
Enabling Model Testing of Cyber-Physical Systems
Carlos A. González, Mojtaba Varmazyar, Shiva

Nejati, Lionel C. Briand
SnT Centre, University of Luxembourg

Luxembourg
{gonzalez,varmazyar,nejati,briand}@svv.lu

Yago Isasi
LuxSpace Sàrl
Luxembourg

isasi@luxspace.lu

ABSTRACT
Applying traditional testing techniques to Cyber-Physical Systems
(CPS) is challenging due to the deep intertwining of software and
hardware, and the complex, continuous interactions between the
system and its environment. To alleviate these challenges we pro-
pose to conduct testing at early stages and over executable models
of the system and its environment. Model testing of CPSs is how-
ever not without difficulties. The complexity and heterogeneity
of CPSs renders necessary the combination of different modeling
formalisms to build faithful models of their different components.
The execution of CPS models thus requires an execution framework
supporting the co-simulation of different types of models, includ-
ing models of the software (e.g., SysML), hardware (e.g., SysML
or Simulink), and physical environment (e.g., Simulink). Further-
more, to enable testing in realistic conditions, the co-simulation
process must be (1) fast, so that thousands of simulations can be
conducted in practical time, (2) controllable, to precisely emulate
the expected runtime behavior of the system and, (3) observable,
by producing simulation data enabling the detection of failures.
To tackle these challenges, we propose a SysML-based modeling
methodology for model testing of CPSs, and an efficient SysML-
Simulink co-simulation framework. Our approach was validated
on a case study from the satellite domain.

KEYWORDS
Cyber-Physical Systems, Software Testing, Model-Based Systems
Engineering

ACM Reference Format:
Carlos A. González, Mojtaba Varmazyar, Shiva Nejati, Lionel C. Briand
and Yago Isasi. 2018. Enabling Model Testing of Cyber-Physical Systems.
In Proceedings of ACM/IEEE 21th International Conference on Model Driven
Engineering Languages and Systems (MODELS 2018). ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
A Cyber-Physical System (CPS) is an integration of computation
with physical processes [23]. In a CPS, a potentially large number of
networked embedded computers, heavily interact with each other

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MODELS 2018, October 14–19, Copenhagen, Denmark
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

to monitor and control physical processes through sensors and actu-
ators. Applications of CPSs [17] are expected to revolutionize [32]
the way humans control and interact with the physical world.

Ensuring the dependability of CPSs is challenging due to specific
difficulties in applying traditional testing techniques. Characteristic
features of CPSs, such as the deep intertwining of software and
hardware, or the complex and continuous interactions between
the system and its environment, render difficult the automated
execution of a large number of test scenarios within practical time,
thus affecting the effectiveness of the testing process. Moreover,
when hardware constraints come into play (e.g., hardware that can
be damaged by action of the testing process, or that is developed
after the software), the testing process can be significantly delayed,
become highly expensive, or fail to cover certain scenarios.

One way to alleviate these challenges is to move as much as of
the testing activity as possible to earlier design phases and away
from the deployed system and, instead, conduct model testing [7],
that is testing over executable design models of the system and its
environment. The use of such executable models enables the run-
ning of a large number of test scenarios in a completely automated
fashion. Such exploration of the system input space increases the
chances of uncovering faults early in the system design. Model test-
ing is in many ways similar to Model-in-the-Loop testing (MiL) [34],
the first phase of testing in CPS development, except that the latter
focuses on control algorithms and their interactions with physical
models, not the software system. Since model testing is intended
for testing the design of software systems, this activity is expected
to take place in the Software-in-the-Loop phase (SiL) [34], at an
early stage, once the software architecture and design are defined.

The level of detail at which models are described, and the amount
of information produced during model executions, can also be tai-
lored to meet various testing goals. For example, these may include
the targeting of a particular type of defect, enhancing the selection
of test cases at runtime to identify high-risk test scenarios, or de-
riving automated test oracles. High-risk test scenarios identified
during model testing can then be employed to guide the testing ac-
tivity at subsequent phases, for example at later stages of SiL when
source code is available or during Hardware-in-the-Loop testing
(HiL) [34].

One of the main challenges regarding model testing of CPSs is
supporting model execution in such a way as to produce realistic
testing results. The complexity of CPSs requires the combined use
of models expressed with different formalisms, to represent physical
aspects of the system and its environment, with their continuous
dynamics, as well as software aspects of the system, including
their time-discrete behavior. The model testing execution frame-
work must therefore support model co-simulation for appropriate
modeling formalisms to enable their coordinated execution [33].

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

MODELS 2018, October 14–19, Copenhagen, Denmark González et al.

Furthermore, the co-simulation process must be sufficiently fast
to allow the completion of thousands of model executions within
practical time. Last, the co-simulation process must also be (1) con-
trollable, to precisely drive the runtime behavior of the system, and
(2) observable, to produce meaningful simulation data, including
sufficient insights into the system runtime behavior to support the
analysis of test results.

Unfortunately, as discussed in Section 3, existing co-simulation
approaches either do not support the execution of architectural
and behavioral software models, e,g., [1–4, 6, 9], or fall short from
fulfilling some of the additional features required for model test-
ing [8, 19, 30, 35].

Contributions. Since SysML [28], the OMG1 standard for sys-
tems engineering, is a modeling language commonly used in the
industry, and Simulink is a de facto standard for what is referred to
as function modeling (i.e., modeling of control algorithms and phys-
ical environment) in industrial settings, we propose a SysML-based
modeling methodology, for the systematic construction of testable
models of CPSs, and an efficient SysML-Simulink2 co-simulation
framework, equipped with the controllability and observability ca-
pabilities needed to enable model testing of CPSs. We validate the
suitability of our approach with an industrial case study from the
satellite domain.

Organization. Section 2 outlines our case study. Section 3 com-
pares our work with the related techniques and tools. Section 4
presents our model testing methodology. Section 5 describes our
co-simulation framework. Section 6 evaluates our approach. Section
7 concludes the paper.

2 MOTIVATION
We motivate our work with an industrial system from LuxSpace
Sàrl3, a leading system integrator for micro satellites and aerospace
systems. This system is used to determine the satellite attitude and
control its movements. It is referred to as the Attitude Determi-
nation and Control System (ADCS). ADCS controls the satellite
autonomously, but it further enables engineers to control the satel-
lite from the ground station. At any point in time, the ADCS will be
in a certain mode, which will determine which ADCS capabilities
are available. Figure 1 shows a conceptual view of the ADCS: it is
composed of four subsystems, namely, APDM, ACM, DEM and MM.
The APDM is responsible for determining the satellite’s attitude,
by interacting with the satellite’s sensors. The ACM is in charge of
adjusting the satellite’s attitude, by interacting with the satellite’s
actuators. The MM is responsible for monitoring and recording
state changes. Finally, the DEM handles the communication with
the on board computer, to enable the ADCS to receive telecom-
mands, i.e., commands sent from the ground station to the satellite,
and send telemetry data, i.e., data sent from the satellite to the
ground station.

During the MiL phase, LuxSpace control engineers create func-
tion models with Simulink to simulate the environment of the satel-
lite while in orbit; the ADCS functionality that is heavily driven by
mathematical calculations, e.g., control algorithms; and the sensors

1https://www.omg.org
2https://nl.mathworks.com/products/simulink.html
3https://luxspace.lu/

Figure 1: The ADCS of the satellite

and actuators the ADCS interacts with. Since these models do not
cover software aspects, such as the architecture of the ADCS or the
scheduling of ADCS’s tasks, they must be completed during the
early stages of SiL with the following artifacts:

1) Software architectural models that describe the internal de-
composition of the ADCS into subsystems and tasks, and the in-
terfaces and dependencies among them. The level of detail of such
modeling is partially determined by the needs of our model testing
objectives but is also driven by other development activities.

2) Software behavioral models that describe the ADCS function-
ality not already modeled in Simulink, as well as how the system
transitions from one state to another.

3) Model integration points that specify how software behavioral
models and function models are executed together, to enable co-
simulation.

