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1. SUMMARY 

Discoveries that have been made over past decades emphasized the 

importance of post-transcriptional control as a means of regulating gene expression. 

RNA turnover is one of the key aspects of post-transcriptional control that contributes 
directly towards maintenance of normal cellular homeostasis. Degradation of 

functional messenger RNAs (mRNAs) is a tightly regulated process and its 
dysregulation results in either excessive or insufficient amounts of mRNAs within cells 

that eventually lead to a disease-associated condition. Furthermore, multiple quality 
control mechanisms eliminate aberrant mRNAs thereby preventing their translation 

into malfunctioning proteins. The realization of the importance of RNA decay pathways 
has fueled further research towards understanding the underlying molecular 

mechanisms in RNA turnover and its regulation. 

All protein-coding mRNAs, as well as non-coding RNAs, have distinct half-lives 

and are ultimately degraded. Previously, many of the factors involved in RNA decay 
pathways have been identified and studied. Two types of enzymes are shared among 

RNA decay pathways: exonucleases and endonucleases. The former are further 
divided into 5′-to-3′ and 3′-to-5′ degrading enzymes and their activation is often 

dependent on prior removal of terminal stability marks from an RNA molecule. The 
best-studied exonuclease is Xrn1 that degrades an RNA substrate from the 5′-end to 

3′-end. On the other hand, endonucleases cleave an RNA strand to expose the 

resultant fragments to exonucleases, circumventing the requirement of first removing 
the stability marks. 

Most of our current appreciation of the molecular mechanisms related to the 
mRNA decay is attributable to the methods that involve ensemble measurements. 
However, these measurements often result in an averaged outcome from whole 

population of cells, wherein information about variability among individual cells is lost. 
In addition, the possibility to get information on the spatio-temporal regulation of mRNA 

decay is limited using ensemble methods. Hence, accurate dissection of the spatial 

and temporal regulation of mRNA decay requires development of a single-molecule 
method that preserves information on cell-to-cell variability. Single-molecule RNA 

imaging methods have already been used to study several aspects of the mRNA life 
cycle and they have helped to uncover in vivo regulations that were not possible to 
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observe before. However, a powerful imaging method allowing for an observation of 

mRNA turnover in real-time at the level of single cells/molecules has been missing. 

During my PhD, I established a robust single-molecule imaging technique in 
order to characterize the spatio-temporal dynamics of RNA turnover within its cellular 

context. I engineered an mRNA reporter that contains viral tandem pseudo-knots 
placed between PP7 and MS2 stem-loops. These orthogonal stem-loops can be 

labeled with spectrally distinct fluorescent proteins. In addition, the viral pseudo-knots 
block Xrn1-mediated degradation resulting in stabilization of the reporter’s 3′-

degradation intermediate that is otherwise inherently instable. This stabilized 3′-end 

contains only the MS2 stem-loop region. Thus, intact mRNAs are labeled with both 
fluorophores, while incompletely degraded mRNA fragments are labeled only with a 

single fluorophore. I used the amounts and positions of intact mRNAs and stabilized 
3′-ends as readout of mRNA degradation. Therefore, this technique is called 

3(Three)′-RNA End Accumulation during Turnover (TREAT). 

I applied TREAT to monitor the fates of mRNAs in single fixed and living 

mammalian cells. Using this method, I measured the kinetics and cell-to-cell variability 
of mRNA decay in fixed cells. The nuclear export rates and cytoplasmic mRNA half-

lives showed that individual degradation events occur independently within the 
cytoplasm suggesting that there is no burst in mRNA degradation. In addition, I found 

that transcripts, as well as degradation intermediates, are dispersed throughout 
cytoplasm and are not enriched within processing bodies in living cells. Imaging of an 

mRNA biosensor targeted for an endonucleolytic cleavage by the RNA-induced 
silencing complex (RISC) showed that slicing can be observed in real-time in 

cytoplasm of living cells but does not occur in nucleus. The slicing events were found 
to have no spatial preference with respect to the distance from the nucleus. 

In addition to the rate of synthesis and the rate of turnover, the levels of mRNAs 
were found to be affected by the rate of translation as well. Indeed, I have also 

observed that inhibition of translation by several compounds increases mRNA stability, 
suggesting that the processes of mRNA degradation and translation are globally 

interconnected. The cross-talk among three processes central to the mRNA life cycle, 
transcription, degradation and translation, is becoming increasingly apparent. 

However, further research is required to obtain a detailed understanding of the 

molecular interplays in eukaryotic cells. As TREAT system visualizes mRNA from its 
synthesis in the nucleus through export to degradation in cytoplasm, I anticipate that 
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this methodology will provide a framework for investigating the entire life history of 

individual mRNAs in single cells.  
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2. INTRODUCTION 

2.1. THE IMPORTANCE OF MRNA DECAY 

A vital aspect of regulated gene expression occurs via the modulation of 
abundance of messenger RNAs (mRNAs). The levels of all cellular transcripts are 

determined by the rates of transcription in the nucleus and degradation mostly taking 
place in the cytoplasm. Constant mRNA levels reflect on equilibrium of transcription 

and decay while changes in mRNA levels may be caused by alterations in either of 
them. While the importance of transcription in controlling gene expression is well 

established, it has become increasingly clear that the regulation of mRNA stability, 
particularly during cellular transitions, can dramatically influence cytoplasmic mRNA 

concentrations (Elkon et al., 2010; Friedel et al., 2009; Hao and Baltimore, 2009; Miller 

et al., 2011; Rabani et al., 2011; Shalem et al., 2011). Moreover, it has been shown 
that up to 50% of changes in gene expression occur at the level of mRNA stability 

(Cacace et al., 2012; Cheadle et al., 2005; Garcia-Martinez et al., 2004; 
Schwanhausser et al., 2011). In dynamic processes such as embryonic development, 

cell differentiation and cellular stress responses, cells have to possess adequate 
amounts of particular mRNAs at a given time that can serve as templates for synthesis 

of proteins that are required for the physiological process. Understanding whether 
dynamic changes in mRNA levels are due to changes in mRNA transcription or 

changes in mRNA decay is not trivial. The transcriptome is composed of mRNAs of 
different lifetimes, however their susceptibility to degradation may change significantly 

thereby affecting protein synthesis. A long lifetime of an mRNA enables a cell to 

produce more proteins from that particular mRNA. When a rapid reduction in protein 
expression is needed, discontinuation of transcription can reflect only slowly on the 

levels of mRNAs with long half-lives. Therefore, active degradation of these mRNAs 
must be triggered to halt protein production. By an active recruitment of a degradation 

machinery to otherwise stable mRNAs within appropriate time, a cell ensures to adjust 
the mRNA levels. In contrast, for mRNAs with intrinsically short half-lives, the decrease 

in transcription rate can be the main contributor towards diminished mRNA levels. In 
another scenario, when a cell needs to preserve energy resources or the mRNAs 

themselves, decay pathways can be stopped for a time period needed to decide about 
the cellular fate. 
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The importance of mRNA decay can be illustrated on a specialized RNA 

degradation program that has been discovered to function during early development 
in metazoa. The developmental stages have to be tightly regulated by changes in gene 

expression pattern to establish a new cellular program. After the fusion of specialized 
differentiated cells, an oocyte and a spermatozoon, the derived zygote has to undergo 

a reprograming event to become a pluripotent embryo. This process is referred to as 
maternal-to-zygotic transition (MZT) and requires the both zygotic genome activation 

(ZGA) and the degradation of maternal products. During early embryogenesis, cellular 
functions are dependent primarily on maternal transcripts and proteins while there is 

little to no transcription of mRNA from the zygotic genome. Subsequently, the newly 
formed zygotic genome begins to be transcribed while mechanisms that destabilize 

and clear the maternal mRNA are activated in a coordinated manner. The proper 

orchestration of maternal mRNA clearance is critical for normal embryogenesis 
(reviewed in Yartseva and Giraldez, 2015). 

 

2.2. LIFE CYCLE OF MRNA IN A NUTSHELL 

The transcription of RNA is executed via DNA-programmed-RNA polymerase. 

The best studied is RNA polymerase II (Pol II) that transcribes protein coding as well 
as some non-coding genes. In principle, Pol II is recruited to a promoter region on DNA 

by transcription factors to form preinitiation complex (PIC). Additional elements often 
required for Pol II recruitment and thus initiation of the transcription are cis-acting 

enhancers, and trans-acing activators and co-activators. Once Pol II is recruited to its 
target gene, it starts scanning the sequence downstream of the promoter to find a 

transcription start site. Shortly after transcription initiates, a protective cap composed 
of 7-methylguanosine is co-transcriptionally deposited onto the 5′-end of the emerging 

transcript. Cap-binding proteins stabilize the emerging mRNA and heterogeneous 
nuclear ribonucleoproteins (hnRNPs) associate with the nascent transcript so that 

splicing, the maturation process that removes introns, can occur during transcription 

elongation or soon after the release of the nascent transcript (Coulon et al., 2014; 
Martin et al., 2013). After Pol II has transcribed the cleavage and polyadenylation 

signal, these regulatory sequences are recognized by factors that cleave the transcript 
at a predefined 3′-site, which is followed by transcription termination. The exposed 3′-

end is further polyadenylated, which in turn stabilizes the mature transcript (reviewed 
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in Neve et al., 2017). A poly(A)-tail containing transcript packaged into an mRNA 

ribonucleoprotein (mRNP) is then exported to the cytoplasm. After export, a repertoire 
of mRNA binding proteins remodels the mRNP to favor the binding of cytoplasmic 

factors, such as eukaryotic initiation factors (eIFs) to start translation (reviewed in 
Muller-McNicoll and Neugebauer, 2013). The dynamic remodeling is thought to 

facilitate the formation of a circular conformation of mRNA held by the interaction of 
eIF4G to both the cap-binding eIF4E and the poly(A)-binding protein (PABP), thus 

forming a bridge between 5′- and 3′-termini (Wells et al., 1998). This circularization is 
proposed to promote the cycling of ribosomes on the mRNA leading to time-efficient 

translation (reviewed in Gallie, 1998). Apart from translation, mRNA-associated 
proteins can influence the rate of mRNA degradation either directly by promoting or 

precluding binding of decay factors or indirectly by influencing the cellular location. 

 

2.3. CYTOPLASMIC MRNA DECAY PATHWAYS 

2.3.1. Bulk decay of mRNAs 

Degradation of mRNAs is a multistep process that requires an orchestrated 
series of enzymatic reactions (reviewed in Garneau et al., 2007). If an mRNA is locked 

in a circular form, then decircularization proceeds removal of protective hallmarks – 
the cap and poly(A)-tail. For most mRNAs, shortening of the poly(A)-tail is thought to 

be the first and rate-limiting step in mRNA decay and requires the consecutive actions 

of the Pan2-Pan3 and Ccr4-Not-Caf1 complexes (reviewed in Chen and Shyu, 2011; 
Funakoshi et al., 2007; Yamashita et al., 2005). The existence of additional 

deadenylases, such as poly(A)-specific ribonuclease PARN, expands the repertoire of 
poly(A)-tail length regulators in eukaryotes (reviewed in Godwin et al., 2013). The 

relative contribution of the deadenylases to overall poly(A)-tail length regulation is not 
entirely clear. Deadenylated transcripts are fed into one of the exonucleolytic 

degradation pathways (Figure 1). Following deadenylation, Lsm1-7-Pat1 complex 
binds to shortened 3′-terminal adenosine extension and recruits the decapping 

enzymes Dcp1-Dcp2 to the 5′-end. As a next step, Dcp1-Dcp2 hydrolyzes the 5′-cap 
structure (Dunckley and Parker, 1999; Lykke-Andersen, 2002; van Dijk et al., 2002). 

Decapping generates a transcript with 5′-monophosphate that serves as a substrate 

for Xrn1 (5′-to-3′ exonuclease), which rapidly degrades the transcript in a processive 
fashion (Chang et al., 2011; Jinek et al., 2011; Stevens, 1980). Currently, Xrn1-
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mediated degradation is believed to be the dominant eukaryotic cytoplasmic decay 

pathway, perhaps through the coupling of Xrn1 to Dcp1-Dcp2 by the scaffold protein 
and enhancer of decapping 4 (Edc4) (reviewed in Chang et al., 2014a; Jones et al., 

2012). On the other hand, the mammalian cytoplasmic exosome complex, including 
the catalytic subunit Dis3-like exonuclease (Dis3l), degrades the mRNA in 3′-to-5′ 

direction upon deadenylation (reviewed in Lykke-Andersen et al., 2011). The activity 
of the exosome in the cytoplasm depends on the presence of a specific activator in 

form of the hetero-tetramer Ski complex (Halbach et al., 2013). Alternatively, Dis3l2 is 
another cytoplasmic exonuclease that acts independently of the exosome and Ski 

complex and degrades RNAs from the 3′-end (Astuti et al., 2012). Following 3′-to-5′ 
decay, the remaining mRNA fragment with its 5′-cap is degraded by scavenger 

decapping enzyme (DcpS). This enzyme is capable of efficiently hydrolyzing capped 

RNA substrate when its length does not exceed 10nt (reviewed in Milac et al., 2014). 
Selection for Dis3l2 pathway is often achieved by the non-templated addition of a 

uridine tract to the 3′-end of a deadenylated mRNA, which provides a binding site for 
Dis3l2 to initiate or even reinitiate the degradation (Chang et al., 2013a; Malecki et al., 

2013). 

Intriguingly, the current model that deadenylation is a prerequisite for bulk 

mRNA degradation has been challenged by several observations. First, an addition of 
non-templated uridine-rich stretches to the 3′-termini of a polyadenylated mRNA alone 

triggers mRNA instability in Schizosaccharomyces pombe (S.p.) (Rissland and 
Norbury, 2009). The uridylation attracts Dis3l2 that is required for such pathway 

activity. Besides Dis3l2, uridylation of poly(A)-tailed transcripts has been proposed to 
render vulnerability to the Xrn1-nucleolytic attack by recruitment of Lsm1-7 heptameric 

complex to uridylated 3′-end (Rissland and Norbury, 2009). Further, the observation 
that Xrn1-mediated decay and Dis3l2-mediated decay probably cooperate in S.p. only 

highlights the apparent complexity of mRNA degradation pathways in eukaryotic cells 
(Malecki et al., 2013). This cooperation is underscored by the interaction of both 

nucleases with one another and with polysomes in human cells, suggesting that 

degradation pathways might be coupled to the ongoing translation. Moreover, high-
throughput sequencing has revealed numerous mRNA targets shared by Dis3l2 and 

Xrn1 indicating cooperation of these two enzymes in RNA catalysis (Lubas et al., 
2013). Altogether, both uridylation and deadenylation may play partially redundant 

roles in triggering RNA degradation, and it remains to be determined whether 
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deadenylation-independent exonuclease attack of poly(A)-tailed mRNAs can operate 

in mammalian cells. 

 

 
 

Figure 1. Overview of major degradation pathways of poly(A)-tailed mRNAs 
(adapted from the review Labno et al., 2016a) 

Step-wise deadenylation is executed by the Pan2-Pan3 and Ccr4-Not complexes. The 
displacement of PABPs releases the circular form of mRNA held by bridging contacts 
between cap-binding eIF4E and eIF4G proteins. The degradation can proceed by 
recruitment of 5′-to-3′ degradation factors after the binding of the Lsm1-7-Pat1 
complex at the 3′-end activating the decapping complex composed of Dcp1-Dcp2. The 
unprotected 5′-end is then degraded by Xrn1. Deadenylated mRNAs that have been 
uridylated by terminal uridyl-transferases (TUTases) are either fed into the Xrn-1 
dependent pathway, or targeted by the 3′-to-5′ exoribonuclease Dis3l2. Degradation 
of deadenylated mRNA can also occur in the 3′-to-5′ direction by the exosome 
complex recruited by Ski complex. 
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2.3.2. Small RNA-mediated mRNA decay 

Transcripts can contain regulatory sequences targeting them for an 
accelerated decay. The regulation of targeted RNA degradation is, in part, ensured by 

highly conserved and widespread post-transcriptional gene silencing (PTGS) through 
microRNAs (miRNAs) or small-interfering RNAs (siRNAs). These small RNAs (sRNAs, 

usually ~22 nt) are loaded onto an Argonaute (Ago) protein to guide the RNA-induced 

silencing complex (RISC) to mRNAs in a sequence-specific manner. The degree of 
sequence complementarity between sRNA and mRNA governs which mode of 

silencing is activated. Perfect or near-perfect complementarity triggers an 
endonucleolytic cleavage of a target mRNA whereas imperfect pairing elicits, 

translational repression often coupled with destabilization by exonucleolytic 
degradation (reviewed in Carthew and Sontheimer, 2009). 

miRNAs are genomically encoded and originate from Pol II-mediated 
transcription of genes, referred to as MIR genes. Transcribed primary (pri)-miRNAs 

are stabilized by a 5′-cap and 3′-poly(A)-tail. Subsequently, the pri-miRNA is trimmed 
into a stem-loop precursor (pre)-miRNA by the RNase III enzyme Drosha operating in 

a complex with the dsRNA-binding protein DiGeorge syndrome critical region 8 
(DGCR8) (Kwon et al., 2016). The pre-miRNA is further processed into a mature 

miRNA duplex by Dicer, another RNase III enzyme, in complex with its cofactors, the 
protein activator of the interferon-induced protein kinase (PACT) and the TAR RNA 

binding protein (TRBP) (reviewed in Carthew and Sontheimer, 2009; Kok et al., 2007). 
Alternatively, non-canonical miRNAs can also originate from precursors called 

mirtrons, arising from introns. This pathway bypasses the Drosha processing 

(Berezikov et al., 2007; Okamura et al., 2007; Ruby et al., 2007). In mammals, mature 
miRNAs are associated with all four Ago proteins (Ago1-4), but only Ago2 displays 

endonuclease activity (Liu et al., 2004; Meister et al., 2004). A single strand, commonly 
referred to as a guide strand, from the duplex miRNA is selected for the incorporation 

into a mature RISC complex. This is governed by the thermodynamic profile of the 
duplex termini (Khvorova et al., 2003; Schwarz et al., 2003). The limited base pairing 

prevents most animal miRNAs from cleaving the target mRNA and, instead, causes 
destabilization of the target transcript by base pairing to its 3′-untranslated region 

(UTR) (Lim et al., 2005; Wu et al., 2006). miRNA-mediated PTGS depends on 
recruitment of GW182 (also known as TNRC6) that in turn specifically binds to the 

Ccr4-Not complex eventually leading to translational repression and/or mRNA 
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deadenylation followed by exonucleolytic decay (Chekulaeva et al., 2011; Liu et al., 

2005). Interestingly, while miRNA-directed cleavage of mRNAs is common in plants, 
there are only a few such examples of animal miRNAs that extensively pair with their 

targets to trigger a cleavage (Xu et al., 2016; Yekta et al., 2004). In mammals, miRNAs 
are predicted to control the activity of ~60% of all protein coding genes (Friedman et 

al., 2009). Although all four vertebrate Ago proteins seem to have overlapping 
functions, the individual capacities and selectivity for various miRNAs remains unclear 

(Su et al., 2009). 

Unlike miRNAs, the origin of siRNAs is generally an exogenous viral RNA. 

Other sources of siRNAs exist, for instance repeat-associated transcripts of 
centromeres and transposons (reviewed in Carthew and Sontheimer, 2009). However, 

members of endogenous class of siRNAs (endo-siRNAs) are generated from intrinsic, 
long, double stranded transcripts (Hamilton et al., 2002; Yang and Kazazian, 2006). 

Biogenesis of siRNAs starts with long double stranded precursor RNAs formed either 
through intramolecular base pairing or by the activities of RNA-dependent RNA 

polymerase (RdRP). Dicer processes the precursors into mature siRNA duplexes. A 
guide siRNA strand is selected that fully matches the sequence of a target mRNA to 

facilitate an endocleavage. Given that only Ago2 displays endonuclease activity, it acts 

as the core effector of siRNAs-mediated PTGS (Figure 2) (Liu et al., 2004; Meister et 
al., 2004). The Ago2 cleavage site on a target RNA is located between 10th and 11th 

nucleotides from the 5′-terminus of the siRNA guide strand (Elbashir et al., 2001). The 
resulting 3′-end cleavage product bears 5′-monophosphate and it is therefore rapidly 

recognized by Xrn1 for rapid degradation. On the other hand, the 5′-end cleavage 
product exposes its 3′-terminus to the activity of exosome and it is degraded in a 

processive manner (Orban and Izaurralde, 2005). A second decay pathway has been 
implicated in the degradation of 5′-end cleavage fragments. The exposed 3′-terminus 

can be extended by the activity of a particular terminal uridylyl-transferase (TUTase) 
that can in turn stimulate Dis3l2-mediate degradation (Shen and Goodman, 2004; 

Ustianenko et al., 2016; Xu et al., 2016). Nevertheless, siRNA can be found associated 

to other paralogs of the Argonaute protein family than Ago2 and have been proposed 
to influence transcriptional gene silencing (TGS) (Janowski et al., 2006; Kim et al., 

2006). siRNAs are commonly used as a means to modulate the expression of a desired 
gene as a laboratory technique, often referred to as RNA intereference (RNAi). RNAi 

is triggered by artificial introduction of siRNA duplexes into cells or by expression of 
short-hairpin RNAs that enter the sRNA biogenesis pathway to become siRNAs. 
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Figure 2. Degradation initiated by endocleavage of poly(A)-tailed mRNAs 
(adapted from the review Labno et al., 2016a) 

Internal cleavage by endonucleases occurs without prior deadenylation or decapping, 
which results in release of fragments with unprotected 3′- and 5′-ends. The fragments 
can be degraded in the 5′-to-3′ direction by Xrn1 and in the 3′-to-5′ direction by the 
exosome complex or by Dis3l2 after non-templated uridylation of the exposed 3′-end. 

 

A third class of small RNAs functioning in TGS (as well as PTGS) are piwi-
interacting RNAs (piRNAs). piRNAs have special biogenesis processes that 
significantly differ from miRNA or siRNA pathways. Piwi proteins belong to a different 

clade of evolutionarily conserved Argonaute family. piRNAs are derived from both 

transposons and genes and are only found in animals (reviewed in Siomi et al., 2011). 
These types of sRNAs are highly enriched in the germline tissues where they silence 

mobile DNA elements, thereby contributing towards genome integrity (reviewed in 
Weick and Miska, 2014). piRNAs were reported to have a specialized function in 

gonads, however, information regarding their presence and role in somatic tissue is 
scarce. 

 

2.3.3. Endonuclease-initiated mRNA decay 

RNA degradation can be initiated by an internal cleavage without prior removal 
of protective 5′-cap and 3′-poly(A)-tail. This is executed by endonucleases that expose 

the unprotected ends of cleaved fragments to exonucleases. Some endonucleases 
have been implicated in processing of various RNA species while other endonucleases 

regulate the stability of selected mRNA targets. The activation of endonucleases is 
often dependent on specific signals such as stress stimuli (reviewed in Tomecki and 
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Dziembowski, 2010). One endonuclease is Ago2, the core factor of RISC, that has 

been described in the previous section. Here, I will focus on other endonucleases that 
modulate the stability of mRNAs. 

The following overview demonstrates the diversity of endonucleases and their 
functions in mRNA decay in eukaryotes. First of all, Smg6 (suppressor with a 
morphogenetic effect on genitalia 6) is an endonuclease effector implicated in a 

surveillance mechanism and can cleave mRNAs near premature termination codons 

(PTCs) during non-sense mediated decay (NMD) (Eberle et al., 2009; Huntzinger et 

al., 2008). Second endonuclease, Ire1 (inositol-requiring enzyme 1), is an endoplasmic 

reticulum (ER) transmembrane protein. In general, proteins translated by ER-bound 
ribosomes are mostly targeted to the ER itself, to other organelles, or destined for 

secretion (reviewed in Bravo et al., 2013). In the case of ER-stress, unfolded proteins 
accumulate in the ER lumen and are sensed by the Ire1 protein. Consequently, Ire1 

gets activated by autophosphorylation and acts as an endonuclease on many of ER-
associated mRNAs to initiate their degradation. This is referred to as regulated Ire1-

dependent decay (RIDD). The increased turnover of ER-bound mRNAs, provides 
lower influx of nascent proteins into the ER lumen and at the same time releases the 

translational machinery for synthesis of proteins that are crucial to response to the 

stress, such as chaperons. Hence, Ire1 helps to restore the balance within the ER 
during the unfolded protein response (UPR), and thus Ire1 contributes to avoiding 

apoptosis (Oikawa et al., 2010; Tirasophon et al., 2000). A third example of an 
endonuclease is Regnase1 (also known as ZC3H12A or MCPIP1) that specifically 

recognizes stem-loop structures present in 3'-UTR of cytokine mRNAs, such as tumor-
necrosis factor α (TNF-α) and interleukin 6 (IL6). However, the cleavage sites have 

been mapped to occur outside of the stem-loop region (Boehm et al., 2016). The 
synthesis of Regnase1 is induced by macrophages and monocytes and has an 

essential role in preventing immune disorders	 (Matsushita et al., 2009; Mino et al., 
2015). Next, Pmr1 (polysomal ribonuclease 1)-mediated mRNA decay depends on the 

binding of Pmr1 to a polysome-bound substrate mRNA (Yang and Schoenberg, 2004). 

Other site-specific nucleases G3BP (Ras-GTPase activating protein SH3 domain-
binding protein) and Ape1 (apurinic/apyrimidinic endonuclease 1) cleave c-Myc 

mRNA, and cleavage of α-globin mRNA is carried out by an erythroid-enriched 
endonuclease (Barnes et al., 2009; Tourriere et al., 2001; Wang and Kiledjian, 2000). 

As part of the body’s innate immune defense, the endonuclease RNaseL can be 
induced in response to viral infection in order to unspecifically degrade RNAs within 
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the cell and thereby limit the synthesis of both viral and cellular proteins (Bisbal and 

Silverman, 2007). In Xenopus laevis, another endonuclease XendoU localizes to ER 
and cleaves the mRNA without any apparent sequence specificity, however, it is 

thought to function in a calcium-dependent manner. Human cells possess a XendoU 
homolog that promotes ER remodeling by inducing the eviction of ribosome together 

with mRNPs from the ER membrane (Schwarz and Blower, 2014). The growing list of 
endoribonucleases with either general or specialized mRNA targeting emphasizes a 

larger role in mRNA metabolism than has been previously anticipated, nevertheless, 
there are still many questions that remain to be answered. 

