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Preface

I love solving challenging problems. Maybe this is why I became interested in program-
ming. The very idea of solving problems by writing down executable solution routines
fascinates me. And the additional challenge of developing and maintaining high-quality
solutions keeps me hooked.

During my studies, I kept coming back to practices and tools that support software
quality, such as testing and code-analysis tools. Finally, in my Master’s thesis, I devel-
oped a code recommender system based on implicit user feedback, to assist developers in
writing high-quality code. This thesis was supervised by Marcel Bruch and Andreas Sewe
from Prof. Mira Mezini’s Software Technology Group (STG) at the Technische Univer-
sität Darmstadt. Marcel and Andreas introduced me to academic software-engineering
research. They also introduced me to Sebastian Proksch, a PhD student at the STG,
who asked me to join the research project KaVE, where we researched and developed
recommender systems for software engineering. What followed were five years of contin-
uous learning, hard work, and many many ups and downs. These years ultimately led
to the thesis you hold before you. And since I did not walk this path alone, what follows
is an attempt to thank all the people who accompanied me.

First, I would like to thank my supervisor, Prof. Mira Mezini, for the opportunity
to do my PhD and for the liberty to pursue my own projects and ideas during this
time. I highly appreciate that you trusted me to find my way, that you supported me
in following this way, and that you acknowledged where it has led me.

I also thank Prof. Andreas Zeller for being the second examiner of my thesis. I am
grateful for the time you spent on carefully reviewing my thesis and for your honest
feedback.

Next, I want to thank Sebastian Proksch, with whom I collaborated very closely during
the first half of my PhD. We shared many ups and downs during this time, and I am
happy that the work we did back then ultimately contributed to your PhD thesis. I
learned a great deal working with you and I am very glad to have had the opportunity.

Another person without whom I would not be where I am today is Sarah Nadi, who
joined the STG as a PostDoc during my second year as a PhD student. Your guid-
ance and example strongly influenced how I work, as well as my thoughts and believes
about research and academia as a whole. I am deeply grateful for your advice and your
reliability, even after you had long left to become a professor at the University of Alberta.

Soon after I started the work presented in this thesis, I had the privilege to get in
contact with Hoan Anh Nguyen and Prof. Tien N. Nguyen, two experts in the field
of recommender systems for software engineering. I am grateful that you two took the
chance to work with a complete stranger, who you would only ever meet on Skype for
almost a year to come. I highly appreciate all the guidance and assistance you put into
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our work and that you continued to believe in me, despite all the bad luck we had, in
addition to Reviewer 2.

One of the many things I can look back on is my research project Eko that was
funded by the German Ministry of Education and Research (BMBF). It was a great
honor to receive funding at this early career stage. It enable me to lead a research
team and back my work up with working prototypes, which we released along with the
publications. The motivated people involved in this project were Dr. Sarah Nadi, the
PhD student Leonid Glanz, and the undergraduate students Mattis Manfred Kämmerer,
Jonas Schlitzer, Simon Weiler, Manuel Benz, and Govind Singh. We grew as a team
over the course of the project and still collaborate on new topics.

In this very project, I had the chance to meet Willi Weiers and Joachim Heldmann
from DHL IT Services, who mentored me over the course of the project. I am very
grateful for your time and advice during that time. Our meetings provided me with
ideas, confidence, and insights to tackle all obstacles on the path to a successful project,
as well as this thesis.

My research would have been impossible without the people who went before me and
who openly shared their work, data, and tools with me, no questions asked. These
are Prof. Martin Monperrus, Prof. Michael Pradel, Andrzej Wasylkowski, and Prof.
Andreas Zeller. May your example inspire many generations of researchers to come.

Over the years, I was happy to work with a number of excellent student assistants,
namely Mattis Manfred Kämmerer, Jonas Schlitzer, David Albrecht, Uli Fahrer, and An-
dreas Bauer. Your hard work and dedication to high-quality software engineering enabled
both development and maintenance of the many research prototypes that we published
and contributed to over the years. You did a great service to the research community
and myself, for which I am truly grateful. I would also like to include the students I had
the pleasure to supervise in the last years. These are Michael Kutschke, David Dahlen,
Oliver Abt, Waldemar Graf, Markus Zimmermann, Carina Oberle, Manuel Benz, Simon
Weiler, Mattis Manfred Kämmerer, Govind Singh, Rossana Bermúdez De La Hoz, and
Vidyashree Nanjunde Gowda.

I would also like to thank the people who have provided their help in proof reading
this thesis. First and foremost there is Andreas Sewe, whose amazingly detailled and
constructive feedback has—over and over again—brought my thinking to higher levels
of clarity. Second, there is Ben Hermann, who I am convinced was an extraordinary
salesperson in a prior life. Furthermore, I would like to thank the anonymous reviewers
of all my submitted publications (including Reviewer 2). Though I sometimes disagreed
with your opinions, I always came to value your criticism and did my best to consider
it in my work. Like probably all PhD students, I came to loath the peer-review system
at times, when a reject deprived me of so much of what little time I had. I sincerely
hope that the community will find ways to continue providing insightful and constructive
reviews in the face of the growing numbers of the submissions.

The past five years would not have been half as fun without my brilliant colleagues
Andi Bejleri, Oliver Bracevac, Ervina Cergani, Joscha Drechsler, Michael Eichberg,
Matthis Eichholz, Sebastian Erdweg, Leonid Glanz, Sylvia Grewe, Dominik Helm, Ben
Hermann, Sven Keidel, Mirko Köhler, Florian Kübler, Edlira Kuci, Johannes Lerch, Ingo
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Maier, Ralf Mitschke, Ragner Mogk, Patrick Müller, Sarah Nadi, Sebastian Proksch,
Michael Reif, Guido Salvaneschi, Jan Sinschek, Jurgen van Ham, Manuel Weiel, Pascal
Weisenburger, and Anna-Katharina Wickert.

Ultimately, my PhD would have come to a grinding halt many times without the
invaluable support of Gudrun Harris. You certainly are the single most important person
along the journey towards a doctoral degree at the STG. Your rigorous work ensures
that we are well funded, fulfill regulations, and do not loose ourselves in paperwork.
Your open ears and your humor ensure that we stay on our paths, with both feet on the
ground, and free of illusions regarding our baking skills. I cannot thank you enough.