Once the modeling activity is completed, our goal is to auto-
matically generate a co-simulation framework to simulate both the
ADCS and its environment. To enable model testing, this framework
must fulfill the following requirements:

Efficiency (EFF): The co-simulation framework shall be capable
of performing thousands of model executions within practical time,
typically overnight. This is required to efficiently explore the very
large space of possible test scenarios.

SysML-Simulink Co-simulation (CO-S): The co-simulation
framework shall support the synchronized execution of SysML
software models and Simulink models. These choices are motivated
by SysML being the most commonly used [5] system modeling
language in industrial settings and an OMG standard supported
by INCOSE4, the International Council on Systems Engineering.
Simulink, on the other hand, is widely used in many industrial
domains for building function models.

No User Intervention (NO-U): Users shall only be involved in
the modeling activity. The co-simulation framework shall execute
models automatically, without requiring user intervention.

Controllability (CONT): The co-simulation framework shall
enable the execution of models in a way that complies with the
expected behavior of the future deployed system and its environ-
ment, at the level of abstraction required for conducting model
testing. Controllability requires, among other things, the precise
simulation of the scheduling of system tasks, and the data flows
among subsystems and between the system and its environment.

Observability (OBS): The co-simulation framework shall save
execution traces at runtime, capturing the information required

4https://www.incose.org/

Enabling Model Testing of Cyber-Physical Systems MODELS 2018, October 14–19, Copenhagen, Denmark

Table 1: Degree of fulfillment of model testing
requirements by existing co-simulation frameworks

EFF CO-S NO-U CONT OBS

TASTE High Medium Low High Low
INTO-CPS ? Medium Low High Low
OpenMeta Medium Low Low Low Low
CyPhySim ? Medium Low Medium Low

to support test generation and analysis. This requires capturing,
among other information items, data exchanges, the occurrence of
external events, CPS state changes, and computation results. Each
entry in these traces must be time-stamped.

Most of these requirements drive the construction of the architec-
tural and behavioral software models. In Section 4, we provide some
methodological guidance to support the systematic construction of
testable models for CPSs.

3 BACKGROUND
A great deal of research has been conducted in recent years to
identify effective ways to conduct model co-simulation, yielding
numerous approaches [15]. However, the majority of them are not
suitable for enabling model testing of CPSs since they do not sup-
port the inclusion of architectural and behavioral software models,
e.g., [1–4, 6, 9, 14, 18, 29, 40].

To the best of our knowledge, TASTE [30], INTO-CPS [12, 19],
OpenMETA [35], Cosimate5 and CyPhySim [8, 22] are the co-
simulation frameworks with the highest potential to enable model
testing of CPSs, including software aspects. In what follows, we
briefly describe these tools6 and evaluate their suitability for model
testing, based on the requirements identified in Section 2.

TASTE (The Assert Set of Tools for Engineering) is an open-
source tool-chain for the development of embedded, real-time sys-
tems. TASTE relies on three different modeling languages: AADL
(Architecture Analysis & Design Language) [11] for describing the
logical and physical architecture of the system; ASN.1 (Abstract
Syntax Notation One) [37] for describing data types and encoding
rules; and SDL (Specification and Description Language) [36] for
describing the overall orchestration of the system. The tool-chain
uses the information in the models to generate skeleton code, that
must then be manually completed by injecting the code describing
the behavior of the different artifacts modeled. This additional code
can be manually written or automatically generated from tools like
Simulink or SCADE7. When the code is run, execution traces can
be recorded in the form of Message Sequence Charts (MSC) [38],
a graphical language for the description and specification of the
interactions between system components.

CyPhySim is a Cyber-Physical Simulator based on Ptolemy II [10],
a modeling and simulation framework for heterogeneous models.
CyPhySim supports the Functional Mock-up Interface (FMI) stan-
dard [26] for the co-simulation of function models. In the FMI
standard, models are encapsulated in so-called Functional Mock-up
Units (FMU). Compliant simulation environments can then import

5http://site.cosimate.com/
6Cosimate has been left out of the analysis because of the lack of documentation and
the impossibility to download the tool.
7http://www.esterel-technologies.com/products/scade-suite/

and instantiate these FMUs to enable co-simulation8. When it comes
to supporting software models, CyPhySim combines state machines
for behavioral modeling, and the actor-oriented [21] language of
Ptolemy II for structural modeling.

INTO-CPS is an integrated tool-chain for Model-Based Design
(MBD) of CPSs. With INTO-CPS, the first step is to use SysML to
model the decomposition of the CPS into a series of subsystems,
represented as SysML blocks. It is important to mention that only
the modeling of the subsystems’ interfaces is conducted in this step.
These SysML models are then used to produce both, a simulation
configuration file describing how the execution of the different sub-
systems must be orchestrated, and descriptions of the subsystems’
interfaces. In a second step, specific tools in the domain of each sub-
system (physical, hardware, software) like OpenModelica9, are used
to load these descriptions and complete the modeling of the differ-
ent subsystems. Once the modeling is done, the models are exported
as FMUs. These FMUs, along with the simulation configuration file
previously generated are then loaded into a Co-simulation Orches-
tration Engine (COE) [39] where the co-simulation takes place. As
a result, a trace is obtained. INTO-CPS supports the co-simulation
of structural and behavioral software models described with the
VDM language [20].

OpenMETA is a tool suite for component- and model-based
design of engineered systems. With OpenMETA, heterogeneous
models are composed together to offer a unified representation
of the system. When this unified model is executed, OpenMETA
seamlessly invokes external simulation tools, such as Simulink
or OpenModelica to execute the composed models. Even though
OpenMETA can handle multiple simulation tools, we could not
find one specifically dedicated to the simulation of software models.
Finally, OpenMETA also incorporates mechanisms to define testing
scenarios, whose execution can be automated.

After having introduced the different tools, we now focus on
analyzing their suitability for enabling model testing. Our findings
are summarized in Table 1.

Efficiency (EFF). The ideal scenario to identify the most effi-
cient tool would be to model the same CPS in all of them, and then
compare the time it takes for the co-simulation process to complete
in each case. However, conducting such an experiment is a sig-
nificant challenge since, for example, each tool supports different
modeling formalisms, with varying degrees of expressiveness, that
requires specific in-depth expertise. Therefore, we have analyzed
the fulfillment of this requirement by considering the strategy that
each tool follows to enable model co-simulation. In this regard, we
have distinguished the following strategies: using an FMU-based
approach (INTO-CPS, CyPhySim), using an approach based on code
generation (TASTE), or directly invoking the different simulators
(OpenMETA). Since TASTE relies on code generation and there-
fore minimizes the overhead resulting from invoking the different
simulators, we believe it is likely to better fulfill this requirement.
Regarding FMU-based approaches, their efficiency is largely depen-
dent on what is embedded in the FMUs (e.g., compiled code, model
solvers, etc) and therefore may vary from case to case.

8The standard defines a common interface for interacting with FMUs. When necessary,
the solver needed to simulate the model can also be encapsulated into the FMU.
9https://openmodelica.org/

MODELS 2018, October 14–19, Copenhagen, Denmark González et al.

SysML-Simulink Co-simulation (CO-S). None of the evalu-
ated tools supports model co-simulation involving software behav-
ioral models expressed with SysML. However, INTO-CPS, TASTE
and CyPhySim support co-simulation of software behavioral mod-
els specified with other modeling formalisms (Medium).

User intervention (NO-U). We consider that none of the eval-
uated tools fulfills this requirement. With TASTE, the user must
do some manual work to complete the automatically generated
code, even before the co-simulation process can be started. When it
comes to the rest of the tools, they are accompanied by a graphical
environment that facilitates launching the co-simulation process.
However, repeating the process many times in an automated fash-
ion requires from the user additional, manual effort (setting up third
party tools, writing automation scripts, interacting with command-
line interfaces, etc).