 

2.3.4. mRNA surveillance mechanisms 

Quality control mechanisms are pathways that prevent erroneous mRNAs from 
serving as templates for translation (reviewed in Garneau et al., 2007). These 

surveillance mechanisms first detect the erroneous mRNA followed by recruitment of 
nucleases that are shared with bulk mRNA degradation. Non-sense mediated decay 

(NMD) is the most understood mRNA surveillance pathway that targets newly 
synthesized mammalian mRNAs bearing a premature termination codon (PTC). The 

PTC is a stop codon positioned upstream of the normal termination codon, and it 
typically induces NMD when spaced by 50 nt or more from the nearest exon junction 

complexes (EJC). In the nucleus, EJCs are deposited ~20-24 nt upstream of exon-

exon junction generated by splicing and transported to the cytoplasm together with the 
mRNA (reviewed in Le Hir et al., 2016). NMD is presumed to act during the pioneer 

round of translation and its task is to eliminate PTC-containing mRNAs in order to 
prevent synthesis of truncated proteins. An essential NMD factor, up-frameshift 1 

(Upf1), interacts with cap binding protein 80 (CBP80) that is, in general, translocated 
with newly synthetized mRNA from nucleus. Through a cascade of protein-protein 

interactions, Upf1 gets phosphorylated and depending on the site of phosphorylation, 
either the Smg6 or Smg5-Smg7 complex is recruited. The endonuclease Smg6, 

already described in the previous paragraph, mediates a cleavage of the NMD target 
followed by Xrn1- and exosome-mediated degradation. In parallel, the pathway 

involving Smg5-Smg7 initiates degradation by deadenylation and/or decapping 

releasing the mRNA body for exonucleolytic cleavage from either site (reviewed in 
Maquat et al., 2010; Nicholson and Muhlemann, 2010). 
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Besides NMD, other quality control mechanisms including no-go decay (NGD) 

and non-stop decay (NSD) ensure fidelity of mRNAs. NGD degrades faulty mRNAs by 
endonucleolytic cleavage near sites where ribosomes have stalled. The responsible 

endonuclease has yet to be identified. Similar to other decay pathways initiated by 
endonucleases, the cleaved mRNA fragments are further degraded by the combined 

actions of exonucleases from either side. On the other hand, NSD functions on mRNAs 
lacking a stop codon, which results in translation proceeding through the poly(A)-tail 

potentially till the very 3′-end. As a result of translation through the poly(A)-tail, the 
ribosome adds a C-terminal poly-lysine tract to the nascent polypeptide. This can 

trigger ribosome stalling and subsequent dissociation due to unfavorable electrostatic 
forces between the positively charged poly-lysine peptide and the negatively charged 

exit tunnel of the ribosome (Ito-Harashima et al., 2007; Lu et al., 2007). Moreover, 

PABPs are likely displaced from poly(A)-tail by the translating ribosome, leading to the 
promotion of decapping and Xrn1-mediated decay. However, recruitment of exosome 

to NSG substrates is not ruled out. Both control mechanisms, NGD and NSD, release 
sequestered ribosomes and other translation factors, which can engage in translation 

of other mRNA (reviewed in Ghosh and Jacobson, 2010). 

	

2.3.5. Regulatory cis-elements 

Additional mRNA decay pathways have also been identified that enable 

regulation of the stability of mRNA molecules bearing specific cis-regulatory elements. 
Among these, the most studied is the AU-rich elements (ARE)-mediated decay. 

Similarly to the vast majority of miRNA sites, many AREs are found in 3′-UTRs of 
transcripts. The ARE-containing transcriptome encodes for proto-oncogenes (for 

example, c-Fos) and inflammatory mediators (for example, TNFα, IL1, IL2, IL3, 
granulocyte macrophage colony-stimulating factor (GMCSF)). In combination with 

their cognate binding proteins (BPs), AREs have important physiological and 
pathological functions. In general, ARE-BPs (for instance, tristetraprolin (TTP), 

butyrate response factor 1 and 2 (BRF1 and BRF2, respectively), KH-type splicing 

regulatory protein (KSRP) and AU-rich binding factor 1 (AUF1)) function as adaptor 
proteins to recruit the degradation machinery to the target mRNA. Association and 

dissociation of the adaptor protein to the AREs is regulated by their phosphorylation 
state (Briata et al., 2005; Clement et al., 2011; Mahtani et al., 2001; Schmidlin et al., 
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2004; Wilson et al., 2003). The decay of ARE-containing mRNAs begins with poly(A)-

tail shortening and the mRNA body is subsequently targeted for decay by both the 5′-
to-3′ and 3′-to-5′ decay machineries (Murray and Schoenberg, 2007; Yamashita et al., 

2005). However, the factors of the 5′-to-3′ decay machinery, Xrn1 and Lsm1, were 
shown to be essential for ARE-mediated decay (AMD) (Stoecklin et al., 2006). 

Importantly, ARE-BPs can also have a stabilizing effect. Another protein binding AREs, 
named human antigen R (HuR), counteracts the effect of the destabilizing ARE-BPs 

by competing for the binding sites, and thus promotes mRNA stability (Brennan and 
Steitz, 2001). Phosphorylation status not only modulates the affinity of ARE-BPs to 

mRNAs but also their nucleocytoplasmic shuttling presumably both in unbound and 
mRNA-bound forms (Brook et al., 2006; Lee et al., 2011). Phosphorylation at different 

sites of HuR controls its subcellular distribution depending on the cell-cycle stage. HuR 

is retained in the nucleus at late G2 phase by cyclin-dependent kinase 1 (Cdk1) 
phosphorylation and HuR regulates stability of the cyclin mRNAs (Kim et al., 2008). In 

contrast, phosphorylation at other sites can promote the translocation of HuR into 
cytoplasm (Doller et al., 2008; Doller et al., 2007; Lafarga et al., 2009).	

The second most studied cis-regulatory elements that induce instability of 
mRNA are GU-rich elements (GREs). These regulatory elements are enriched in the 

3'-UTR of human transcripts that exhibit rapid mRNA turnover (reviewed in Vlasova-St 
Louis and Bohjanen, 2011). GREs confer affinity to CUG-binding protein 1 (CUGBP1), 

which mediates subsequent transcript deadenylation by recruiting PARN deadenylase 
and thus degradation (Moraes et al., 2006; Vlasova et al., 2008). 

In Drosophila, degradation pathways for mRNA clearance of maternal 
transcripts during the MZT have been extensively studied. One of the characterized 
decay pathways for a large subset of maternal mRNAs depends on a conserved 

protein called Smaug that recognizes a stem-loop structure within these mRNAs and 

recruits the Ccr4-Not complex to initiate poly(A)-tail shortening and subsequent mRNA 
elimination (Tadros et al., 2007). Interestingly, the majority of stem-loop structures with 

affinity to Smaug can be found within coding regions, and only some occur in 3′-UTRs 
as revealed by a transcriptome-wide mapping (Chen et al., 2014a).  

A specialized degradation pathway is elicited by Staufen1 (Stau1) on mRNAs 
that harbor Stau1-binding site within their 3′-UTR. Stau1-mediated mRNA decay 

(SMD) is also dependent on a direct interaction of Stau1 with the key NMD factor Upf1, 
and the downstream series of events seems to be analogous to NMD (reviewed in 
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Park and Maquat, 2013). Stau1 thus competes for Upf1 binding with other proteins 

including other NMD factors. 

Specific stem-loop sequence, referred to as the iron-responsive element (IRE), 
is found in the transferrin receptor mRNA, ferritin mRNA, and other mRNAs whose 

products are involved in iron homeostasis in animal cells. In cooperation with trans-
acting iron regulatory proteins (IRPs), cis-acting IRE is responsible for the control of 

translation initiation or mRNA stability. The mRNA of ferritin (an iron storage protein) 
contains one IRE in its 5′-UTR. When iron concentration is low, IRPs bind the IRE in 

the ferritin mRNA reducing its translation. In contrast, binding of IRPs to multiple IREs 

in the 3′-UTR of the transferrin receptor (involved in iron acquisition) leads to 
increased mRNA stability by preventing endocleavage within the stem-loops sequence 

of IREs and subsequent degradation (reviewed in Muckenthaler et al., 2017). 

 

2.3.6. Decay of replication-dependent histone mRNAs 

An exceptional case is the cell-cycle-regulated decay of replication-dependent 

histone mRNAs. The degradation rate of these histone mRNAs peaks at the end of S 
phase, which demonstrates the coordination of histone protein synthesis with DNA 

replication. This unique post-transcriptional regulation is possible owing to the specific 
architecture of histone mRNAs, including the presence of a conserved stem-loop (SL) 

instead of poly(A)-tail. The 3′-end positioned element can be bound by a specific SL 
binding protein (SLBP) and by the Eri1 exoribonuclease (reviewed in Marzluff et al., 

2008; Tan et al., 2013). Initiation of degradation is achieved by the interaction of SLBP 
with TUTase-4 or TUTase-7 which add an oligo(U)-tail to the 3′-terminus, thereby 

recruiting the Lsm1-7 complex (Lackey et al., 2016; Mullen and Marzluff, 2008; 
Schmidt et al., 2011). Upon Lsm1-7 binding, decapping and subsequent Xrn1-

mediated decay (3′-to-5′) and/or 3′-to-5′ decay by Eri1 in cooperation with exosome 

occur. It has been suggested that the 3′-to-5′ decay directionality dominates, and thus 
the degradation occurs in a biphasic mode. First, repetitive rounds of Eri1-mediated 

decay and TUTase-dependent uridylation allow for SL removal (Hoefig et al., 2013). 
The second degradation step is executed by the exosome complex (Mullen and 

Marzluff, 2008). At the end of S phase, when histone mRNA translation terminates, the 
stem-loop bound SLBP interacts with Upf1 suggesting recruitment of other NMD 

factors as well (Kaygun and Marzluff, 2005). Although the molecular mechanism how 
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Upf1 facilitates the histone mRNA degradation in not known, researchers suggested 

that the helicase activity of Upf1 opens the SL structure enabling faster exonucleolytic 
attack from the 3′-end (Hoefig et al., 2013). Recently, even Dis3l2 was shown to play 

a role in decay of replication-dependent histone mRNAs (Labno et al., 2016b; Lubas 
et al., 2013). How the multiple degradative enzymes work in concert to degrade histone 

mRNA timely requires further investigation. 

 

2.3. COMPARTMENTALIZATION OF CYTOPLASMIC MRNA DECAY EVENTS 

2.3.1. Processing bodies 

Many subcellular locations have a specialized function. However, it is not well 
established how cytoplasmic granules or organelles are implicated in RNA 

degradation. Membraneless cytoplasmic compartments, termed processing bodies 
(PBs), were discovered as Xrn1-containing foci in a mouse fibroblast cell line 

(Bashkirov et al., 1997). Their size ranges from 100nm to 300nm in diameter. Besides 
Xrn1, these cytoplasmic foci also accumulate mRNA decapping factors, 

deadenylases, Ago proteins, GW182, mRNAs, miRNAs, NMD and AMD factors, and 
others, suggesting their coordinated action (Figure 3). Moreover, the cytoplasmic 

exosome complex as well as its adaptor Ski complex are excluded from PBs. This 
indicates that PBs principally concentrate players of the 5′-to-3′ degradation 

machinery. Interestingly, PBs lack most of the translation factors including eIF4A and 

PABPs, however, still contain the cap binding eIF4E. The absence of many 
translational factors indicates that these have to dissociate from mRNPs before or 

immediately after they enter or aggregate to form PBs. In correlation with this, mRNAs 
that localize to PBs are translationally silenced (reviewed in Kulkarni et al., 2010). 
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Figure 3. Features and composition of processing bodies (reviewed in Kulkarni 
et al., 2010) 

A) Components of PBs, Xrn1 in red and Hedls (also known as Edc4) in green, 
visualized by immunofluorescence staining in African green monkey COS7 kidney 
cells. B) Schematic representation of mRNPs assembled into a PB. C) PBs contain 
translationally silenced mRNAs that may bear cis-elements in form of a miRNA site, a 
PTC, or an ARE. Protein factors involved in recognizing PTCs (Upf and Smg), factors 
associated with miRNAs (Ago and GW182) or bound to AREs (TTP, BRF) also localize 
to PBs. Furthermore, PBs harbor deadenylase complexes (Pan2-Pan3, Ccr4-Not-
Caf1), the decapping enzyme Dcp2 together with its activators (Dcp1, Rck, Hedls, 
Edc3 and Pat1) as well as the 5′-to-3′ exonuclease Xrn1 that is associated with the 
Lsm1–7 complex. 

 

There is a long-standing debate over the role of PBs; whether they only store 
the repressed mRNAs, particularly during cellular stresses, or if they also contribute to 

mRNA degradation. Owing to the absence of PABPs from PBs and the presence of 
enzymes involved in deadenylation, researchers have assumed that the mRNAs 

localized to PBs have only short poly(A)-tail, if any (Kedersha et al., 2005). Indeed, 

oligo-(dT) probe visualized poly(A)-containing mRNAs residing in PBs only upon Xrn1 
depletion (Aizer et al., 2014; Cougot et al., 2004). Moreover, microscopically visible 

PBs disappear when deadenylation is blocked supporting the notion that 
deadenylation is a prerequisite for PB formation (Cougot et al., 2004; Sheth and 

Parker, 2003; Zheng et al., 2008). Since the degradation processes are functional in 
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cells with disrupted PBs and since the inhibition of miRNA biogenesis causes 

disappearance of PBs, the formation of microscopically detectable PBs has been 
proposed to be a consequence, not the cause, of mRNA degradation including miRNA-

mediated gene silencing (Eulalio et al., 2007; Stalder and Muhlemann, 2009). On the 
other hand, PBs are more prominent when Xrn1 or Dcp2 is deleted and mRNAs 

accumulate to higher extend suggesting inhibited degradation of accumulated mRNAs 
(Cougot et al., 2004; Eulalio et al., 2007; Sheth and Parker, 2003). In addition, mRNA 

decay intermediates have been trapped in yeast PBs proposing possible regulation of 
mRNA degradation in these compact cytoplasmic environments (Sheth and Parker, 

2003). Quantitative analysis of fluorescently tagged mRNA reporters during amino acid 
starvation proposed a dual role of PBs – mRNA degradation and storage (Aizer et al., 

2014). However, direct evidence for PBs as decay factories in mammals has not yet 

been presented and the high concentration of degradation enzymes in particular spots 
does not necessarily suggest their local activity. 

PBs are highly dynamic spherical structures. The number and size of visible 
PBs varies depending on the translational activity of a cell, which may be compromised 
by various cellular stresses (Brengues et al., 2005; Teixeira et al., 2005). In addition, 

PBs number and size changes throughout the cell cycle with enlarged and more 

abundant PBs in late S and G2 phases. But these foci disappear in mitotic phase 
(Eystathioy et al., 2002; Sivan et al., 2007; Yang et al., 2004). Although Xrn1 is found 

concentrated in discrete PBs, it is also found concurrently throughout the cytoplasm. 
This, along with a recent finding of the co-translational degradation of mRNAs, 

correlates with the notion that PBs are dispensable for mRNA degradation (Eulalio et 
al., 2007; Pelechano et al., 2015; Stalder and Muhlemann, 2009). Nevertheless, it is 

challenging to rule out a possible existence of submicroscopic PBs that would provide 
increased local concentration of degradative factors and potential mini-factories for 

mRNA degradation. 

 

2.3.2. Stress granules 

Another microscopically detectable cytoplasmic aggregates, stress granules 

(SGs), were first observed in the cytoplasm of tomato cells (Nover et al., 1989). Similar 
to PBs, SGs are not constricted by a membrane and accumulate translationally 

repressed mRNAs. In addition, mitotic cells are unable to assemble SGs when 
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ribosomes are stalled on the mRNAs (Sivan et al., 2007). In contrast to PBs, SGs are 

often larger (up to microns in diameter) amorphous structures appearing only in 
response to translational arrest (such as stress) and they dissolve completely when 

translation is restored. Non-translating mRNAs within SGs are bound by the 40S 
ribosomal subunit and translation initiation factors. Furthermore, SGs harbor G3BP 

and PABPs, the latter suggesting poly(A)-tail integrity of recruited mRNAs (reviewed 
in Anderson and Kedersha, 2008). 

 

2.3.3. Processing bodies docking to stress granules 

Both of the dynamic structures, PBs and SGs, share non-translating mRNAs 
together with multiple protein factors (for instance Xrn1, HuR, eIF4E, TTP, BRF1, 

cytoplasmic polyadenylation element-binding protein 1 (CPEB1), RISC components, 
T-cell internal antigen-1 (TIA-1) and TIA-1-related (TIAR)) and are frequently located 

adjacent to each other, indicating a possible cargo exchange (Kedersha et al., 2005; 
Wilczynska et al., 2005). Intriguingly, PBs and SGs are formed independently in 

mammalian cells since abrogation of one does not restrain assembly of the other 
(Kedersha et al., 2005; Serman et al., 2007). Physically connected to surrounding 

cytoplasm, PBs and SGs have no membrane to preclude flux of molecules in and out. 
Indeed, mRNAs can exit both PBs and SGs and assemble into polysomes to re-

engage in translation (Bhattacharyya et al., 2006; Brengues et al., 2005). It remains to 

be determined whether mRNPs can move from PBs to SGs, from SGs to PBs or in 
both directions as their tethering indicates. A sorting model, called mRNA triage, has 

been proposed wherein translationally stalled mRNAs assemble with other factors to 
form SGs. From SGs, mRNPs are sorted to reinitiate translation in cytosol, to be stored 

in SGs, or to be transferred into PBs for potential degradation (reviewed in Anderson 
and Kedersha, 2008). 

Commonly, environmental stresses are sensed by cellular kinases and results 
in eIF2α phosphorylation leading to cap-dependent translation inhibition followed by 

polysome disassembly (reviewed in Anderson and Kedersha, 2008). The translational 
arrest is potentially selective as a study focused on ER stress on a global level showed 

that translation of 25% of mRNAs was significantly suppressed, while translation of 
another 25% of mRNAs was significantly enhanced (Kawai et al., 2004). During stress 

conditions, proteins necessary for stress adaptation, such as heat-shock protein 70 
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and 90 (Hsp70 and Hsp90, respectively) are preferentially synthetized, while many 

other RNAs are selectively recruited to SGs for translational arrest in order to conserve 
limited resources (e.g. many mRNAs coding for housekeeping proteins) (Kedersha 

and Anderson, 2002; Stohr et al., 2006). Up to 20% of total cellular mRNAs are 
represented by transcripts with several nucleotides long 5′-terminal oligopyrimidine 

motif (5′-TOP) within a context of unstructured 5′-UTR. This CU-rich motif is found in 
vast majority of transcripts encoding components of translational machinery and 

housekeeping genes, referring to their collective regulation (reviewed in Hamilton et 
al., 2006). Upon amino acid starvation, translational regulation of 5′-TOP-containing 

mRNAs has been shown to be dependent on TIA-1 and TIAR, factors promoting 
nucleation of SGs (Damgaard and Lykke-Andersen, 2011). However, transcripts 

containing 5′-TOP tract were shown to localize also into PBs during arsenite stress 

(Halstead et al., 2015). Stress-induced stabilization is particularly evident for ARE-
containing mRNAs, where the accumulation of HuR in stress granules and PBs is 

proposed to protect these transcripts by displacing destabilizing ARE-BPs (reviewed 
in von Roretz et al., 2011). The link between both compartments appears to be a part 

of the integrated stress response enabling to survive adverse environmental conditions 
by, at least, selectively regulating the protein expression. It is of high importance to 

reveal the underlying regulations in order to describe the functional link between 
mRNA degradation, storage, and translation in response to environmental cues. 

Condensation of mRNPs can be driven by a phenomenon known as liquid-
liquid phase transition (reviewed in Banani et al., 2017). The potential of some mRNPs 

to assemble into PBs and SGs is partly provided by prion-like self-interacting domains, 
often present in aggregates-associated proteins. Thus the formation of small 

aggregates could serve as a platform for assembly of bigger structures as it was 
suggested for PB-nucleation initiated by Edc3, Pat1 and Lsm4 proteins (Decker et al., 

2007; Mazzoni et al., 2007; Pilkington and Parker, 2008; Reijns et al., 2008). One 
possible mechanism of SG-assembly is through the self-aggregation of prion-like 

domains in the RNA binding proteins TIA-1 and TIAR (Gilks et al., 2004). Live imaging 

experiments showed association of PBs to cytoskeleton, which may affect the 
localization of the aggregates. Rather stationary PBs were associated with actin 

bundles, whereas others displaying mobility were connected to microtubules (Aizer et 
al., 2008; Gallina et al., 2013; Sweet et al., 2011). It is still an open question if PBs with 

different motilities could function differently. SGs are less mobile than PBs, yet they 
constantly change shape, fuse or divide (Kedersha et al., 2005). The dynamics of both 
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membraneless entities, PBs and SGs, were proposed to be partly governed by dynein 

and kinesin, the motor proteins traversing along microtubules (Loschi et al., 2009). 
Although the role of the cytoskeleton in assembly and movement of PBs and SGs 

remains poorly understood, it may be responsible for bringing these two compartments 
into proximity to cooperate and exchange mRNAs destined for storage or degradation 

and exchange the cargo.  

 

2.3.4. Endoplasmic reticulum 

PBs were first implicated as sites of post-transcriptional RNA silencing due to 

presence of target mRNA, miRNA and Ago proteins in these foci (Jagannath and 
Wood, 2009; Jakymiw et al., 2005; Liu et al., 2005; Pillai et al., 2005). Nevertheless, 

subsequent examinations found microscopically visible PBs to be dispensable for 
miRNA-mediated gene silencing, raising the notion that the localization of the RNA 

silencing machinery and target mRNAs to PBs is rather a consequence than the cause 
of RNA silencing activity (Chu and Rana, 2006; Eulalio et al., 2007). More recently, 

emerging evidence revealed connection between sRNA-mediated gene silencing and 
rough endoplasmic reticulum (rER) (Barman and Bhattacharyya, 2015; Li et al., 2013a; 

Sahoo et al., 2017; Stalder et al., 2013; Wu et al., 2013). Extensive subcellular 
fractionation showed that miRNA- and siRNA-loaded human Ago2 population co-

sediments on the ER membrane together with the triad of RISC-factors: Dicer, PACT, 

TRBP (Haase et al., 2005; Kok et al., 2007; Stalder et al., 2013). It is PACT and TRBP 
that anchors RISC to outer ER membrane in an RNA-independent manner. Stalder et 

al. has proposed that loading of miRNA and siRNA into RISC, encounter of the target 
mRNA, and Ago2-mediated slicing are nucleated at the rER. Furthermore, nucleation 

of RISC loading and mRNA slicing at the ER membrane is not qualitatively essential 
but physiologically important for the kinetics and efficacy of this process (Stalder et al., 

2013). 

Continuous with the outer layer of the nuclear envelope, the rER compartment 

constantly binds and releases ribosomes from its membrane, creating the dotted 
pattern on its surface. Towards cell periphery, ER changes its character from 

membranous sheets of rER to tubular structure of smooth ER lacking ribosomes. The 
classic view holds that mRNAs encoding cytosolic or nucleoplasmic proteins are 

translated on cytosolic ribosomes, whereas mRNAs encoding secretory or membrane 
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proteins are translated on the rER. This view is under reconsideration as recent 

observations suggest that rER may serve for translation of broad range of mRNAs 
(Chen et al., 2011; Lerner et al., 2003; Pyhtila et al., 2008; Reid and Nicchitta, 2012). 

In addition to the ER-anchored Ire1 endonuclease that is activated upon ER-stress 
(described in 2.1.3.), the spatial coincidence of functional RISC complexes and 

translation machineries suggests that translation and degradation of mRNA may 
generally function in concert at the rER. 

 

2.4. NUCLEAR RNA DECAY 

While most of the mRNA degradation machineries reside in the cytoplasm, 
there are also nuclear RNA degradation pathways. In the nucleus, Xrn1-related 

exonuclease, Xrn2, is involved in the processive degradation of nuclear RNAs as well 
as ribosomal RNA maturation, transcriptional termination and quality control of mRNA 

capping (Fang et al., 2005; Jiao et al., 2010; Kim et al., 2004; Miki et al., 2017; West 
et al., 2004). As opposed to nuclear localization of Xrn2, Xrn1 has typically been 

assumed to localize exclusively to the cytoplasm. Interestingly, recent investigations 
in yeasts suggest that Xrn1 shuttles to the nucleus assembled in complexes with other 

factors and show that disruption of Xrn1 catalytic activity compromises transcription 

(Haimovich et al., 2013; Medina et al., 2014). However, the exact role of Xrn1 in the 
nucleus remains to be determined. 

One dominant protein complex implicated in accurate processing of nuclear 
RNA precursors, in nuclear turnover of aberrant RNAs and products of pervasive 
transcription is the nuclear form of exosome complex. Furthermore, nuclear exosome 

is also implicated in control of expression levels of some mRNAs. In contrast to 
cytoplasmic exosome complex containing the exonuclease Dis3l besides the core 9 

subunits, the nucleoplasmic exosome complex contains catalytic units in form of Dis3 

and Rrp6 proteins. Given the plethora of exosome substrates in the nucleus, many 
cofactors were identified to bring the exosome to different classes of substrates 

(reviewed in Chlebowski et al., 2013). 

Besides cytoplasmic function in PTGS, it is becoming evident that sRNAs also 
have specific nuclear functions and have been proposed to play a role in transcriptional 

gene silencing (TGS) or in transcriptional gene activation (TGA) in mammalian cells 
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(reviewed in Catalanotto et al., 2016). Western blots of nuclear fractions and 

immunostaining have revealed the presence of Ago proteins, Dicer, TRBP, and 
TNRC6 in cell nuclei, where they combine to form multiprotein complexes (Gagnon et 

al., 2014; Nishi et al., 2013; Ohrt et al., 2008; Rudel et al., 2008; Weinmann et al., 
2009). In parallel, miRNAs have been detected in the nuclear compartment through 

microarray analysis and sRNA deep sequencing of nuclear extracts (Gagnon et al., 
2014; Jeffries et al., 2011; Liao et al., 2010). Gagnon and coworkers found that the 

nuclear Ago2 programmed with exogenous siRNAs retains its catalytic activity and is 
able to cleave a nuclear long noncoding RNA, metastasis-associated lung 

adenocarcinoma transcript 1 (MALAT1), inducing its degradation. Surprisingly, RISC-
loading and maturation factors, for instance Hsp90, Translin, TRAX, were found to be 

excluded from nucleus (Gagnon et al., 2014). The current hypothesis is that the sRNA-

Ago2 assembly occurs outside the nucleus, where some critical loading factors are 
present. Once established, the minimal RISC may subsequently be imported into the 

nucleus. However, it still remains elusive if these sRNA-associated protein complexes 
play a role in mRNA degradation in the nucleus mimicking their cytoplasmic function. 

Altogether, the nuclear envelope allows more molecules than previously 
anticipated to localize back to the nucleus. This blurs the dogmatic view on 

compartmentalized gene expression regulation in eukaryotes and opens new 
possibilities to unravel the complicated molecular network behind the fundamental 

cellular processes. 

 

2.5. MODULATION OF MRNA STABILITY BY OTHER ASPECTS 

There are several other important aspects of mRNA stability modulation. 
Among them, alternative polyadenylation and signaling pathways are well-established 

topics, whereas the impact of mRNA methylation on its stability has emerged only 
recently. Most of human precursors of mRNAs feature multiple cleavage and 

polyadenylation signal sequences in their 3′-UTR. These signals provide a means to 
vary the 3′-end of mature mRNAs. As most of the cis-acting elements that regulate 

mRNA half-life are situated within 3′-UTRs, an mRNA containing shorter 3′-UTR is 
less likely to possess one or more of these elements when compared to its isoform 

with a longer 3′-UTR (reviewed in Elkon et al., 2013). Thus, the alternative 
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polyadenylation contributes to the complexity of transcriptome by creating isoforms of 

different vulnerability to stability regulators. 

