difference

in likelihoods gives us a measure of how important the motif is for predicting the observed

change in the use of the respective poly(A) site.

We predict the relative use δ̃N
i ,s of a poly(A) site i in sample s from the inferred k-mer

activities:

δ̃N
i ,s = N̄k,i ∗ Ãk,s (B.15)
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We then calculate the χ2,N
i ,s statistic for all the poly(A) sites (Pt ) in the corresponding

terminal exon:

χ2,N
i ,s =

Pt∑
t

(δt ,s − δ̃N
t ,s)2 (B.16)

where δt ,s is the measured per "exon-centered" log relative use of poly(A) site t in sample s

(see equation B.9).

Next, we calculate the predicted expression using the model in which we have set the

counts of k-mer k at poly(A) site i (Ni ,k ) to zero and then re-centered the k-mer counts for all

poly(A) sites in the corresponding exon thereby obtaining a new k-mer count matrix N ′. We

use N ′ to predict the relative use δ̃N ′
i ,s of a poly(A) site i in sample s using the inferred k-mer

activities:

δ̃N ′
i ,s = N̄ ′

k,i ∗ Ãk,s (B.17)

Afterwards we calculate the χ2,N ′
i ,s of a poly(A) site i in sample s using the new k-mer

count matrix N ′ by summing over all poly(A) sites that are located in the exon (containing Pt

expressed poly(A) sites, including i ) as follows:

χ2,N ′
i ,s =

Pt∑
t

(δt ,s − δ̃N ′
t ,s)2 (B.18)

where δt ,s is the measured per "exon-centered" log relative use (as in equation B.16 above).

We use the normalized log likelihood ratio as score Si ,k for k-mer k targeting poly(A) site i :

Si ,k =
∑S

s (χ2,N ′
i ,s −χ2,N

i ,s )

〈χ2〉∗Pt
(B.19)

whereas Pt is the number of expressed poly(A) sites in the exon that contains poly(A) site i and

the average squared-deviation per sample/poly(A) site combination 〈χ2〉 is defined as:

〈χ2〉 =
∑S

s
∑I

i (δi ,s − δ̃N
i ,s)2

S ∗ I
(B.20)

with S being the total number of samples and I being the total number of expressed poly(A)

sites.

B.2.5 Processing of RNA-seq data from the study of RNAPII elongation rate

Raw reads were obtained from GEO (accession number: GSE63375) and processed according

to the RNA-seq pipeline for long RNAs provided by the ENCODE Data Coordinating Center

[198] using the GENCODE version 24 human gene annotation. Based on the obtained bam

files, the median TIN score (mTIN) according to Wang et al. [116] was calculated based on all

transcripts with a terminal exon containing more than one poly(A) site. The obtained values

were:
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sample mTIN

wild type

replicate 1
78.384943

wild type

replicate 2
79.868301

slow RNAPII

replicate 1
77.286761

slow RNAPII

replicate 2
77.233262

fast RNAPII

replicate 1
79.240207

fast RNAPII

repicate 2
52.603342

All samples with a mTIN score of at least 70 were further processed, i.e. replicate two of the

fast RNAPII sample was not considered.

B.2.6 Definition of CFI targets for the analysis of RNAPII elongation rate

Only terminal exons with at least two poly(A) sites that were quantified in both studies CFIm

25/CFIm 68 knock-down in HeLa cells and RNAPII speed mutations in HEK293 cells were

considered. For all samples from the CFIm study, the average length differences (knock-

down/mutant versus control) were obtained and the exons were stratified as follows: exons

with a consistent length change in all comparisons were used as targets whereas those with an

inconsistent change in any of the comparisons were marked as non-target.

B.2.7 Expression estimation for PTBP1 and PTBP2

FPKM values were calculated by strictly following the GDC workflow for TCGA RNA-seq

sample processing (https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/

Expression_mRNA_Pipeline). After obtaining a raw read quantification of genes with HTseq-

count [201], FPKM values were calculated by using the length of a composite exon model per

gene and all reads that map to protein-coding genes as library size.

B.2.8 Selection of distal PAS

For the comparison of DaPars [23] with A-seq2, the 3’ ends of the exons reported by DaPars

were intersected with the poly(A) site clusters quantified by A-seq2. Poly(A) site clusters that

overlapped with a 3’ end quantified by DaPars were considered to be expressed in both studies.