Controllability (CONT). All the tools support the faithful sim-
ulation of data flows. With TASTE, INTO-CPS and CyPhySim, it
is also possible to simulate scheduling algorithms, although in the
case of CyPhySim with some limitations [31]. Finally, the control-
lability capabilities of OpenMETA are difficult to determine, since
they come from the multiple simulation tools it can integrate. How-
ever, the absence of tools specifically dedicated to the simulation
of software models, suggests that OpenMETA does not fulfill this
requirement.

Observability (OBS). We consider that none of the tools ful-
fills this requirement. TASTE’s Message Sequence Charts shows
sequences of operation calls without timestamps. INTO-CPS yields
the data stored in the models at any point in time, plus the se-
quence of execution of the FMUs, but it does not include sequences
of operation calls or data flows. CyPhySim follows an approach
very similar to that of Simulink and requires users to model the
outputs from function models that must be plotted or displayed.
Finally, the data produced by OpenMETA comes from the external
simulation tools it can integrate. Therefore, once again, the absence
of tools specifically dedicated to the simulation of software models,
suggests that OpenMETA does not fulfill this requirement as well.

After the analysis of the most promising co-simulation frame-
works, we conclude that none of them is entirely suitable for en-
abling model testing according to our requirements. In Section 5,
we describe our proposal for a co-simulation framework for the ex-
ecution of testable models of CPSs. Before that, in the next section,
we provide some methodological guidance on how to build these
models.

4 MODELING METHODOLOGY
In this section, we present the overview of a modeling methodology,
meant to be applied early during the SiL phase of development,
to enable the systematic construction of testable CPS models. A
complete description of the methodology can be found in [16].

Scope: The methodology covers the specification of architectural
and behavioral models of a CPS, plus the integration of function
models capturing hardware and environment, which are provided
as an input to the modeling activity. The specification and validation
of function models, which typically takes place earlier in the MiL
stage of development, is out of scope. The integration process does

Figure 2: Information Model

not impose constraints on how function models are designed, other
than the modeling language of choice.

Modeling Languages: SysML is used for structural and behav-
ioral modeling of a CPS. Function models are expected to be de-
scribed as Simulink models. As mentioned in Section 2, SysML
and Simulink are popular in industrial settings. Besides, if needed,
SysML syntax and semantics can be extended by using profiles.

Profile: This modeling methodology is supported by a profile,
since the SySML’s standard semantics falls short to properly model
some of the aspects needed to build testable models of CPSs.

In the rest of the section, we cover the most relevant aspects of
the modeling methodology, including the use of the profile.

4.1 Information Model
The information model in Figure 2 shows the concepts modeled
with our methodology. The central one is the SUT, i.e., the software
system under test. Internally, the SUT may be composed by a series
of software subsystems, each of them responsible for running tasks,
which are the basic units of behavior that can be scheduled. Also,
the SUT may transition through a series of states.

As part of its normal operation, the SUT is expected to exchange
data internally (among its different subsystems), and externally,
with other entities within the CPS (sensors, actuators, other CPS
software, etc), or outside the CPS (external hardware, human opera-
tors, etc). All these entities, regardless of whether they are external
to the CPS or not, are considered to be part of the SUT environment.
Entities in the SUT environment may also exchange data.

The level of detail at which the different concepts are modeled is
driven by the minimum information required to enable the faithful
simulation of the SUT. When modeling, we apply the following
rules, to specify all the concepts from the information model:

• All concepts, except for tasks, are modeled by means of SysML
blocks, fully specified within Block Definition Diagrams (BDD).
• All data exchanges among blocks are represented with connectors

in SysML internal Block Diagrams (iBD) and object flows in
Activity Diagrams (AD). The information conveyed in these data
exchanges is modeled with blocks. Henceforth, we will refer to
these blocks as “data blocks". Data blocks feature no behavior.
• SUT tasks are modeled as operations in the SUT subsystems’

blocks. Their behavior is modeled with ADs or State Machines
(SM).
• As SUT tasks, the behavior of the SUT environment blocks is

also modeled with a combination of operations, ADs and SMs.
• ADs are specified by using specialized actions from the SysML

specification, such as “WriteStructuralFeatureAction" or “CallOp-
erationAction", among others.

Enabling Model Testing of Cyber-Physical Systems MODELS 2018, October 14–19, Copenhagen, Denmark

Table 2: Model Testing Profile

Stereotype Description

«SUT» [Block] To denote the SUT block.
taskSchedulerFunction (String) Name of the function in the generated code that

will contain the scheduler’s code.
timeStepSize (Integer) Scheduler time step size in milliseconds.

«Data» [Block] To denote data blocks.
«Configuration» [Block] To add configuration data.

functionModelsPath (String) Location of the function models to be executed
during the simulation process.

«Matrix» [Element] To specify attributes with a matrix data type.
numberOfRows (Integer) Number of rows of the matrix.
numberOfColumns (Integer) Number of columns of the matrix.
defaultValue (String) Default values for each cell.

«Initialization» [Operation] To denote blocks’ operations to be executed
only once, when the simulation starts.

Order (Integer) Order of execution with respect to the rest of
initialization operations.

«Background» [Operation] To denote blocks’ operations to be executed
alongside the SUT tasks, during the simulation.

Order (Integer) Order of execution with respect to the rest of
background operations.

«Schedulable» [Operation] To denote SUT tasks.
executionRateHz (Real) Times per second the task must be scheduled.
executionOrder (Integer) Position at which the task must be scheduled

within the corresponding time slot.
estimatedCompletionTime (Real) Estimated time for the task to complete.

«NotLoggable» [Action] To denote the actions that must not be logged
when generating the execution trace.

• The way in which SysML and Simulink models interact with
each other is modeled by adding opaque actions10 to the ADs,
where the behavior of SUT tasks and SUT environment blocks is
described. These opaque actions can be regarded as “integration
points" between SysML and Simulink models. Integration points
are described in subsection 4.3.

4.2 Profile
SysML is not expressive enough to produce testable CPS models,
as per our requirements. To enable the simulation process, aspects
such as the scheduling of SUT tasks, or the mapping of Simulink
data structures to SysML data types, must be modeled as well.
Table 2 shows the stereotypes from the profile that accompanies
this methodology, along with their respective tag definitions.

The «SUT» stereotype denotes the SUT block. Tag definitions
provide basic information to facilitate the automatic inclusion of
a task scheduler in the simulator (more about this in Section 5).
The «Data» stereotype denotes data blocks. Simulink models make
extensive use of matrices to store data, but SysML does not support
this data type. The «Matrix» stereotype allows the specification
of attributes with this data type. The «Configuration» stereotype
provides additional information needed to enable co-simulation.
The «Schedulable» stereotype is used to indicate how SUT tasks
must be scheduled for execution, and to provide estimates about
their completion time. The «Background» stereotype is used to
indicate which of the operations, modeling the behavior of the SUT
environment blocks, must be executed in background, alongside
the SUT tasks. Examples of these background operations are the
ones describing the behavior of physical phenomena. Similarly, the
«Initialization» stereotype allows for the specification of operations

10An opaque action is a specialized action whose specification may be given in a
textual concrete syntax other than SysML.

(a)

(b)

Figure 3: Excerpt of the SUT environment of the case study.

from SUT environment entities, to be executed only once, for initial-
ization purposes. Finally, the «NotLoggable» stereotype is used to
limit the verbosity of the execution trace produced when running
the models.

4.3 Modeling Steps
With our methodology, the modeling process is structured in three
different steps, namely: (1) specify the SUT environment, (2) specify
the SUT architecture, and (3) specify the SUT behavior. They can
be completed in any order, as long as the logical dependencies that
might exist among them are respected.

(1) Specify the SUT environment. This step starts with the
creation of one iBD11 containing the SUT block, and one block
per entity from the SUT environment. Each data flow between any
pair of these blocks is then specified by linking the blocks with a
connector. The connector is complemented with one data block to
model the communicated information. BDDs12 are then created to
fully specify the SUT environment blocks and data blocks. Finally,
the behavior of each operation added to SUT environment blocks
is fully specified either with one AD or one SM.