And of course, I would not have made it without the support of my girlfriend, my
friends, and my family. I am deeply grateful to every single one of you, for excepting me
for who I am and for having shared so much with me—the good, the bad, and the ugly.

Editorial notice: Throughout this thesis I use the term “we” and “us” to describe my
work. This is meant to underline that research is always a cooperative effort and that I
would have much less (if something at all) to present here, if other people had not took
the time off of their own work to review, discuss, and contribute to mine. I am deeply
grateful for their effort.
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Abstract

Today’s software industry relies heavily on the reuse of existing software libraries. Such
libraries provide the building blocks for modern software products. Reusing them allow
developers to focus on innovation, while standing on the shoulders of giants. To use
libraries effectively, developers need to know the Application Programming Interfaces
(APIs) through which they communicate with the libraries. This includes both the APIs’
semantics and the (implicit) usage constraints that come with them. In the face of the
rapidly growing and evolving supply of software libraries, this has become a challenging
task. As a result, incorrect usages of APIs, or API misuses, are a prevalent cause of
software bugs, crashes, and vulnerabilities.

In reaction to this problem, researchers have proposed a multitude of developer-
assistance tools. One particular class of such tools automates the detection of API
misuses in software code. We call these tools API-misuse detectors. Existing misuse
detectors address different aspects of API misuse. However, no attempt has been made
to systematically define the problem space of API misuse and to assess the prevalence of
API misuses compared to other types of bugs. This makes it impossible to judge the rel-
evance of research on API-misuse detection. Moreover, previous empirical evaluations of
misuse detectors commonly measure the detectors’ precision. However, since the studies
use different datasets, it is unclear to which extend the results are comparable. It is also
unclear where the detectors make trade-offs between their precision and their recall.

In this thesis, we first present a systematic analysis of the problem of API misuse. We
find that API misuse causes 9.1% of all software bugs in real-world projects, including
many critical issues, such as program crashes, data loss, and security vulnerabilities.
Then, we survey the literature to consolidate over a decade of research on API-misuse
detection and build MuBench, a public automated benchmark for API-misuse detec-
tors. This enables us to conduct the first-ever qualitative and quantitative comparison
of existing misuse detectors. We find that these detectors have the potential to discover
many API misuses, but suffer from extremely low precision and recall in practice. Fi-
nally, we systematically design MuDetect, a new API-misuse detector that addresses
many of the problems of existing detectors. Using MuBench, we demonstrate that
MuDetect clearly outperforms existing detectors with respect to both precision and
recall. Our results provide strong evidence that, following our systematic approach, we
can develop API-misuse detectors that are fit for practical application.
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Zusammenfassung

Die Wiederverwendung bestehender Softwarebibliotheken ist eine Grundpfeiler der heuti-
gen Softwareindustrie. Solche Bibliotheken stellen Bausteine für moderne Softwarepro-
dukte zur Verfügung. Ihre Verwendung erlaubt Softwareentwicklern sich auf innovative
Aspekte der Software zu fokussieren, anstatt andauernd das Rad neu zu erfinden. Um
Softwarebibliotheken effektive einzusetzen, müssen Entwickler die Semantik und die (teil-
weise impliziten) Nutzungsbedingungen der Programmierschnittstellen (APIs) kennen,
über die sie mit den Bibliotheken interagieren. Angesichts der hohen Geschwindigkeit
mit der neue Softwarebibliotheken entstehen und bestehende Bibliotheken weiterentwick-
elt werden, ist dies zu einer immensen Herausforderung geworden. Aus diesem Grund
sind inkorrekte Verwendungen von APIs, sogenannte API Misuses, heute weit verbreitet
und verursachen Probleme wie Programmabstürze und Sicherheitslücken.

In Reaktion auf derartige Probleme haben Forscher eine Vielzahl von Assistenzw-
erkzeugen für Softwareentwickler vorgeschlagen. Eine Kategorie solcher Werkzeuge au-
tomatisiert die Identifikation von API Misuses in Software-Quelltext. Diese Werkzeuge
werden API Misuse-Detektoren genannt. Bestehende Misuse-Detektoren adressieren un-
terschiedliche Aspekte von API Misuse. Es wurde jedoch bisher kein Versuch unternom-
men, das Problem von API Misuse systematisch zu definieren und die relative Häufigkeit
von API Misuses in der Menge aller Softwarefehler zu erfassen. Daher ist es unmöglich,
die Relevanz von Forschungsarbeit bzgl. API Misuse abzuschätzen. Bisherige empirische
Untersuchungen von API Misuse-Detektoren haben deren Precision gemessen. Da diesen
Untersuchungen jedoch stets unterschiedliche Datensätze zugrunde lagen, ist es unklar
inwieweit die entsprechenden Ergebnisse vergleichbar sind. Ebenso ist unklar, inwieweit
die verschiedenen Detektoren niedrigeren Recall zugunsten von höherer Precision in Kauf
nehmen.

In der vorliegenden Arbeit präsentieren wir zunächst die Ergebnisse einer systema-
tischen Analyse von API Misuse in Softwareprojekten. Wir belegen, dass API Mis-
use für 9.1% aller Softwarefehler verantwortlich ist. Viele dieser Fehler haben kritis-
che Auswirkungen, wie Programmabstürze, Datenverlust, oder Sicherheitslücken. An-
schließend präsentieren wir eine Literaturübersicht über mehr als 10 Jahre Forschungsar-
beit an API Misuse-Detektoren und entwickeln MuBench, einen öffentlichen, automa-
tisierten Benchmark für API Misuse-Detektoren. Diese Schritte ermöglichen uns den
ersten qualitative und quantitative Vergleich von API Misuse-Detektoren. Wir zeigen,
dass die Detektoren potentiell viele API Misuses identifizieren können, in der praktis-
chen Anwendung aber sowohl im Hinblick auf Precision als auch im Hinblick auf Recall
sehr schlecht abschneiden. Zuletzt stellen wir unseren neuen API Misuse-Detektor Mu-
Detect vor, der viele Probleme von anderen Detektoren gezielt vermeidet. Mithilfe
von MuBench zeigen wir, dass MuDetect im Vergleich zu anderen Detektoren sowohl
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eine deutlich höhere Precision also auch einen deutlich höheren Recall erreicht. Unsere
Ergebnisse weisen darauf hin, dass wir mit unserem systematischen Ansatz Detektoren
entwickeln können, die für den praktischen Einsatz in der Softwareentwicklung geeignet
sind.
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1. Introduction