A list of stimuli eliciting signaling pathways that regulate mRNA stability is 
expanding. Cellular signaling networks are important for rapid response to external 

stimuli (UV radiation, heat shock, hypoxia, nutrient deprivation, oxidative stress) and 
intrinsic factors (cytokines, growth factors, cellular stress mediators, hormones) to 

trigger post-translational modifications (PTMs) of RNA-binding proteins by 
phosphorylation, ubiquitination, methylation, acetylation etc. These modifications are 

essential for either changes in general abundance of RNA-binding proteins, or 

changes of their binding properties. Thus, rapid remodeling of dynamic RNPs changes 
the regulation of mRNA turnover and translation. The examples of prominent signaling 

cascades are: p38 mitogen-activated protein kinase (MAPK), which regulates 
phosphorylation of e.g. TTP; c-Jun N-terminal kinase (JNK); extracellular signal-

regulated kinases (ERK); AMP-activated kinase (AMPK); mammalian target of 
rapamycin (mTOR) (reviewed in Thapar and Denmon, 2013). Other kinase pathways 

phosphorylate eIF2α. These are protein kinase R (PKR), which responds to viral 
infection, PKR-like endoplasmic reticulum kinase (PERK) is triggered by ER-stress, 

general control nonderepressible 2 (GCN2) kinase is activated upon amino acid 

starvation, and heme-regulated initiation factor 2α kinase (HRI) senses oxidative 
stress by arsenite (Barber, 2005; Damgaard and Lykke-Andersen, 2011; Harding et 

al., 2000; McEwen et al., 2005). One of the fundamental biological questions that 
needs to be answered in detail is how the gene expression is regulated in response to 

extrinsic stresses and what are the molecular factors that play a role in these signaling 
pathways. 

Besides modifications of RNA binding proteins, mRNA itself can be modified 
post-transcriptionally. The fate of an mRNA can be modulated by depositing an N6-

methyl group onto an adenosine (m6A), which turned out to be the most abundant 
modification in eukaryotic mRNAs and long non-coding RNAs (Liu and Pan, 2016). 

This reversible modification is typically enriched in long exons, near stop codons, and 
in the 3′-UTR (Dominissini et al., 2012; Meyer et al., 2012). As 3′-UTR is rich in cis-

regulatory elements, this hints that sequence methylation might have an impact on 
mRNA stability. Despite the identification of several components of this system, 

including methyltransferases (called “writers), demethylases (referred to as “erasers”), 
and m6A interacting proteins (“readers”), the mechanisms by which methylation 
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regulates mRNA functions are currently being extensively studied (reviewed in Meyer 

and Jaffrey, 2014). 

	

2.6. MRNA DECAY-TRANSCRIPTION FEEDBACK LOOP 

Emerging evidence is changing researcher’s view on the central dogma of 
molecular biology as a compartmentalized one-directional process. The recent 

findings favor a model where all eukaryotic cellular processes do not happen in 
isolation but rather are integrated in a circular gene expression system. In addition, the 

nuclear envelope appears permeable for decay factors in both directions. 

Xrn1 has been recently implicated as a key factor in mediating the buffering 
between the rates of transcription and mRNA decay in order to maintain appropriate 

levels of gene expression in yeast (Bregman et al., 2011; Haimovich et al., 2013; 

Medina et al., 2014; Sun et al., 2013; Trcek et al., 2011). Different mechanistic 
explanations of how Xrn1 contributes to buffering of mRNA levels were provided. One 

report suggests that downregulation of mRNA degradation triggers the expression of 
transcription repressor Nrg1 that subsequently downregulates mRNA synthesis, while 

the second report implies that decay factors associate with chromatin and affects 
transcription initiation and elongation (Haimovich et al., 2013; Sun et al., 2013). 

Conversely, reduced mRNA synthesis leads to decreased rates of mRNA turnover 
(Sun et al., 2013; Sun et al., 2012). Shown by Haimovich et al., Xrn1 shuttles between 

nucleus and cytoplasm, which is in line with its proposed dual function, in synthesis 
and degradation (Haimovich et al., 2013). Subsequently, it was shown that Xrn1 

enhances transcription rate with a bias towards the most actively transcribed genes, 

including components of translation machinery (Medina et al., 2014). Further research 
is needed to clarify how the interconnection between the decay and transcription is 

mediated and to determine if such coupling of RNA synthesis-degradation occurs in 
higher eukaryotes. 

Herpesvirus-encoded endonuclease, called SOX, degrades mammalian host 
mRNAs in cytoplasm, which is sensed by cell and triggers a feedback mechanism in 

the nucleus by repressing RNA PoI II-transcription of cellular genes but not viral genes. 
Intriguingly, Xrn1 catalytic activity is required for this transcriptional feedback 

(Abernathy et al., 2015). This is in parallel to findings in yeast indicating that Xrn1-
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linked transcriptional regulation is a conserved feature. Noteworthy, rotavirus infection 

forces exonuclease Xrn1 along with the decapping enzyme Dcp1a to relocalize from 
cytoplasm to nucleus perhaps as a consequence of PB disruption (Bhowmick et al., 

2015). The precise function of Xrn1 in the mutual feedback between mRNA synthesis 
and degradation, however, still remains elusive. 

 

2.7. COUPLING MRNA DECAY AND TRANSLATION 

Discovery of the interaction between the PABP and the eIF4F complex led to 

the hypothesis that the circular conformation of mRNA promotes translation. In 
addition, it was also thought to contribute towards mRNA stability by restricting access 

of the free ends to exonucleases. Altogether, this led to the idea that translation and 
degradation might be spatio-temporally uncoupled. However, several lines of evidence 

indicate that mRNA degradation is intimately coupled to translation. First, multiple 
mRNA quality control pathways depend on ongoing translation (reviewed in Garneau 

et al., 2007). The next connection between mRNA decay rates and active translation 
is reflected by the observation that the codon content of the transcript has some impact 

on how quickly it is degraded. It has been found recently that mRNAs comprising 

optimal codons have long half-lives. Optimal codons can be decoded by the ribosome 
more efficiently due to optimal abundance of a particular charged tRNA, and thus are 

translated faster. On the other hand, transcripts composed of suboptimal codons, 
undergoing slower translation, are significantly less stable (Presnyak et al., 2015). 

Recently, in yeast, Dhh1 was identified as the sensor of translation elongation rate and 
couples translation to mRNA decay. Messages containing suboptimal codons 

associate with higher number of Dhh1 proteins causing destabilization of the mRNAs 
(Radhakrishnan et al., 2016). This phenomenon has been demonstrated so far in 

yeast, but whether such a mechanism for fine-tuning gene expression exists in higher 
eukaryotes is yet to be determined. Mammalian Dhh1 homolog, Ddx6, was shown to 

interact with Ccr4-Not complex, which may potentially recruit downstream degradation 

effector proteins (Chen et al., 2014b; Mathys et al., 2014; Ozgur et al., 2015). 
Ribosome pausing on poly(A)-stretches during translation that may lead to accelerated 

mRNA degradation has been also shown in both invertebrate and vertebrate cells 
(Arthur et al., 2015). Lastly, another yeast study based on a genome-wide sequencing, 

which identifies 5′-monophosphorylated molecules that are mRNA degradation 
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intermediates in vivo, revealed that degradation by Xrn1 followed last translating 

ribosome as seen by characteristic 3-nucleotide periodicity in sequenced coding 
regions. This footprint is a result of general co-translational 5′-to-3′ mRNA degradation 

pathway suggesting that the ribosomes do not have to dissociate from an mRNA 
before the degradation is initiated (Pelechano et al., 2015). 

Another link between degradation and translation can be seen due to the 
existence of PBs and SGs, which can be physically connected to each other and 
potentially exchange non-translating transcripts in-between these two entities. 

Moreover, SGs contain many translation factors that PBs lack. On the contrary, 

multiple degradation factors reside in PBs, but most of them are present in SGs as 
well, including Xrn1 (reviewed in Decker and Parker, 2012). 

 

2.8. THE PIVOTAL EXORIBONUCLEASE XRN1 

Much of the known molecular underpinnings of Xrn1-mediated decay come 

from studies in the yeast Saccharomyces cerevisiae (S.c.). Orthologs of Xrn1 have 
been identified in most key model organisms as well as in humans. Studies using 

higher eukaryotes have enhanced our current understanding of molecular 
mechanisms and biological roles of Xrn1 in multicellular organisms. The majority of the 

cytoplasmic decay mechanisms involve Xrn1 activity in cooperation with its interacting 
partners as described in the previous sections. 

The first crystal structure of the multi-domain Xrn1 enzyme comes from yeast 
Kluyveromyces lactis (Chang et al., 2011). Concurrently, the mechanism of action of 

the Xrn1 enzyme was strongly supported by the crystal structure of Drosophila 
melanogaster Xrn1 in complex with an RNA substrate (Jinek et al., 2011). This crystal 

structure elucidated the molecular mechanism of the exclusive recognition of 5′-
monophosphate by Xrn1, and thus the processive manner of Xrn1-mediated RNA 

degradation. Xrn1 binds the 5′-terminal trinucleotide of a substrate and by processive 
translocation by one nucleotide it releases nucleoside monophosphate. Furthermore, 

Xrn1 requires initial recognition of a single-stranded 5′-overhangs in order to degrade 
structured RNAs. The capability of melting an RNA substrate containing secondary 

structures is ATP-independent. Of note, the catalytic mechanism of Xrn1 requires 
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divalent cations as shown by biochemical assays and coordination of Mg2+ by Xrn1 

residues at the active site (Jinek et al., 2011). 

 

2.9. XRN1-ASSOCIATED DISEASES 

Although the molecular mechanism of Xrn1-mediated RNA degradation has 

been well dissected, less is known about its specific role in cellular processes 

underlying human diseases. The relationship of evolutionarily highly conserved Xrn1 
and pathogenesis can be derived from phenotypes seen in model organisms. Xrn1 

deletion causes growth and sporulation defects, and impaired DNA recombination in 
S.c (reviewed in Jones et al., 2012). In favor of the notion that the Xrn1-mediated decay 

pathway prevails in cytoplasm is the genome-wide increase of mRNA stability upon 
deletion of Xrn1 (Haimovich et al., 2013; Sun et al., 2013). The fact that Xrn1 is not 

entirely indispensable for yeast cells points towards redundant activities of different 
mRNA decay pathways operating in the cytoplasm. In eukaryotic multicellular 

organisms, homologues of Xrn1 are involved in developmental processes and have 
been shown to be key controllers in apoptosis (Jones et al., 2016; Newbury and 

Woollard, 2004; Waldron et al., 2015). Other decay mechanisms are not capable of 

fully compensating for the loss of Xrn1 in Ceanorhabditis elegans as RNAi-mediated 
knockdown in this organism leads to embryonic lethality (Newbury and Woollard, 

2004). In line with this, Xrn1 null mutants in Drosophila melanogaster die during early 
development (Jones et al., 2016). Furthermore, the Xrn1 homolog in Drosophila has 

been shown to be required for male fertility (Zabolotskaya et al., 2008). Finally, 
reduced Xrn1 mRNA level has been measured in osteosarcoma cell lines as well as 

samples from patients suffering from this form of bone tumor implying that lower levels 
of Xrn1 lead to increased cell proliferation (Zhang et al., 2002). A cell line derived from 

human lung carcinoma (A549) with CRISPR (clustered regularly interspaced short 
palindromic repeat)/Cas9 (CRISPR-associated)-mediated Xrn1 knockout was viable 

but resistant to dsDNA vaccinia virus (VACV) infection (Liu and Moss, 2016). 

Moreover, RNAi-mediated Xrn1 knockdown in human fibroblast cells infected with 
VACV showed an increased accumulation of dsRNA, activation of PKR kinase and 

RNaseL endonuclease, and an inhibition of viral gene expression, which suggests that 
Xrn1 plays an important role in a viral life cycle (Burgess and Mohr, 2015), 
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2.9.1. The role of Xrn1 in life cycle of RNA viruses 

Growing evidence indicates that RNA viruses have evolved several strategies 
to interface and/or avoid the cellular RNA degradation machineries and thus promote 

a productive infection. Disruption of the cellular RNA decay machineries is one of the 
key strategies that can have a variety of benefits for the virus. For example, the lack 

of degradation pathways can lead to a temporal stabilization of viral transcripts and 

can thus help the virus to propagate. Some viral transcripts appear to hijack cellular 
RNA binding proteins, such as HuR and PABP, to stabilize their transcripts (Palusa et 

al., 2012; Sokoloski et al., 2010). RNA viruses may also interfere with cellular pathways 
in order to affect mounting of an effective innate immune response (reviewed in 

Dickson and Wilusz, 2011). 

Xrn1 also appears to be a key factor involved in the host response to viral 

infection and has been implicated in pathogenesis of many viral families. Recently, 
several studies have reported that the activity of Xrn1 is specifically inhibited by certain 

members of (+)ssRNA Flaviviridae family, such as Hepatitis C virus from genus 
Hepacivirus, Dengue Fever virus, West Nile virus, Yellow Fever virus, Japanese 

Encephalitis virus, Murray Valley Encephalitis, and most recently Zika virus from genus 
Flavivirus (reviewed in Fernandez-Garcia et al., 2009; reviewed in Li et al., 2015). As 

Xrn1 is a key enzyme in the control of Flaviviridae infection, it presents an opportunity 
for the development of antiviral treatment and vaccines. However, there is still much 

work to be done to properly understand the way in which Xrn1 regulates the cellular 
pathways and their link to disease progression. 

 

2.9.2. Arthropod-borne flaviviruses 

Arthropod-borne members of Flavivirus genus are usually transmitted to 
humans through insect vectors such as mosquitos or occasionally ticks (Kuno et al., 

1998). Flaviviral genome contains conserved and highly structured 5′- and 3′-UTRs 
with single open reading frame (ORF) encoding multiple viral proteins that facilitate 

assembly of new viral particles. The flaviviral RNA is 5′-capped but lacks 
polyadenylated 3′-termini, instead, it terminates in a stem-loop element, which protects 

the viral RNA from the nuclease attack at the 3′-end attack. Recent observations have 

elucidated the molecular mechanism whereby most of the flaviviruses inhibit Xrn1, 
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eventually shedding light on the disease mechanism of flaviviral infections. As revealed 

from a crystal structure and biochemical assays, genomic RNA of flaviviruses contains 
two discrete Xrn1-resistant RNA (xrRNA) elements within the 3′-UTR. The xrRNA is 

based on stem-loop structure assembling into interwoven pseudo-knots (PKs) that 
creates ring-like conformation blocking the progression of Xrn1 by sequestering the 5′-

end of the remaining RNA („molecular brace“) (Chapman et al., 2014a; Chapman et 
al., 2014b). In turn, the 5′-end is not accessible for the Xrn1 active site as more than 

3 nucleotides of single-stranded RNA are required for Xrn1 to efficiently load onto a 
substrate (Jinek et al., 2011). This steric hindrance caused by the pseudo-knot 

structure leads to generation of small subgenomic flaviviral RNAs (sfRNAs) in the host 
cytoplasm (Figure 4). A single nucleotide mutation in the Dengue viral RNA disrupts 

the structure of xrRNA and allows the enzyme to completely destroy the RNA, thus 

revealing this element to be functionally critical for Xrn1 resistance (Chapman et al., 
2014b). 

The stabilized non-coding sfRNAs have been reported to bind and to sequester 
Xrn1, and thus to interfere with the global cellular levels of RNAs by reducing the 
cellular 5′-to-3′ degradation capability (Chapman et al., 2014a; Chapman et al., 2014b; 

Moon et al., 2012). The first mRNAs being affected by the disruption of Xrn1 

degradation pathway are short-lived mRNAs such as transcription factors involved in 
oncogenesis (e.g. c-Myc, c-Fos) and angiogenesis (e.g. vascular endothelial growth 

factor A (VEGFA)) (Moon et al., 2015a), cytokines and factors involved in innate 
immunity leading to inflammatory symptoms (Moon et al., 2012). Thus, the stabilization 

of otherwise inherently instable mRNAs may contribute to development of a disease 
state. Intriguingly, the molecular brace must not shelter the 3′-end in order to be readily 

denatured by enzymes acting in 3′-to-5′ manner, such as the viral RdRP, which is 
known to replicate the viral genome. 
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Figure 4. Scheme of incomplete degradation of the flaviviral genomic RNA by 
the 5′-to-3′ exonuclease Xrn1 governed by stem-loop regions (Chapman et al., 
2014b) 

A) Xrn1 initiates degradation on decapped 5′-monophosphorylated substrates of 
flaviviral RNA. The 5′-UTR and ORF are efficiently degraded, however, the 3′-UTR 
harbors the stem-loop region thereby blocking Xrn1 activity. This block results in 
formation of sfRNA. B) The two stem-loop region that form pseudo-knots is responsible 
for stopping Xrn1 activity. The intramolecular interactions forming the pseudo-knots 
are depicted by dotted lines. 

 

Flaviviral infection results in accumulation of both the genomic as well as 
subgenomic flaviviral RNAs (sfRNAs). The latter are associated with infection-induced 
cytopathicity in cell cultures and pathogenicity in mice (Funk et al., 2010; Pijlman et 

al., 2008; Schuessler et al., 2012). The sfRNA is multifunctional and affects several 
pathways in infected cells: (i) alters mRNA degradation patterns (Moon et al., 2012); 

(ii) modulates sRNA-mediated gene silencing (Moon et al., 2015a; Schnettler et al., 

2012); (iii) disrupts the interferon-induced antiviral response (Bidet et al., 2014; Chang 
et al., 2013b; Manokaran et al., 2015; Schuessler et al., 2012); (iv) interacts with the 

viral replication process (Fan et al., 2011); (v) serves as a decoy for cellular proteins 
involved in RNA regulation (Bidet et al., 2014; Moon et al., 2015a). The described 

ability of sfRNAs to resist Xrn1-mediated degradation is surprising as Xrn1 has a 
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helicase-like domain (Jinek et al., 2011) and can degrade highly structured RNAs 

(Chang et al., 2011; reviewed in Nagarajan et al., 2013). Thus, sfRNA formation results 
from an RNA fold that interacts directly with Xrn1, presenting the enzyme with a 

structure that confounds its helicase activity. The molecular detail of the sfRNA-Xrn1 
interaction remains relatively unexplored. It seems that specific characteristics of the 

structured elements within 3′-UTR of variety of viral RNAs may modulate the 
robustness of Xrn1 resistance in different hosts (Chapman et al., 2014a; Chapman et 

al., 2014b; Villordo et al., 2015). 

 

2.9.3. Hepatitis C 

Similarly to arthropod-borne flaviviruses, a highly structured region occurs 

within 5′-UTR of related Hepatitis C virus (HCV). This region stalls Xrn1 and reduces 
its overall activity (Moon et al., 2015a). Interestingly, Xrn1 stalls near the viral internal 

ribosome entry site (IRES) that is required for cap-independent translation initiation 
(reviewed in Niepmann, 2013). HCV uses bipartite strategy how to protect its 

transcripts against Xrn1. The second way how HCV evolved to inhibit the action of 
Xrn1 is through exploiting host-expressing liver-specific mir-122 that binds to two sites 

at 5′-UTR of the viral RNA (Cox et al., 2013; Jopling et al., 2008; Jopling et al., 2005; 
Li et al., 2013b; Machlin et al., 2011). Intriguingly, this binding of mir-122 in a complex 

with Ago2 does not elicit degradation of viral transcripts, as typical for miRNAs, but 

prevents its Xrn1-mediated degradation and actually stimulates the viral gene 
expression in an unconventional fashion (Conrad et al., 2013; Mortimer and Doudna, 

2013; Shimakami et al., 2012; Thibault et al., 2015). Resembling the other flaviviruses, 
HCV 3′-terminal stem-loop structures are refractory to exosomal decay. Thus, 

understanding viral life-cycle regulation at the molecular level of RNA can have 
profound implications in the development of anti-viral drugs. This is illustrated by 

experimental treatment targeting miR-122 by an inhibitor in form of a complementary 
modified antisense oligonucleotide that is effective in compromising HCV replication 

(Janssen et al., 2013; Lanford et al., 2010). 

2.10. METHODS TO STUDY MRNA DECAY 

Our knowledge of RNA decay pathways in the cytoplasm of eukaryotic cells 
has increased significantly in recent decades mostly due to substantial technological 
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advances. Among others, genome-wide inhibitor-free approaches for determining 

RNA stabilities in mammalian cells have been fundamental. In these methods, 
endogenous transcripts are pulse-labeled by modified nucleotides (most frequently 4-

thiouridine (4sU) or 5-bromouridine (5BrU) as analogs of uridine) with minimal adverse 
effects on gene expression, RNA decay, protein stability and cell viability (Kenzelmann 

et al., 2007; Melvin et al., 1978,Woodford, 1988 #339). This is often followed by affinity 
purification and analysis of labeled de novo RNAs in a time series. Another way to 

estimate endogenous mRNA decay kinetics is to apply transcription inhibitors such as 
actinomycin D (actD) to block cellular RNA synthesis followed by a measurement of 

RNA levels over time. The advantage of this approach is that the whole transcriptome 
can be examined at once. However, the drawback of using actD is that this drug can 

negatively impact the cellular physiology, including mRNA metabolism, and that 

complicates the data interpretation (Harrold et al., 1991; Seiser et al., 1995). This 
limitation can be overcome by use of a reporter gene that specifically responds to 

administration of a compound facilitating transcription of the given reporter gene at a 
given time. The transcriptional pulsing approach often employs tetracycline (or its 

analogue doxycycline) (Tet)-inducible promoter to drive highly robust but transient 
transcription of a reporter gene in mammalian cells (Loflin et al., 1999; Xu et al., 1998). 

In the absence of further transcription, the changes in the abundance of an mRNA 
reporter can be accurately monitored. Owing to the extreme instability of decay 

intermediates in vivo, most methodologies fail to assess precise relationship between 
an mRNA and its decay intermediate. To decipher the mechanisms modulating RNA 

decay, ability to chase the mature form of an mRNA and its decay intermediate in 

parallel is essential. 

 

2.10.1. Bulk measurements of mRNA decay 

Several methods have been used in the past to measure mRNA half-life from 
a population of cells. The above described pulse-chase approaches can precede cell 

lysis followed by extraction of total RNA that can eventually serve as an input for a 
downstream analysis by biochemical methods. One of the semi-quantitative methods 

to assess relative abundances of transcripts is northern blotting. The basis of northern 

blot relies on size-separation of isolated total RNA in a gel, transfer of resolved RNAs 
to a membrane, and detection of a specific RNA by hybridization of labeled nucleotide 
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probe. Classically, the probe can be labeled radioactively as it was used, for instance, 

in the study of Orban & Izaurralde. After actD treatment, intact reporter mRNA could 
be distinguished from its degradation intermediates based on the size of detected 

RNAs on a northern blot over a time-course, and half-lives value could be derived 
using this information (Orban and Izaurralde, 2005). Due to ease of handling, 

fluorescent or digoxigenin-labeled probes often substitute radioactive probes 
nowadays. Another semi-quantitative method for a bulk measurement is reverse 

transcription followed by target amplification via a polymerase chain reaction (RT-
PCR). The disadvantages of RT-PCR are that the reaction product is evaluated at the 

end point when the reaction may have transited to a plateau phase and that only a set 
of mRNAs can be questioned at the same time. An alternation of RT-PCR is its 

quantitative version (RT-qPCR). It provides real-time quantification of a target in the 

exponential phase during amplification. 

For multiplex analysis of transcript abundances, DNA microarrays were 
developed. Microarrays have been used to determine relative abundance of 

predetermined large number of expressed genes simultaneously. In this method, the 
extracted mRNA is reverse transcribed into complementary DNA (cDNA) fragments, 

which are fluorescently labeled, and subsequently hybridized to an imprinted DNA 

pattern on a chip. Measurement of fluorescent intensity across the ordered array 
indicates the abundance of a chosen set of sequences. For example, using 

microarrays, it has been shown that mRNAs encoding housekeeping proteins tend to 
have considerably longer half-lives than those encoding regulatory proteins (Yang et 

al., 2003). Nowadays, next-generation-sequencing advances allow for routine large-
scale profiling of gene expression in any organism. In combination with RNA labeling 

approaches, high-throughput sequencing provides a genome-wide measurement of 
mRNA abundances. A recently developed technique, called SLAM-seq, uses 

combination of 4sU incorporation and alkylation chemistry coupled to RNA 
sequencing. Applied to mouse embryonic stem cells, SLAM-seq provided global and 

transcript-specific insights into pluripotency-associated gene expression and gave a 

mechanistic insight into mRNA decay pathways (Herzog et al., 2017). 
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2.10.2. Current single-molecule techniques to study mRNA 

Conventional bulk methods to measure mRNA turnover, such as qPCR, result 
in averaged output from many cells, and thus lead to a loss of information about spatial 

regulation of RNA turnover and cell-to-cell variability. Therefore, single-cell methods 
are important for distinguishing observations from bulk measurements, especially in 

the context of gene expression noise and of complex function of a tissue. To reveal 

cellular heterogeneity in RNA metabolism, a single-cell RNA-sequencing (scRNA-seq) 
method and its variations have been developed (reviewed in Kolodziejczyk et al., 

2015). Nevertheless, scRNA-seq is still technically challenging because it often suffers 
from incomplete RNA conversion into cDNA and from cDNA amplification noise. 

Moreover, scRNA-seq does not contain any spatial information and masks the 
molecular dynamic processes. Similar drawbacks are encountered in analysis of 

known candidate genes by single-cell RT-qPCR, although this approach also allows 
uncovering potential heterogeneities within a population of cells (Bengtsson et al., 

2008). 

The spatial information can be preserved by high-resolution fluorescent 
microscopy of single molecules within an intact cell providing absolute quantities and 
positions of RNA molecules. Single-molecule approaches have provided invaluable 

insight into various aspects of RNA life cycle over the past years. Two imaging 
techniques that are commonly used to visualize mRNA particles are: single molecule 

fluorescent in situ hybridization (smFISH) and single-particle tracking (SPT) in live-cell 
imaging. The former relies on hybridization of multiple fluorescent sequence-specific 

probes to an mRNA molecule of interest within fixed cells. More than one RNA species 

can be observed at the same time by smFISH method (Raj et al., 2008). As an 
example, using smFISH, Trcek et al. studied the spatial and temporal regulation of 

NMD and found that the majority of the PTC-containing transcripts are degraded soon 
after export (Trcek et al., 2013). Given the fact that smFISH can be combined with 

immunostaining for simultaneous detection of functionally associated proteins, 
smFISH is a highly powerful method to study mRNA metabolism at single transcript 

resolution. Among live-cell imaging approaches, MS2 and related PP7 labeling 
systems are broadly utilized to track mRNAs (Medioni et al., 2012), The system of MS2 

and PP7 is based on orthogonal high-affinity interactions of MS2 bacteriophage coat 
protein (MCP) or PP7 bacteriophage coat protein (PCP) with the respective cognate 

RNA hairpin (Figure 5) (Chao et al., 2008). The coat proteins are fused to spectrally 
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distinct fluorophores to allow for two-color simultaneous imaging. Inherently, the coat-

proteins form homodimers to bind their respective stem-loop. To amplify the signal, 
fluorescent protein is often introduced in tandem and, in addition, each RNA stem-loop 

is integrated into an RNA reporter in the form of a cassette containing multiple repeats. 
 