Example. Figure 3(a) shows an excerpt of the iBD created to
model the SUT environment from the case study. The SUT (ADC-
SSW) exchanges data with a sensor (SunSensor), an actuator (Reac-
tionWheel), and another software system of the satellite (TeleCom-
mandDispatcher). Sensors and actuators interact with the physical
world (Physics). Figure 3(b) shows an excerpt of the BDD where
some of the SUT environment blocks and data blocks are specified.

(2) Specify the SUT architecture. In the second step, the sub-
systems forming the SUT and the data flows among them are mod-
eled in one iBD. Additionally, each incoming (outgoing) data flow
of the SUT block modeled in step one must be linked to the SUT
subsystem where the incoming (outgoing) data is consumed (pro-
duced). Finally, BDDs are created to fully specify the attributes
of the different SUT subsystems and the new data blocks. In our

11iBDs must be created in the context of an existing block. Therefore, in order to
create the iBD specifying the SUT environment, a block called “model” must be created
beforehand. This block will act as a container for the whole model.
12The methodology does not constrain the number of BDDs that can be created.

MODELS 2018, October 14–19, Copenhagen, Denmark González et al.

Figure 4: Excerpt of the SUT architecture of the case study

(a)

(b)

Figure 5: Excerpt of the SUT behavior of the case study.

methodology, SUT subsystems are not further decomposed into
sub-subsystems. This is because a two-level decomposition into
subsystems and tasks allows for modeling behavioral aspects at a
sufficient level of precision to enable model testing.

Example. Figure 4 shows an excerpt of the iBD created for
modeling the SUT architecture from our case study. The APDM
subsystem is in charge of interacting with the sun sensor. The
ACM is in charge of commanding the reaction wheel, and uses
data produced by the APDM subsystem in the process. The DEM
subsystem is the receptor of the telecommands sent to the SUT and
forwards them to the MM subsystem.

(3) Specify the SUT behavior. After modeling the SUT archi-
tecture, we can fully specify the SUT tasks. A SUT task is specified
by adding one operation stereotyped as «Schedulable» to the cor-
responding SUT subsystem block. If additional, auxiliary behavior
must be modeled to fully describe the behavior of the subsystem
then additional operations, not stereotyped, can also be added. The
behavior of all the operations, whether they correspond to SUT
tasks or not, is then specified by means of ADs and SMs.

Example. Figure 5(a) shows an excerpt of the BDD created for
defining the tasks of some of the SUT subsystems. The APDM sub-
system determines the satellite’s attitude and position, and gets

Figure 6: “executeCommand" operation: “SunSensor” block

readings from the sun sensor. The ACM subsystem adjusts the satel-
lite’s attitude and commands the reaction wheel. Finally, the MM
subsystem monitors and updates the state of the SUT, in response
to the reception of telecommands. Annotations display the data
gathered in the «SUT» and «Schedulable»13 stereotypes.

Figure 5(b) shows the AD specifying the behavior of the task
“getSunSensorReading" from the APDM subsystem. Following the
control flow14 (highlighted in the figure), it can be seen that, first, a
command with the opcode “SSTM" is created. This is the command
the sun sensor executes to produce the readings. The command is
then sent to the sun sensor. Once sent, the operation “executeCom-
mand" in the sun sensor is invoked. Finally, the readings stored in
the sun sensor, after executing the command, are retrieved.

4.4 Integration of Function Models
To enable co-simulation, the co-simulation framework needs infor-
mation on how SysML and Simulink models interact. Our method-
ology allows for the use of opaque actions in ADs, to define inte-
gration points indicating when the control flow must be handed
over to a given Simulink model. To specify these opaque actions,
the utilization of structured text, with a specific and defined syntax
is enforced. This text is organized in the following sections:

Operation: To indicate the operation being executed. For now,
only the keyword “ExecuteExternalModel" is supported.

Model: To specify values for the properties “modelName", “mod-
elType" and “modelExecutionType". For now, “modelType" must be
fixed to “Simulink". The execution type can be “NotInteractive", “In-
teractiveAndSynchronized" and “InteractiveAndNotSynchronized".
The execution of Simulink models is discussed in Section 5.

Input: To specify input parameter values for the model, ex-
pressed as assignment statements. The left side represents the name
of the parameter in the Simulink model. The right side represents
the name of the attribute in the SysML block, from which the value
is retrieved at runtime.

Output: To specify the values retrieved from the Simulink model,
expressed as assignment statements. The left side represents the
name of the attribute in the SysML block where the value will be
stored. The right side represents the name of the output parameter
in the Simulink model.

13Tagged values of some of the tasks are omitted for brevity.
14The control flow determines the ordered sequence of actions to be executed. These
actions have parameters whose values must be provided. The purpose of the non-
highlighted actions in the AD is to indicate how the parameter values are obtained. In
this regard, “Self" makes reference to the APDM block, and “model" to the block that
contains the whole model.

Enabling Model Testing of Cyber-Physical Systems MODELS 2018, October 14–19, Copenhagen, Denmark

Example. Figure 6 shows the AD specifying the behavior of the
operation “executeCommand" from the sun sensor. The behavior of
the sun sensor is modeled in a Simulink model called “SunSensor",
that must be executed to obtain the sun sensor readings. In order
to do that, an opaque action was added to the AD. When the AD
is executed, and the opaque action is reached, control is handed
over to Simulink to run the “SunSensor" model. In the process, as
indicated in the [Input] section, information from the SysML model
(self.albedo, self.noise, etc) is used to set the parameter values of
the Simulink model (SS_Albedo, SS_Noise, etc). When the execu-
tion of the Simulink model finishes, control is returned to the AD,
along with the sun sensor readings (SS_Current), that are then
transferred to the SysML model (self.Reading.current), as indicated
in the [Output] section.

5 MODEL EXECUTION
We now introduce our approach for the automatic generation of a
SysML-Simulink co-simulation framework, with the aim of fulfilling
the requirements elicited in Section 2. Henceforth, we will refer to
this framework as the CPS simulator, or simply as the simulator.

Figure 7 shows an overall description of the approach. SysML
models are passed as an input to a code generator that produces
the C++ code of the simulator. This code replicates the behavior
specified in the SysML models, and thanks to the data stored in the
integration points, it is capable of invoking the execution of the
corresponding Simulink models through the MatLab runtime. To
start the simulation process, the test cases invoking the simulator
must provide some parameters. They include the specification of
the initial status of the CPS and its environment, the simulation
time span, and the list of external events that must be triggered
during the simulation. Finally, as a result of the simulation, an
execution trace is produced. In contrast to fUML [27]-based model
execution engines like Papyrus Moka15 or the Cameo Simulation
Toolkit16, using a SysML code generator enables us to fulfill all of
our requirements such as the precise scheduling of tasks, efficient
test execution, or the generation of adequate execution traces, as
further discussed below. Similar to SysML, though code generation
from Simulink models would a priori be more efficient, we choose
to execute these models through the MatLab runtime. However, in
practice, it is common for such models to include blocks provided
by external suppliers, as in our case study for some sensors. As a
result, code generation may not be complete and additional external
libraries must be integrated with the generated code, leading to
significant effort overhead.