Over the last few decades, software has become ubiquitous in our every day life. Every
day, software unlocks new insights from the world around us and brings to life the devices
and services that enrich our lives. Software.org1 estimates that, in the US alone, the
software industry contributed more than $1.14 trillion to the total value-added Gross
Domestic Product (GDP) and accounted for over 10.5 million jobs in 2016 (including
indirect and induced impacts); an increase of about 6.5 percent on both scales, over the
last two years.2

This enormous industry is based on an ever-growing number of software products.
Its growth requires software companies to continuously speed up their development pro-
cesses and reduce the time-to-market with every new product. The tremendous speed
of the software economy shows, for example, in the domain of mobile apps: The Google
Play Store grew by more than one app per minute, on average, between February and
December 2016.3 Also, more and more of the big players, such as Facebook or Amazon,
adopt Continuous Deployment techniques that allow them to release updates to their
products 10, 100, or sometimes even 1000 times per day [SDG+16].

At the same time, today’s software systems become increasingly complex. A vital
ingredient to keep up the development of such systems at market speed is the ability
to reuse existing software components [Boe99, HDG+11, SE13], commonly referred to
as software libraries. Such libraries provide the building blocks for modern software
products. Reusing them allows developers to stand on the shoulders of giants while
focusing on innovation, rather than reinventing the wheel. More specifically, the com-
ponents provide Application Programming Interfaces (APIs) for developers to interact
with. Metaphorically speaking, such APIs provide the vocabulary for developers to
express their solutions to a task at hand.

As with any language, to use APIs effectively, developers need to know the available
vocabulary, its semantics, and the usage constraints that come with it. In the face of
the rapidly growing and evolving supply of software libraries, this has become a chal-
lenging task. A recent study shows, for example, that developers perceive understanding
how to use cryptographic APIs as the biggest obstacle for using these APIs [NKMB16].
As a result, incorrect usages of APIs, or API misuses, are a prevalent cause of soft-
ware bugs, crashes, and vulnerabilities [FHM+12, GIJ+12, MM13, EBFK13, LCWZ14,

1An independent and non-partisan international research organization, dedicated to help policymakers
and the broader public better understand the impact that software has on our lives, our economy,
and our society. https://software.org/ (checked on Oct 10, 2017)

2 https://software.org/wp-content/uploads/2017 Software Economic Impact Report.pdf

(checked on Dec 05, 2017)
3 https://www.statista.com/statistics/266210/ (checked on Mar 20, 2018)
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1. Introduction

SHA15, NKMB16, LHX+16].

Documenting the functionality and usage constraints of APIs is a natural way to help
developer prevent API misuse, by providing a centralized source of information per API
that they can easily check upon and refer to. Unfortunately, creating and maintaining
high-quality documentation is a challenging task in itself; for many APIs, documentation
is unavailable, incomplete, ambiguous, or incorrect [UR15, ZGC+17]. This sometimes
even keeps developer from reusing a particular software component [UR15].

In reaction to these problems, researchers have proposed methods to automatically
generate documentation, e.g., from source code [BW08, WPVS17] or developer commu-
nications [PADP+12]; and to automatically discover mistakes in documentation, such as
mismatches between code and documentation [ZGC+17] or inconsistencies within docu-
mentation [ZS13]. However, even if all APIs had complete and correct documentation,
this would not solve the problem entirely, since developers are often unaware even of
documented usage constraints [DH09] and prefer informal references, such as Stack-
Overflow,4 over official API documentation, even though the former contain more
mistakes [ABF+16].

A more proactive approach to help developers work with APIs more efficiently and
to prevent API misuse are a family of developer-assistance tools, often referred to as
Recommender Systems for Software Engineering (RSSEs) [RWZ10, RMWZ14]. The key
idea behind RSSEs is to automatically obtain information items estimated to be valuable
for a software engineering task in a given context and to provide them to developers,
often directly in their Integrated Development Environments (IDEs).

One category of RSSEs assists developers in using APIs correctly, for example, by
automatically retrieving relevant code examples [HM05, HWM05], documentation frag-
ments [DH09, TR16], or StackOverflow discussions [PBDP+14]; or by promoting
likely proposals of the IDE’s code completion [BMM09, PLM15]—all based on the cur-
rent editor content. Another category of RSSEs helps developers identify existing API
misuses [WZL07, NNP+09b, MBM10, WZ11]. Such automated API-misuse detectors
are the focus of this thesis.

1.1. Problem Statement

Over the last decade, the automated detection of API misuses has received much at-
tention [LZ05, RGJ07b, RGJ07a, WZL07, AX09, NNP+09b, TX09b, TX09a, MBM10,
GWZ10, WZ11, NPVN15, MCJ17]. Existing approaches address different aspects of
API misuse, such as missing method calls [MM13], missing preconditions of method
calls [TX09b], or wrong method-call order [WZL07]. However, to the best of our knowl-
edge, no attempt has been made to systematically define the problem space of API
misuse and to assess the prevalence of API misuses compared to other types of bugs.
This makes it impossible to judge the impact of this type of bug and, consequently, the
relevance of research on API-misuse detection in general.

4https://stackoverflow.com/ (checked on Mar 20, 2018)
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The performance of many existing misuse detectors has been demonstrated in empir-
ical studies, which commonly measure the precision of detectors, i.e., which fraction of
their findings are actual misuses. Precision is important, since developers often reject
analysis tools that produce many false positives [FLL+02, BBC+10, JS13]. The studies
show that the detectors’ precision varies greatly—between 5% and 100%. However, since
studies use different datasets, it is unclear to which extent the results are comparable.
Furthermore, it is unclear to what extend there is a trade-off between the kinds of mis-
use that a detector identifies and the precision that it achieves. Therefore—and because
developers need to know which problems a particular detector finds and how reliable it
does so—, we argue that it is important to also assess the recall of misuse detectors, i.e.,
which fraction of all misuses they identify.

We, hence, need a systematic analysis of the problem of API misuse and a system-
atic assessment of the state of the art in API-misuse detection, its strengths, and its
weaknesses, in order to advance misuse detectors and to make them ready for practical
application.

1.2. Contributions of this Thesis

This work contributes to the area of API-misuse detection. Our systematic survey
of existing misuse-detection literature and our qualitative and quantitative analysis of
respective approaches provide the first-ever holistic view on the state of the art in the
field. Our automated benchmark allows researchers to systematically advance API-
misuse detection and to immediately compare new approaches to existing ones with
little additional effort. Our pattern-mining, violation-detection, and ranking approaches
advance the state of the art in misuse detection, bringing it one step closer the practical
applicability.