 
 

Figure 5. Orthogonal dual-labeling system of MS2 and PP7 coat proteins in 
complexes with cognate RNA stem-loop (adapted from Chao et al., 2008) 

A) Sequence and structure representation of the MS2 and PP7 system. In both 
structures, the RNA stem-loop binds across the extended beta-sheet surface formed 
by the coat protein dimer (blue, green). B) The orientation of the adenine recognition 
pockets is rotated with respect to the dimer axis between the MS2 and PP7 coat 
proteins. Cartoon shows the position of the phosphate backbone in gray and bound 
adenosines are shown in orange. 
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Single-molecule approaches have revisited some of the previous findings from 

bulk measurements, and thus have complemented cellular and biochemical methods 
by providing spatio-temporal information including variance among cells. The advent 

of MS2-MCP labeling system in the Singer laboratory enabled tracking the movement 
of ASH1 mRNA into the daughter cell in budding yeast and paved the way for 

development of series of single-color and later multiple-color imaging methods 
(Bertrand et al., 1998). The pioneering work employing simultaneous two-color 

imaging system with single-molecule resolution has been pivotal for discovery of the 
intrinsic transcriptional noise of an endogenously expressed yeast gene. Each allele 

of this gene was tagged by one of the coat proteins, MS2 or PP7, respectively, in living 
yeast cells (Hocine et al., 2013). Single-molecule imaging has also illuminated the 

dynamics of RNA transcription and identified the novel phenomenon of stochastic 

transcriptional bursting, which is the primary cause of expression noise in cells and 
tissue (Larson et al., 2013; Larson et al., 2011). Next, differential labeling of introns 

and exons allowed for mRNA splicing to be monitored in the nucleus of living cells 
pointing towards occurrence of both co-transcriptional splicing and splicing after 

release from transcription site (Coulon et al., 2014; Martin et al., 2013). In another 
study, spatially resolved kinetics of nuclear mRNA export revealed a three-step model 

consisting of docking to nuclear pore, transport and release in mammalian cells 
(Grunwald and Singer, 2010). In living Drosophila oocytes, oskar mRNA has been 

shown to be transported to the posterior pole actively along microtubules (Zimyanin et 
al., 2008). To differentiate the untranslated mRNA molecule from a translated mRNA, 

a clever biosensor called TRICK, which stands for translating RNA imaging by coat 

protein knock-off, was developed. TRICK enables to observe the first round of 
translation in living cells (Halstead et al., 2015). Dynamics of translation has been 

recently described in living cells by innovative approach wherein fluorescently labeled 
mRNA particles were imaged simultaneously with a cognate nascent polypeptide 

chain. Here, the emerging peptide is visualized by binding of fluorescent single-chain 
antibodies to a number of N-terminal epitopes (Morisaki et al., 2016; Wang et al., 2016; 

Wu et al., 2016; Yan et al., 2016). 

The advent of innovative single-molecule methods to observe various aspects 

of mRNA lives represent significant shift towards quantitative understanding of RNA 
metabolism. However, the RNA field has been waiting for a single-molecule method 

that would allow for real-time imaging of mRNA degradation dynamics and kinetics to 
be measured.  
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3. AIM OF THE THESIS 

Although many of the molecular pathways and proteins involved in mRNA 

degradation are known, our understanding of when and where the degradation events 
occur within cells is limited. The main aim of my doctoral research project was to 

develop a single-molecule imaging method to interrogate mRNA degradation in 
individual cells by fluorescent microscopy. 

There are two major hurdles for studying RNA turnover at single-molecule 
resolution using an imaging approach. 

I. Inherent instability of degradation intermediates 
The inherent instability of RNA degradation intermediates was 

demonstrated by Orban & Izaurralde who measured half-life of the cleavage 

products arising from RISC-initiated degradation in Drosophila cells. In this 
study, RNAi-mediated depletion of Xrn1 strongly stabilized otherwise short-

lived (t1/2 < 15 min) 3′-degradation intermediate (Orban and Izaurralde, 2005). 
However, RNAi has many pitfalls: (i) off-target effects of RNAi-mediated gene 

silencing, (ii) variability due to different transfection efficiencies, (iii) 
disturbances in cellular homeostasis due to knockdown of the major RNA 

decay factor. To circumvent these pitfalls, I intended to find an alternative way 
that would specifically increase stability of degradation intermediates arising 

from a particular reporter. 

II. Lack of a robust system to differentially label and image intact RNAs and 
degradation intermediates 

Fluorescent proteins and dyes often lose their fluorescence upon 
extended exposure to light. This phenomenon is known as photobleaching and 

depends on the kind of fluorophore and molecular environment. Mostly due to 
reactions with molecular oxygen, photochemical modifications of a fluorophore 

in an excited state result in the irreversible loss of its ability to fluoresce. Hence, 
in a single-labeled system, the loss of signal could be due to degradation of the 

mRNA or due to photobleaching. To this end, I was motivated to develop, 
validate and employ a dual-color imaging method wherein mRNA degradation 

intermediates are stabilized and can be fluorescently distinguished from intact 

mRNAs. 
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Xrn1 is the major cytoplasmic 5′-to-3′ exoribonuclease that is implicated in the 

majority of RNA degradation pathways in eukaryotes. Thus, Xrn1 is placed at a pivotal 
position in mRNA stability control. Design of a reporter monitoring Xrn1-mediated 

degradation in both living and fixed cells is therefore of high importance for the 
research community. To this aim, I stabilized degradation intermediates of an mRNA 

reporter generated by Xrn1 by placing flaviviral Xrn1-resistant RNA elements within 
the 3′-UTR of the reporter. To visualize the intact mRNA as well as its degradation 

intermediate, the designed reporter contained the orthogonal MS2/PP7 labeling 
system in such a way that the intact mRNAs are dual-colored while the degradation 

intermediates are single-colored. 
To study the spatio-temporal regulation of mRNA decay with single-molecule 

precision, I aimed to generate an inducible system allowing for a temporal control over 

transcription of the reporter gene from a single genomic locus. At the same time, this 
induction ensures transcription at a level compatible with single-molecule detection. 

Using this approach, the goal of my PhD project was to monitor the fates of individual 
mRNAs in single living and fixed mammalian cells in order to obtain a comprehensive 

analysis and quantitative understanding of the mechanisms that regulate mRNA 
turnover. 

 
 

GENERAL OBJECTIVES and PARTICULAR QUESTIONS: 

o What are in vivo kinetics and dynamics of mRNA decay? 

§ When and where does mRNA degradation occur? 
§ Can mRNA degradation occur in bursts? 

§ What is the nature of cell-to-cell variability in counts of mRNAs? 
§ Do processing bodies play a role in mRNA degradation? 

§ What is the impact of translation inhibition on mRNA degradation? 
o How is Ago2-mediated cleavage of mRNA regulated in time and space? 

§ How long does it take to cleave an mRNA? 

§ Where does the cleavage occur? 
o How is spatio-temporal regulation of mRNAs influenced by cis-elements 

such as AU-rich elements and 5′-TOP? 
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4. RESULTS 

The results from my doctoral research are compiled into the publication titled 

“The Dynamics of mRNA Turnover Revealed by Single-Molecule Imaging in Single 
Cells” that is attached to this thesis. 
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SUMMARY

RNA degradation plays a fundamental role in regu-
lating gene expression. In order to characterize the
spatiotemporal dynamics of RNA turnover in single
cells, we developed a fluorescent biosensor based
on dual-color, single-molecule RNA imaging that
allows intact transcripts to be distinguished from
stabilized degradation intermediates. Using this
method, we measured mRNA decay in single cells
and found that individual degradation events occur
independently within the cytosol and are not en-
riched within processing bodies. We show that
slicing of an mRNA targeted for endonucleolytic
cleavage by the RNA-induced silencing complex
can be observed in real time in living cells. This meth-
odology provides a framework for investigating the
entire life history of individual mRNAs from birth to
death in single cells.

INTRODUCTION

Gene expression is regulated by the abundance of mRNA. The
levels of all cellular transcripts are determined by the balance
between the rates of transcription in the nucleus and degrada-
tion in the cytoplasm. The life of an mRNA begins when it
emerges from RNA Pol II and is recognized by factors that are
responsible for its capping, splicing, and polyadenylation. The
mature transcript is then exported to the cytoplasm where it
can be transported, translated, and eventually degraded. While
the importance of transcription in controlling gene expression
is well established, it has become increasingly clear that the
regulation of mRNA stability, particularly during development
or rapid changes in environmental conditions, can dramatically
influence mRNA levels (Elkon et al., 2010; Friedel et al., 2009;
Hao and Baltimore, 2009; Miller et al., 2011; Rabani et al.,
2011). RNA degradation also plays a crucial role in mRNA quality
control that safeguards cells from the deleterious effects of
aberrant transcripts (Isken and Maquat, 2007).

Degradation of mRNAs is a multi-step process that requires
an orchestrated series of enzymatic reactions (Garneau et al.,
2007). For most mRNAs, shortening of the poly(A) tail is thought
to be the first step in mRNA decay and requires the consecu-
tive actions of the Pan2-Pan3 and the Ccr4-Caf1-Tob com-
plexes (Funakoshi et al., 2007; Yamashita et al., 2005).
Following deadenylation, the 50-cap structure is hydrolyzed by
the Dcp1-Dcp2 complex (Dunckley and Parker, 1999; Lykke-
Andersen, 2002; van Dijk et al., 2002). The body of the tran-
script can then be degraded by Xrn1 (50-to-30 exonuclease) or
the cytoplasmic exosome complex (30-to-50 exonuclease) (Gar-
neau et al., 2007). Currently, Xrn1-mediated degradation is
believed to be the dominant cytoplasmic decay pathway,
perhaps through the coupling of Xrn1 to Dcp1-Dcp2 by the
scaffold protein Edc4 (Chang et al., 2014). Additional mRNA
decay pathways have also been identified that enable re-
gulation of mRNA stability (e.g., AU-rich elements, miRNAs)
or quality control (Garneau et al., 2007; Schoenberg and
Maquat, 2012).
While many of the proteins and pathways involved in mRNA

degradation have been elucidated, our understanding of when
and where these events occur within cells has not kept pace.
Single-molecule fluorescent in situ hybridization (smFISH) has
enabled some aspects of mRNA degradation to be character-
ized, but the loss of signal resulting directly from the process
being studied has prevented this approach from being widely
applied (Kramer, 2017; Trcek et al., 2011, 2013). Here, we
describe a single-molecule fluorescent microscopy methodol-
ogy for measuring the spatial and temporal dynamics of mRNA
degradation in fixed and living single cells.

DESIGN

Recently, a viral RNA pseudo-knot (PK) structure was identified
in flaviviruses that blocks Xrn1 by sequestering the 50-phosphate
from the enzyme, thereby preventing further degradation of the
viral genome (Kieft et al., 2015). We took advantage of this
feature to engineer a single-molecule mRNA turnover biosensor
that contains a 30 UTRwith the tandemPKs from the Kunjin strain
of West Nile virus placed between the orthogonal PP7 and MS2
bacteriophage stem loops (Chapman et al., 2014a; Hocine et al.,
2013) (Figure 1A). Since the MS2 stem loops are protected from
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Xrn1-mediated degradation by the PKs, this biosensor allows
discrimination between intact (PP7 and MS2) transcripts and
stabilized 30 end degradation intermediates (MS2 only) in living
cells that express the PP7 coat protein (PCP) and MS2 coat pro-
tein (MCP) fused to spectrally distinct fluorescent proteins. Simi-
larly, smFISH probes can be targeted to the two distinct regions
of the transcript in order to image mRNA decay in fixed cells. We
refer to this technique as 3(three)0-RNA end accumulation during
turnover (TREAT).

RESULTS

Development of TREAT for Imaging mRNA Degradation
In order to monitor physiological mRNA decay, expression of the
TREAT reporter should not disrupt Xrn1-mediated degradation.
While Xrn1 does not form a stable complex with the viral PKs,
it has been reported that overexpression of the entire Kunjin fla-
viviral subgenomic RNA, which contains the PKs and other
structured RNA elements, results in stabilization of endogenous

mRNAs (Chapman et al., 2014b; Moon et al., 2012). The stability
of endogenous c-MycmRNAmeasured by RT-qPCRwas similar
in HeLa cells that expressed the TREAT reporter and cells that
did not express it (Figure S1A). Importantly, the PKs also did
not alter the stability or translation of the TREAT reporter
compared to a control lacking these elements (Figures S1B
and S1C). To validate the potential of the PKs to block Xrn1
from fully degrading the TREAT reporter, we determined the
size of TREAT and control transcripts by northern blot. A probe
complementary to a sequence in the 30 UTR in both types of tran-
scripts demonstrated that accumulation of the specific degrada-
tion intermediate occurred only in the presence of the PKs
(Figure S2). Importantly, co-expression of NLS-MCP-Halo and
NLS-PCP-GFP did not stabilize alternative degradation interme-
diates of the reporters without PKs as reported in yeast (Fig-
ure S2) (Garcia and Parker, 2015; Heinrich et al., 2017). Taken
as a whole, the presence of the viral PKs in the TREAT reporter
does not perturb RNA degradation in either cis or trans in
HeLa cells.

Figure 1. TREAT Imaging of mRNA Degra-
dation in Single Cells
(A) Schematic of the intact TREAT reporter mRNA

and its stabilized degradation fragment. Renilla

luciferase is in the open reading frame, and the

30 UTR contains two viral pseudo-knots

(PKs, blue) that are flanked by PP7 (green) and

MS2 (magenta) stem loops. The stabilized 30 end

(MS2 stem loops only) arises from partial degra-

dation by Xrn1 that is blocked by the PKs. In fixed

cells, smFISH probes can be targeted to Renilla

luciferase and MS2 stem loops, and in live cells,

PP7 and MS2 coat proteins (PCP and MCP,

respectively) can be fused to spectrally distinct

fluorescent proteins.

(B) Representative smFISH images of HeLa

cells stably expressing control (!PKs) or

TREAT (+PKs) reporters hybridized with Renilla

(green) and MS2 (magenta) probes. Cells were

induced by addition of doxycycline for 2 hr and

fixed 2 hr after induction was stopped. Scale

bar, 2 mm.

(C) Viral PKs are required for accumulation

of stabilized 30 ends. Quantitative analysis

of smFISH reveals that the fraction of intact

transcripts (Renilla + MS2, white) decreases while

the fraction of stabilized 30 ends (MS2, magenta)

increases in cells expressing TREAT reporter

(10,810 particles, 62 cells) compared to control

reporter (3,465 particles, 66 cells) (p values,

**** < 0.0001; n.s., not significant; unpaired t test).

Graph shows mean ± SEM.

(D) Representative live-cell images of a HeLa

cell line stably expressing the TREAT

reporter with NLS-PCP-GFP and NLS-MCP-

Halo. Intact mRNAs are dual labeled with

NLS-MCP-Halo (magenta) and NLS-PCP-GFP

(green) and appear as white spots, whereas

stabilized 30 ends are labeled by only NLS-MCP-

Halo.

(E) TREAT mRNAs are degraded in the cytoplasm. Quantification of intact and degraded RNAs in the nucleus (388 particles, 11 cells) and cytoplasm (594

particles, 12 cells) was performed using two-color SPT, and co-localization analysis was normalized by detection efficiencies in both channels. p values,

**** < 0.0001; n.s., not significant; unpaired t test.
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The TREAT reporter was integrated into a single genomic
locus in doxycycline-inducible HeLa cells that stably express
NLS-PCP-GFP and NLS-MCP-Halo to monitor mRNA turnover
in single cells. The ability of TREAT to detect mRNA degrada-
tion requires quantification of the co-localization of fluorescent
signals positioned 50 and 30 of the PKs. To this aim, a control
reporter without PKs was used to benchmark co-localization
and determine detection efficiencies in both fixed and living
cells, since only intact two-color transcripts should be detected
with this construct (Figure S3, Movie S1). In fixed cells, smFISH
probes targeting the Renilla luciferase coding sequence and
MS2 stem loops demonstrated that introduction of the PKs
into the TREAT reporter enabled detection of an increase in
the fraction of MS2-only particles (Figures 1B and 1C). Impor-
tantly, there was no change in the number of Renilla-only
particles, indicating the effect of the PKs was specific for the
stabilized 30 end. In live cells, single-particle tracking (SPT) of
TREAT mRNAs in the nucleus demonstrated that the majority
of transcripts are intact (> 94%) (Figures 1D and 1E,
Movie S2). In the cytoplasm, however, SPT and co-localization
analysis of TREAT transcripts revealed two distinct populations
of RNA, intact mRNAs (MS2 and PP7) and stabilized 30 ends

Figure 2. Half-Life Measurement of TREAT
mRNAs in Single Cells
(A) Representative smFISH images of the TREAT

reporter in HeLa cells. Cells were induced for 2 hr

with doxycycline and fixed at successive time

points (0, 2, 4, 8, 12, 16 hr) after induction was

stopped. Images show that the stabilized 30 end

(MS2, magenta) accumulates within cells while the

number of intact TREAT mRNAs (Renilla + MS2,

white) decreases over time. Scale bar, 2 mm.

(B) Schematic model of the TREAT mRNA life

cycle within a cell with depicted rates: a, nuclear

export rate; b, degradation rate of the TREAT

transcript; g, stabilized 30 end degradation rate.

(C) Counts of intact mRNAs (nuclear or cyto-

plasmic) and stabilized 30 ends were obtained

from the quantitative analysis of smFISH data at

fixation time points (> 120 cells per time point in

two biological replicates). Data were fit to the

model to calculate the experimental rate con-

stants (a, b, g). All error bars indicate SEM.

(MS2 only) (Figures 1D and 1E). Similar
to the fixed-cell data, there was no in-
crease in the number of PP7-only-
labeled particles. These experiments
demonstrated that TREAT can measure
mRNA turnover with single-molecule
resolution in both fixed and living cells.

TREAT Measurement of mRNA
Degradation in Single Cells
We measured the kinetics of TREAT
mRNA degradation in single cells using
smFISH. Expression of the reporter was
induced for 2 hr with doxycycline, and
cells were fixed at successive time points

after induction was stopped (Figure 2A). The turnover of intact
TREAT mRNAs and the stabilized 30 ends in the cytoplasm can
be described by

d½Nuc#
dt

= ! a½Nuc#

d½Cyt#
dt

=a½Nuc# ! b½Cyt#

d½Deg#
dt

= b½Cyt# ! g½Deg#;

whereNuc is the number of intact nuclearmRNAs, a is the export
rate of mRNAs to the cytoplasm,Cyt is the number of intact cyto-
plasmic mRNAs, b is the decay rate of the intact cytoplasmic
mRNA, Deg is the number of stabilized 30 ends, and g is the
decay rate of the stabilized 30 ends (Figure 2B). Fitting the evolu-
tion of the mean numbers of RNA species in time to this model
resulted in an export time of 0.74 ± 0.05 hr and degradation
half-lives of 1.63 ± 0.24 hr (cytoplasmic intact mRNA) and
4.39 ± 0.47 hr (stabilized 30 end) (Figure 2C). RNAi knockdown
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of Xrn1 increased the half-life of the TREAT reporter while knock-
down of Rrp40, an exosome core subunit, had no effect, indi-
cating that Xrn1-mediated degradation is indeed the dominant
decay pathway for TREAT transcripts (Figure S4).

Single-cell measurements enabled the observation that tran-
scription is not a simple Poisson process and can occur in
bursts; however, it has not yet been possible to determine if
similar dynamics also occur during mRNA turnover (Raj and
van Oudenaarden, 2008). During analysis of the smFISH im-
ages, we observed considerable cell-to-cell variation in the
abundance of stabilized 30 ends in individual cells. The ratio
of the variance to the mean (Fano factor) of the number of sta-
bilized 30 ends at each time point was greater than one, which
is indicative of possible deviations from Poisson processes.
To determine the nature of this variability, we used a discrete
stochastic approach to solve the master equation associated
with the model described above and generated the probability
distribution of intact mRNAs and stabilized 30 ends based upon
their distribution at the initial time point. Simulation of the RNA
populations at later time points, assuming that the turnover of
intact and degraded mRNA are single-step Poisson processes
governed by the measured decay rates, was in good agree-
ment with the experimental data (Figure S5). Virtually all of
the variability in the number of stabilized 30 ends of the TREAT
transcript could be accounted for by the initial cell-to-cell het-
erogeneity in mRNA numbers that results from variable levels
of transcription in individual cells. This indicates that the degra-
dation of each TREAT transcript occurs independently within
the cell.

Real-Time Observation of mRNA Degradation in
Living Cells
Due to the difference in timescales between the half-life of the
TREAT mRNA (1.6 hr) and our live-cell experiments (5–10 s), it
was challenging to directly detect TREAT degradation events
in live cells. In order to generate a TREAT reporter that would
be more rapidly degraded, we incorporated an siRNA
sequence derived from Firefly luciferase between the PP7
stem loops and the PKs and stably expressed the correspond-
ing shRNA in the HeLa cell line used for imaging (Figure 3A).
Using smFISH, the cytoplasmic half-life of the TREAT siRNA
reporter was determined to be $7.5 min, while the export
time and degradation of the stabilized 30 ends were not
changed (Figure 3B). We were also able to detect the transient
appearance of the 50 end of the transcript in the cytoplasm
generated by Ago2-mediated endonucleolytic cleavage, which
was degraded with a half-life of $9.7 min. Similar to our
modeling of the variability of TREAT reporter degradation, we
also did not detect degradation bursts for TREAT siRNA tran-
scripts (Figure S6).

In order to identify the cellular site of slicing, we imaged the
TREAT siRNA reporter in live cells. While RNAi factors have
been detected in the nuclei of mammalian cells, they were found
to be inactive and unable to degrade nuclear transcripts (Zeng
and Cullen, 2002). Recently, however, it has been suggested
that Ago2 can be active in mammalian cell nuclei and was shown
to degrade the nuclear lncRNA Malat1 (Gagnon et al., 2014). We
quantified the co-localization of nuclear TREAT siRNA tran-

scripts and did not observe a change in the number of intact tran-
scripts, 50 ends, or stabilized 30 ends compared to a non-sliced
control, indicating that the short half-life of TREAT siRNA tran-
scripts was not due to increased nuclear degradation (Figures
3C and 3D).
To quantify cytoplasmic slicing, we developed an automated

SPT and co-localization algorithm to identify degradation
events within our movies. We reasoned that slicing could be
visualized as either the rapid disappearance of the 50 signal
(NLS-PCP-GFP) from a dual-labeled transcript or the spatial
separation of the 50 signal (NLS-PCP-GFP) and 30 signal
(NLS-MCP-Halo) after endonucleolytic cleavage (Figure 4A).
Loss of the 50 signal (NLS-PCP-GFP) from a transcript could
arise from either slicing or photo-bleaching. We measured the
slope of the loss of NLS-PCP-GFP and did not detect any sig-
nificant outliers for intact TREAT siRNA transcripts compared to
a non-sliced control (Figure 4B). We did, however, detect
slicing decay events (n = 17) where intact mRNAs were
observed to sever into 50 ends (PP7) and 30 ends (MS2) that
then spatially move apart from one another and could be inde-
pendently tracked (Figure 4C, Movie S3). Since the 50 end is not
immediately degraded and can separate from its 30 end after
Ago2-mediated endonucleolytic cleavage, this suggests that
there is not a tight coupling between slicing and the down-
stream degradation of the decay intermediates. We measured
the cytoplasmic position of slicing events from the nucleus
and found that their distribution was similar to non-sliced con-
trol transcripts, indicating that slicing does not preferentially
occur in a specific location, but is homogenously distributed
throughout the cell (Figure 4D).

P-Bodies Are Not Sites of TREAT mRNA Degradation
Phase transitions have been implicated in an increasing num-
ber of diverse biological phenomena; however, their underlying
molecular mechanisms are not well understood (Banani et al.,
2017). Processing bodies (P-bodies), evolutionarily conserved
membrane-less cytoplasmic compartments that are formed
by the condensation of RNA-binding proteins and mRNAs,
were one of the first phase transitions to be identified (Jain
and Parker, 2013). Since they are enriched for proteins involved
in many aspects of mRNA turnover, including decapping fac-
tors, deadenylases, and Xrn1, it was initially proposed that
they functioned as cellular sites of active mRNA degradation
(Cougot et al., 2004; Sheth and Parker, 2003). Subsequently,
it was shown that microscopically visible P-bodies accounted
for only a small fraction ($0.3%) of the cytoplasmic volume
and were not required for degradation of transcripts, indicating
that mRNA turnover does not require compartmentalization
(Chu and Rana, 2006; Eulalio et al., 2007; Leung et al., 2006;
Stoecklin et al., 2006). Whether mRNA decay, however, was
more efficient or inhibited within P-bodies remained an open
question. It has also been suggested that P-bodies function
as sites of mRNA storage during cellular stress from which
mRNAs return to the cytoplasm for translation upon recovery
(Bhattacharyya et al., 2006; Brengues et al., 2005). Since the
TREAT reporter can directly report on the cellular site of
mRNA decay, we set out to clarify the role of P-bodies in this
process.
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A HeLa cell line was generated that stably expresses a
SNAP-Dcp1a fluorescent fusion protein, which labels P-bodies,
in combination with NLS-PCP-GFP and NLS-MCP-Halo, which
allowed imaging of P-bodies and TREAT reporter mRNAs in
living cells (Kedersha and Anderson, 2007). The number of
SNAP-Dcp1a-labeled P-bodies detected by live-cell imaging
was similar to the number of endogenous P-bodies detected
by immunofluorescence against DDX6, an established P-body
marker, and the foci formed by SNAP-Dcp1a also co-localized
with endogenous Xrn1 (Figure S7). We then assessed the co-
localization of intact and degraded TREAT transcripts with
P-bodies in living cells. Simultaneous acquisition of the TREAT
reporter in two channels (NLS-PCP-GFP, NLS-MCP-Halo) was
followed by imaging of P-bodies (SNAP-Dcp1a). P-bodies were
segmented and used to generate distance maps where posi-
tions within P-bodies were defined as positive values while
locations outside received negative values. P-body co-localiza-
tion of intact and degraded TREAT transcripts was measured at
each time point. A cumulative P-body localization index was
calculated from three consecutive frames (3 3 50 ms) in order

to account for spurious co-localization. This index was negative
for all intact TREAT transcripts and stabilized 30 ends, indi-
cating that neither species accumulated in P-bodies (Figures
5A and 5B, Movie S4).
Transcripts that contain an AU-rich element (ARE) within their

30 UTRs undergo rapid degradation, and this cis-acting element
has also been shown to promote the association of mRNAs
with P-bodies (Franks and Lykke-Andersen, 2007). We modi-
fied the TREAT reporter to include the TNF-a ARE between
the PP7 stem loops and the viral PKs (Figure 5C). The half-
life of TREAT TNF-a ARE reporter transcripts was reduced
to $30 min, which is consistent with the role of the ARE on
mRNA stability (Figure S8). Interestingly, we also found that
the nuclear export rate and the degradation of the stabilized
30 ends was faster for the TREAT TNF-a ARE reporter. We
detected a small number of intact TREAT ARE transcripts
with positive cumulative P-body localization values; however,
we found no evidence for the accumulation of degraded frag-
ments within P-bodies (Figures 5C and 5D, Movie S5). To
confirm that the RNAs within P-bodies were not a mixture of

Figure 3. TREAT siRNA Transcripts Are Rapidly Degraded in the Cytoplasm
(A) Schematic of TREAT siRNA reporter and slicing degradation fragments. An siRNA target sequence was placed between the PP7 stem loops and the PKs in the

30 UTR. After expression of the cognate siRNA, endonucleolytic cleavage results in a 50 end containing PP7 stem loops and the stabilized 30 end containing MS2

stem loops.

(B) Measurement of TREAT siRNA reporter stability. Counts of intact mRNA (nuclear or cytoplasmic), 50 ends, and stabilized 30 ends were obtained from

quantification of smFISH data (> 190 cells per time point in two biological replicates).

(C) Representative live-cell image of HeLa cells expressing TREAT siRNA reporter labeled with NLS-PCP-GFP (green) and NLS-MCP-Halo (magenta). Intact

mRNAs are dual labeled with NLS-PCP-GFP (green) and NLS-MCP-Halo (magenta) and appear as white spots. Scale bar, 10 mm.