The code snippet in Listing 1 shows how the CPS simulator op-
erates internally. The simulator works by emulating the passing of
physical time (lines 2, 6, 7 and 15), henceforth simulated time. This
is done with the help of the information provided in the SysML
models (the time step size specified in the «SUT» stereotype, and
the estimated time of completion of each SUT task, specified in the
«Schedulable» stereotype). First, the initial status of the system (CPS
and environment) is set (line 3). Then, the initialization operations
are executed (line 5). After this, at each time step, the simulator

15https://www.eclipse.org/papyrus/index.php
16https://www.nomagic.com/product-addons/magicdraw-addons/cameo-simulation-
toolkit

Figure 7: Overview of the co-simulation approach

1 s t r i n g S i m u l a t o r : : run (S t a t u s ∗ i n i t S t a t u s , long d u r a t i o n , v e c t o r <
↪→ eventData > e v e n t L i s t) {

2 in t t ime = 0 ;
3 s e t S i m u l a t o r S t a t u s (i n i t i a l S t a t u s) ;
4 this −>log−> l o g S i m u l a t o r S t a t u s (t ime , th i s) ;
5 this −> r u n I n i t i a l i z a t i o n O p e r a t i o n s () ;
6 for (in t t S t e p = 0 ; t S t e p < d u r a t i o n ; ++ t S t e p) {
7 t ime = t S t e p ∗ this −> t S t e p S i z e ;
8 this −> t r i g g e r E v e n t s (e v e n t L i s t , t ime) ;
9 this −>runBackgroundOpera t ions () ;

10 TaskSchedu le t s = this −>SUTClass−> g e n e r a t e T a s k S c h e d u l e (t S t e p) ;
11 v e c t o r <TaskData > : : i t e r a t o r t a s k ;
12 for (t a s k = t s . l i s t . beg in () ; t a s k < t s . l i s t . end () ; ++ t a s k) {
13 this −>log−>g e n e r a t e L o g E n t r y (t ime , " Task ␣ S t a r t " , t a s k) ;
14 t a sk −> t a s k I m p l () ;
15 t ime += task −>es t imatedComple t ionT ime ;
16 this −>log−>g e n e r a t e L o g E n t r y (t ime , " Task ␣ End " , t a s k) ;
17 }
18 }
19 return this −>log−>getLog () ;
20 }

Listing 1: Simulation loop

handles the triggering of external events (line 8); executes the back-
ground operations (line 9); gets the list of SUT tasks scheduled for
execution in that time step (line 10); and executes them (lines 12
and 14). Throughout the code there are calls to the class responsible
for the generation of the execution trace (lines 4, 13 and 16), which
is returned at the end.

In what follows, we describe some relevant aspects of the code
generation process, the scheduling of tasks, the SysML-Simulink
co-simulation process, and how external events are handled.

5.1 Basic aspects of the code generator
SysML blocks, attributes and operations are translated into C++
classes, attributes and methods in a straightforward manner. When
it comes to behavioral aspects, the translation of ADs is facilitated
by the utilization of SysML specialized actions, whose semantics
are very close to the equivalent C++ constructs. Examples of these
are translating “readSelfActions", used to access the context of
the AD, into the “this” C++ keyword, or translating “writeStruc-
turalFeatureValueActions" into assignment statements. The transla-
tion of the rest of standard actions, with the exception of opaque
actions which are discussed further below, is conducted in a similar
way. SMs are translated by applying the state design pattern [13].
The events triggering the transitions in the SM are represented
as Boolean variables. The generation of the code responsible for
producing an execution trace is based on the analysis of the archi-
tectural and behavioral elements of the model. The architectural
information is used to print timestamped17 snapshots of the CPS
and its environment. The code generated out of the ADs and SMs

17With simulated time.

MODELS 2018, October 14–19, Copenhagen, Denmark González et al.

1 s t ruc t TaskData {
2 double es t imatedComple t ionT ime ;
3 double e x e c u t i o n R a t e ;
4 in t e x e c u t i o n O r d e r ;
5 s t d : : f u n c t i o n <void (void) > t a s k I m p l ;
6 } ;
7
8 s t ruc t TaskSchedu le {
9 in t t i m e S t e p ;

10 s t d : : v e c t o r < taskData > t a s k L i s t ;
11 } ;

Listing 2: Data structures for the SCS

adds timestamped entries to the execution trace, logging what data
is read or written, what internal operations or Simulink models are
invoked, or how the system transitions from one state to another.

5.2 Task Scheduling
Our code generator produces simulators of CPSs running based on
a Static Cyclic Scheduler (SCS) [24], a type of scheduler commonly
used in the development of embedded systems. With a SCS, the
task schedule is computed statically, prior to executing the system.
To compute it, the simulated time is divided into slots, and tasks,
which are expected to be executed periodically, are assigned to
them depending on their period.

Generating code for simulating a SCS is a two-step process. First,
two data structures (Listing 2) are created: “TaskData”, for storing
what is needed to execute a given task (tagged values from the
«Schedulable» stereotype, plus a pointer “taskImpl” to the class
method with the task’s implementation), and “TaskSchedule”, for
storing the task schedule at a given time step. In the second step,
described in the next example, a method is added to the SUT class
to produce the actual task schedule.

Example. We return here to the excerpt of the system from our
case study, introduced in Figure 5(a). With the tagged values of the
«SUT» and «Schedulable» stereotypes displayed in the annotations,
the code generator adds a method called “generateTaskSchedule"
(Listing 3) to the class ADCSSW. This method is repeatedly called
by the simulator (line 10 in Listing 1), to generate the task schedule
at each time step. When this occurs, the elapsed time is calculated
(line 4), and then, the same procedure is repeated for each task: the
task’s period is computed (lines 8, 14 and 20) and, if the elapsed
time is a multiple of it (lines 9, 15 and 21), then the task is added to
the list of scheduled tasks (lines 12, 18 and 24), after having set its
estimated time of completion (lines 10, 16 and 22), and the pointer
to the task’s implementation (lines 11, 17 and 23). Finally, the data
structure containing the list of scheduled tasks is returned.

5.3 SysML-Simulink Co-Simulation
When an integration point is added, every time the C++ code of
the corresponding AD is executed in the simulator, the Simulink
model specified in the integration point is executed, according
to the value of the “modelExecutionType" attribute (“Interactive-
AndSynchronized", “InteractiveAndNotSynchronized" and “NotIn-
teractive"). This is done with the help of an automatically gener-
ated helper class, which interacts with the MatLab runtime, where
the execution of the Simulink model takes place. In what follows,
after providing some generic background on how the MatLab run-
time executes Simulink models, we describe the most complex

1 TaskSchedu le ADCSSW : : g e n e r a t e T a s k S c h e d u l e (in t t imeStepNumber) {
2 TaskData t ;
3 long t a s k P e r i o d ;
4 long cur ren tT ime = timeStepNumber ∗ 1 0 0 ;
5 TaskSchedu le t s ;
6 t s . t i m e S t e p = timeStepNumber ;
7 t s . t a s k L i s t . r e s e r v e (3) ;
8 t a s k P e r i o d = (long) (1 . 0 / 1 0 . 0 ∗ 1 0 0 0) ;
9 i f (cu r ren tT ime % t a s k P e r i o d == 0) {

10 t . e s t ima tedComple t ionT ime = 1 . 0 ;
11 t . t a s k I m p l = s t d : : b ind (&APDM : : c o m p u t e S a t P o s i t i o n , this −>apdm) ;
12 t s . t a s k L i s t . push_back (t) ;
13 }
14 t a s k P e r i o d = (long) (1 . 0 / 5 . 0 ∗ 1 0 0 0) ;
15 i f (cu r ren tT ime % t a s k P e r i o d == 0) {
16 t . e s t ima tedComple t ionT ime = 2 . 0 ;
17 t . t a s k I m p l = s t d : : b ind (&APDM : : d e t e r m i n e A t t i t u d e , this −>apdm) ;
18 t s . t a s k L i s t . push_back (t) ;
19 }
20 t a s k P e r i o d = (long) (1 . 0 / 2 . 0 ∗ 1 0 0 0) ;
21 i f (cu r ren tT ime % t a s k P e r i o d == 0) {
22 t . e s t ima tedComple t ionT ime = 4 . 0 ;
23 t . t a s k I m p l = s t d : : b ind (&MM: : c o n t r o l M o d e T r a n s i t i o n s , this −>mm) ;
24 t s . t a s k L i s t . push_back (t) ;
25 }
26 return t s ;
27 }

Listing 3: Task schedule generation

co-simulation scenario, corresponding to the “InteractiveAndSyn-
chronized" case. The other cases are simpler ones.

Generalities about the execution of Simulink models. We
refer to the data stored in Simulink blocks18 as the model state. The
execution of a Simulink model consists in the computation of its
state at successive, discrete points in time, over a given time span. To
execute a Simulink model, the MatLab runtime emulates the passing
of time, henceforth simulated time, and uses a numerical solver
tool, to conduct the computations of the model state. The amount
of simulated time elapsed between two consecutive computations
is known as the time step size19. As described below, both the
time step size and the model state, play a key role in how the CPS
simulator interacts with the MatLab runtime, to properly handle
the co-simulation process.