Since PAQR uses annotated PAS as input, the same PAS must have been identified as distal site

for the comparison of samples from PAQR and A-seq2.
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B.2.9 Selection of subsets of poly(A) sites for the analysis of PTBP1-eCLIP read

enrichment

From exons with at least two quantified poly(A) sites we selected the 200 that had the strongest

mean decrease in relative usage across all GBM tumor-normal pairs. As control set, we used

the 200 distal poly(A) sites whose absolute mean relative change in usage was smallest.
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B.3 Supplementary Tables

Table B.1: Overview on KAPAC results for the 3’ end sequencing data of the indicated study. Shown are the 20 most significant

k-mers, or all if there are less than 20 significant ones (Bonferroni corrected p-value < 0.05) with their mean activity difference

z-score (between normal and tumor samples), their adjusted p-value and the window for which the activity difference z-score

was inferred.

study rank k-mer
z-score

difference

adjusted

p-value
window

PCBP1 [85] nr 1 CCC 14.3619386027758 3.92210e-29 u75to25.d0to0

nr 2 CCCU 12.3234804203847 1.35376e-22 u75to25.d0to0

nr 3 UCCC 12.2883102355394 4.62113e-23 u75to25.d0to0

nr 4 CCU 11.2584739909402 8.03581e-20 u100to50.d0to0

nr 5 UCC 10.3078840034045 9.40719e-16 u100to50.d0to0

nr 6 GCCC 9.26200680989259 7.40421e-10 u75to25.d0to0

nr 7 UCCCU 8.95753524332782 6.62195e-12 u75to25.d0to0

nr 8 CCCC 8.60555616896579 5.53819e-06 u75to25.d0to0

nr 9 CCCUU 8.44098566788859 2.74658e-07 u100to50.d0to0

nr 10 CCCA 7.93988407765 2.47397e-05 u125to75.d0to0

nr 11 CCUU 7.47584995939994 3.68167e-07 u100to50.d0to0

nr 12 UCCCC 7.37898773800494 1.23901e-03 u75to25.d0to0

nr 13 GCC 7.15590255944904 6.66673e-04 u100to50.d0to0

nr 14 CUCC 7.06136031907776 1.13564e-03 u100to50.d0to0

nr 15 CUUCC 7.04848749984694 5.63203e-04 u100to50.d0to0

nr 16 CUCCC 6.97920980000055 1.25769e-03 u100to50.d0to0

nr 17 UGCCC 6.97713370646291 2.43523e-06 u75to25.d0to0

nr 18 UUCCC 6.78133271365627 2.14076e-04 u75to25.d0to0

nr 19 CCCCU 6.66612158690429 2.24487e-03 u75to25.d0to0

nr 20 UCCCUU 6.65186476207128 1.61041e-05 u75to25.d0to0

HNRNPC [118] nr 1 UUUUU -17.1226127126567 3.13308e-43 u25to0.d0to25

nr 2 UUU -16.5958380846563 7.05715e-41 u25to0.d0to25

nr 3 UUUU -16.3028956832816 4.92083e-38 u25to0.d0to25

nr 4 UUUUUU -13.0554616188556 4.11552e-24 u25to0.d0to25

nr 5 UUUG -11.7071099513396 6.27981e-15 u50to0.d0to0

nr 6 UUUUG -11.1561957571474 3.77578e-14 u50to0.d0to0

nr 7 CAG 10.627744491379 1.38687e-15 u50to0.d0to0

nr 8 UUUUUG -10.2783217400175 1.23036e-13 u50to0.d0to0

nr 9 AUUUUU -10.1232256769064 4.77752e-18 u25to0.d0to25

nr 10 CUC 10.0776142444971 3.43206e-11 u75to25.d0to0

nr 11 UUG -9.97742310106386 1.53611e-10 u75to25.d0to0

nr 12 AUUU -9.66082399472801 1.10721e-10 u50to0.d0to0

nr 13 GUUU -9.5733404808427 1.22066e-11 u25to0.d0to25

nr 14 UAUU -9.51544130944631 4.81927e-15 u50to0.d0to0

nr 15 UUGU -9.43882410226739 1.50859e-12 u50to0.d0to0

nr 16 UUUUUA -9.37333750745204 1.73277e-09 u50to0.d0to0

nr 17 UUUGU -9.2243373238644 3.35869e-10 u50to0.d0to0

nr 18 AUUUU -9.20476745475456 5.42214e-08 u50to0.d0to0

nr 19 UGU -9.11478153686116 4.99393e-09 u75to25.d0to0

nr 20 CUUUUU -9.10287686716165 3.52874e-13 u25to0.d0to25

CFIm nr 1 AAUAAA 10.9656674102611 4.64404e-18 u50to0.d0to0

nr 2 UGUA 10.5588960353076 2.00776e-15 u75to25.d0to0

nr 3 AAUAA 10.054856313557 1.39373e-14 u50to0.d0to0

nr 4 UGU 10.0267388803685 1.84259e-14 u150to100.d0to0

Continued on next page
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TableB.1 – continued from previous page