(D) Quantification of co-localization of NLS-PCP-GFP and NLS-MCP-Halo for TREAT siRNA reporter in the nucleus (534 particles, 14 cells) compared to nuclear

TREAT data (388 particles, 11 cells) (p values: n.s., not significant; unpaired t test).
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intact mRNAs and stabilized 30 ends resulting from active
degradation, we compared the ratio of the fluorescence inten-
sity of NLS-PCP-GFP to NLS-MCP-Halo for RNAs in P-bodies
with intact transcripts that remained in the cytosol (Figure 5E).
The RNAs in P-bodies and intact mRNAs in the cytosol had
similar ratios, indicating that RNAs within P-bodies were intact
and were not undergoing degradation.

Since the number of P-bodies is low in unstressed cells, we
stressed cells with arsenite for 1 hr to increase the number and
size of P-bodies. It has been proposed previously that cellular
transcripts may be triaged through stress granules into
P-bodies for degradation during stress (Anderson et al., 2015;
Decker and Parker, 2012). During arsenite stress, we detected
only intact TREAT mRNAs and not stabilized 30 ends with pos-
itive cumulative P-body localization values (Figures 6A and 6B,
Movie S6). To increase the association of mRNAs with
P-bodies, we added a 50-TOP sequence to the TREAT reporter,
because this cis-element was shown to promote the interaction
of mRNAs with P-bodies during arsenite stress (Halstead et al.,
2015). Similarly, only intact 50-TOP TREAT transcripts were
found within P-bodies during stress (Figures 6C and 6D,
Movie S7). Further experiments will be required to determine

if P-bodies are sites of specialized mRNA degradation, but
our data suggest that these cellular compartments are not gen-
eral sites of active mRNA turnover during normal cell growth or
stress.

Translation Inhibition Stabilizes TREAT mRNAs
While analyzing the spatial position of TREAT transcripts dur-
ing stress, we observed an increase in the total number of
intact mRNAs within cells (Figures 7A and 7B). Since only a
small percentage of TREAT reporter transcripts accumulate
in P-bodies or stress granules during arsenite stress, this
increase in stability cannot be explained by these cellular
compartments serving as protective storage sites. Because
arsenite stress inhibits general translation via eIF2a phosphor-
ylation, we tested the effect of several other translation inhibi-
tors, which target distinct stages of protein synthesis, for their
effects on mRNA stability. TREAT transcripts were induced for
2 hr with doxycycline followed by addition of harringtonine,
cycloheximide, or puromycin (Figure 7C). Similar to arsenite,
these translation inhibitors caused a dramatic stabilization
of TREAT transcripts (Figure 7D). The effect was more pro-
nounced after 4 hr of treatment with translation inhibitors, as

Figure 4. TREAT Imaging of siRNA-Medi-
ated Endonucleolytic Cleavage in Live Cells
(A) Cartoons depicting potential slicing scenarios

in live cells. Non-sliced: Dual-labeled transcripts

have green and magenta signals that co-localize

and do not change in fluorescence intensity (I) over

time (t) compared to initial intensity (I0). Dotted

lines show theoretical linear fits to the bleach-

corrected fluorescence intensity of the green

signal curves. The slope (m) of the linear regres-

sion was used to quantify intensity changes.

Sliced: Dual-labeled transcripts are cleaved

between green and magenta signals that can

independently be tracked. Sliced and rapid 50 end

decay: After slicing of a dual-labeled transcript,

the green signal is rapidly lost.

(B) Beeswarm plot of the slopes (m) of the

linear regressions of the bleach-corrected

NLS-PCP-GFP intensities of dual-labeled parti-

cles (> 5 frames) collected for the TREAT siRNA

reporter (575 particles, 681 cells) as well as the

non-sliced control (361 particles, 125 cells).

Populations do not differ in their outlier composi-

tion. In control data, 5% ofm are less than!0.093,

and an almost identical fraction of TREAT siRNA

reporters (5.4%) are also within this threshold.

(C) Time sequence showing a slicing event in a live

cell. A dual-colored intact mRNA (PP7 + MS2)

is observed for several consecutive frames fol-

lowed by slicing and spatial separation of the

50 (PP7, green) and 30 (MS2, magenta) fragments.

Time series projection of two-channel SPT shows

co-localization and separation of signals.

(D) Distribution of slicing events in the cytoplasm.

The location of slicing events (black dots) relative

to the nucleus is similar to the positions of control

transcripts (black line). p value = 0.74; Kolmo-

gorov-Smirnov test. All error bars indicate SEM.

Scale bar, 1 mm.
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degradation remained completely blocked. While harringtonine
and cycloheximide could immobilize ribosomes on TREAT
transcripts, thereby blocking Xrn1 degradation, puromycin
causes disassociation of ribosomes from transcripts. Our
data indicate that any inhibition of translation results in stabili-
zation of TREAT mRNAs.
The global inhibition of mRNA degradation we observed

during arsenite stress is consistent with a general inhibition of
decay resulting from proteolytic degradation of Tob and Pan3,
which are the factors responsible for recruitment of deadeny-
lases to transcripts (Yamagishi et al., 2014). Inhibition of deade-
nylation has also been observed in yeast and mammalian cells in
response to a variety of cellular stresses, suggesting that this
may be a conserved pathway that is activated when translation
is inhibited (Gowrishankar et al., 2006; Hilgers et al., 2006).
Alternatively, the release factor eRF3 has also been shown to
compete with Tob/Pan3 for PABPC1, suggesting a possible
direct coupling between translation and mRNA decay (Funa-
koshi et al., 2007; Yamagishi et al., 2014).

Figure 5. TREAT Transcripts Are Not
Degraded in P-Bodies
(A) Representative live-cell image of TREAT re-

porter in HeLa cells expressing NLS-MCP-Halo

(magenta), NLS-PCP-GFP (green), and SNAP-

Dcp1a (blue).

(B) TREAT transcripts do not accumulate in

P-bodies. Two-channel SPT identified intact

(PP7 + MS2) and stabilized 30 ends (MS2)

(516 particles, 27 cells) in cells. The position in

pixels of all RNAs with respect to P-bodies was

measured, and the cumulative P-body localization

index was calculated from three successive

frames (3 3 50 ms).

(C) Representative live-cell image of TREAT TNF-a

ARE reporter in HeLa cells expressing NLS-MCP-

Halo (magenta), NLS-PCP-GFP (green), and

SNAP-Dcp1a (blue). The yellow arrowhead points

to an intact TREAT mRNA bound to a P-body.

(D) Low accumulation of intact TREAT TNF-a ARE

transcripts within P-bodies. SPT identified intact

(PP7 + MS2) and stabilized 30 ends (MS2) (772

particles, 55 cells).

(E) Intact mRNAs in P-bodies are not undergoing

degradation. The ratio of the fluorescent intensity

of NLS-PCP-GFP and NLS-MCP-Halo was similar

for all dual-colored mRNAs in P-bodies and

cytosol (n.s., not significant; unpaired t test). His-

tograms are plotted with bin widths of 10 pixels.

Scale bars, 5 mm. Error bars indicate SEM.

DISCUSSION

Single-molecule measurements of the
mRNA life cycle have profoundly altered
our understanding of gene expression;
however, it has not yet been possible to
directly measure how these processes
are inter-connected within single cells.
The continued development of multicol-
ored RNA biosensors will enable a more

sophisticated investigation of the coupling between transcrip-
tion, translation, and mRNA degradation. A variety of orthogonal
fluorescent proteins and RNA-labeling methods exist that would
enable translation (TRICK) and mRNA turnover (TREAT) to be
imaged simultaneously in three channels (Chen et al., 2009;
Daigle and Ellenberg, 2007; Grimm et al., 2015; Halstead et al.,
2015). Similarly, TREAT could also be coupled with the recently
developed methods for nascent polypeptide imaging that would
allow the relationship between translation andmRNA turnover to
be understood in greater detail (Morisaki et al., 2016; Pichon
et al., 2016; Wang et al., 2016; Wu et al., 2016; Yan et al.,
2016). A complete accounting of an individual transcript’s life
from birth to death is now possible.

Limitations
Previously, overexpression or viral infection of RNAs containing
Xrn1-blocking PKs was shown to affect degradation of endoge-
nous mRNAs (Moon et al., 2012). While TREAT and a conceptu-
ally similar approach using Xrn1-resistant RNA elements did not
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detect inhibition of endogenous mRNA decay, this effect could
be concentration dependent (Boehm et al., 2016). It will be an
important control when establishing TREAT in other experi-
mental systems that the approach itself does not influence
mRNA degradation.

In order to directly detect mRNA decay events in live cells, we
incorporated an siRNA target sequence within the TREAT re-
porter to shorten the half-life of the transcript. Continued devel-
opment of automated SPT and analysis routines will enable the

detection of decay events for more stable transcripts. Further-
more, tethering of TREAT reporter mRNAs to cytoplasmic struc-
tures (e.g., membranes via addition of a CAAX prenylation
sequence to MCP) can immobilize the transcript and has been
shown to allow monitoring of individual mRNAs for extended
time periods (Yan et al., 2016). While restricting mobility of
mRNAs may not be appropriate for all applications of TREAT, it
will overcome limitations in decay detection due to movement
of RNAs. Alternatively, advances in the speed and sensitivity of

Figure 6. TREAT Transcripts Are Not
Degraded in P-Bodies during Stress
(A) Representative live-cell image of TREAT

reporter in HeLa cells expressing NLS-MCP-Halo

(magenta), NLS-PCP-GFP (green), and SNAP-

Dcp1a (blue) as a P-body marker stressed with

arsenite (500 mM) for 1 hr.

(B) Intact TREAT transcripts accumulate in

P-bodies during arsenite stress. SPT experiments

were performed to identify intact (MS2 + PP7,

white) and stabilized 30 ends (MS2 only, magenta)

in arsenite-stressed cells (539 particles, 19 cells).

(C) Representative live-cell image of 50-TOP

TREAT reporter in HeLa cells expressing NLS-

MCP-Halo (magenta), NLS-PCP-GFP (green), and

SNAP-Dcp1a (blue) as a P-body marker stressed

with arsenite (500 mM) for 1 hr.

(D) Intact 50-TOP TREAT transcripts accumulate in

P-bodies during arsenite stress to a greater extent

than TREAT transcripts. SPT experiments were

performed to identify intact (MS2 + PP7, white)

and stabilized 30 ends (MS2 only, magenta) in

arsenite-stressed (556 particles, 22 cells) cells.

Histograms are plotted with bin widths of 10 pixels

and centered at shown values. Scale bar, 5 mm.

Figure 7. Stabilization of TREAT Tran-
scripts during Stress and Translation
Inhibition
(A) Representative smFISH images of the TREAT

reporter in HeLa cells with and without arsenite

stress. HeLa cells were induced for 2 hr with

doxycycline and then treated with 500 mMarsenite

for another 2 hr. Intact mRNAs (Renilla + MS2,

white) and stabilized 30 ends (MS2, magenta) were

measured by smFISH.

(B) Intact mRNAs are stabilized in arsenite-

stressed cells (16 cells) compared to unstressed

cells (8 cells).

(C) Representative smFISH images of the TREAT

reporter in HeLa cells treated with translational

inhibitors. HeLa cells were induced for 2 hr with

doxycycline followed by addition of translational

inhibitors harringtonine (5 mM), cycloheximide

(100 mg mL!1), and puromycin (100 mg mL!1) for 2

or 4 hr.

(D) Quantification of smFISH of HeLa cells treated

with translational inhibitors shows stabilization of

TREAT mRNAs. Shown are untreated (2 hr, 20 cells; 4 hr, 23 cells), harringtonine (2 hr, 34 cells; 4 hr, 37 cells), cycloheximide (2 hr, 38 cells; 4 hr, 38 cells), and

puromycin (2 hr, 39 cells; 4 hr, 36 hr). Graph shows mean ± SEM. p values: ** < 0.01, **** < 0.0001; n.s., not significant; unpaired t test. Scale bars, 5 mm.
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multi-color, multi-focal plane microscopy may enable single
mRNAs to be observed continuously while freely moving in the
cytosol (Abrahamsson et al., 2013).
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GAACATCTTAGGCAGATCGT

TGGAAAAGAACCCAGGGTCG

CTTAGCTCCCTCGACAATAG

TTCACGAACTCGGTGTTAGG

CTTACCCATTTCATCTGGAG

GCTCCACGAAGCTCTTGATG

TACTGCTCGTTCTTCAGCAC

Biosearch Technologies N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

MS2v4 FISH probes:

TGCCGTTTGTAGGTAGGATC

CGCTTGAAGATTGGACAGTG

GACTGTAATGACAGTGGAGC

CTGATGCTGCTGGAGTTTGA

ATGTCCTGATGTAGTCGGAG

ATCGTCGAGCGTTGAATGAT

ATAGTGTCTGAGGCATGCTG

GTGATCGTGCAGCCGTTTGA

CGATAACGTAGAGGCAGTAG

CTGATGCTCGTCGCAGAAGA

ATCTGGTATGTCCGATGTTG

Biosearch Technologies N/A

30-probe for Northern blot:

CTTCAATCGATTTCGCGCGGGATCCAGACCACCTCCCC

TGCGAGCTAAGCTGGACAGCCAATGACGGGTAAGAGA

GTGACATTTTTCACTAACCTAAGACAGGAGGGCCGTCA

GAGCTACTGCCTAATCCAAAGACGGGTAAAAGTGATAA

AAATGTATCACTCCAACCTAAGACAGGCGCAGCTTCCG

AGGGATTTGAGAT

This paper N/A

Renilla forward qPCR primer: ATGGCTTCCAAGGTGTAC This paper N/A

Renilla reverse qPCR primer: TAGTTGATGAAGGAGTCCA This paper N/A

GAPDH forward qPCR primer: CGCTCTCTGCTCCTCCTGTT This paper N/A

GAPDH reverse qPCR primer: CCATGGTGTCTGAGCGATGT This paper N/A

c-Myc forward qPCR primer: CAGCTGCTTAGACGCTGGATT This paper N/A

c-Myc reverse qPCR primer: GTAGAAATACGGCTGCACCGA This paper N/A

ON-TARGETplus Human Exosc3 siRNA – SMARTpool:

CCUGAAUGCUAGAGCGUGC

GUAUUAUUAGAGUCCGAAA

ACUCUCAGCAGAAGCGGUA

GUGAACACAUGACGUCAGA

Dharmacon L-031955-01-0005

ON-TARGETplus Non-targeting Pool:

UGGUUUACAUGUCGACUAA

UGGUUUACAUGUUGUGUGA

UGGUUUACAUGUUUUCUGA

UGGUUUACAUGUUUUCCUA

Dharmacon D-001810-10-05

ON-TARGETplus Human Xrn1 siRNA – SMARTpool:

CUUCAUAGUUGGUCGGUAU

GAACAUAUUACAUGACGAA

AAUAAGAAGGUGCGAGUAA

AAUAAUUACCUCAGCGUUA

Dharmacon L-013754-01-0005

Recombinant DNA

pCAGGS-FLPe-IRESpuro plasmid Beard et al., 2006 Addgene ID 20733

TNF-a AU-rich element:

GATTATTTATTATTTATTTATTATTTATTTATTTAC

Franks and Lykke-

Andersen, 2007

N/A

50-TOP of RPL32:

TCCTCTCTTCCTCGGCGCTGCCTACGGAGGTGGCAGCCATC-

TCCTTCTCGGC

Damgaard and Lykke-

Andersen, 2011

N/A

Software and Algorithms

Graphpad Prism 7.0a https://www.graphpad.com N/A

Fiji including the TrackMate plugin Schindelin et al., 2012;

Tinevez et al., 2017

N/A

KNIME Analytics Platform version 3.2.1 Berthold et al., 2009 N/A

Data File S1

(Track-basedColocalizationAnalysis.knwf)

Voigt et al., in press N/A

(Continued on next page)
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CONTACT FOR REAGENT AND RESOURCE SHARING

All plasmids generated in this study are available from Addgene. For any other reagents or questions, please contact the
corresponding author, Jeffrey A. Chao (jeffrey.chao@fmi.ch).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines and tissue culture
All cell lines are derivatives of a HeLa cell line (HeLa-11ht) constitutively expressing the reverse tetracycline controlled transactivator
(rtTA2-M2) for inducible expression that also contains a single FLP recombinase-mediated cassette exchange (RCME) site (Weiden-
feld et al., 2009). Cells were grown at 37%C and 5% CO2 in DMEM containing 4.5 g L!1 glucose, 4 mM L-Glutamine, 100 U mL!1

Penicillin, 100 mg mL!1 Streptomycin and 10% FBS (Sigma Aldrich). To creat stable cell lines, RMCE was performed by replacement
of the hygromycin-thymidine kinase (positive/negative) selection cassette with the individual TREAT reporter constructs.

METHOD DETAILS

Plasmid construction
To generate the TREAT reporter, the sequence of the tandemWest Nile Virus Kunjin (WNVKUN) pseudoknots (PKs) from the 30 UTR of
the genomic viral RNA was inserted between either 12 or 24 copies of PP7 stem loops and 24 copies of MS2 stem loops. This
cassette was placed in the 30 UTR of a Renilla luciferase transcript whose expression is driven by a doxycycline-inducible promoter.
The TREAT reporter is composed of a doxycycline-inducible promoter – chimeric b-globin/IgG intron – Renilla luciferase coding
sequence– stop codon –12x (24x) PP7 stem loops – 2x PKs – 24x MS2 stem loops – constitutive transport element – SV40 poly(A).
In order to enable single genomic integration in HeLa cells, the TREAT construct was flanked by recognition sites for the FLP
recombinase.
A control dual-color reporter was generated by removal of the PKs from the TREAT construct andwas used to benchmark co-local-

ization experiments in fixed and live cells and determine detection efficiencies. To generate a TREAT siRNA reporter that can be
cleaved by Ago2, a 21nt long sequence from the firefly luciferase ORF was placed between the PP7 stem loops and the PKs
of the TREAT construct. The firefly siRNA target sequence (CGCTGAGTACTTCGAA ATGTC) corresponds to the MISSION
pLKO.1-puro firefly luciferase shRNA control (SHC007, Sigma Aldrich). Lentiviral transduction was used to stably integrate the
cognate shRNA into HeLa cells. To enhance interaction of TREAT mRNAs with P-bodies, the AU-rich elements from TNF-a
(Franks and Lykke-Andersen, 2007) were cloned in front of the PKs or the 50-TOP sequence from RPL32 (Damgaard and Lykke-An-
dersen, 2011) was inserted into the 50 UTR of the TREAT reporter.

HeLa stable cell line construction
A day before transfection, 33 105 HeLa cells were seeded into a 6-well plate. The targeting plasmid that contained a TREAT reporter
(2 mg) and pCAGGS-FLPe-IRESpuro plasmid (2 mg) were transfected using Lipofectamine 2000 (Invitrogen) according to the manu-
facturer’s protocol (Beard et al., 2006). Transfected cells were selected for two days with 5 mg mL!1 puromycin (Invivogen) followed
by 10-14 days of negative selection with 50 mMganciclovir (BioCat GmbH (TargetMol)) in order to obtain single resistant colonies that
had undergone RCME. Individual colonies were then tested for expression of TREAT reporters using the Renilla Luciferase Assay
System (Promega) according to the manufacturer’s instructions. Total protein concentration in the lysates was measured using
the Bradford Protein Assay (BioRad Laboratories) and used for normalization of luciferase activity.

Northern Blot
HeLa cells (1.53 106) with and without expression of the fluorescent coat proteins were seeded in a 10-cm plate. The following day,
cells were transiently transfectedwith 20 mg of plasmid DNA that expressed either the TREAT reporter or a control reporter lacking the
viral PKs by Lipofectamine 2000 (Invitrogen) according to the manufacturer’s instructions. The next day, expression of the reporters
was induced by addition of doxycycline (1 mg mL!1) for 16 hr. Total RNA was extracted from these cells using TRIzol (Ambion). The

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Other

Ibidi 35mm glass bottom dishes ibidi NOVS81158-IBI

Mini-PROTEAN 4-20% SDS gels BioRad 4561096

Trans-Blot Turbo Mini PVDF Transfer Packs BioRad 170-4156

Methods S1 This paper N/A
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concentration of isolated RNAs was measured using a Nanodrop (Thermo Scientific) and 5 mg of total RNA for each condition was
loaded on a 1.2% denaturing agarose gel containing 2% formaldehyde. The resolved RNA was transferred onto an Amersham
Hybond-N+ membrane (GE Healthcare) by capillary transfer overnight in UltraPure 20 x SSC (Invitrogen) at room temperature. After
the RNA was UV-cross-linked to the membrane, methylene blue staining (0.04% (w/v) Methylene Blue (Sigma) in 500 mM NaOAc
pH 5.1) was used to assess loading and transfer of the RNA.

An anti-sense RNA probe was designed to detect the 30 end of the transcript. The RNA probes were synthesized using the
DIG-Starter Northern Blot Kit (Roche), and detection of transcripts was performed using the same kit according to themanufacturer’s
instructions. In brief, the concentration of in vitro transcribed DIG-labeled RNA probe was estimated based on an evaluation of
labeling efficiency. The membrane was incubated with $50 ng mL!1 RNA probes for 16 hr at 68%C. Upon detection with an anti-DIG
antibody, the chemiluminiscent signal of the membrane was detected using an Azure c300 (Axonlab).

RT-qPCR
HeLa cells (63 105) stably expressing the TREAT reporter were seeded the day before in a 15-cm tissue culture plates. Induction of
reporter transcription was done as described for the smFISH half-life experiment for time points 0, 2, 4 and 8 hr. Total RNA was
isolated using TRIzol (Ambion). Total RNA (5 mg) was DNase-treated (TURBO DNA-free Kit, Ambion) and reverse transcribed
(SuperScript Reverse Transcriptase III, Thermo Fisher Scientific) using oligo-dT primers to generate cDNA. The abundance of TREAT
reporter transcripts was determined by real-time qPCR using FastStart Universal SYBRGreenMaster mix (Roche) and normalized to
an endogenous reference gene GAPDH using the DDCt method. The data were fit to one phase exponential decay using Prism 7.0a
(https://www.graphpad.com) in order to calculate the half-life of the TREAT mRNA.

The same procedure was performed when actinomycin D (10 mg mL!1) (Sigma) was added to inhibit transcription of endogenous
mRNA. In this experiment, 1 mg of total RNA was used to measure the half-life of c-Myc mRNA.

Renilla luciferase assay
One day in advance, HeLa cells (2.53 104) stably expressing the TREAT reporters were seeded into a 24-well plate. Expression of the
reporter was induced the next day for 2 hr by addition of doxycycline followed by lysis with 100 mL Passive Lysis Buffer from the
Renilla Luciferase Assay System (Promega). The lysate (5 mL) was used to measure Renilla activity according to the manufacturer’s
protocol, and 30 mL of the lysate was used for total protein measurement using the Bio-Rad Protein Assay (Bio-Rad) to normalize
the data.

siRNA transfection
HeLa cells (2 3 106) stably expressing the TREAT reporter were seeded onto 10-cm dish one day before siRNA transfection. Using
Lipofectamine RNAiMAX (Invitrogen) either siXrn1 (ON-TARGETplus Human Xrn1 siRNA – SMARTpool, Dharmacon), siRrp40
(ON-TARGETplus Human Exosc3 siRNA – SMARTpool, Dharmacon), or siCtrl (ON-TARGETplus Non-targeting Pool, Dharmacon)
were transfected at a final concentration of 50nM. The transfected cells were re-plated 8 hr later as follows: 0.5 3 106 cells onto a
6-cm dish for subsequent western blot quantification of the knock down efficiency; 2.5 3 104 cells onto a glass coverslip placed
in a 12-well plate for smFISH analysis. Both western blot and FISH procedures were started 48 hr after siRNA transfection.

Western Blotting
Cells were washed with 1x PBS and lysed in 200 mL Passive Lysis Buffer (Promega). After a 15 min incubation on ice, cells were
collected by scraping and centrifuged at 12,000 rpm for 20 min at 4%C. The supernatant was mixed with Laemmli buffer (Bio-Rad)
and boiled for 5 min at 95%C. The protein samples were resolved by SDS-PAGE on a 4%–20% gel (Bio-Rad) followed by transfer
to a PVDF membrane. The membrane was blocked with 5% BSA (Sigma) in PBST (1x PBS with 0.1% (v/v) Tween) for 1 hr at
room temperature and subsequently probed with antibodies diluted in the same blocking buffer supplemented for 4 hr at room
temperature: mouse derived anti-Rrp40 (Abcam, ab67661, 1:500) and rabbit derived anti-a-Tubulin (Abcam, ab18251, 1:1,000);
rabbit derived anti-Xrn1 (Abcam, ab70259, 1:1,000) and mouse derived anti-Actin-pan (ThermoFisher Scientific, MA5-11869,
1:2,500). The membrane was washed four times in PBST for 5 min. Secondary antibodies were diluted in the blocking buffer
supplemented with 0.01% (v/v) SDS and applied to the membrane for 1 hr at room temperature: anti-rabbit IRDye 800 CW (LI-COR,
1:15,000) and anti-mouse IRDye 680 RD (LI-COR, 1:15,000). After washing the membrane four times in PBST for 5 min, the mem-
brane was imaged using an Odyssey infrared imaging system (LI-COR) and quantitative densitometry was performed using Fiji
(Schindelin et al., 2012).

Single-molecule FISH
HeLa cells (23 104) were seeded on glass coverslips placed in a 12-well tissue culture plate two days before smFISHwas performed.
To induce transcription, the medium was replaced by complete DMEM containing doxycycline (1 mg mL!1) for 1.5 hr. Cells were
washed extensively with 1x PBS to remove doxycycline in order to stop transcription of TREAT reporter mRNAs. Fresh DMEM
was then added to the cells and they were returned to the incubator for an additional 30min to enable nascent transcription of TREAT
reporters to finish. Afterward, cells were fixed at successive time points using 4%paraformaldehyde (ElectronMicroscopy Sciences)
in 1x PBS for 10 min. Following fixation cells were washed twice with 1x PBS before storage in 70% ethanol at 4%C.
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Single-molecule RNA detection was performed using Stellaris FISH probes (Biosearch Technologies). Briefly, cells on coverslips
were prehybridized in wash buffer (2x SSC (Invitrogen), 10% (v/v) formamide (Ambion)) twice for 5min. Two sets of FISH probes were
designed to detect the Renilla ORF (Quasar670) or MS2 stem loops in the 30 UTR (Quasar570). Cells were then hybridized with a
solution that contained 150nM of each FISH probes, 2x SSC, 10% (v/v) formamide, 10% (w/v) dextran sulfate (Sigma) for 4 hr at
37%C. Cells were washed twice with wash buffer for 30 min before counterstaining DNA with DAPI solution (500 mg L!1

in 1 x PBS) and mounted on slides using ProLong Gold Antifade Mountant (Molecular Probes).
In order to investigate the effect of oxidative stress and of translational inhibitors on mRNA stability, prior to smFISH, cells were

induced for 2 hr by doxycycline followed by either a 2 or 4 hr incubation with: 500 mM arsenite (Sigma), 5 mM harringtonine (LKT
Laboratories), 100 mg mL!1 cycloheximide (Sigma), 100 mg mL!1 puromycin (Invivogen).
Images were acquired using a wide-field microscope (Zeiss) with a Plan-APOCHROMAT 100x 1.4 NA oil objective equipped with

an AxioCam 506 mono camera and an X-Cite 120 EXFO metal halide light source. Cells were optically sectioned using a 240 nm
z-step, spanning a 5 mm z-depth. Exposure times of 1600 ms were used to acquire images of each plane in the channel for
Quasar670, 800 ms in the channel for Quasar570, and 10 ms in the DAPI channel.