Interactive and synchronized co-simulation. In many Sim-
ulink models, the computation of the model state, at a given point
in time, depends on the previously computed model state and on
the time step size, which, in its turn, represents a certain amount
of time elapsed in the physical world. As an example of this, in our
case study, the computation of the satellite’s position, at a given
point in time, is based on the previously calculated position, and
on the amount of time elapsed since then. With this type of models,
in order to properly handle the co-simulation process, the simu-
lated time inside the MatLab runtime must be as synchronized as
possible with the simulated time in the CPS simulator. The goal
here is to make possible for SUT tasks in the CPS simulator to re-
trieve the state information from function models, at the time step
that is the closest to when the tasks are scheduled for execution.
Figure 8 illustrates the process. The horizontal lines represent the
simulated time in the CPS simulator (on top) and in the MatLab
runtime (at the bottom). Variables on each correspond to the same
points in time (CPS_t0 = MR_t0, CPS_t1 = MR_t1, CPS_t2 = MR_t2),
and the simulation time span is the same in both cases. In the fig-
ure, a task, Ti , scheduled for execution at CPS_t0 + ∆t , in the first
18Not to be confused by SysML blocks.
19MatLab has two kinds of solvers : fixed-step and variable-step solvers. The description
here applies to fixed-step solvers.

Enabling Model Testing of Cyber-Physical Systems MODELS 2018, October 14–19, Copenhagen, Denmark

Figure 8: SysML-Simulink co-simulation

time step, invokes the step by step execution of a Simulink model.
When this occurs, the MatLab runtime computes the model state
corresponding to the first discrete point in time MR_t0, yields the
corresponding output OUT_MR_t0, and then pauses the execution,
before the computation of the next model state takes place. Due
to the time step size in the Simulink model, it is not possible to
obtain an output at MR_t0 + ∆t = CPS_t0 + ∆t , when Ti is really
executed. Since the output closest in time to CPS_t0 + ∆t that the
MatLab runtime can yield is OUT_MR_t0, this is the one the CPS
simulator retrieves. After this, the execution of the Simulink model
remains paused until Ti is scheduled for execution again. When
this occurs at CPS_t2 + ∆t , in the third time step, the execution
of the Simulink model is resumed. Since the next point in time is
MR_t1, the MatLab runtime produces the corresponding output
OUT_MR_t1. However, MR_t1 is not close in time to CPS_t2 + ∆t .
The output closest in time to CPS_t2 + ∆t that the MatLab runtime
can offer is OUT_MR_t2. Therefore, the CPS simulator advances
the execution of the Simulink model, ignoring the outputs pro-
duced (crossed out in the figure), until MR_t2 is reached20. Once
OUT_MR_t2 is computed, the CPS simulator retrieves the corre-
sponding output, and the execution of the Simulink model is paused
again. The process is then repeated in subsequent executions of Ti ,
until the simulation ends.

In our case study, the time step size for SUT tasks is the same in
Simulink and in the CPS simulator. Hence, in the scenario above, the
SUT tasks can run in a fully synchronized way in Simulink and the
CPS simulator. However, the SUT tasks interact with some Simulink
model blocks representing hardware and environment entities, and
these model blocks have a time step size that is a fraction of the
time step size of the SUT tasks. Therefore, we use the mechanism
above mainly to coordinate execution of SUT tasks and Simulink
blocks representing hardware and physical entities.

5.4 Handling external events
As part of its normal operation, a CPS will typically have to react
to external events, triggered at different moments in time. For ex-
ample, in our case study, the ADCS must react to the reception of
external commands (telecommands), sent from a ground station. As
mentioned when discussing the basics of code generation, the sim-
ulator represents the events with Boolean variables. The triggering
of a given event is reflected by setting to “true" the corresponding
variable. In order to do this effectively, the simulator must receive
from the test case, the list of events to be triggered during the sim-
ulation, along with the precise point in simulated time when that
must occur. As shown in Figure 9, during the simulation, at the
beginning of each time step, the simulator uses this information to
update the status of the different event variables. Once one of these

20To do this, the CPS simulator uses the helper class to keep track of the elapsed time
in the MatLab runtime, and the time step size of the Simulink model.

Figure 9: External Event handling

variables is enabled, the corresponding event is handled, as soon as
the task responsible for it is scheduled for execution.

5.5 Requirements fulfillment
After discussing in detail our co-simulation framework, we explain
how it fulfills the requirements elicitated in Section 2.

Efficiency (EFF): With our approach, performance bottlenecks
are due to the execution of Simulink models. However, the results
obtained when evaluating the CPS simulator of the case study (see
Section 6) show that our approach is sufficiently efficient to be
suitable to support model testing.

SysML-Simulink Co-simulation (CO-S): Thanks to the inte-
gration points in SysML models, and the automatic generation of a
helper class that handles the interaction with the MatLab runtime,
our co-simulation approach supports the integrated execution of
SysML and Simulink models.

No User Intervention (NO-U): The integrated execution of
Simulink models is conducted automatically. Also, external events
can be defined and passed as a parameter to the simulator before
the execution starts. All these allow for the automated end-to-end
simulation of CPSs.

Controllability (CONT): Our modeling methodology facili-
tates the construction of testable models of CPSs at the level of
precision required for model testing. These models are then faith-
fully executed by the automatically generated CPS simulator, includ-
ing the precise scheduling of system tasks, the data flows among
the SUT’s subsystems, and the data flows between the SUT and its
environment.

Observability (OBS): The generation of an execution trace dur-
ing the simulation enables the observation, at an adequate level of
detail and with timestamps, of triggered events, scheduled tasks,
and data flows, among other types of information. Such traces can
then be used to check whether the model executions comply with
expected, relevant properties concerning various aspects of the
system.

6 EVALUATION
In this section, we present the result of evaluating whether our
modeling and co-simulation approach is suitable for the practical
application of model testing. The evaluation has been conducted
on the LuxSpace case study introduced in Section 2.

6.1 Research Questions (RQs)
RQ1:How long does it take for the CPS simulator to execute test cases?
Test cases characterize the simulation scenarios (initial status of
the CPS and its environment, simulation time span, events to be
triggered) to be executed on the CPS simulator. We expect a close
relationship between the simulation time span defined in a test
case, and the amount of time needed for the CPS simulator to run it.
Therefore, the shorter the simulation time span, the more test cases

MODELS 2018, October 14–19, Copenhagen, Denmark González et al.

the simulator should be able to execute in a given period of time. On
the other hand, every time a test case is run, the MatLab runtime
must initialize the Simulink models involved in the simulation,
which might cause some significant overhead when running a
large number of test cases. To answer this RQ, we have set up an
experiment to evaluate these factors.

RQ2: Is our modeling methodology applicable for realistic CPSs?
Other than model size, which is determined by the system, two as-
pects impact directly the modeling effort needed to produce testable
CPS models with our approach: the level of precision at which be-
havior is specified, and the integration of Simulink models. We
provide effort estimates and discuss these two factors.

6.2 Experiment Design
To analyze how the simulation time span impacts the performance
of the simulator, we have prepared an experiment consisting in
the execution of two realistic test suites, both with an aggregate
simulation time span of 100 000 seconds. The first test suite contains
a small number (20) of test cases with a long simulation time span
of 5000 seconds, the amount of time approximately needed for the
satellite of the case study to complete one orbit around earth. The
second one contains a large number (1000) of test cases, each with
a much shorter simulation time span of 100 seconds. Even though
the aggregate simulation time span is the same in both test suites,
we expect to see additional overhead in the execution of the second
one, due to the much larger number of test cases that are run.

When it comes to the strategy followed to generate these test
cases, since the objective here is to report on the performance of
the simulator, we decided to go with a simple one, consisting in
randomly generating test cases to achieve path coverage in the ADs
of the LuxSpace SysML models. In the future, though, we plan on
using more sophisticated, search-based [25] test case generation
techniques to conduct model testing of CPSs.