study rank k-mer
z-score

difference

adjusted

p-value
window

nr 5 AAUA 9.70222909873153 3.59413e-13 u50to0.d0to0

nr 6 UAA 9.44033417374034 2.03604e-17 u50to0.d0to0

nr 7 UAU 9.05991932725031 5.35025e-14 u100to50.d0to0

nr 8 AAU 8.91980457038989 1.17062e-11 u50to0.d0to0

nr 9 UAAA 8.90689935325978 2.04303e-12 u50to0.d0to0

nr 10 UUGUA 8.86183077056082 3.07792e-14 u75to25.d0to0

nr 11 AUAAA 8.56029151784637 9.77397e-11 u50to0.d0to0

nr 12 UUGU 8.36396835293178 3.03781e-11 u150to100.d0to0

nr 13 GUA 8.26380253803631 4.16344e-09 u75to25.d0to0

nr 14 UUUA 8.23518199723387 2.24869e-08 u100to50.d0to0

nr 15 GCC -7.81567064349458 2.43275e-09 u100to50.d0to0

nr 16 UUA 7.75266447353091 2.67136e-09 u100to50.d0to0

nr 17 AAAU 7.72642936923094 7.20373e-09 u50to0.d0to0

nr 18 UGUAA 7.64644569977783 2.41648e-08 u75to25.d0to0

nr 19 AUAA 7.57449370048538 1.95289e-08 u50to0.d0to0

nr 20 UUU 7.56573439493848 4.93710e-11 u150to100.d0to0

Table B.2: Overview on KAPAC results for the standard RNA-seq data of the indicated study. Shown are the 20 most significant

k-mers, or all if there are less than 20 significant ones (Bonferroni corrected p-value < 0.05) with their mean activity difference

z-score (between normal and tumor samples), their adjusted p-value and the window for which the activity difference z-score

was inferred.