Detection of mRNA spots from smFISH and co-localization analysis
Single mRNAs were detected in maximum projections of images using the spot detection algorithm AIRLOCALIZE (Lionnet et al.,
2011) written in MATLAB (MathWorks) providing sub-pixel positions of the spots as described previously (Halstead et al., 2015).
To detect the diffraction-limited fluorescent spots, thresholding was adjusted for each set of images depending on the signal-to-
noise ratio. Either a custom MATLAB script or a KNIME Analytics Platform (Berthold et al., 2009) workflow (allowing segmentation
for nuclear and cytoplasmic fraction based on DAPI staining using the Otsu thresholding method [Otsu, 1979]) were used to evaluate
pairwise spot co-localization from both FISH channels. Renilla and MS2 spots that were within a maximum distance of 5 pixels
(225 nm) were considered to be co-localized and were classified as intact mRNAs. Orphan MS2 spots were defined as stabilized
30 ends.

Correction of co-localization data for detection efficiency
As a result of imperfect detection of single particle fluorescent labels, the observed fraction of co-localized particles underestimates
the true fraction. For example, a missed magenta label from a double-labeled particle causes it to be wrongly classified as a single-
labeled green particle. In order to correct for this type of error, we assumed that particles and color channels are independent and that
there is a fixed rate of detection for each color label (detection efficiency, emagenta and egreen).
The detection efficiencies are estimated from a control experiment in which all particles are known to be double-labeled, using the

following equations: emagenta = (nmagenta+nwhite)/N and egreen = (ngreen+nwhite)/N, where nmagenta, ngreen, and nwhite are the normalized
numbers of magenta, green, and double-labeled particles, and N is the total number of particles. In practice, N is estimated from
N = nmagenta+ngreen+nwhite, which underestimates its true value by the number of particles for which both labels have been missed
(nblack). For relatively large detection efficiencies as the ones obtained here (e > 0.85), nblack > 0.0225 and using nblack = 0 is an
acceptable approximation.
In an experiment where we do not know the number of double-labeled particles, we can now express the observed numbers of

particles (nx, where x is magenta, green or white) in terms of the true underlying number of particles (mx) and the above detection
efficiencies. For example, assuming that labels are never detected if they are truly absent, magenta particles can be observed
from truly magenta particles (if the magenta label was detected) and from truly white particles (if the magenta label was detected
and the green label was not detected): nmagenta = mmagenta,emagenta+mwhite,emagenta,(1!egreen). Double labeled particles can only
be detected from truly double labeled ones if both labels were detected: nwhite = mwhite,emagenta,egreen. Solving these equations
for the true particle numbers yields:

mwhite = nwhite

!"
emagenta,egreen

#
;

mmagenta = nmagenta

!
emagenta !mwhite,

"
1! egreen

#
;

mgreen = ngreen

!
egreen !mwhite,

"
1! emagenta

#
:

Finally, the fraction of co-localized particles is obtained from the estimated true numbers using fwhite = mwhite/
(mmagenta+mgreen+mwhite).
Means and 95%-confidence intervals (CI) of means for detection efficiencies (emagenta and egreen) and normalized counts (nx) were

estimated using data frommultiple experiments (cells) by xHt & ,s=
ffiffiffi
n

p
, where xis the arithmetic mean over themeasurements xi from

individual cells, t* is the critical value corresponding to the 97.5% quantile for a t distribution with n-1 degrees of freedom, s is the
standard deviation estimated from the xi, and n is the number of cells. These confidence intervals were then propagated to the
derived entities calculated using the formulas described above using the R package propagate (version 1.0-4) calculated based
on first-order Taylor expansion.
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Modeling of mRNA half-lives from smFISH measurements
In the absence of transcription, we assumed that the turnover of intact mRNAs and stabilized 30 ends is described by the following
three rate equations, which account for the degradation of these RNA species in terms of three single-step Poisson processes:

d½Nuc#
dt

= ! a½Nuc#

d½Cyt#
dt

= a½Nuc# ! b½Cyt#

d½Deg#
dt

= b½Cyt# ! g½Deg#

where Nuc is the number of nuclear mRNAs, Cyt is the number of cytoplasmic mRNAs, and Deg is the number of stabilized 30 ends,
respectively, and a, b and g are their decay rates.

We fitted the solutions of this model to the population-averaged intact mRNA and stabilized 30 end numbers, and obtained
a = 0.94 ± 0.07 hr!1, and b = 0.43 ± 0.06 hr!1. g = 0.16 ± 0.02 hr!1. The goodness of fit with adjusted R2 for the rates was
a = 0.99, b = 0.97, and g = 0.98.

For the TREAT siRNA reporter, we added an additional rate to model the cytoplasmic degradation of the 50 end generated by
slicing:

d
%
5

0
Deg

&

dt
= b½Cyt# ! d

%
5

0
Deg

&

We obtained rates of a = 0.99 ± 0.25 hr!1, b = 5.45 ± 0.52 hr!1, g = 0.17 ± 0.04 hr!1, and d = 4.27 ± 0.70 hr!1. The goodness of fit
with adjusted R2 for the rates were a = 0.94, b = 0.97, g = 0.96, and d = 0.89.

Stochastic simulation of mRNA decay
To evaluate to what extent the experimental cell-to-cell variability in mRNA numbers can be predicted by a simple model, we
assumed that degradation of intact mRNA and stabilized 30 end are single-step Poisson processes. To this end, we performed kinetic
Monte Carlo simulations using the Gillespie algorithm to solve the master equation associated to the refined model described above,
using the same export and decay rates (Gillespie, 1977). To simulate the time evolution of the probability distributions of intact mRNA
and stabilized 30 end after induction was stopped, we took the experimental distributions of all mRNA species after removal of
doxycycline as the initial condition (t = 0).

We performed the simulations using the calculated rate constants a, b, g, and d that were extracted from fitting the rate equations
(thick red lines in Figure S5, 6). We generated confidence intervals by running the simulation with a± εa; b± εb; g± εg ; d± εd where
ε are the fitting errors on each parameter returned by the NonLinearModelFit function in Mathematica (red shaded areas in
Figure S5, 6).

Immunofluorescence
The HeLa cells (23 105) expressing SNAP-Dcp1a fusion were seeded onto glass coverslips placed in 12-well plate 2 days prior the
immunostaining. After pre-staining the cells with SNAP dye Janelia Fluor 549 (JF549) (Grimm et al., 2015), the cells were treated with
arsenite (500 mM) for 1.5 hr to stress cells and increase P-body levels. All the downstream stepswere carried out at room temperature
while coverslips were protected from light. Cells were washed with 1x PBS and fixed with 4% paraformaldehyde (Electron Micro-
scopy Sciences) in 1x PBS for 10 min, washed once in 100mM glycine in 1x PBS and twice in 1x PBS, and subsequently permea-
bilized bymethanol for 5min. Following permeabilization, cells were washed twicewith 1x PBS and then blocked for 1 hr in 0.5%BSA
in 1x PBS. Cells were then incubated with Xrn1 antibody (Abcam, ab70259; 1:500) diluted in 0.5% BSA in 1x PBS for 1 hr. Cells were
washed three times in 0.5% BSA in 1x PBS for 5 min. Cells were then incubated with goat anti-rabbit secondary antibody coupled to
Alexa Fluor 647 (Molecular Probes; 1:5,000) diluted in 0.5% BSA in 1x PBS for 30 min. Cells were washed twice with 0.5% BSA in
1x PBS and once onlywith 1x PBS for 5min each time. Nucleuswas quickly counterstained byDAPI (500 ngmL!1 in 1x PBS), washed
twice with 1 x PBS and coverslips were mounted onto glass slides with ProLong Gold Antifade Mountant (Molecular Probes).

Image acquisition was performed using awide-field microscope (Zeiss) with a Plan-APOCHROMAT 63x 1.4 NA oil objective equip-
ped with an AxioCam 506 mono camera and an X-Cite 120 EXFO metal halide light source. Cells were optically sectioned using a
240 nm z-step, spanning a 5 mm z-depth. Exposure times of 800 ms were used to acquire images of each plane in the channel
for SNAP(JF549)-Dcp1a, 800 ms in the channel for Xrn1-Alexa647 and 10 ms in the DAPI channel. The co-localization analysis
between P-body markers, SNAP-Dcp1a fusion and Xrn1, was done using the Fiji (Schindelin et al., 2012) plugin Coloc2 to calculate
the Pearson’s correlation coefficient.
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Live-cell imaging of TREAT mRNAs
In order to label TREAT reportermRNAs for live-cell imaging, chimeric fusions of the bacteriophage coat proteins (PCP andMCP)with
spectrally distinct fluorescent proteins were used. Synonymous tandem PP7 coat protein (stdPCP) was fused to synonymous
tandem green fluorescent protein (stdGFP) and synonymous tandem MS2 coat protein (stdMCP) was fused to Halo protein
(Wu et al., 2015). Both fluorescent proteins contain N-terminal nuclear localization signals (NLS) to concentrate the unbound proteins
in the nucleus. NLS-stdMCP-Halo was labeled with an organic Halo dye (JF549) (Grimm et al., 2015). Fusion proteins were expressed
from a constitutive ubiquitin C promoter and stably integrated into the HeLa cell line by lentiviral transduction using standard
protocols. Several rounds of fluorescence activated cell sorting (FACS) were used to derive a cell population expressing the
fluorescent fusion proteins at levels appropriate for single-molecule RNA imaging.
In order to visualize P-bodies in live cells, a SNAP-Dcp1a fusion protein was introduced by lentiviruses for constitutive expression.

SNAP dye (JF646) (Grimm et al., 2015) was used to label the SNAP-Dcp1a fusion protein. Triple positive cells, expressing
NLS-stdPCP-stdGFP, NLS-stdMCP-Halo and SNAP-Dcp1a were isolated by FACS.
Cells were imaged on a spinning-disk confocal microscope based on an Olympus IX81 inverted microscope equipped with a

Yokogawa CSU-X1 scanhead with Borealis modification (Andor) using a 100x 1.45 NA PlanApo TIRFM oil immersion objective
(Olympus). Images were collected on two precisely aligned back-illuminated EMCCD cameras (EvolveDelta, Photometrics). Solid-
state lasers (491 nm, 561 nm, 633 nm; Cobolt) were used as excitation sources. Cells were maintained at a constant temperature
of 37%C and 5% CO2 within an incubation box. Images were acquired using Visiview (Visitron) as single planes at frame rates of
20 Hz (50 ms exposure).

QUANTIFICATION AND STATISTICAL ANALYSIS

Single particle tracking of mRNAs in live cells and track co-localization
Single particle tracking (SPT) and analysis of mRNAmolecules was performed on 5 frames of 50ms exposure time for each of the two
registered channels individually. SPT was performed using the Fiji plugin TrackMate (Tinevez et al., 2017) for the nucleus and
cytoplasm separately as described before (Voigt et al., in press). For spot detection, we used ‘‘LoG detector’’ with an ‘‘Estimated
blob diameter’’ of 0.38-40 mm and defined the ‘‘Threshold’’ based on individual images. We used the ‘‘Simple LAP tracker’’
particle-linking algorithm and applied linking distances that were optimized for particle density. The resulting list of coordinates
served as input for a custom-made track co-localization pipeline running in KNIME (Berthold et al., 2009).
Here, we performed a nearest neighbor spot analysis that classifies two spots as co-localizing if their distance is below the user

defined threshold of 0.3mm. Tracks co-localized if they contained at least 2 co-localizing spot pairs. Tracks shorter than 3 frameswere
excluded from the analysis. All other unpaired tracks containing only the MS2 signal were classified as stabilized 30 ends.

Live-cell slicing analysis
TREAT siRNA and control data were collected as described above and including at least 100 frames of 50 ms exposure time per
acquisition. SPT and co-localization analysis of the TREAT siRNA and control live-cell data was performed via automated tracking
and track pairing analysis in KNIME.
Automated Tracking and Track Pairing
To this aim, we generated a workflow that enables KNIME to run the Fiji plugin TrackMate (Tinevez et al., 2017) in batch mode and via
a custom-made ImageJ2 plugin (KNIME Image Processing/ ImageJ2/ FMI/ Track Spots). All tracking parameters are chosen
as described above. The ROI is generated from an inverted segmentation of the nucleus that results after blurring of the raw image
(Gaussian Blur, s = 5.5) and global thresholding. Spot co-localization and classification is performed as described above. However,
to improve track statistics over long time course experiments (> 100 frames) and avoid redundant counting of co-localizing tracks that
cannot always be trackedwithout violation of gap criteria, we implemented a track pairing algorithm that pairs all tracks into the same
pair ID if they spatially co-localize (R2 spot co-localizations) at some point throughout the experiment. This method stitches co-local-
izing tracks together that have been interrupted at different time points due to detection errors.
Identification of Slicing Events
For identification of slicing events, we selected for intact tracks that cease to co-localize without one of their labels vanishing. To this
aim, we determined the length of both tracks after the last co-localization frame and selected candidate tracks that are detectable for
at least three frames after their last co-localization. To more easily identify false-positive track co-localizations, we generated a mea-
sure for track inter-label mobility. Specifically, we quantified relative spot movement by assessing the distances between co-local-
izing spots of both channels (GFP and Halo+JF549). We then calculated squared displacements and instantaneous diffusion
coefficients (Berg, 1993) that measure the relative mobility of spots belonging to both labels for each co-localizing track. We applied
the empirically determined threshold of 0.1 mm2 s!1 to filter out high inter-label mobility tracks and then manually inspected and
verified the candidate slicing events.
Nuclear Segmentation and Distance Analysis
In order to assess the subcellular localization of the slicing events, we determined their distance from the nucleus. To this aim, we
segmented the nucleus via Gaussian Blur (s = 5.5) and global thresholding (Huang method) and determined the average distance
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(of all co-localizing frames per track) from the closest nuclear boundary via a distance map. As control, we used all co-localizing
tracks (6,244 particles, 125 cells) of the non-sliced control population reporters.
Bleach Correction and 50 end Decay Analysis
To generate a bleach curve and determine fluorophore decay rates, we acquired a test dataset under identical experimental condi-
tions using the non-sliced control cell line. We manually tracked and co-localized particles as described above but only included
tracks longer than 50 frames in the analysis. To determine the bleach rate of each fluorophore, we described bleaching as exponential
decay according to

I0 =
I

e!lt

where I0 is the intensity at the beginning of the experiment and l is the fluorophore decay rate.
In order to experimentally determine l, we took the natural logarithm of the intensities (lnðe!ltÞ = !lt), fit linear regressions and

extracted l as the slope of the linear fit:

I= lt + I0

To look for evidence of rapid loss of the 50 end signal from a dual-labeled transcript, we only looked at tracks with more than five
co-localizations. We normalized their bleach-corrected NLS-PCP-GFP intensity in each frame against the averaged intensity of
the first five frames of each track. To search for putative 50 end decay candidates, we identified tracks where the NLS-PCP-GFP
signal was lost at least two frames before the NLS-MCP-Halo signal due to either differences in the bleach rate of GFP compared
to Halo or degradation of the 50 end after slicing but before the 50 and 30 ends separated. We then fit a linear regression to the last
five frames of the NLS-PCP-GFP track and determined its slope (m). Slopes were determined for both non-sliced control and the
TREAT siRNA transcripts to identify possible 50 end decay events that would have large negative values.

Quantification and co-localization of mRNAs in P-bodies in living cells
Intact and degraded mRNAs were identified by measuring the co-localization of NLS-PCP-GFP and NLS-MCP-Halo tracks as
described previously. P-bodies were identified based upon segmentation of the SNAP-Dcp1a fluorescent signal (using the Yen
thresholding method (Yen et al., 1995) in KNIME (Berthold et al., 2009) workflow) and used to generate distance maps that measured
the number of pixels inside and outside of P-bodies. By overlaying themRNA trackswith the distancemap, we defined pixel positions
within P-bodies as positive and positions outside of P-bodies as negative. The position of intact and stabilized 30 ends with respect to
P-bodies was then measured at each frame and the cumulative P-body localization index was then calculated for RNA particles in
three consecutive frames.

The RNA content per P-body was determined by quantification of the NLS-PCP-GFP and NLS-MCP-Halo fluorescence intensities
per frame of all dual labeled particles using TrackMate (Tinevez et al., 2017) + KNIME (Berthold et al., 2009). The ratio of the two
channels was then calculated for all co-localizing spots and compared with the intensity ratio determined for intact mRNAs in the
cytosol.

Statistical Analysis
Statistical parameters are shown in the figures and listed in the figure legends. Statistical significance is claimed when p < 0.05 in a
Student’s t test. In figures, asterisks mark statistical significance as following *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001.

DATA AND SOFTWARE AVAILABILITY

All KNIME workflows are available from the Chao lab upon request. The ImageJ2 plugin that enables TrackMate to run
in KNIME has been uploaded into the KNIME Image Processing library. The track-based co-localization workflow Data S1
(‘‘Track-basedColocalizationAnalysis.knwf’’) used to identify intact and stabilized 30 end TREAT reporter mRNAs is available as a
supplemental item to this manuscript.

The unprocessed image files used to prepare the figures in this manuscript have been deposited atMendeley Data (https://doi.org/
10.17632/52wjrtnz2r.1)
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Figure S1. Viral pseudo-knots in TREAT reporter do not alter mRNA degradation or translation. 

Related to Figure 1. A, Quantitative RT-PCR analysis of endogenous c-Myc mRNA half-life in HeLa cells in 

the presence or absence of the TREAT reporter. HeLa cells were induced for 2 hours with doxycycline (1 μg 
ml-1) to express the TREAT reporter followed by addition of actinomycin D (10 µg ml-1) to stop transcription. 

RNA was isolated at the indicated time points. B, Quantitative RT-PCR analysis of control and TREAT 

reporter half-lives in HeLa cells, which were induced for 2 hours with doxycycline. Samples were collected 

at the indicated time points. The average of three independent experiments ± SEM is shown. C, Measure-

ment of Renilla luciferase activity in HeLa cells induced for 4 hours to express control or TREAT transcripts. 

Graphs show mean ± SEM (n.s. = not significant; unpaired t-test).
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Figure S2. Viral pseudo-knots are required to stabilize the 3′-end of TREAT reporter. Related to 
Figure 1. 1orthern blot analysis of total R1A froP HeLa cells transiently expressing the TREAT reporter 
(lane 1� and a control lacNing the tandeP 3.s in�between 33� and 062 steP�loops (lane 2�. The saPe 
constructs were also expressed in Hela cells expressing 1L6�3&3�*)3 and 1L6�0&3�Halo (lane � and 
��. Expression was induced by addition of doxycycline (1 μg Pl�1� for 1� hours and the isolated R1A was 
resolYed on a denaturing agarose gel and probed with an oligo that recogni]es both intact PR1A (�����bp 
including 3.s� �����bp without 3.s� and stabili]ed �ƍ�end (1����bp�. %efore hybridi]ation� the PePbrane 
was stained with Pethylene blue to Yisuali]e the R1A si]e ladder and ribosoPal R1As that serYe as a 
loading control.
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Figure S3. Determination of detection efficiencies based on imaging of control transcripts without 

pseudo-knots. Related to Figure 1. A, Schematic of control reporters lacking PKs. B, Representative 

live-cell images of nucleus and cytoplasm of a HeLa cell expressing control transcripts labeled with 

NLS-PCP-GFP and NLS-MCP-Halo. Intact mRNAs are dual labeled with NLS-MCP-Halo (magenta) and 

NLS-PCP-GFP (green) and appear as white spots. C, Quantification of co-localization of SPT of 

NLS-PCP-GFP and NLS-MCP-Halo in the nucleus (443 particles, 10 cells) and cytoplasm (531 particles, 

10 cells). D, Representative smFISH images of a HeLa cell expressing control reporter hybridized with 

Renilla (green) and MS2 (magenta) probes. E, Quantification of co-localization of Renilla and MS2 probes 

in smFISH images (particles = 17,186, cells = 139). F, Table showing calculated detection efficiencies. 

Graphs show mean ± SEM. Scale bar = 2 µm.
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Figure S4. Xrn1 knock-down affects TREAT mRNA stability. Related to Figure 2. A� :estern blot 
analysis of ;rn1 and Rrp�� NnocN�down. 3rotein lysates froP HeLa cells transfected with si;rn1� siRrp�� 
or si&trl for �� hours. Transcription of TREAT reporter was induced with doxycycline for 2 hours. Lysates 
were collected after induction and 1� hours later. ;rn1 and Rrp�� were efficiently NnocNed�down at both 
tiPe points (�h� ;rn1 ���� Rrp�� ���� 1�h� ;rn1 �1�� Rrp�� ����. Actin and Į�tubulin serYe as loading 
controls. B� &alculation of half�liYes of intact PR1As based on sP),6H tiPe course. The half�life of intact  
TREAT PR1A upon ;rn1 NnocN�down significantly increased whereas half�life upon Rrp�� NnocN�down 
was siPilar when coPpared to control siR1A (! �� cells per tiPe point�. C, Quantification of 

co�locali]ation analysis of sP),6H data. ;rn1 NnocNdown alters the stability of the TREAT reporter while 
Rrp�� NnocNdown does not. 1either ;rn1 nor Rrp�� NnocN�down alters the nuPber of Renilla particles 
detected. (n.s.   not significant� A129A�. *raph shows Pean � 6E0.
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Figure S5. Degradation of TREAT mRNA is a Poisson process. Related to Figure 2. Probability density 

function (shown as histogram with grey bars) of the number of intact nuclear mRNA (A), cytoplasmic mRNA 

(B� and stabili]ed �ƍ�end (C) at different time points measured with smFISH. The area of every bar corre�
sponds to the fraction of cells where the number of mRNAs lies in the corresponding interval (bin) on the 

hori]ontal axis. The bin si]e of the histograPs is deterPined by the )reedPan�'iaconis rule. 3redictions of 
stochastic RNA decay simulations (shown as red lines) assuming that mRNA degradation occurs as a simple 

Poisson process. The probability density function of the number of mRNAs at the initial time point, represent�
ing the cell�to�cell Yariability in PR1A species after induction was used as an input for the siPulation. 'ecay 
rates used in the simulation are those calculated in Figure 2C. Shaded red areas correspond to confidence 

intervals.
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Figure S6. Degradation of TREAT siRNA mRNA is a Poisson process. Related to Figure 3. Probability 

density function (shown as histogram with grey bars) of the number of intact nuclear mRNA (A), cytoplasmic 

mRNA (B�� stabili]ed �ƍ�end (C� and �ƍ�end (D) at different time points measured with smFISH. The area of 

every bar corresponds to the fraction of cells where the number of mRNAs lies in the corresponding interval 

(bin� on the hori]ontal axis. The bin si]e of the histograPs is deterPined by the )reedPan�'iaconis rule. 
Predictions of stochastic RNA decay simulations (shown as red lines) assuming that mRNA degradation occurs 

as a simple Poisson process. The probability density function of the number of mRNAs at the initial time point, 

representing the cell�to�cell Yariability in PR1A species after induction was used as an input for the siPulation. 
'ecay rates used in the siPulation are those calculated in )igure �% with addition of �ƍ�end decay. 6haded red 
areas correspond to confidence intervals.
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Figure S7. SNAP-Dcp1a labeled P-Bodies co-localize with Xrn1. Related to Figure 5. A, 

SNAP-Dcp1a labels P-bodies in HeLa cells. The number of endogenous P-bodies in unstressed 

and arsenite (500µM) stressed cells (25 cells, immunofluorescence with Ddx6 antibody) are 

similar to the numbers of P-bodies identified in living cells by SNAP-Dcp1a (20 cells). Graph 

shows the mean ± SEM. (n.s. = not significant; unpaired t-test). B, Representative immunofluo-

rescence images of HeLa cells stably expressing SNAP-Dcp1a and co-stained with Xrn1 

antibody to visualize their subcellular localization. Co-localization was measured by Pearson's 

correlation coefficient in Fiji (Schindelin et al., 2012) resulting in 0.79 ± 0.01 (mean ± SEM, 19 

cells).
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collaborative work of all indicated authors. I significantly contributed to the enclosed 

publication under the supervision of J.A.C. by designing and cloning of all the TREAT 
reporters and the derived control reporter lacking PKs. Furthermore, I established the 

HeLa stable cell lines bearing one of the reporters in a single genomic locus. 
Additionally, I transduced cell lines intended for live-cell imaging by lentiviruses bearing 

the tagged MS2 and PP7 coat proteins and the PB marker. Likewise, for the TREAT 
slicing reporter, I introduced a specific siRNA coding sequence into the HeLa genome 

by lentiviruses. To validate the imaging system in fixed and living cells, I detected, 

tracked and quantified the fraction of dual- and single-labeled RNA particles in single 
cells (Figure 1). Furthermore, I carried out qPCR and luciferase assay experiments 

from cell populations (Figure S1). Together with C.G.A.-R., we transiently transfected 
HeLa cells to overexpress the reporters and we subjected the extracted RNA samples 

to a northern blotting (Figure S2). To obtain the detection efficiencies in the used 
imaging experimental set-ups, I imaged and analyzed fixed cells bearing the control 

reporter and F.V. imaged and analyzed living cells bearing the control reporter. 
Subsequently, the detection efficiencies were calculated using a tool developed by 

M.B.S. (Figure S3). The rest of the imaging data were normalized to the calculated 
detection efficiencies throughout the publication. In order to obtain the half-life 

measurements, I personally performed smFISH time-course experiments where RNA 

particles were detected and quantified with the help of A.V.K., and the degradation rate 
constants were calculated by Y.Z. under supervision of L.G. (Figure 2, 3B, S4B, S8). 

The data obtained from these time-course experiments were also used by Y.Z. and 
L.G. to computationally simulate the stochastic RNA degradation (Figure S5 and S6). 

To investigate which exonucleases are involved in degradation of the reporter, I 
performed the knock-down experiments followed by western blotting and smFISH 

quantification (Figure S4). Next, I applied SPT to compare the nuclear RNA particles 
of the reporter targeted and not targeted for endonucleolytic cleavage in living cells 

(Figure 3C, D). The imaging and analysis of cytoplasmic slicing events were performed 
by F.V. (Figure 4). Supported by J.E., F.V. developed workflows for semi-automated 

image analysis in KNIME. I specifically looked at the co-localization of RNA particles 

with stained PBs within living-cells and quantified the fraction of PB-associated RNA 
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particles with the help of J.A.C. (Figure 5 and 6). In order to validate the PB-labeling 

method, I monitored the number of PBs under physiological and stress conditions with 
help of J.A.C. (Figure S7). Moreover, I conducted smFISH quantification of RNAs in 

cells treated with arsenite or translational inhibitors with the help of A.V.K. (Figure 7). 

Finally, I was extensively involved in writing of the first version of the manuscript 

and in the preparation of the figures. The final version of the manuscript was created 
with a significant contribution of all the authors. 
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6. CONCLUSION AND DISCUSSION 

In my work, I established a dual-color single-mRNA microscopy tool, called 

TREAT, that can expose molecular aspects of the RNA decay dynamics and kinetics 
that have remained unresolved in ensemble experiments. The innovative use of viral 

Xrn1-resistant PKs within the TREAT enables the unambiguous discrimination of 
mRNA decay from other causes of a signal loss such as photobleaching. The TREAT 

system relies on a direct monitoring of the intact mRNA and its decay intermediate that 
can be distinguished from each other. Advantages of the established TREAT system 

are: (i) temporal control over the expression of a reporter from a single genomic locus 
in HeLa cells, (ii) no apparent interference with other cellular processes, (iii) versatility 

of its applications (e.g. various cis-regulatory sequences), (iv) compatibility with 

antibody staining and experimental manipulation of proteins. Moreover, the TREAT 
system offers also possibilities for future improvements. 