The Problem Space of API Misuse In our first contribution, we systematically ana-
lyze the problem space of API misuse. First, we present our definition of API misuse
and contrast it with other types of bugs. Then, we estimate how big a threat API misuse
is and analyze how prevalently it appears as a cause of issues reported on Open Source
software products. Furthermore, we demonstrate that API misuse causes many criti-
cal issues, such as program crashes, data loss, and security vulnerabilities and provide
evidence that API misuse is a serious obstacle to developers in their day-to-day work.
Based on these insights, we create the API Misuse Classification (MuC), as both
a taxonomy of API misuses and a framework to assess the conceptual capabilities of
API-misuse detectors.

The State-of-the-art in API-Misuse Detection Our second contribution is a system-
atic literature review of existing work on API-misuse detection. We summarize existing
approaches and compare them with regard to the underlying techniques and the types
of API misuses they may identify. We find that both static and dynamic analysis tech-
niques have been used to identify misuses and that all techniques focus on only a few
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types of API misuses. Furthermore, we provide an overview of the evaluation strate-
gies that have been used to assess the performance of API-misuse detectors empirically,
uncovering that evaluations have been focusing on the precision of detectors, neglecting
their recall.

A Systematic Evaluation of Static API-Misuse Detectors In our third contribution,
we created MuBench, the first-ever automated benchmark that enables the empirical
evaluation and comparison of API-misuse detectors with regard to both their precision
and recall. We carefully design MuBench to allow reproducible and comparable re-
sults across detectors. Then we use MuBench to evaluate four state-of-the-art misuse
detectors Jadet, GROUMiner, DMMC, and Tikanga, uncovering their poor per-
formance with regard to both precision and recall. Through a systematic analysis of
the root causes of the detectors’ false positives and false negatives, we identify a set of
common problems, which limit their performance. We published MuBench and our
experiment results, to allow other researchers to reproduce our results and to evaluate
further detectors on our benchmark and compare the respective results.

The Next Step in API-Misuse Detection In our fourth contribution, we present Mu-
Detect, a new API-misuse detector that addresses many of the problems that we iden-
tified with state-of-the-art detectors. We introduce a new graph-based representation of
API usages designed to cover all prevalent types of misuses in MuC. We present respec-
tive pattern-mining and violation-detection algorithms that efficiently and effectively
identify misuses. We use MuBench to demonstrate that our new detector outperforms
the state of the art, bringing misuse detection one step closer to practical use. We also
demonstrate that both the precision and the recall of misuse detectors greatly improves,
when we provide them with cross-project usage examples for pattern mining, showing a
further advance API-misuse detection.

1.3. Publications

Many of the contributions presented in this thesis have previously been published to
software engineering conferences or journals. This section gives an overview over these
publications and the respective parts of this thesis. The thesis parts may contain verba-
tim content of the publications.

MuBench: A Benchmark for API-Misuse Detectors [ANN+16]. The MSR’16 data
paper presents an early version of the collection of Java API-Misuses that we describe in
Chapter 2. This collection contained 89 Java API misuses collected by reviewing issues
from general bug datasets (Section 2.2), conducting a developer survey (Section 2.3), and
mining misuses from the version-control histories of Open Source project (Section 2.4).
The paper also presents an early version of the data format that we developed for
processing the misuse examples in our automated benchmark MuBench (Section 6.1).
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A Systematic Evaluation of API-Misuse Detectors [ANN+18b]. The TSE’18 journal
article presents an extension of the API-misuse dataset by misuse examples from stud-
ies on API-usage directives (Section 2.1). It introduces the API-Misuse Classification
MuC (Chapter 3) and presents the 2016 version of our survey of API-misuse detec-
tors (Chapter 4). The article also presents the automated misuse-detector benchmark
MuBench (Chapter 5 and Chapter 6) and the empirical evaluation and comparison of
the four state-of-the-art misuse detectors Jadet [WZL07], GROUMiner [NNP+09b],
DMMC [MBM10], and Tikanga [WZ11] (Chapter 7).

MuDetect: The Next Step in API-Misuse Detection [ANN+18a] (under review).
The paper presents the new API-misuse detector MuDetect and the empirical eval-
uation and comparison of MuDetect, Jadet [WZL07], GROUMiner [NNP+09b],
DMMC [MBM10], and Tikanga [WZ11] (Part III).

1.4. Structure of this Thesis

This thesis is organized as follows. In Part I, we introduce our terminology with regard to
API misuse and API-misuse detection. We estimate the potential for API misuses based
on usage directives in API documentation and investigate the prevalence of API misuse
in bug reports on released software products and during development time (Chapter 2).
Based on the examples of API misuse we identify in this process, we propose the API-
Misuse Classification (MuC), both as a taxonomy of API misuses and a framework
to assess the conceptual capabilities of API-misuse detectors (Chapter 3). Then, we
conduct a systematic literature survey to identify existing work on API-misuse detection
and assess and compare the conceptual capabilities of respective approaches with respect
to MuC (Chapter 4).

In Part II, we present MuBench, our automated benchmark for API-misuse detectors.
We discuss how we create a ground-truth dataset of API misuses and how we design
three experiments to assess the performance of such misuse detectors with respect to their
precision and recall (Chapter 5). Through automating most of the evaluation process
with MuBench, we enable reproducible and comparable results and keep the effort of
manual reviews of detector findings low (Chapter 6). We use MuBench to assess and
compare the performance of four state-of-the-art misuse detectors, analyze their findings
in detail, and uncover several root causes for their false positives and false negatives,
which we use to formulate a roadmap for the next steps in API-misuse detection and
to call researchers to action (Chapter 7). To demonstrate the potential for future use
of MuBench, we present examples of how we extended the benchmark dataset and of
further studies that use the benchmark (Chapter 8). To conclude, we give an overview of
related benchmarking datasets and approaches, as well as empirical studies comparing
misuse detectors (Chapter 9).