Finally, to mitigate the impact of random variations on the valid-
ity of the experiment, each test suite was run 10 times and average
values for the different measurements were computed.

6.3 Experiment Results
RQ1. Table 3 summarizes the results obtained from conducting
the experiment. Running 100 000 seconds (≈ 27.7 hours) of sim-
ulated time required between 29 688 to 34 771 seconds (≈ 8.2 to
9.7 hours), that is, the ratio of execution time to simulated time is
roughly between 0.3 and 0.4. Though the main driver of execution
time is simulated time, there is approximately 1.5 hours of extra
time needed to complete the execution of the second test suite.
This confirms that the initialization of Simulink models produces a
significant overhead when a larger number of test cases is run.

When it comes to evaluating the practicality of the approach, the
results show that CPS models, such as the realistic one we developed
for our case study, can be verified overnight, every day. Furthermore,
the efficiency of the verification process could be increased even
more by rerunning only the test cases affected by model changes, or
by parallelizing the process on multiple cores, since test cases can
be run independently from each other. In conclusion, we consider
that our co-simulation framework is efficient enough to enable
model testing of CPSs in practical time.

Table 3: Experiment results
Test Suite 1 Test Suite 2

Number of test cases (TC) 20 1000
Simulation time span per TC 5000s 100s
Simulink models initialization time per TC 5.198s 4.337s
Aggregate simulation time span (ST) 100 000s 100 000s
Total execution time (ET) 29 688s 34 771s
Ratio of ET to ST 0.297 0.348

Settings: Computer: Intel i7-4870HQ 2.5 GHz 16 GB RAM.
OS: Windows 10 64 bits. MatLab version: R2010a

RQ2. The SysML model specifying the architecture and behavior
of the CPS from the case study is of manageable size: 40 blocks
specified in 6 BDDs and 2 iBDs, 30 ADs, and 1 SM. Building this
model required an effort of approximately 2 man-months, plus an
additional man-week to train LuxSpace control engineers. Among
the different tasks conducted towards completing the model, two of
them stood out as the most laborious ones, taking approximately 60
percent of the total effort: integrating Simulink models within the
SysML model, and specifying software behavioral aspects. The for-
mer required a joint effort with LuxSpace control engineers to fully
specify the integration points with Simulink. Particularly laborious
was the analysis of Simulink models, to match their numerous input
and output parameters with SysML blocks’ attributes. In general,
communication between software engineers and control and me-
chanical engineers developing Simulink models can be expected to
be a source of confusion requiring special attention. When it comes
to the second task, the utilization of a model execution approach
based on code generation requires behavioral aspects to be specified
at a high level of precision to reduce the complexity of the code
generation process. Since models are built once and then updated
over the life time of a system, and given the criticality of most
CPSs and the fact they often need to be certified based on design
models, we consider that the cost of our modeling methodology is
acceptable.

7 CONCLUSIONS
The model testing of cyber-physical systems (CPSs) aims at detect-
ing design errors and critical scenarios early in the development
process, based on heterogeneous models of the software, hardware,
and physical environment, thus alleviating the challenges faced
with CPSs. We presented a SysML-based modeling methodology
and a SysML-Simulink co-simulation framework to enable such
testing. The evaluation conducted on a satellite case study shows
that they facilitate the systematic construction of testable CPS
models and enable their execution in practical time, among other
pre-defined requirements.

In the future, we plan on combining our approach with more
sophisticated techniques for the automatic generation of test cases
and test oracles, in order to conduct more effective testing.

ACKNOWLEDGMENTS
We gratefully acknowledge the funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No 694277) and from
the Fonds National de la Recherche, Luxembourg (FNR 11606543).

Enabling Model Testing of Cyber-Physical Systems MODELS 2018, October 14–19, Copenhagen, Denmark

REFERENCES
[1] An-jelo Gian C. Abad, Lady Mari Faeda G. Guerrero, Jasper Kendall M. Ignacio,

Dianne C. Magtibay, Mark Angelo C. Purio, and Evelyn Q. Raguindin. 2015. A
simulation of a power surge monitoring and suppression system using LabVIEW
and multisim co-simulation tool. In Proceedings of the 8th International Confer-
ence on Humanoid, Nanotechnology, Information Technology, Communication and
Control, Environment and Management, HNICEM 2015. 1–3.

[2] Ahmad T. Al-Hammouri. 2012. A Comprehensive Co-simulation Platform for
Cyber-physical Systems. Computer Communications 36, 1 (December 2012), 8–19.

[3] Daniele Antonioli and Nils Ole Tippenhauer. 2015. MiniCPS: A Toolkit for
Security Research on CPS Networks. In Proceedings of the 1st ACM Workshop on
Cyber-Physical Systems-Security and/or PrivaCy, CPS-SPC 2015. 91–100.

[4] D. Bian, M. Kuzlu, M. Pipattanasomporn, S. Rahman, and Y. Wu. 2015. Real-time
co-simulation platform using OPAL-RT and OPNET for analyzing smart grid
performance. In Proceedings of the IEEE Power & Energy Society General Meeting
2015. 1–5.

[5] Mary Bone and Robert Cloutier. 2009. The current state of model based systems
engineering: Results from the OMG SysML request for information 2009. In
Proceedings of the 8th Conference on Systems Engineering Research. 225–232.

[6] T. Brezina, Z. Hadas, and J. Vetiska. 2011. Using of Co-simulation ADAMS-
SIMULINK for development of mechatronic systems. In Proceedings of the 14th
International Conference Mechatronika. 59–64.

[7] Lionel C. Briand, Shiva Nejati, Mehrdad Sabetzadeh, and Domenico Bianculli.
2016. Testing the untestable: model testing of complex software-intensive systems.
In Proceedings of the 38th International Conference on Software Engineering, ICSE
2016. 789–792.

[8] Christopher Brooks, Edward A. Lee, David Lorenzetti, Thierry S. Nouidui, and
Michael Wetter. 2015. CyPhySim: A Cyber-physical Systems Simulator. In Pro-
ceedings of the 18th International Conference on Hybrid Systems: Computation and
Control, HSCC 2015. 301–302.

[9] W. Stuart Dols, Steven J. Emmerich, and Brian J. Polidoro. 2016. Coupling the mul-
tizone airflow and contaminant transport software CONTAM with EnergyPlus
using co-simulation. Building Simulation 9, 4 (August 2016), 469–479.

[10] J. Eker, J. W. Janneck, E. A. Lee, Jie Liu, Xiaojun Liu, J. Ludvig, S. Neuendorffer, S.
Sachs, and Yuhong Xiong. 2003. Taming heterogeneity - the Ptolemy approach.
Proc. IEEE 91, 1 (January 2003), 127–144.

[11] Peter H. Feiler and David P. Gluch. 2012. Model-Based Engineering with AADL: An
Introduction to the SAE Architecture Analysis & Design Language. Addison-Wesley
Professional.

[12] J. Fitzgerald, C. Gamble, P. G. Larsen, K. Pierce, and J. Woodcock. 2015. Cyber-
Physical Systems Design: Formal Foundations, Methods and Integrated Tool
Chains. In Proceedings of the 3rd FME Workshop on Formal Methods in Software
Engineering, FormaliSE 2015. 40–46.

[13] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design
Patterns: Elements of Reusable Object-oriented Software. Addison-Wesley Longman
Publishing Co., Inc.

[14] H. Georg, S. C. Müller, C. Rehtanz, and C. Wietfeld. 2014. Analyzing Cyber-
Physical Energy Systems:The INSPIRE Cosimulation of Power and ICT Systems
Using HLA. IEEE Transactions on Industrial Informatics 10, 4 (November 2014),
2364–2373.

[15] Cláudio Gomes, Casper Thule, David Broman, Peter Gorm Larsen, and Hans
Vangheluwe. 2017. Co-simulation: State of the art. CoRR abs/1702.00686 (February
2017). arXiv:1702.00686

[16] Carlos A. González, Mojtaba Varmazyar, Shiva Nejati, Lionel C. Briand, and
Yago Isasi. 2018. A SysML-Based Approach for Model Testing of Cyber-Physical
Systems. Tech. Rep. TR-SNT-2018-2. SnT Centre - University of Luxembourg.