I used the TREAT method to tackle biological questions regarding mRNA 
turnover and found that: (i) TREAT mRNA export and decay rates can be measured 
by smFISH, (ii) degradation of TREAT mRNAs does not burst, (iii) real-time 

observation of Ago2-mediated cleavage of a shortly-lived TREAT mRNAs reveals 

spatial separation of cleavage fragments from each other in vivo, (iv) TREAT mRNAs 
are degraded in the cytoplasm without a spatial preference, (v) PBs are not sites of 

active TREAT mRNA degradation under physiological or stress conditions, (vi) cis-
elements such as ARE or 5′-TOP within TREAT do not trigger its degradation in PBs, 

(vii) degradation of TREAT mRNAs is repressed by inhibition of translation in various 
steps. 

Altogether, the developed TREAT technique enables to resolve spatio-
temporal information and cell-to-cell heterogeneity of mRNA degradation on the level 

of individual molecules. My observations lay a foundation for determining how are 
degradation steps modulated within a cell at the single-molecule level and serves as 

a base for further sophisticated imaging experiments to unravel the complexity of 
mRNA regulation in time and space. 
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6.1. ADVANTAGES AND ADAPTATION OF THE TREAT 

6.1.1. Use of viral PKs to resist 5ʹ-to-3ʹ decay 

Sequence folding pattern plays a fundamental role in RNA functionality. Certain 
RNA structures within RNAs have been found to slow down or resist degradation in 
the past (Alifano et al., 1994; reviewed in Brierley et al., 2008; reviewed in Conrad, 

2014; Emory et al., 1992). While poly(G)-tracts and related elements have been used 

successfully to stall the 5′-to-3′exoribonuclease in yeast and trypanosomes and thus 
study RNA degradation, these types of structures have not consistently worked in 

mammalian cells (Decker and Parker, 1993; Li et al., 2006; Muhlrad et al., 1994; Poole 
and Stevens, 1997; Sheth and Parker, 2003). The recently solved crystal structure of 

a part of the flaviviral 3′-UTR has shown that a specific three-dimensional fold provides 
a readily protection from the complete Xrn1-mediated degradation of the flaviviral 

genomic RNA in mammalian host cells (Chapman et al., 2014a; Chapman et al., 
2014b; Moon et al., 2012). For construction of the single-mRNA reporter, I took 

advantage of these flaviviral PKs in order to stabilize mRNA degradation intermediates 
in mammalian cells. The accumulation of these intermediates can be used as a proxy 

for the mRNA degradation in context of the cellular environment. To interrogate RNA 

degradation, researchers from the Gehring laboratory have chosen a similar strategy. 
They primarily studied mRNA degradation of a transcript bearing a PTC upstream from 

the flaviviral PKs, an NMD reporter, employing semi-quantitative bulk measurements. 
Their conclusions relied on the ratio of whole transcripts to stabilized degradation 

intermediates seen as distinct bands of particular intensities on northern blots (Boehm 
et al., 2016). I also used northern blot method to distinguish intact TREAT mRNAs from 

its degradation intermediates and to confirm that the used flaviviral PKs have the ability 
to cause accumulation of stabilized 3′-ends in bulk (Figure S2 lane 1 and 2 in 

Horvathova et al., 2017). Thus, besides single-molecule studies, the TREAT system is 
suitable for bulk measurements as well. 

The degree of stabilization of degradation intermediates could be modulated 
by the number of PKs inserted within a reporter. In the case of the TREAT reporter, I 

inserted West Nile virus (WNV)-derived tandem PKs with their natural linker to 
preserve the integrity of their structures. Tandem PKs have been shown to be more 

potent in blocking Xrn1 activity than a single one of them (Chapman et al., 2014b). In 
addition, inclusion of more than two PKs within the 3′-UTR of the TREAT reporter 
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would further increase the half-life of the stabilized intermediates and would help to 

investigate the directionality of degradation of stabilized intermediates as these do not 
resist ribonucleases infinitely. This strategy, though, was used to observe a step-wise 

yet continuous degradation of stabilized intermediates via 5′-to-3′ decay due to 
multiple repeats of tandem Murray Valley Encephalitis (MVE)-derived PKs included 

within the 3′-UTR of the NMD reporter (Boehm et al., 2016). This result suggests that 
indeed Xrn1 has the capacity to eventually surpass the PKs and degrade the reporter 

remainders. Most likely, Xrn1 is the enzyme that is responsible for degradation of 
stabilized 3′-ends in the TREAT system as well. I showed that siRNA-mediated 

inactivation of the exosome complex does not significantly reflect on stability of the 
decay intermediates, whereas the knockdown of Xrn1 may have stabilized the 

degradation intermediates. However, this increase in number of stabilized 3′-ends 

would be masked by a decreased rate at which the stabilized 3′-ends are formed by 
the residual Xrn1 activity (Figure S4 in Horvathova et al., 2017). To confirm my 

assumption that Xrn1 is responsible for turnover of stabilized degradation 
intermediates, additional repeats of tandem PKs derived from WNV could be placed 

into 3′-UTR of the TREAT reporter and the degradation pattern could be resolved by 
a northern blot. 

 

6.1.1.1. Sequestration of Xrn1 and RNAi factors 

It has been proposed that Xrn1 gets sequestered after stalling on the refractory 
flaviviral structures. The accumulation of subgenomic flaviviral RNAs (sfRNAs) has 

been shown to be directly responsible for a stabilization of cellular mRNAs (Moon et 

al., 2012). In this study, they generated sfRNAs in mammalian cells in two ways. Either 
a reporter gene forming sfRNAs due to Xrn1 activity was transiently transfected or cells 

were infected by flaviviruses. This led to an overexpression of reporter mRNA or 
flaviviral genomic RNA, respectively. The high number of resultant sfRNAs may have 

diminished the pool of Xrn1 enzyme otherwise available for degradation of other 
transcripts. Importantly, I did not observe decreased Xrn1 activity while the TREAT 

reporter was expressed in HeLa cells. To test whether formation of TREAT stabilized 
3′-end affects Xrn1 activity, I measured and compared half-lives of inherently transient 

c-Myc mRNA in cells expressing and cells not expressing the TREAT reporter. This 

comparison showed almost identical degradation rates indicating no dysregulation of 
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Xrn1 decay pathways (Figure S1 in Horvathova et al., 2017). Even if the flaviviral PKs 

have the ability to sequester Xrn1 after its stalling, it would not most probably affect 
degradation rates of other RNAs since TREAT reporter is expressed from a single 

genomic locus at relatively low levels. My observation is further supported by the work 
of Boehm and colleagues who also did not find evidence about impairment of Xrn1-

mediated decay in their system (Boehm et al., 2016). 

Xrn1 was shown to bind to sfRNAs in Dengue virus and WNV infected cells as 
revealed by immunoprecipitation after crosslinking followed by RT-PCR or qRT-PCR 

analysis of bound RNA (Moon et al., 2012). Nevertheless, Chapman and colleague 

were unable to obtain evidence of formation of a stable complex between the resistant 
RNA and Xrn1 in a purified system arguing against the Xrn1 sequestration model 

(Chapman et al., 2014b). Altogether, PKs may act as reversible inhibitors of Xrn1, 
perhaps changing its activity in infected cells with high level of accumulated sfRNA. It 

is necessary to bear this in mind when using the TREAT system in different models 
(different types of cells, different organisms); the method always has to be validated in 

order to prove the full capacity of Xrn1 to degrade cellular transcripts. 

In another study, co-immunoprecipitation of sfRNAs with RNAi mediators Dicer 

and Ago2 in human cells has pointed towards an ability of flaviviruses to serve as a 
decoy for these dsRNA-binding proteins and thereby to suppress RNAi. It has been 

concluded that RNAi is mildly but significantly suppressed during Dengue virus or WNV 
infection of human cells (Moon et al., 2015b). One possible explanation for only mild 

repression of RNAi despite the binding of two important RNAi mediators is that the 
RNA-protein interaction may have relatively quick dissociation rate. As, in addition to 

low expressed amounts, the TREAT reporter contains only a fraction of the WNV 
sfRNA, I therefore reason that its expression does not interfere with the RNAi pathway 

in our experimental system. 

 

6.1.2. Use of other refractory elements to study different RNA decay steps 

Besides the flaviviral Xrn1-resistant RNAs blocking 5′-to-3′ exonuclease 
activity, other structured elements protect RNAs against degradation from the 3′-end. 
Two non-coding RNAs with exceptionally long half-lives and significant sequence 

homology, both with direct importance to human health, share similar strategy to resist 
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the 3′-to-5′ degradation. Firstly, Kaposi’s sarcoma-associated herpesvirus (KSHV) 

produces a noncoding polyadenylated nuclear (PAN) RNA. This viral transcript 
contains expression and nuclear retention element (ENE) and is expressed abundantly 

in the nucleus during the lytic phase of KSHV infection. The ENE element base pairs 
with the poly(A)-tail of the transcript forming an inhibitory structure for 

exoribonucleases (Conrad and Steitz, 2005; Mitton-Fry et al., 2010; Sun et al., 1996). 
Secondly, the long non-coding RNA MALAT1 was identified as a highly stable nuclear 

marker in different lung cancers (Ji et al., 2003). The 3′-stem-loop structure of 
processed MALAT1 confers stability by engaging a downstream A-rich tract in a triple-

helix thus sequestering the 3′-end from the helicase and exonuclease activities of the 
exosome (Brown et al., 2014). Hence, by engaging the A-rich 3′-tail in stable RNA 

structure, efficient loading and progression of exosome is prevented, which normally 

requires ~30 nt of single stranded RNA as a landing pad (Bonneau et al., 2009; Makino 
et al., 2013). Unlike mature MALAT1 with blunt ended 3′-end, PAN ENE features a 

poly(A)-overhang at the 3′-end. As a result, PAN RNA exhibits biphasic decay kinetics 
with rapid degradation of the overhanging tail followed by slow decay of remaining 

RNA (Brown et al., 2014). 

To study the deadenylation-dependent degradation, a reporter with the 3′-

sequence of MALAT1 has been already applied, which forms a terminal stable triple-
helix upon cellular processing without additional polyadenylation (Wilusz et al., 2012). 

An NMD reporter with the Xrn1-resistant PKs within 3′-UTR contained either MALAT1 
triple-helix or poly(A)-tail at the 3′-end and was tethered to Smg7. Here, Smg7 

preferentially triggered degradation of the polyadenylated reporter, however, it also 
induced deadenylation-independent degradation of the reporter terminating in the 

triple-helix. This suggested that Smg7 elicits both 3′-to-5′ and 5′-to-3′ decay pathways 
(Boehm et al., 2016). A similar assay tethering degradation factors to polyadenylated 

and triple-helix terminated mRNA reporters helped to investigate the miRNA-mediated 
silencing (Kuzuoglu-Ozturk et al., 2016). Hence, one could design a new version of 

TREAT reporter where the exosome-resistant structure would be placed instead of the 

poly(A)-tail. If any of single-colored 3′-ends arising from the reporter accumulates, it 
would mean that deadenylation-independent degradation by Xrn1 operates in the cells. 

 Moreover, to fluorescently distinguish intact mRNAs from 5′-end degradation 
intermediates, the 3′-to-5′ decay preceded by deadenylation needs to be blocked. This 
could be achieved by design of a reporter similar to TREAT where flaviviral PKs are 
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replaced by an exosome-resistant structure. However, this exosome-resistant 

structure has to be able to stop the exosome progression once it is engaged in 
degradation. Since placing MALAT1 or PAN ENE structures into 3′-UTR of a reporter 

would provide a landing pad for the exosome downstream of one of the structures, 
these structures may not resist the helicase and nuclease activity of the exosome long 

enough to trap the degradation intermediates. Despite of that, it would be valuable to 
test whether embedding of the triple-helix structure within 3′-UTR of the TREAT 

reporter causes stabilization of the 5′-end degradation intermediates. If a firm block for 
the exosome exonuclease activity existed, a set of reporters with elements blocking 

either the 3′-to-5′ or 5′-to-3′ degradation could be designed. Such reporters could, for 
example, be applied to a scenario of a PTC-evoked NMD. The modes of degradation 

could be thus distinguished, as NMD is proposed to involve endonucleolytic cleavage 

by Smg6 or recruitment of both 3′-to-5′ or 5′-to-3′ degradation machineries by Smg5-
Smg7 (reviewed in Boehm et al., 2016; Nicholson and Muhlemann, 2010). 

Altogether, these refractory RNA elements reveal different mechanisms to 
evade exonucleases and suggest that structure-based ribonuclease resistance may 
be a widespread mechanism of regulation of RNA decay. More of natural ribonuclease 

refractory elements are expected to be discovered and their potential folding may be 

determined by sensitive structure-solving methods. Alternatively, a rational structure 
design promises engineering of synthetic forms of refractory elements to come. In 

combination with structural features of a particular ribonuclease and its mechanistic 
function, new RNA elements can be designed based on their predicted folding pattern, 

perhaps inspired by the refractory structures that are already known. Then, an ability 
to block the selected nucleases can be experimentally tested. 

6.1.3. Contribution of deadenylation, Xrn1, exosome and Dis3l2 to the 

overall cytoplasmic mRNA decay 

The activation of cytoplasmic decay machineries has been most extensively 
studied in yeast as the most commonly utilized eukaryotic model organism in research 

related to mRNA metabolism. Deadenylation has been long considered as the rate-
limiting step in the processes of mRNA degradation. It seems now that uridylation can 

stimulate decapping without prior poly(A)-tail shortening in mammalian cells (Morgan 
et al., 2017; Song and Kiledjian, 2007). Noteworthy, uridylyl-transferases are absent 

in S.cerevisiae (uridylyl-transferase Cid1 exists in S.pombe) and shortening of a 
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poly(A)-tail beyond a certain limit is the predominant event activating degradation of 

mRNA. Therefore, rates of deadenylation, uridylation, decapping or exoribonucleolytic 
digestion can each be limiting to the overall transcript degradation rate depending on 

the organism. 

What is the contribution of different exoribonucleases to the overall mRNA 
degradation? According to the current model, Xrn1, as the sole 5′-to-3′ nuclease, plays 

a major role in the mRNA decay (Stoecklin et al., 2006). Although, it is clear that 3′-to-
5′ degradation pathways also make a significant contribution (Murray and Schoenberg, 

2007). It is well documented that mRNA surveillance pathways exploit exosome to a 

high extent (reviewed in Houseley et al., 2006). Illustrated by exosome and Dis3l2 that 
are able to catalyze degradation in the same direction, different levels of functional 

redundancy in RNA decay processes exist. Moreover, the opposite directionality of 
decay does not necessarily have to be mutually exclusive, but can be also functionally 

linked (Murray and Schoenberg, 2007). To dissect the contribution of Xrn1 and 
exosome to the overall degradation of the TREAT mRNA, I measured half-life of the 

reporter upon knockdown of Xrn1 or a core component of the exosome Rrp40 and 
compared the results to a control. The calculated half-life upon exosome knockdown 

was in agreement with the control, whereas Xrn1 knockdown resulted in increased 

stability of the mRNA. In conclusion, the Xrn1-mediated degradation is indeed the 
dominant decay pathway for the TREAT transcripts (Figure S4 in Horvathova et al., 

2017). It would be worth determining the range of poly(A)-tail lengths of TREAT intact 
mRNA and its degradation intermediates. However, measuring the poly(A)-tail length 

on single transcripts in cells by fluorescent tags is challenging owing to the ubiquitous 
presence of adenylated transcripts in the cytoplasm as well as in the nucleus. To 

estimate the length of poly(A)-tails, bulk biochemical methods such as RNaseH-
oligo(dT) digestion coupled to northern blot analysis, or PAT assay can be employed 

(Murray and Schoenberg, 2008). Alternatively, a single transcript resolution can be 
achieved by sequencing the 3′-extremities by TAIL-seq method, albeit the spatial 

information would be lost. But the advantage of this method is that additional 

modifications can be detected at the 3′-ends of transcripts (Chang et al., 2014b). 
Additionally, siRNA-mediated depletion of other factors such as Dis3l2 and TUTases 

would provide a deeper insight into the regulation of stability of TREAT reporters. 
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6.1.4. TREAT for imaging endogenous mRNAs 

In my work, I used engineered reporter mRNAs to study their degradation 
within whole cells. Using a reporter system has its advantages, however, an 

exogenous mRNA reporter may not recapitulate the full behavior of endogenous 
mRNAs. In general, an mRNA reporter may lack some of the cis-regulatory elements 

and thus trans-acting binding proteins that are otherwise important in context of an 

endogenous mRNA. Also, a reporter may not undergo proper processing (e.g., 
properly regulated splicing) to be bound by essential adaptors. Therefore, a question 

is: Can the TREAT system be also applied to endogenous genes? With the current 
availability of various gene-editing tools based on CRISPR/Cas9, transcription 

activator-like effector nucleases (TALENs) or zinc-finger nucleases (ZFNs), I foresee 
the TREAT system to be applied for inspection of endogenous mRNAs degradation 

(reviewed in Gaj et al., 2013). Genome-editing tools could be used to insert the TREAT 
components, sequences coding PP7 and MS2 stem-loops as well as flaviviral PKs, 

into 3′-UTR of a carefully selected protein-coding gene. In a favor of this, a transgenic 

mouse has been generated that bears a cassette containing repeats of MS2 stem-
loops in the 3′-UTR of the essential β-actin gene. Importantly, born homozygous 

knock-in mice were viable and fertile and, furthermore, the endogenous β-actin gene 
could be visualized by smFISH or live-cell imaging (Lionnet et al., 2011). Moreover, 

transgenic zebrafish carrying MS2-labeled β-actin gene was used to study dynamics 
of transcription and subcellular localization of an mRNA in vivo (Campbell et al., 2015). 

This indicates that the presence of the MS2 stem-loops in the genome is not 
deleterious for the cells and predicts feasibility of simultaneous insertion of multiple 

elements. 

Since the emergence of CRISPR/Cas9, many techniques have been 

developed that utilize this adaptive immune system originating from bacteria and 
archaea. Redesigning the CRISPR/Cas9 system to bind RNA instead of DNA was a 

key step to develop an RNA imaging tool that is programmable for virtually any 
endogenous RNA (O'Connell et al., 2014). Catalytically inactive nuclease Cas9 fused 

with GFP forms a complex with a guide RNA and a PAM-presenting oligonucleotide. 
This complex specifically binds and tracks localization of mRNAs in live single-cells, 

without a need to modify the mRNA (Nelles et al., 2016). However, the method’s 
resolution is not yet at the level of single-molecule detection pointing towards benefits 

of the TREAT system. 
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Analogous to our TREAT approach in fixed cells, dual-color smFISH has been 

used recently for simultaneous detection of an endogenous extraordinary long mRNA 
and its decay intermediate in Trypanosoma brucei. This approach is based on 

fluorescently distinguishable probes hybridizing to the extreme 5′- and 3′-ends of a 
very long transcript allowing for both decay directionalities to be investigated. No 

artificial stabilization of decay intermediates was needed because the extensive length 
of the questioned transcript allowed observing them for sufficient time. The activity of 

nucleases from either site results in a switch from a dual-labeled intact transcript to a 
single-labeled decay intermediate. These data confirmed that 5′-to-3′ decay pathway 

is the major cytoplasmic mRNA degradation mechanism. The suitability of this system 
was successfully tested for mouse fibroblast cells, however, only for very long 

endogenous transcripts that are generally rare. So, the question arises as to whether 

these very long mRNAs are representative enough for reporting on mRNA metabolism, 
particularly as these long mRNAs are expressed as only a few copies per cell (Kramer, 

2017). Although TREAT reporter yields information especially about 5′-to-3′ decay 
pathway, it is predicted to be mostly independent of mRNA length. Therefore, it would 

be worth to generate a cell line with integrated TREAT components into an 
endogenous gene and acquire insightful data that would help to understand the 

turnover of particular intrinsic mRNAs of interest. 

 

6.1.5. Different applications of TREAT 

Can TREAT be extrapolated to image mRNAs with different cis-regulatory 

elements? I have studied the effect of several cis-elements by the TREAT method. 
First, a single siRNA-binding site was placed just upstream of the PKs, which provided 

an insight into the spatio-temporal regulation of the Ago2-mediated cleavage. Second, 
AU-rich elements of TNF-α were also placed within the TREAT’s 3′-UTR to study how 

these elements affect recruitment and degradation of the reporter in PBs. Third, a 5′-
TOP sequence was placed within the 5′-UTR of the TREAT reporter to examine the 

role of PBs in storage and degradation of mRNAs. To yield more biological insights 
into specific roles of the multitude of existing cis-elements in mRNA metabolism, the 

particular sequences can be inserted in virtually any position within the TREAT reporter 

depending on the question asked. For instance, specific sequences recognizable by 
multiple endonucleases are known. In particular, cleavage sites for the endonuclease 
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Regnase1 within TNF-α and IL6 mRNAs were mapped recently, however, spatial and 

temporal information about its activity within the cell is missing (Boehm et al., 2016). 
Furthermore, single or multiple miRNA sites can be introduced within the 3′-UTR of 

TREAT. Given the proposed cooperative mode of miRNAs, different combinations of 
miRNA-binding sites and their spacing can be examined with respect to their efficacy 

to trigger degradation (Saetrom et al., 2007). Finally, the Renilla luciferase ORF within 
the TREAT reporters I used can be exchanged for sequence encoding a gene of 

interest. In conclusion, TREAT system has a modular character, which can be 
exploited to address a functionality of various sequences. 

Can TREAT be extrapolated to image different types of RNAs than mRNAs? 
Besides mRNA, the eukaryotic genome encodes many non-coding RNAs (ncRNAs). 

The function of some classes is well defined (e.g. tRNA, rRNA). But we have little 
knowledge about the biological role of long non-coding RNAs (lncRNA) or their 

degradation. The class of lncRNAs comprises transcripts that are at least ~200 nt in 
length. Firstly, transcripts arising from pervasive transcription in yeast, e.g. cryptic 

unstable transcripts (CUTs), and their related form in vertebrates (promoter 
upstream transcripts (PROMPTs)) belong among lncRNAs. These transcripts are 

quickly degraded in the nucleus and only became detected after depletion of key 

components of the RNA exosome (Preker et al., 2008; Wyers et al., 2005). On the 
other hand, depleting Xrn1 in yeast results in cytoplasmic accumulation of normally 

unstable lncRNAs called Xrn1-sensitive unstable transcripts (XUTs) (van Dijk et al., 
2011). Next subclass of lncRNAs is circular RNAs (circRNAs). CircRNAs do not have 

free ends, which explains their increased stability. Thus, their degradation can be only 
initiated by endonucleolytic cleavage. Indeed, miR-671 directs cleavage of a circular 

antisense transcript of the cerebellar degeneration-related protein 1 (CDR1-AS) locus 
in Ago2-dependent manner in the nucleus of human cells. Concomitantly with 

downregulation of CDR1-AS, the CDR1 mRNA levels decrease suggesting a novel 
gene regulatory mechanism (Hansen et al., 2011). Finally, X-chromosome inactivation 

is induced by coverage by multiple copies of long non-coding RNA called Xist. 

MS2-tagging of Xist has been successfully used to visualize transgenically expressed 
Xist in mouse embryonic stem cells. This tool helped to investigate the dynamics of 

Xist spreading over the inactivated X-chromosome (Ng et al., 2011). The majority of 
enzymes involved in the decay are shared between mRNA and ncRNA, however, 

specific mechanisms ensuring that these non-coding transcripts are degraded properly 
are largely unknown (reviewed in Labno et al., 2016a). Using TREAT system in a 
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context of lncRNA may significantly help to shed light on their spatial and temporal 

regulation of degradation within cells.	

Can TREAT be extrapolated to image RNAs in different biological models? 
Local translation of mRNAs, which has an important role in synaptic plasticity, has 

been extensively studied in cell culture of primary hippocampal neurons (Wang et al., 
2016; Wu et al., 2016). It would be of particular interest to understand if mRNAs that 

are specifically localized for their translation in neuronal dendrites also get degraded 
in response to synaptic activity, and if specialized degradation machineries 

concentrate in synapses. There are several reasons why TREAT system could be 

broadly used not only in cultured cells but also in various model organisms. First, the 
endogenous MS2-tagged mRNA was not harmful for the generated transgenic mouse 

or zebrafish (Campbell et al., 2015; Lionnet et al., 2011). Second, the observation of 
activated translation of oskar mRNA TRICK reporter, dually-labeled with PP7 and MS2 

system, during Drosophila oogenesis was enabled by immunofluorescence (Halstead 
et al., 2015). Third, RNA degradation systems are ubiquitous and present in all living 

organisms. Among others, Xrn1 and its homologues play a crucial role in all eukaryotic 
experimental systems. Although it may be challenging to express different transgenes 

in the same primary cell or organism for live-cell imaging (TREAT reporter, MCP and 

PCP), one of the strength of the TREAT system is that intact mRNAs and degradation 
products can initially be distinguished simply by smFISH. By the expression of only the 

TREAT reporter and its visualization by smFISH probes in fixed cells can still yield a 
lot of information about spatio-temporal regulation and serve as pilot experiments for 

designing live-cell imaging approaches. Therefore, I anticipate a usage of TREAT 
reporter system in experimental models such as neuronal cells, mouse, zebrafish, flies, 

and perhaps nematodes. For instance, Xlhbox2 (also known as HoxB7) mRNA has 
been found to possess a specific short sequence prone to endonucleolytic cleavage in 

Drosophila embryo and Xenopus oocyte. Moreover, the responsible endonuclease 
was suggested to be in competition with an inhibitor of the endonuclease activity. This 

inhibitor-regulated cleavage mechanism may play an important role during 

embryogenesis and precise timing of the cleavage activation may ensure a proper 
development (Brown et al., 1993). By investigating a TREAT reporter bearing the 

cleavage site from Xlhbox2 mRNA, information about cellular position of this cleavage 
and its temporal activation during MZT could be obtained.	
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6.2. BIOLOGICAL QUESTIONS ADDRESSED BY TREAT 

6.2.1. Temporal regulation of mRNA decay 

Initially, a simplified model of gene expression assumed the transcription rate 
as well as RNA degradation rate to be constant. This interpretation of gene expression 
would ensure maintenance of the same steady-state levels of mRNAs in genetically 

identical cells. However, more recently, it has been evidenced that genetically identical 

cells in a population may be different at the molecular level. How the variability among 
cells is generated and controlled remains a major challenge in the field. Moreover, the 

reasons why the cells in a population can be different await to be answered. 
Researchers have been trying to decompose and understand the multiple factors of 

the inherent stochasticity in gene expression that leads to variability in mRNA and 
protein levels among cells. This noise has been shown to depend on the rates of 

transcription and translation across species (reviewed in Raj and van Oudenaarden, 
2008). While some house-keeping genes occurred to be transcribed rather 

constitutively in yeast, other genes can randomly switch back and forth between 
transcriptionally active and inactive states and display “transcriptional bursting” 

reflecting on high fluctuation of mRNA levels within particular cells (Raj et al., 2006; 

Zenklusen et al., 2008). Nevertheless, whether mRNA degradation may contribute to 
the stochasticity in gene expression by “bursting” has been poorly addressed yet. The 

single-molecule measurement by TREAT system is able to address this. While 
measuring export and decay rates of TREAT reporters, I observed a significant 

variability in counts of both the intact mRNAs and stabilized 3′-ends per cell over the 
time-course of smFISH experiments. This pointed towards possible existence of 

degradational bursting that would cause increased degradation rate in some of the 
cells in the population. The experimental data, however, were in agreement with a 

computer simulation assuming degradation as a single-step Poisson process. Thus, I 
conclude that degradation of TREAT mRNA does not happen in bursts and that the 

observed cell-to-cell variability in 3′-ends could be explained by variability in the 

amounts of intact transcripts at the initial time-point of the experiment (Figure S5 and 
S6 in Horvathova et al., 2017). However, I speculate that the decay burst of specific 

mRNAs may occur under different biological conditions. Recently, a heat-stress was 
shown to lead to dynamics changes in epitranscriptome (Zhou et al., 2015). To control 

a heat-shock response, it has been proposed that Hsp70 mRNA is co-transcriptionally 
methylated in order to be timely degraded in mES cells (Knuckles et al., 2017). 
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Perhaps, methylation marks deposited on mRNAs in response to a heat-stress 

regulate subsequent degradation burst of particular mRNAs during the cell recovery 
from heat-stress. In general, whether environmental stimuli, various cis- or trans-acting 

factors, or their combination may trigger degradational burst may be investigated by 
the TREAT system in the future.  