In Part III, we present MuDetect, our new API-misuse detector that advances the
state of the art by solving many of the challenges identified in the previous part of
this thesis. We first give a high-level overview on the problems MuDetect addresses
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and how it does so (Chapter 10). Then we present our detector’s pattern-mining and
violation-detection algorithms and its ranking strategy in detail (Chapter 11). Subse-
quently, we describe the evaluation setup we use to assess MuDetect’s performance
using MuBench (Chapter 12), evaluate the detector and compare it to the other detec-
tors evaluated in the previous part of this thesis (Chapter 13). To conclude, we discuss
the threats to the validity of our findings (Chapter 14) and give an overview of related
work (Chapter 15).

In Part IV, we summarize this thesis and present an outlook to further future work
on API-misuse detection.
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Part I.

API-Misuse Detection
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A History of API Misuse and API-Misuse
Detection

Incorrect usages of an Application Programming Interface (API), or API misuses, are
violations of (implicit) usage constraints of the API. An example of a usage constraint is
having to check that hasNext() returns true before calling next() on an Iterator, in
order to avoid a NoSuchElementException at runtime. API misuse causes software bugs,
crashes, and vulnerabilities [FHM+12, GIJ+12, MM13, EBFK13, SHA15, NKMB16,
LHX+16].

While high-quality documentation of an API’s usage-constraints could help to miti-
gate API misuse, it is often not enough to solve the problem, because developers often
remain unaware even of documented constraints [DH09]. Moreover, a recent empir-
ical study shows that Android developers prefer informal references, such as Stack-
Overflow, over official API documentation, even though the former contain more
mistakes [ABF+16].

Ideally, development environments should assist developers in implementing correct
usages and in finding and fixing existing misuses. Prevention of API misuse has been
approached in various ways, e.g., through actively notifying developers about relevant
API usage constraints [DH09] or recommending correct usage [HM05, BMM09, PLM15].
In this thesis, we focus on tools that automatically identify misuses in a given codebase,
referred to as API-misuse detectors.

Despite the vast amount of work on API-misuse detection, API misuses still exist
in practice, as recent studies show [LHX+16, ABF+16]. In order to advance the state
of the art in API-misuse detection, we need to understand how existing approaches
compare to each other, and what their current capabilities and limitations are. We
need a general definition of API-misuse to assess each detector’s capabilities and to
systematically address the problem space. This would allow researchers to improve
API-misuse detection tools by enhancing the strengths and overcoming the weaknesses
of current detectors.

To address these needs, in this part of the thesis, we present a conceptual analysis of
the state of the art in API-misuse detection. In Chapter 2, we present our definition of
API misuse as violations of API usage constraints. Using this definition, we estimate
the potential for API misuse on the basis of existing empirical studies on API usage
directives [METM12, ZGC+17]. We find that up to two thirds of all API elements come
with usage constraints, and that the documentation of roughly every second API usage
constraint is incorrect, even in the mature Java Class Library. We then conduct a
review of over 1.200 bug reports from four general bug datasets and a developer survey
to identify API misuses as they appear in software releases and during development time.
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While we find that API misuses make up only about a tenth of all software bugs reported
in production, these bugs also cause program crashes in more than four out of five cases.
Furthermore, we find indicators that developers spend considerable time struggling to
solve API misuses, even for APIs with thoroughly documented usage constraints; and
that developers rarely fix misuses that do not cause crashes, but have less-obvious effects,
such as vulnerabilities.

In Chapter 3, we propose the API-Misuse Classification (MuC) as both a taxonomy
for API misuses and a framework to assess the capabilities of misuse detectors. We
derive MuC from the 164 examples of API misuse that we previously identified.

In Chapter 4, we present the results of a systematic literature review to identify ex-
isting API-misuse detectors. We identify both static and dynamic detection approaches.
Using MuC, we qualitatively compare the descriptions of 18 existing detectors and
identify their conceptual capabilities and shortcomings. For example, we find that few
detectors detect misuses related to conditions or exception handling. We confirm this
assessment with the detectors’ authors.

The terminology and the techniques presented in this part are helpful to understand
the contributions of this thesis. The insights about the prevalence and impact of API
misuses and the conceptual analysis of the state of the art in API-misuse detection
motivate our work presented in the following parts of the thesis.
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2. API Usage and Misuse

An API usage (usage, for short) is a piece of code that uses a given API to accomplish
some task. The API, in an object-oriented language such as Java, consists of the inter-
faces of one or more types. The usage is a combination of basic program elements, such
as method calls (both on instances of the respective types and to their static methods),
control structures, or arithmetic operations. The combination of such elements in an
API usage is subject to constraints, which depend on the nature of the API. We call such
constraints usage constraints usage constraints. For example, two methods may need to
be called in a specific order, division may not be used with a divisor of zero, and a file
resource needs to be released along all execution paths. When a usage violates one or
more of these constraints, we call it a misuse, otherwise a correct usage. We subsequently
present four studies that demonstrate why API misuses occur, how prevalent they are,
and why it is important to address this particular type of bug.

2.1. API Usage Directives

API misuses violate API usage constraints. We distinguish constraints that are enforced
by the compiler, such as correct typing, from constraints that are not, i.e., whose vio-
lation may lead to problems and errors at runtime. Such constraints are often declared
as API usage directives in the API documentation. Monperrus et al. [METM12] empir-
ically investigated such directives and their prevalence in a study of three Java libraries,
namely, the Java Class Library, JFace, and the Apache Commons Collections.
From their taxonomy of API usage directives, we take that API misuses violate usage
directives from one of the following categories (in order of prevalence):

Parameter Directives, which mandate restrictions on parameters that are not enforced
by the type system, such as non-null requirements, string format requirements, number
range requirements, type requirements, or parameter-correlation requirements. In total,
22.2% of all analyzed API elements have such a directive.

Restrictions, which mandate actions to happen in a certain context, e.g., when a method
must only be called from the UI thread. In total, 6.6% of all analyzed API elements
have such a directive.

Protocol Directives, which mandate (a specific number of) calls to certain methods or
a specific method-call order. In total, 6.2% of all analyzed API elements have such a
directive.
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Table 2.1.: The Prevalence of API Misuse by Source of Software Defects.