[17] Siddhartha Kumar Khaitan and James D. McCalley. 2015. Design Techniques
and Applications of Cyberphysical Systems: A Survey. IEEE Systems Journal 9, 2
(June 2015), 350–365.

[18] X. Koutsoukos, G. Karsai, A. Laszka, H. Neema, B. Potteiger, P. Volgyesi, Y. Vorob-
eychik, and J. Sztipanovits. 2018. SURE: A Modeling and Simulation Integration
Platform for Evaluation of Secure and Resilient Cyber-Physical Systems. Proc.
IEEE 106, 1 (January 2018), 93–112.

[19] P. G. Larsen, J. Fitzgerald, J. Woodcock, P. Fritzson, J. Brauer, C. Kleijn, T. Lecomte,
M. Pfeil, O. Green, S. Basagiannis, and A. Sadovykh. 2016. Integrated tool chain
for model-based design of Cyber-Physical Systems: The INTO-CPS project. In

Proceedings of the 2nd International Workshop on Modelling, Analysis, and Control
of Complex CPS, CPS Data 2016. 1–6.

[20] Peter Gorm Larsen, Kenneth Lausdahl, Nick Battle, John Fitzgerald, Sune Wolff,
Shin Sahara, Marcel Verhoef, Peter W. V. Tran-Jørgensen, Tomohiro Oda, and
Paul Chisholm. 2018. VDM-10 Language Manual.

[21] E. Lee and S. Neuendorffer. 2004. Classes and subclasses in actor-oriented design.
In Proceedings of the 2nd ACM and IEEE International Conference on Formal
Methods and Models for Co-Design, MEMOCODE 2004. 161–168.

[22] E. A. Lee, M. Niknami, T. S. Nouidui, and M. Wetter. 2015. Modeling and simulating
cyber-physical systems using CyPhySim. In Proceedings of the 12th International
Conference on Embedded Software, EMSOFT 2015. 115–124.

[23] Edward Ashford Lee and Sanjit Arunkumar Seshia. 2017. Introduction to Embedded
Systems: A Cyber-Physical Systems Approach, 2nd Edition. MIT Press.

[24] Jane W. S. Liu. 2000. Real-Time Systems. Prentice Hall.
[25] Phil McMinn. 2004. Search-based Software Test Data Generation: A Survey:

Research Articles. Software Testing, Verification & Reliability 14, 2 (June 2004),
105–156.

[26] Modelica Association. 2014. Functional Mock-up Interface for Model Exchange
and Co-Simulation Version 2.0. https://svn.modelica.org/fmi/branches/public/
specifications/v2.0/FMI_for_ModelExchange_and_CoSimulation_v2.0.pdf

[27] OMG. 2017. Semantics of a Foundational Subset for Executable UML Models
(fUML) 1.3 Specification. http://www.omg.org/spec/SysML/1.5/

[28] OMG. 2017. Systems Modeling Language Specification (SysML). Version 1.5.
http://www.omg.org/spec/SysML/1.5/

[29] Ioannis Papaefstathiou, Gregory Chrysos, and Lambros Sarakis. 2015. COSSIM:
A Novel, Comprehensible, Ultra-Fast, Security-Aware CPS Simulator. In 11th
International Symposium on Applied Reconfigurable Computing, ARC 2015 (Lecture
Notes in Computer Science), Vol. 9040. Springer, 542–553.

[30] Maxime Perrotin, Eric Conquet, Julien Delange, André Schiele, and Thanassis
Tsiodras. 2011. TASTE: A Real-Time Software Engineering Tool-Chain Overview,
Status, and Future. In 15th International SDL Forum: Integrating System and Soft-
ware Modeling, SDL 2011 (Lecture Notes in Computer Science), Vol. 7083. Springer
Berlin Heidelberg, 26–37.

[31] Claudius Ptolemaeus (Ed.). 2014. System Design, Modeling, and Simulation using
Ptolemy II. Ptolemy.org. http://ptolemy.org/books/Systems

[32] Ragunathan Rajkumar, Insup Lee, Lui Sha, and John A. Stankovic. 2010. Cyber-
physical systems: the next computing revolution. In Proceedings of the 47th Design
Automation Conference, DAC 2010. 731–736.

[33] F. Schloegl, S. Rohjans, S. Lehnhoff, J. Velasquez, C. Steinbrink, and P. Palensky.
2015. Towards a classification scheme for co-simulation approaches in energy
systems. In Proceedings of the 2015 International Symposium on Smart Electric
Distribution Systems and Technologies, EDST 2015. 516–521.

[34] Hesham Shokry and Mike Hinchey. 2009. Model-Based Verification of Embedded
Software. IEEE Computer 42, 4 (April 2009), 53–59.

[35] Janos Sztipanovits, Ted Bapty, Sandeep Neema, Larry Howard, and Ethan Jackson.
2014. OpenMETA: A Model- and Component-Based Design Tool Chain for
Cyber-Physical Systems. In From Programs to Systems. The Systems perspective in
Computing. ETAPS 2014 (Lecture Notes in Computer Science), Vol. 8415. Springer
Berlin Heidelberg, 235–248.

[36] ITU-T: Telecommunication and Standardization Sector of the Interna-
tional Telecommunication Union. 1999. Specification and Description Language
(SDL): Reference Manual. https://www.itu.int/ITU-T/studygroups/com10/
languages/Z.100_1199.pdf

[37] ITU-T: Telecommunication and Standardization Sector of the Interna-
tional Telecommunication Union. 2002. Abstract Syntax Notation One (ASN.1):
Specification of basic notation. https://www.itu.int/ITU-T/studygroups/com17/
languages/X.680-0207.pdf

[38] ITU-T: Telecommunication and Standardization Sector of the Interna-
tional Telecommunication Union. 2011. Message Sequence Chart (MSC): Recom-
mendation ITU-T Z.120. https://www.itu.int/rec/T-REC-Z.120-201102-I

[39] Casper Thule. 2016. Verifying the Co-Simulation Orchestration Engine for INTO-
CPS. CEUR Workshop Proceedings 1744 (November 2016).

[40] B. Wang and J. S. Baras. 2013. HybridSim: A Modeling and Co-simulation
Toolchain for Cyber-physical Systems. In Proceedings of the 17th IEEE/ACM
International Symposium on Distributed Simulation and Real Time Applications,
DS-RT 2013. 33–40.

http://arxiv.org/abs/1702.00686
https://svn.modelica.org/fmi/branches/public/specifications/v2.0/FMI_for_ModelExchange_and_CoSimulation_v2.0.pdf
https://svn.modelica.org/fmi/branches/public/specifications/v2.0/FMI_for_ModelExchange_and_CoSimulation_v2.0.pdf
http://www.omg.org/spec/SysML/1.5/
http://www.omg.org/spec/SysML/1.5/
http://ptolemy.org/books/Systems
https://www.itu.int/ITU-T/studygroups/com10/languages/Z.100_1199.pdf
https://www.itu.int/ITU-T/studygroups/com10/languages/Z.100_1199.pdf
https://www.itu.int/ITU-T/studygroups/com17/languages/X.680-0207.pdf
https://www.itu.int/ITU-T/studygroups/com17/languages/X.680-0207.pdf
https://www.itu.int/rec/T-REC-Z.120-201102-I

	Abstract
	1 Introduction
	2 Motivation
	3 Background
	4 Modeling Methodology
	4.1 Information Model
	4.2 Profile
	4.3 Modeling Steps
	4.4 Integration of Function Models

	5 Model Execution
	5.1 Basic aspects of the code generator
	5.2 Task Scheduling
	5.3 SysML-Simulink Co-Simulation
	5.4 Handling external events
	5.5 Requirements fulfillment

	6 Evaluation
	6.1 Research Questions (RQs)
	6.2 Experiment Design
	6.3 Experiment Results

	7 Conclusions
	Acknowledgments
	References