study rank k-mer
z-score

difference

adjusted

p-value
window

HNRNPC [147] nr 1 UUUUU -21.66427672982 2.47991e-23 u0to0.d0to50

nr 2 UUUU -21.3480701671228 3.68403e-29 u0to0.d0to50

nr 3 UUUUUU -19.5362176459321 1.88716e-18 u0to0.d0to50

nr 4 UUU -17.672200613449 2.53044e-16 u0to0.d0to50

nr 5 AUUUUU -12.4335263034769 9.15171e-07 u25to0.d0to25

nr 6 CUUUUU -12.0173198238539 5.40989e-06 u0to0.d0to50

nr 7 AUUUU -11.9391554672639 1.96168e-08 u25to0.d0to25

nr 8 UUUUUG -11.1279217133331 8.46027e-06 u0to0.d25to75

nr 9 ACUGCA -10.4544299166344 2.85868e-05 u0to0.d75to125

nr 10 UUUUUA -10.3723578596203 8.66192e-06 u25to0.d0to25

nr 11 GCCUCC -9.96981626596616 2.17326e-05 u0to0.d100to150

nr 12 GCCUC -9.87551667175939 1.62913e-04 u0to0.d100to150

nr 13 UUUUG -9.65914100131002 6.08779e-04 u0to0.d0to50

nr 14 CUUUU -9.60735872053696 1.47678e-03 u0to0.d0to50

nr 15 GCAACC -9.54646549107147 3.03805e-05 u0to0.d75to125

nr 16 UUUUUC -9.44597128693347 2.65561e-03 u0to0.d25to75

nr 17 GUUUUU -9.43523677200803 9.70228e-04 u75to25.d0to0

nr 18 CACUGC -9.40557479481014 2.03784e-03 u0to0.d75to125

nr 19 GCCAUU -9.25103729882374 6.03798e-04 u0to0.d100to150

nr 20 GCUCAC -8.95404320524543 2.68805e-03 u0to0.d75to125

CFIm 25 [23] nr 1 UGU 24.3829655172491 9.18903e-28 u125to75.d0to0

nr 2 UGUA 23.6103952635293 4.48714e-29 u100to50.d0to0

nr 3 AUU 22.5276877058983 3.92576e-45 u150to100.d0to0

nr 4 AAUAAA 22.1747258931642 1.70306e-29 u50to0.d0to0

nr 5 UAU 21.6483480370493 1.63728e-26 u100to50.d0to0

nr 6 UUGU 21.4616586590102 6.84804e-40 u150to100.d0to0

Continued on next page
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study rank k-mer
z-score

difference

adjusted

p-value
window

nr 7 UUA 19.9991395007045 3.66046e-30 u150to100.d0to0

nr 8 AAUAA 19.9668688810485 4.81553e-21 u50to0.d0to0

nr 9 UAUU 19.9580615697656 9.55971e-30 u150to100.d0to0

nr 10 AUUU 19.0887468345882 4.89942e-23 u150to100.d0to0

nr 11 UUGUA 18.3972829494701 9.38891e-20 u100to50.d0to0

nr 12 UGUAU 18.314537459356 6.23009e-19 u125to75.d0to0

nr 13 GUA 18.2355799427803 3.93916e-19 u100to50.d0to0

nr 14 UAA 18.1279696821075 1.78465e-15 u200to150.d0to0

nr 15 UUUA 18.117483027468 8.87175e-23 u175to125.d0to0

nr 16 GGA -18.0412579969026 1.60360e-22 u150to100.d0to0

nr 17 CAG -17.8522835736229 4.38540e-18 u150to100.d0to0

nr 18 AUUGU 17.7561679662 3.11635e-18 u125to75.d0to0

nr 19 AUAAA 17.4863596662839 7.61925e-16 u50to0.d0to0

nr 20 UUAU 17.42803060558 1.78107e-20 u150to100.d0to0

PTBP1/2 [186] nr 1 UCU 9.88770416432942 5.36039e-06 u25to0.d0to25

nr 2 CUCU 8.15341786865457 1.98386e-03 u25to0.d0to25

nr 3 CUCUCU 8.03270724839405 1.01339e-03 u0to0.d25to75

nr 4 UUCU 7.85922178238784 3.30486e-03 u25to0.d0to25

nr 5 UUCUC 7.51573593114661 1.49623e-02 u50to0.d0to0

nr 6 UUGUGU 7.5029478372414 2.65028e-02 u0to0.d25to75

nr 7 UCUUC 7.47146651882119 1.26587e-02 u50to0.d0to0

nr 8 GACUA 7.37672158832967 1.72687e-02 u0to0.d75to125

nr 9 UCUCCU 7.26369202083234 3.75263e-02 u50to0.d0to0

nr 10 CUCUUC 7.16401311199207 4.13901e-02 u50to0.d0to0

nr 11 CUC 7.04876822494446 3.88378e-02 u50to0.d0to0

nr 12 UGGUGA 7.04005435369631 4.72596e-02 u0to0.d100to150

nr 13 AGGACU 6.98761283234312 4.12172e-02 u0to0.d75to125

nr 14 UUUAUA -6.92047578472529 4.13303e-02 u25to0.d0to25

Table B.3: Overview on KAPAC results for the different cancer types if they are considered in the main manuscript. Shown

are the 20 most significant k-mers, or all if there are less than 20 significant ones (Bonferroni corrected p-value < 0.05) with their

mean activity difference z-score (between normal and tumor samples), their adjusted p-value and the window for which the

activity difference z-score was inferred.

cancer

cohort
rank k-mer

z-score

difference

adjusted

p-value
window

COAD nr 1 UUUUU -4.96937708701905 3.74967e-02 u50to0.d0to0

nr 2 UUUGU -4.21481585142658 1.73656e-02 u0to0.d150to200

LUAD nr 1 AGCUUG 4.40759145275076 7.68629e-03 u75to25.d0to0

nr 2 CCUUCC -4.23280169144492 8.94116e-03 u0to0.d0to50

nr 3 UAUU 4.22326523375785 5.05276e-04 u125to75.d0to0

nr 4 GAAG -4.04537916018301 4.83960e-02 u200to150.d0to0

nr 5 UAU 4.02434402961917 4.09451e-03 u125to75.d0to0

nr 6 GUAUGA 3.88754196033867 2.36437e-02 u50to0.d0to0

nr 7 CCUUC -3.87652295059531 3.79403e-02 u0to0.d0to50

nr 8 GUAU 3.84571509896243 1.80215e-02 u125to75.d0to0

nr 9 CCCAG -3.6454244635503 3.29534e-02 u150to100.d0to0

nr 10 CCCCUU 3.473394114303 4.78457e-02 u0to0.d50to100

nr 11 UGUAUU 3.40476817035171 4.85372e-03 u125to75.d0to0

Continued on next page
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cancer