Source Candidates Reviewed Misuse Crash

BugClassify 2,914 294 (10.1%) 24 (8.2%) 14 (58.3%)
Defects4J 357 357 (100.0%) 17 (4.8%) 15 (88.2%)
iBugs 390 390 (100.0%) 40 (10.3%) 35 (87.5%)
QACrashFix 24 24 (100.0%) 16 (66.7%) 16 (100.0%)

Developer Survey 18 18 (100.0%) 18 (100.0%) 12 (66.7%)

JCA Misuses 15,752 38 (2.4%) 31 (81.6%) 0 (0.0%)
JCA Fixes (SF) 130 130 (100.0%) 11 (8.5%) 2 (18.2%)
JCA Fixes (GH) 2,660 78 (2.9%) 3 (3.9%) 2 (66.7%)

Usage Directives 10 10 (100.0%) 10 (100.0%) 5 (50.0%)

Total 22,255 1,339 (6.0%) 170 (12.7%) 96 (56.5%)

Return-Value Directives, which define properties of return values that are not enforced
by the type system, e.g., that the value may be null or have a certain state. In total,
5.1% of all analyzed API elements have such a directive.

Exception Directives, which explain the exceptional behavior of a method that usages
need to deal with, such as a possible connection timeout when connecting to a server. In
total, 4.1% of all analyzed API elements have such a directive. Note that this category
includes exceptional behavior in case of invalid parameter values, which usually co-occurs
with parameter directives.

Synchronization Directives, which mandate the use of synchronization in usages. In
total, 3.9% of all analyzed API elements have such a directive. Note that this category
includes only directive that formulate requirements for thread-safe use and excludes
declarations of thread-safety.

Limitations, which explain what a method does not do, but that usages are expected to
take care of, e.g., that adding elements to a UI panel does not make them visible, until
the usage calls a dedicated update method. In total, 0.9% of all analyzed API elements
have such a directive.

Monperrus et al. report that, overall, 66.5% of all analyzed API elements have at
least one directive. Note, however, that this also includes further directives that do
not formulate usage constraints, such as Null-Allowed Directives, which inform that a
parameter may be null or Alternative Directives that inform about alternative ways to
achieve the same goal (with potentially different trade-offs). These other directives
appear on at least 24.8% of the analyzed API elements, which means that the number of
methods with directives that formulate usage constraints is somewhere between 41.7%
and 66.5%. In any case, the study shows that a significant fraction of API elements
comes with usage constraints and may, thus, potentially be misused.
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2.2. Misuses in Bug Reports

Dekel et al. [DH09] find that developers are often unaware of documented directives
and that they, therefore, miss to consider them, unless they are actively pointed at
the directives. Zhou et al. [ZGC+17] demonstrate that from a randomized sample
of 1,975 usage constraints mined in the java.awt and javax.swing libraries, 1,413
(71.5%) are incorrectly documented and from a second randomized sample of 2057 us-
age constraints mined in the java.lang, java.util, java.security, java(x).sql,
javax.management, and javax.xml libraries, 772 (37.5%) are incorrectly documented.
Overall, this means that more than half (51.2%) of all directives mined in the Java
Class Library are incorrect. Hence, even if developers would be aware of all docu-
mented directives, they might still often inadvertently misuse APIs.

2.2. Misuses in Bug Reports

Previous work shows that API misuses causing crashes or data loss are prevalent in
today’s software [MM13, LHX+16, MCJ17]. However, to the best of our knowledge, no
work empirically compares the prevalence of API misuses to that of other types of bugs.
This makes it hard to judge the impact of research that addresses API misuse.

To address this problem, we manually review the bugs in four existing bug datasets.
These datasets were originally constructed to evaluate approaches to problems such
as bug triaging [HJZ13], fault localization [DZ07, JJE14], and automated program re-
pair [GZW+15, JJE14]. They encompass bugs reported in various projects’ issue trackers
or fixed in their version-control history. Identifying the API misuses in these general bug
datasets allows us to assess the prevalence of API misuses among all bugs reported from
production environments. The first four rows of Table 2.1 summarize the results, which
we discuss subsequently.

BugClassify This dataset by Herzig et al. [HJZ13] consists of 7,401 tickets from the
issue trackers of five Open Source projects. They manually classified 2,914 of these
tickets as reporting bugs. We randomly selected 10% of those tickets for each of the five
projects, a total of 294 tickets, from which we identified 24 API misuses (8.2%). We found
that most tickets report logic errors, such as wrong calculations or missing handling of
certain cases. Other categories are mistakes in configuration files and multi-threading
issues, such as race conditions.

Defects4J This defect dataset by Just et al. [JJE14] consists of 357 source-code bugs
from six Open Source projects. Each defect is reported in an issue tracker, fixed in a
single commit, and had at least one accompanying test case that failed before and passed
after the fix. From all of these cases, we identified 17 API misuses (4.8%).

iBugs This dataset by Dallmeier and Zimmerman [DZ07] consists of 390 fixing commits
from three Open Source projects. They selected the commits through heuristics on the
commit messages. From all of these cases, we identified 40 API misuses (10.3%). Many
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of the other issues were unrelated to API usage and often even appeared in non-code
files, such as configuration or documentation.

QACrashFix This dataset by Gao et al. [GZW+15] consists of 24 source-code bugs from
16 Open Source projects. They selected the bugs by, first, mining the issue trackers of
the projects for crash reports related to the Android API and, second, reviewing the
resulting candidates manually. From all of these cases, we identified 16 API misuses
(66.7%). Interestingly, a very large part of these crash bugs are API misuses.

Overall, we find that only 9.1% of the bugs reported on the respective projects are
due to API misuses. However, many of those misuses cause crashes (82.5%), which
stresses the importance of mitigating this kind of bug. Moreover, we found that many
of the fixing commits resolve multiple misuses, because often the same mistake occurs
also in other usages of the same API. Such consistency in the API misuse suggests that
the original authors were generally unaware of the respective usage contraints, rather
than momentarily inattentive, and that they would make the same mistakes again in the
future.

2.3. Misuses at Development Time

Previous work suggests that developers struggle with the correct usage of APIs during
development [SHA15, NKMB16]. Since many API misuses lead to obviously spurious
behavior, such as program crashes (see Section 2.2), we hypothesize that developers
might introduce and fix many misuses in their day-to-day work. We might not ever
encounter such misuses in code repositories or released software products, which is why
we call them transient misuses.

To identify examples of transient misuses, we conducted a survey, which we promoted
via colleagues, friends, and Twitter, to reach developers. The middle segment of
Table 2.1 summarizes the results. Within nine days, we collected 18 responses naming
as many distinct API misuses. We provide the questionnaire and all responses on an
artifact page.1 While the size of this survey is limited, the responses still allow for some
interesting observations.