The best approach how to address the hypothesized phenomenon of 
degradational bursting would be to revisit particular living cells and observe changes 
over time in amounts of dual-labeled intact transcripts and single-labeled stabilized 3′-

ends. This approach has been technically challenging so far, because the high-

intensity illumination of the same cell over long time periods can lead to production of 
reactive oxygen species and thus compromise the entire cell. In addition, observing a 

cell under high magnification over several hours may result in the cell moving out from 
the field of view. Nevertheless, technical advances can soon overcome the phototoxic 

effect and enable this type of experiment. Altogether, TREAT provides a means how 
to measure temporal control of mRNA decay with preserved information on cell-to-cell 

variability.	

Since TREAT reporter mRNAs are not degraded in the nucleus, their nuclear 

export rate could be calculated and the time it takes for an mRNA to be degraded once 
it enters the cytoplasm was measured. As expected, I demonstrated that the half-lives 

of TREAT reporters regulated by siRNA molecules or AU-rich binding proteins 
significantly decreased compared to TREAT without inserted regulatory sequences. 

Intriguingly, the nuclear export rate of the TREAT-ARE reporter as well as the 
degradation rate of its stabilized 3′-end was enhanced by these cis-elements as 

compared to other reporters investigated. I hypothesize that HuR, an AU-rich binding 
factor, may accompany TREAT-ARE and accelerate its export from the nucleus (Doller 

et al., 2008; Doller et al., 2007; Lafarga et al., 2009). By overexpression or knockdown 

of HuR levels, the role of HuR in the export of ARE-containing transcripts can be 
elucidated. It is also probable that other than Xrn1 decay pathways contribute to the 

degradation of the TREAT-ARE reporter, which may explain the accelerated 
degradation of intact mRNAs and stabilized 3′-ends. Also, the fact that TREAT 

visualizes the nascent transcripts at the transcription site reveals a possibility to 
investigate the feedback loop between degradation and transcription (Haimovich et al., 

2013; Sun et al., 2013). Further investigation of nuclear export rates and cytoplasmic 
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mRNA degradation rates by TREAT may reveal contribution of these steps to the 

overall abundance of transcripts within the cell. 

 

6.2.2. Spatial regulation of mRNA decay 

6.2.2.1. The role of processing bodies 

What is the role of subcellular compartments in mRNA degradation? This is 

one of the key questions that still remains open. Two functions have been assigned to 
PBs - the degradation and storage of mRNA. PBs may serve as a storage site 

especially for translationally repressed mRNAs (Halstead et al., 2015). But there has 
been a lot of controversy about the role of PBs in RNA degradation processes. 

Certainly, PBs concentrate multiple degradation enzymes, however, direct evidence 
for active engagement of these enzymes in RNA degradation within these foci is 

missing. By concentrating mRNA decay enzymes in PBs, the mRNA decay could be 
enhanced only for the pathways with otherwise limiting cytoplasmic concentrations. 

However, this scenario seems unlikely as most of the decay enzymes also occur 

diffused in the cytoplasm. 

Without staining for PBs, I found the vast majority of intact TREAT mRNA and 
stabilized 3′-ends dispersed throughout cytoplasm with no obvious clustering in fixed 

and living cells. Co-staining for PBs in live-cell experiments did not show accumulation 
of intact TREAT mRNA or presence of stabilized 3′-ends in PBs. Only a small fraction 

of intact mRNA of TREAT-ARE accumulated in PBs, suggesting a partial recruitment 
of this reporter to PBs via AU-rich elements (Franks and Lykke-Andersen, 2007). 

Similarly, a small amount of intact mRNAs was found in PBs in case of TREAT and 5′-

TOP-TREAT reporter under arsenite stress (Figure 5 and 6 in Horvathova et al., 2017). 
However, as evidenced by smFISH, general degradation is attenuated under arsenite 

stress (Figure 7 in Horvathova et al., 2017). Therefore, it is plausible that arsenite 
stress inactivates one or more mRNA decay pathways resulting in a recruitment of 

mRNAs to PBs. I conclude that PBs may occasionally serve as a storage site for 
TREAT mRNAs, but do not serve as an active mRNA degradation hub. Instead, PBs 

may fulfill a buffering function for the decay factors in order to maintain their appropriate 
levels in the cytosol and thus regulate the decay rates of cytosolic mRNAs. It remains 

to be elucidated whether PBs may serve as degradation foci for specialized mRNA 
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decay mechanisms. I speculate that the extent to which PBs contribute to mRNA decay 

may also differ between species as experiments in yeast have suggested the active 
mRNA degradation within these foci (Sheth and Parker, 2003). It would be interesting 

to revisit these findings from yeast with a two-color biosensor similar to TREAT where 
poly(G)-tract is in place instead of viral PKs. 

Based on a recent technique, which sorted PB-associated RNAs from those 
assembled in other RNPs, it has been also concluded that mRNAs accumulated in 
PBs are repressed, but not decayed (Hubstenberger et al., 2017). The potential role 

of PBs as degradation sites is further challenged by the observation that transcripts 

can be degraded co-translationally while associated with polysomes (Hu et al., 2009; 
Pelechano et al., 2015). In line with my observations, this indicates that the 

degradation processes do not require the movement of mRNAs into distinct cellular 
compartments. 

The RNA granules in somatic cells, PBs and SGs, are compositionally similar 
to other mRNP granules such as maternal mRNA storage granules and neuronal RNA 

granules (Anderson and Kedersha, 2006). This similarity suggests shared function in 
mRNA metabolism. Thus, the usage of TREAT can be possibly extended to 

understand mRNA storage and degradational activities of other PB-like granules found 
in specialized cells such as germline cells or neurons. 

 

6.2.2.2. The role of endoplasmic reticulum 

The involvement of the ER in assembly of the RISC complex and subsequent 
steps of the sRNA-mediated silencing was proposed (Barman and Bhattacharyya, 

2015; Li et al., 2013a; Sahoo et al., 2017; Stalder et al., 2013). So far, I have not 
stained for ER compartment to correlate the occurrence of slicing events of TREAT-

siRNA reporter with the network of ER. However, the distance measurement of 

observed slicing events from the nuclear boundary agrees with the measured 
distances of a control reporter (Figure 4 in Horvathova et al., 2017). This indicates that 

the slicing reporter is not differentially recruited to any specific subcytoplasmic location 
to get degraded. As a few intact mRNAs can diffuse further from the nuclear boundary 

and some of the slicing events occurred towards the cell periphery, this shows that a 
small fraction of exported TREAT-siRNA mRNAs can escape the programmed RISC 
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temporarily. I have not measured the expression level of mature TREAT-specific 

siRNA in the respective experimental cell line. Nevertheless, it would be worth to alter 
the cognate shRNA expression level and observe how the kinetics of the cleavage 

changes.  

There were two possible scenarios for how the degradation upon slicing can 
happen. Either the responsible 3′-to-5′ exonuclease degrades the unprotected 5′-

fragment right after the cleavage, viewed as a color change from white (dual-labeled 
intact mRNA) to magenta (single-labeled stabilized 3′-fragment) particle, or the two 

fragments separate from each other after the cleavage but before they are recruited to 

the responsible decay machineries. For the time being, imaging of the TREAT-siRNA 
reporter in live cells has enabled detection of 17 slicing events, where the fragments 

were severed from each other. The 5′-fragment is not immediately degraded by a 3′-
to-5′ exonuclease after the cleavage, however, I cannot exclude the possible coupling 

of Xrn1 (5′-to-3′ exonuclease) to Ago2-mediated cleavage due to presence of Xrn1-
resistant PKs. Alternatively, reporter lacking the PKs albeit still susceptible to the 

specific siRNA-mediated cleavage, would resolve if this scenario is possible. 
Altogether, capturing more slicing events would be needed for an extensive analysis 

to conclude that the spatial separation of cleaved fragments is general feature for the 

Ago2-mediated degradation. Also, more data acquisition would be needed to conclude 
on the importance of the ER in the sRNA-mediated silencing. 

Given the expansive character of the ER throughout the cytoplasm, it would be 
interesting to stain the ER while observing the mRNA undergoing Ago2-mediated 
cleavage. Furthermore, to investigate if the microenvironment on the ER membrane 

may provide a kinetic advantage for the Ago2-mediated cleavage, the TREAT-siRNA 
can be specifically tethered to the ER by localizing its translation. To do so, a specific 

signal sequence can be included at the 5′-site of the TREAT’s ORF (reviewed in Nyathi 

et al., 2013; Wu et al., 2016). Translation of the N-terminal positioned nascent peptides 
encoded by the signal sequence would therefore allow for a recruitment of the mRNA-

ribosome-peptide complex to the ER surface. The tethered reporter may undergo 
altered mode of degradation. Perhaps, the degradation rate increases and the 

downstream decay of fragments by exonucleases would be directly coupled to the 
Ago2-endonucleolytic cleavage. 

To study another degradation mechanism associated with ER, a TREAT 
reporter susceptible for regulated Ire1-dependent decay (RIDD) on the ER surface 
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could be studied in response to ER-stress. The susceptibility for RIDD in mammalian 

cells can be acquired by including a cleavage site with a consensus sequence 
(CTGCAG) within a SL structure into the reporter (Oikawa et al., 2010). In addition, 

simultaneous tethering of the reporter to labeled ER would be required to increase the 
likelihood for observation of the cleavage events. To experimentally induce the ER-

stress, treatment with thapsigargin can be used to inhibit Ca2+ ATPase and thus to 
dysregulate calcium homeostasis in the cell leading to an activation of UPR. The 

questions addressed by this strategy could be: What fraction of reporter mRNAs 
undergoes the Ire-mediated cleavage at the ER within a given time? Do the cleaved 

fragments dissociate from ER before their degradation or they are degraded on the 
surface of ER? Since Ire1 has been reported to form temporal microscopically visible 

foci upon stress-induced oligomerization, it would be of interest to visualize these 

clusters simultaneously with the TREAT reporter (Li et al., 2010). By additional 
expression of a fluorescently labeled Ire1 in the studied cells, the spatial and temporal 

information gained from TREAT reporter prone to RIDD could be correlated with the 
occurrence of Ire1 clusters. Under these conditions, if the TREAT reporter degrades 

faster when co-localized with Ire1 foci, it would suggest that clustering of Ire1 enhances 
its endonucleolytic activity and provides a kinetic advantage for local mRNA 

degradation. Interestingly, in Drosophila S2 cells, the ER-associated mRNA of plexin 
A (protein functioning in axon guidance in neuronal cells) was shown to be protected 

from RIDD via continued translation during stress. This protection was shown to be 
mediated by upstream ORFs (uORFs) in the 5′-UTR (Gaddam et al., 2013). Hence, 

TREAT reporters with various uORFs could be evaluated with respect to their ability 

to protect certain mRNAs from Ire1-mediated degradation during ER stress. 

Taken together, coupling of particular steps in mRNA metabolism in space and 
time could provide a kinetic boost to a series of processes. This may be reflected in 

the interdependence of localization, translation, storage, and mRNA decay. The 
biological significance of PBs and ER in coupling mRNA degradation steps with 

translation is only partially resolved and further investigations by TREAT would help to 

provide more insights into the dynamic steps happening within these subcellular 
locations. 
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6.2.3. The effect of translational inhibition on mRNA stability 

The link between translation and mRNA degradation can be seen either as a 
competition or cooperation. If the model of circular mRNA is correct and allows a rapid 

ribosome recycling, ongoing translation competes with the degradation initiation by 
protecting the mRNA ends in a closed loop (reviewed in Gallie, 1998). The cooperative 

model of translation and degradation is proposed by mRNA quality control 

mechanisms and by observed co-translational degradation (reviewed in Garneau et 
al., 2007; Pelechano et al., 2015). So, how an inhibition of translation affects the mRNA 

stability? 

I showed that arsenite-induced stabilization of TREAT transcripts occurred in 
the entire cytoplasm and was not restricted only to the mRNAs occasionally stored 

within PBs (Figure 7 in Horvathova et al., 2017). Since arsenite leads indirectly to 

general translational inhibition via the eIF2α phosphorylation and to polysome 
disassembly, I tested the effect of three translational inhibitors on stability of the 

TREAT mRNA to find out to what extent translational is required for continuous mRNA 
degradation. Interestingly, each of the tested drugs (harringtonine, cycloheximide, 

puromycin), inhibiting different translational step, dramatically stabilized the reporter 
mRNA (Figure 7 in Horvathova et al., 2017). This result shows that the TREAT mRNA 

degradation is dependent on active translation in mammalian cells. Consistently, a 
treatment of HeLa cells with either cycloheximide or puromycin strongly impaired 

degradation of an NMD reporter and reporters containing 3′-UTR of cytokines (Boehm 
et al., 2016). In another recent study, the same two drugs were used to impair 

translation in cells of Trypanosoma brucei and the effect on mRNA degradation was 

assessed by smFISH. Here, consistently with my results, cycloheximide treatment 
showed increase of intact mRNA fraction when compared to untreated cells, whereas 

puromycin treatment did not show significant difference (Kramer, 2017). In contrast to 
cycloheximide, puromycin does not stabilize polysomes, and thus an mRNA may be 

better accessible for nucleases in some organisms. The discrepancy between 
observations from puromycin treated mammalian cells and Trypanosoma cells may 

point to inter-species regulatory differences. In addition to that, by smFISH, I have 
observed that cycloheximide treatment of the cell line expressing TREAT-siRNA 

reporter allowed for Ago2-mediated cleavage but was deficient in degrading the 
separated fragments (data not shown). This observation is in line with previous study 

in Drosophila cells, where the degradation of 5′-fragments was blocked by CHX 
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treatment (Orban and Izaurralde, 2005). Hence, the majority of the degradation 

pathways in mammalian cells seem to involve translation-coupled mechanisms. 
Although, the stabilization of mRNAs upon cycloheximide-mediated translational 

inhibition is a long known effect (reviewed in Jacobson and Peltz, 1996), 
mechanistically, it still remains an open question as to how the degradation machinery 

senses the translational inhibition. 

The global regulation of degradation can be achieved by controlling the 
expression of factors that mediate the interaction between mRNAs and deadenylase 

complexes. For instance, the family of Tob proteins directly recruits the deadenylation 

complex Ccr4-Not to the PAPB-bound poly(A)-tail via their ability to simultaneously 
interact with PAPB and Caf1 (Ezzeddine et al., 2007; Mauxion et al., 2008). In addition, 

arsenite inhibits mRNA deadenylation through proteolytic degradation of Tob and 
Pan3, the latter being a cofactor of deadenylase Pan2 (Yamagishi et al., 2014). 

Besides that, eukaryotic release factor 3 (eRF3) has been shown to couple 
deadenylation with translation termination by catalyzing deadenylation (Funakoshi et 

al., 2007). It would be interesting to find out whether Tob or eRF3 can be the general 
regulator implicated in the link between translational and degradational inhibition. To 

assess whether Tob or eRF3 are limiting for efficient TREAT mRNA degradation, these 

two proteins could be knocked-down and direct levels of TREAT mRNA could be 
measured. Conversely, in a rescue experiment, an overexpression of these proteins 

in translationally blocked cells could reflect in derepressing the mRNA degradation 
inhibition. Furthermore, investigation of the poly(A)-length (by methods described in 

5.1.3. section) of the TREAT reporter treated with the translational inhibitors can shed 
light on the importance of deadenylation in coupling translation to degradation. 

 

6.2.4. Further combination of TREAT with other tools 

To expand the variety of biological questions that can be addressed by the 
TREAT system, this method can be combined with other tools. A careful selection of a 

set of fluorophores and RNA labeling methods would allow simultaneous three-color 
imaging of single particles (Shaner et al., 2005; reviewed in Weil et al., 2010). There 

is a constant improvement in brightness and photostability of fluorophores allowing for 
a longer illumination time (Grimm et al., 2015; Grimm et al., 2017). Among others, ƛN-

derived RNA-labeling method exists that can be used within an RNA reporter next to 
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PP7 and MS2 systems due to their orthogonality (Daigle and Ellenberg, 2007). With 

the use of three independent RNA labeling systems at the same time, TREAT can be 
combined with TRICK methodology to investigate the interrelation of mRNA turnover 

and the pioneer round of translation (Halstead et al., 2015). This approach could be 
very informative when studying turnover of an NMD target since this surveillance 

pathway was suggested to be triggered during the pioneer round of translation 
(Ishigaki et al., 2001). To further illuminate the relationship between translation and 

mRNA turnover, TREAT can be used together with the recently developed method for 
labeling of nascent polypeptides, as they emerge from a ribosome translating the 

TREAT mRNA (Morisaki et al., 2016; Wang et al., 2016; Wu et al., 2016; Yan et al., 
2016). This approach could be used to study the miRNA-mediated gene silencing 

since this post-transcriptional regulation is proposed both to initiate mRNA degradation 

and to repress translation. Recently, miRNAs were suggested to play a role in 
regulation of protein expression noise (Schmiedel et al., 2015). This would be of 

particular interest to be studied by a next generation of TREAT reporter due to its ability 
to address variability and sense fluctuations at single mRNA level. Finally, for certain 

applications, one of the RNA labeling systems can be exploited for tethering of mRNA 
molecules to subcellular structures allowing for its immobilization. This helps to keep 

an observed mRNA molecule in the same focal plane for a longer period of time in 
contrast to freely moving molecules that impede longer particle tracking (Yan et al., 

2016). The continued evolution of multicolored RNA biosensors will enable to resolve 
events during the lifecycle of mRNAs in a greater detail. 

 

6.3. OVERCOMING LIMITATIONS OF TREAT SYSTEM 

The TREAT imaging method is a novel tool that provides significant 

advantages over current methods to study mRNA degradation. However, it has its own 
limitations. One limitation is the time scale of real-time observations in my experimental 

setup, usually about 5-10 sec. While the specific siRNA induces rapid siRNA-TREAT 

mRNA decay (t1/2 = ~7 min) seen as a particle color change in living-cells, I found the 
real-time observation of a degradation moment of TREAT without presence of the 

siRNA challenging. Although, the half-life of this TREAT reporter in HeLa cells is still 
relatively short (t1/2 = ~1.6 h), compared to median half-life measured by a genome-

wide sequencing after pulse-labeling of endogenous mRNAs in HeLa cells (t1/2 = ~3.4 
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h) or in mouse NIH3T3 fibroblasts (t1/2 = ~9 h), this system is limited for real-time 

imaging of transcripts with higher stability than few minutes (Schwanhausser et al., 
2011; Tani et al., 2012). Nevertheless, the pulse-labeling methods can be limited in 

the yield of recovered labeled mRNAs by several steps after cell lysis including 
immunoprecipitation, therefore the accuracy of these measurements can be 

questioned. On the other hand, TREAT has the advantage of counting mRNAs within 
the whole cells with detection efficiencies ~90% (Figure S7 in Horvathova et al., 2017). 

The advancement of photostable fluorophores and/or a tethering of the reporter to a 
cellular structure will facilitate real-time imaging of slower decaying mRNAs in the 

future. 

In yeast and human cells, NMD pathway has been proposed to degrade 

mRNAs with long 3′-UTRs (Hogg and Goff, 2010; Kebaara and Atkin, 2009). A recent 
genome-wide study has shown only a slight correlation between extensive 3′-UTRs 

and mRNA instability in murine cells (Spies et al., 2013). Due to multiple RNA stem-
loops within 3′-UTR of the TREAT reporter, this region is artificially extended. This may 

raise the question as to whether the length of the 3′-UTR influences the stability of the 
reporter. Since the NMD has been found to function early after nuclear export of an 

mRNA, the TREAT reporter is most probably not a target of NMD as I could observe 

many intact mRNAs in the cytoplasm for rather long periods (Trcek et al., 2013). 
However, a closer investigation is needed to exclude that NMD does not impact 

stability of TREAT mRNA. 

Recently, it has been suggested that the interpretation of data from live-cell 
imaging using arrays of MS2 and PP7 stem-loops can be complicated by potential 

defects in RNA processing, including inhibition of 5′-to-3′ degradation by bound coat 
proteins in yeast (Garcia and Parker, 2015, 2016; Heinrich et al., 2017). In a response 

to these findings, evidence against this phenomenon was gathered (Haimovich et al., 

2016). To validate that the MS2 and PP7 stem-loops do not interfere with TREAT 
mRNA decay in HeLa cells, I demonstrated that no 3′-degradation intermediates were 

accumulated from a control reporter lacking the viral PKs expressed within cells 
expressing MCPs and PCPs (Figure S2 lane 3 and 4 in Horvathova et al., 2017). The 

fact that MS2 and PP7 system components do not stabilize TREAT degradation 
intermediates may indicate that higher eukaryotes feature more robust molecular 

machineries, and thus process the stem-loop arrays differently than yeast. Moreover, 
the HeLa cell lines synthetizing fluorescent MCPs and PCPs were FACS sorted for low 
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levels of fluorescence in order to decrease background for imaging. The low level of 

coat proteins may also reduce the potential negative impact on the RNA reporter 
processing. 

A potential negative impact of the stem-loop arrays and viral PKs on the RNA 
stability and localization has to be evaluated on a case-to-case basis in order to reduce 
the likelihood of processing perturbations of the tagged mRNA. Notably, the addition 

of only the viral PKs without the MS2 and PP7 stem-loops within a reporter’s 3′-UTR 
would be sufficient for blocking Xrn1 and would allow for FISH experiments in fixed 

cells. Therefore, the impact of MS2 and PP7 stem-loops on mRNA processing could 

be uncoupled. In addition to the removal of the MS2 and PP7 components, the overall 
length of 3′-UTR would in such case shorten, which would in turn decrease the 

possibility of triggering the NMD pathway. 
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7. LIST OF USED ABBREVIATIONS 

4sU – 4-thiouridine 
actD – actinomycin D 
Ago – argonaute 
AMD – ARE-mediated decay 
AMPK – AMP-activated kinase 
Ape – apurinic/apyrimidinic endonuclease 
ARE – AU-rich element 
AUF – AU-rich binding factor 
BP – binding protein 
BRF – butyrate response factor 
Cas – CRISPR-associated 
CBP – cap binding protein 
Cdk – cyclin-dependent kinase 
cDNA – complementary DNA 
CDR – cerebellar degeneration-related protein 
CDR-AS – cerebellar degeneration-related protein antisense 
circRNA – circular RNA 
CPEB – cytoplasmic polyadenylation element- binding protein 
CRISPR – Clustered regularly-interspaced short palindromic repeats 
CUGBP – CUG-binding protein 
CUT – cryptic unstable transcript 
Dcp – decapping enzyme 
DcpS – scavenger decapping enzyme 
DGCR8 – DiGeorge syndrome critical region 8 
Dis3 – Dis3-like 
DNA – deoxynucleic acid 
dsRNA – double-stranded RNA 
eIF – eukaryotic initiation factor 
EJC – exon junction complex 
endo-siRNA – endogenous siRNA 
ER – endoplasmic reticulum 
ERK – extracellular signal-regulated kinase 
FISH – fluorescence in situ hybridization 
G3BP – Ras-GTPase activating protein SH3 domain-binding protein 
GCN – general control nonderepressible 
GMCSF – granulocyte macrophage colony-stimulating factor 
GRE – GU-rich elements 
HCV – hepatitits C virus 
hnRNP – heterogeneous nuclear ribonucleoprotein 
HRI – heme-regulated initiation factor 2α kinase 
Hsp – heat-shock protein 
HuR – human antigen R 
IL – interleukin 
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Ire – inositol-requiring enzyme 
IRE – iron-responsive element 
IRES – internal ribosome entry site 
IRP – iron regulatory protein 
JNK – c-Jun N-terminal kinase 
KSRP – KH-type splicing regulatory protein 
lncRNA – long non-coding RNA 
lncRNA – long non-coding RNA 
m6A – N6-methyladenosine 
MALAT – metastasis-associated lung adenocarcinoma transcript 
MAPK – mitogen-activated protein kinase 
MCP – MS2 coat protein 
miRNA – micro RNA 
mRNA – messenger RNA 
mRNP – mRNA nucleoprotein 
mTOR – mammalian target of rapamycin 
MVE – Murray Valley Encephalitis 
ncRNA – non-coding RNA 
NGD – no-go decay 
NMD – nonsense-mediated decay 
NSD – non-stop decay 
nt – nucleotide 
ORF – open reading frame 
PABP – poly(A)-binding protein 
PACT – protein activator of the interferon-induced protein kinase 
PBs – processing bodies 
PCP – PP7 coat protein 
PCR – polymerase chain reaction 
PERK – PKR-like ER kinase 
piRNA – piwi-interacting RNAs 
PK – pseudo-knot 
PKR – protein kinase R 
Pmr – polysomal ribonuclease 
Pol II – polymerase II 
pre-miRNA – precursor miRNA 
pri-miRNA – primary miRNA 
PROMPT – promoter upstream transcripts 
PTC – pre-mature termination codon 
PTGS – post-transcriptional gene silencing 
PTM – post-translational modification 
qPCR – quantitative PCR 
RdRP – RNA-dependent RNA polymerase 
rER – rough ER 
RIDD – regulated Ire1-dependent decay 
RISC – RNA-induced silencing complex 
RNA – ribonucleic acid 
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RNA-seq – RNA sequencing 
RNAi – RNA interference 
RT-PCR – reverse-transcription-PCR 
RT-qPCR – reverse-transcription-quantitative PCR 
scRNA-seq – single-cell RNA-seq 
sfRNA – subgenomic flaviviral RNA 
SGs – stress granules 
siRNA – small interfering RNA 
SL – stem-loop 
SLBP – SL-binding protein 
SMD – Stau-mediated decay 
smFISH – single-molecule FISH 
Smg – suppressor with a morphogenetic effect on genitalia 
SPT – single particle tracking 
sRNA – small RNA 
ssRNA – single-stranded RNA 
Stau – Staufen 
Tet – teracycline 
TGA – transcriptional gene activation 
TGS – transcriptional gene silencing 
TIA – T-cell internal antigen 
TIAR – TIA-related 
TNF – tumor necrosis factor 
TOP – terminal oligopyrimidine 
TRBP – TAR RNA binding protein 
TREAT – three-RNA end accumulation during turnover 
TRICK – translation coat protein knock-off 
tRNA – transfer RNA 
TTP – tristetraprolin 
TUTase – terminal uridyl-transferase 
Upf – up-frameshift 
UPR – unfolded protein response 
UTR – untranslated region 
UV – ultra-violet 
VACV – vaccinia virus 
VEGFA – vascular endothelial growth factor A 
WNV – West Nile virus 
Xrn – exoribonuclease 
xrRNA – Xrn1-resistant RNA 
XUT – Xrn1-sensitive unstable transcript 
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