cohort
rank k-mer

z-score

difference

adjusted

p-value
window

PRAD nr 1 AUU -4.01827015983043 2.46805e-03 u0to0.d25to75

nr 2 AUUU -3.99168739737411 1.26721e-02 u0to0.d25to75

nr 3 UAUUU -3.88652328998694 1.32727e-03 u0to0.d25to75

nr 4 UAUU -3.53765426692504 4.47438e-02 u0to0.d25to75

GBM1 nr 1 UCUCUC 9.90740192572668 1.68536e-06 u0to0.d25to75

nr 2 CUCUCU 9.22208774710919 3.06294e-05 u0to0.d25to75

nr 3 CUCUC 8.74301074486753 7.44746e-06 u0to0.d25to75

nr 4 UCUC 8.66858168373634 4.66253e-06 u0to0.d25to75

nr 5 UCUCU 8.35363357910616 8.08023e-04 u0to0.d25to75

nr 6 CUC 8.07444814776459 8.29237e-04 u0to0.d25to75

nr 7 UUAU -7.56922933209396 4.70394e-03 u0to0.d150to200

nr 8 CUCU 7.48320885412783 1.79984e-03 u0to0.d25to75

nr 9 AAUAU -7.41968885048703 3.63770e-03 u0to0.d75to125

nr 10 AUUU -7.39880077048514 3.89400e-03 u0to0.d50to100

nr 11 UGUGUG 7.12420875874659 2.80547e-02 u0to0.d50to100

nr 12 AAUCCC 6.91920737044926 1.99104e-02 u0to0.d125to175

nr 13 AUU -6.86277219404571 2.72602e-02 u0to0.d50to100

nr 14 AAAUAU -6.81585214892369 1.98374e-02 u0to0.d75to125

nr 15 CAGGC 6.7400778189719 1.44156e-02 u0to0.d150to200

nr 16 GGC 6.6874316792108 3.34506e-02 u0to0.d125to175

nr 17 CAUCUU -6.65269394378098 3.90724e-03 u175to125.d0to0

nr 18 CUGAC -6.64458751628684 3.93609e-04 u175to125.d0to0

nr 19 UUA -6.63359494853029 1.86693e-02 u0to0.d125to175

nr 20 CCCAGC 6.29440474138774 2.49740e-02 u0to0.d125to175

Table B.4: Overview on the number of considered normal-tumor comparisons and on the

number of quantified terminal exons with at least two poly(A) sites per cancer cohort.

cancer

cohort

number of

normal-tumor

comparisons

number of

overall quantified

exons

BLCA 15 2046

BRCA 93 2863

COAD 32 2470

ESCA 8 2338

HNSC 37 2779

KICH 19 2370

KIRC 63 2587

KIRP 24 2453

LIHC 13 1941

LUAD 58 2619

Continued on next page

1The given results were inferred based on randomly assigned pairs of normal and tumor samples, not on
matching pairs of samples from individual patients.
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cancer

cohort

number of

normal-tumor

comparisons

number of

overall quantified

exons

LUSC 46 2879

PRAD 43 2450

READ 6 1784

STAD 22 3208

THCA 37 2219

UTEC 9 1916

Table B.5: Overall number of processed TCGA samples per cancer type (obtained from

https://portal.gdc.cancer.gov/).

cancer

cohort

number

of samples

BLCA 40

BRCA 229

CESC 6

CHOL 18

COAD 87

ESCA 16

GBM 169

HNSC 86

KICH 46

KIRC 144

KIRP 62

LIHC 100

LUAD 125

LUSC 98

PAAD 8

PCPG 6

PRAD 106

READ 18

SARC 4

STAD 54

THYM 4

Continued on next page
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cancer

cohort

number

of samples

THCA 116

UCEC 46
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