First, we find examples of only three of these 18 reported misuses in the bug reports
reviewed in Section 2.2. This suggests that transient misuses are indeed different from
the misuses we encounter in code repositories or released software products.

Second, many respondents point out multiple possible fixes for a single misuse. For
example, to ensure a resource gets closed, one may explicitly invoke close() on the
resource, or pass the resource to IOUtils.closeQuietly() from Apache Commons,
or use the try-with-resources statement to have Java automatically close the resource.
This suggests that there are multiple correct alternatives for using an API to implement
a specific task.

1http://www.st.informatik.tu-darmstadt.de/artifacts/api-misuse-survey/
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2.4. Misuses Causing Vulnerabilities

While the survey results suggest that many API misuses are resolved early on in
the development process, fixing them may still distract developers from their original
tasks and slow down development. To get an impression of the potential impact, we
conduct a small experiment: one of the survey respondets describes the problem of
getting a ConcurrentModificationException when using an Iterator after modifying
the underlying collection. To assess how frequently developers face this problem, we
search StackOverflow for the keyword ConcurrentModificationException. This
search returns 2854 threads,2 of which we manually review the top-151 threads, according
to StackOverflow’s relevance ranking.3 We find that 88 of these threads (58.3%) ask
how to fix some code that contains exactly the misuse in question and 5 more threads
(3.3%) ask about best practices for iterating collections while modifying them. Another
39 threads (25.8%) ask about related issues in multi-threaded environments and six
threads (4.0%) about respective exceptions being thrown by 3rd-party libraries. For the
remaining 13 threads (8.6%) we cannot determine the ultimate cause of the problem
from the discussions. These results suggest that, even for a widely known and well-
documented API, developers frequently have to go as far as asking for help online—a
rather slow problem-resolution strategy. Therefore, we argue that it is important to help
developers find and fix such misuses or to avoid them in the first place.

2.4. Misuses Causing Vulnerabilities

A study of 269 Common Vulnerabilities & Exposures (CVE) by Lazar et al. [LCWZ14]
reports that 83% of all bugs are misuses of cryptographic libraries by individual ap-
plications. Such misuses lead to plaintext disclosure [EBFK13, LCWZ14] and inse-
cure network communication [FHM+12, GIJ+12, LCWZ14], or facilitate brute-force at-
tacks [LCWZ14]. Egele et al. [EBFK13] report that 88% (10,327 of 11,748) Android
apps on the Google Play marketplace violate at least one of six basic rules for safe usage
of the Java Cryptographic Architecture (JCA) APIs (see Appendix A). A survey by
Nadi et al. [NKMB16] reveals that developers indeed lack necessary knowledge to use
the JCA APIs and that they would welcome assistance in doing so correctly. This again
underlines the criticality of software bugs related to API misuse.

To find examples of such misuse, we mine JCA usages as follows:

1. We query the repository-mining infrastructure BOA [DNRN13] (GitHub Septem-
ber, 2015 full snapshot) for projects that use the JCA encryption API Cipher, i.e.,
whose latest source code contains imports of either javax.crypto.Cipher directly
or the entire javax.crypto package. The respective query script is provided as
Appendix B.

2. We generate GitHub links to the source files containing the respective usages.

2As of February 1, 2016.
3Artifact Page: StackOverflow Study on ConcurrentModificationException

(http://www.st.informatik.tu-darmstadt.de/artifacts/stackoverflow-cme/)
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3. We manually verify the correctness of the respective candidate usages with respect
to the specification provided by Krüger et al. [KSA+18].

The third-last row in Table 2.1 summarizes the results of this process. BOA identi-
fies 15,752 Cipher usages in 1,573 GitHub projects. This corresponds to 0.02% of the
7,830,023 projects in the entire BOA dataset, which suggests that only a comparably
small number of applications uses the JCA at all. Nevertheless, reviewing all candidate
projects is still practically infeasible. Therefore, we randomly sample projects and review
the respective usages, until we identify at least 30 misuses. In total, we reviewed 38 us-
ages in 26 projects and identified 31 misuses (81.6%) in 19 (73.1%) of these projects. We
note that the misuse ratio of 81.6% is close to the ratio of 88% that Egele et al. [EBFK13]
report for Android apps. The most common misuse (fourteen misuses) is to specify an
insecure algorithm for encryption; the second-most common (ten misuses) is to rely on
a potentially insecure default configuration of the crypto provider. This suggests that
projects that do use the Cipher API indeed commonly misuse it.

As opposed to many of the misuses we identified in Section 2.2, the JCA misuses we
identified do not cause obviously spurious behavior, such as program crashes. In fact,
specifying an insecure algorithm for encryption works perfectly fine. To get an idea as
to whether and how such misuses get fixed, we mine bug-fixing changes in JCA usages
as follows:

1. We query the repository-mining infrastructure BOA [DNRN13] (GitHub Septem-
ber, 2015 full snapshot) for projects that use the JCA APIs, i.e., whose latest
source code contains imports from the javax.crypto package.

2. We identify potentially bug-fixing changes by matching commit messages against
keywords that indicate bug fixes, using the approach from Zimmerman et al. [ZPZ07].

3. For each fixing change, we extract the actual source-code change [NNW+10] and
analyzed the changes to the abstract syntax tree [NNP+12] to find changes to the
usages of a JCA type.

4. We manually verify whether the respective candidate usages violate the specifica-
tion provided by Krüger et al. [KSA+18] and whether the change resolves this.

The last two rows in Table 2.1 summarize the results of this process. We extracted
130 candidates from SourceForge, from which we identified 11 misuses (8.5%), and
2660 candidates from GitHub, from which we reviewed all 78 candidates from a random
sample of 15 projects and identified 3 misuses (3.9%). Interestingly, only one change fixes
an unsafe algorithm configuration. All other changes fix misuses that lead to spurious
behavior, the most common (10 cases) being crashes due to invalid input, such as an
incompatible encoding for the data to encrypt or a cryptographic key that does not
match the encryption algorithm. This suggests that developers are less likely to discover
and fix inconspicuous misuses, which underlines the need for tools that identify such
problems.
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2.5. Summary

2.5. Summary

We reviewed 1,339 bugs and bug candidates from nine sources. We identify API mis-
uses in 23 out of 30 real-world projects (76.7%) from the bug datasets, which demon-
strates that the problem is indeed prevalent. While only a relatively small fraction
of all bugs that appear in production are misuses (9.1%), many of these cause ap-
plication crashes (82.5%). Furthermore, developers seem to struggle with API mis-
uses that cause obvious misbehavior in their daily work, which may considerably slow
down development, although respective misuses never appear in production. And fi-
nally, we identify vulnerable JCA usages in 19 out of 26 projects (73.1%), which con-
firms previous findings regarding the prevalence of API misuses causing vulnerabili-
ties [FHM+12, GIJ+12, EBFK13, LCWZ14]. Yet, we find fixes of such vulnerabilities
in only 8 out of 65 projects (12.3%). This suggests that vulnerabilities are less likely to
get fixed than other misuses, possibly because they cause no obvious misbehavior.

In the studies on API-usage directives [DH09, METM12], we identify 10 additional
examples of API misuse, of which we did not find concrete instances via any of the other
sources. This suggests that the problem of potential API misuse extends to a large
number of APIs.

Overall, we identified 170 API misuses in 50 projects, the survey responses, and two
studies on API-usage directives. This suggest that providing developers with assistance
to prevent, identify, and resolve API misuses is very important to increase the overall
quality, stability, and security of software products.

2.6. Limitations

In our work, we focus on misuse of Java APIs. Our findings may not generalize to API
misuse in other programming languages.

The sample of API misuses we identified may not be representative for Java API
misuses in the wild. We manually reviewed more than 1,200 bugs from established
general bug datasets, to identify examples of API misuses (Section 2.2). This leads
us to believe that our sample covers a broad variety of misuses as they manifest in
software projects. Our developer survey provides evidence that there are other misuses
that may not ever appear in code repositories, but that developer nonetheless struggle
with. Future work should investigate whether there are distinctive properties of these
two categories of misuses and how this impacts research on API misuse.

The review of bug datasets (Section 2.2) and survey responses (Section 2.3) was
initially done by the author of this thesis alone; the review of the JCA usages by
one of his colleagues, who previously did research on the usability of cryptographic
APIs [NKMB16]. In both cases, only a single person reviewed the candidates. It is pos-
sible that we missed examples of misuse in this process and that the actual prevalence
of API misuses is higher than we reported.

It is also possible that we identified examples that are not actually API misuses. We
published all examples in May 2016, to allow others to review and use them for their
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work, to mitigate this threat. Since the original publication, the author of this thesis
created a dataset from the examples and used it to benchmark API-misuse detectors (see
Part II of this thesis). In this process, each misuse example was revisited and discussed
repeatedly between him and at least two of his colleagues. A single false positive was
discovered along the way and excluded from the dataset. The data presented in this
part of this thesis was updated to reflect this decision.

The size of the developer survey we conducted (Section 2.3) is small. The responses
are unlikely to present a representative picture of the API misuses that developers face
in their day-to-day work. We conducted this preliminary survey to get a first impression
of possible differences between API misuses that occur during development time and
misuses that cause bug reports. Future work should conduct more comprehensive studies
to investigate the impact and nature of API misuse at development time.

2.7. Related Work

Lazar et al. [LCWZ14] study 269 Common Vulnerabilities & Exposures (CVE) and find
that 83% of all bugs are misuses of cryptographic libraries by individual applications.
Their work motivated us to study misuses of the JCA APIs as an example of API
misuses with severe consequences other than application crashes. We find that usages of
the respective APIs are relatively rare, at least on GitHub. However, from the usages
we reviewed, we indeed classified 81.2% as misuses.

Zhong et al. [ZS15] studied over 9,000 bug fixes from six Open Source Java projects
to empirically validate assumptions underlying program repair techniques. They report
that developers make API repair actions in half of the source files involved in fixes, i.e.,
they add, modify, or delete a statement that contains an API element, e.g., add a check
on the result of an API call. They define API as any code element declared outside the
target project itself. However, they do not distinguish whether the respective bugs are
violations of API usage constraints or different kinds of problems. We find that API
misuses indeed only amount to about 10% of all bugs. Zhong et al. also find that fixes
more often add statements than remove them, suggesting that missing-element violations
are more prevalent than redundant-element violations. Our findings confirm this (see
Table 3.1).

Dekel et al. [DH09], Sushine et al. [SHA15], and Nadi et al. [NKMB16] provide evidence
that developers struggle with API misuse already during development time. Motivated
by their observations, we conducted our developer survey to identify concrete examples of
APIs and usage constraints that developers struggle with. We find that these problems
are mostly distinct from those we identified in code repositories and that developers
apparently spent much time resolving respective issues, resorting to ask for help online
even for misuses of well-documented APIs.
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Past research on API misuses shows that there are different kinds of misuses: For ex-
ample, Monperrus et al. [MM13] report that issues related to missing method calls
are prevalent in bug trackers, forums, newsgroups, commit messages, and source-code
comments. Thummalapenta et al. [TX09b] specifically target the detection of missing
preconditions of method calls, and Wasylkowski et al. [WZL07] investigate problems
where methods are called in the wrong order. However, to the best of our knowledge,
no work systematically defined the problem space of API misuse. This prevents us from
assessing which aspects of API misuse have been addressed or may have been neglected
by existing approaches, and to compare these approaches to one another.

To improve on this situation, in this chapter, we introduce the API-Misuse Clas-
sification (MuC), a taxonomy of API misuses and framework for the evaluation and
comparison of the capabilities of API-misuse detectors. In Chapter 4, we use MuC to
qualitatively compare the capabilities of existing API-misuse detectors. In Chapter 7,
we use MuC to define our expectations on the detectors’ performance in an empirical
evaluation.

3.1. Motivation

The IEEE has a standard for classifying defects [IEE10], which served as the basis for
IBM’s Orthogonal Defect Classification (ODC) [CBC+92]. The ODC uses the
defect type as one of the aspects from which to classify the defect. The defect type is
composed from a conceptual element of the program, such as a function, check, assign-
ment, documentation, or algorithm, and a violation type, i.e., either missing or incorrect.
El Emam et al. [EW98] presented an adaptation of the ODC to a particular project
setting through removal of some defect types and addition of others. More recently,
Beller et al. [BBMZ16] presented the General Defect Classification (GCD), a re-
mote ODC-descendant, tailored to compare the capabilities of automated static-analysis
tools. Either classification captures the entire domain of all software defects. To compare
the capabilities of API-misuse detectors, we need a more fine-grained differentiation of
a subset of the categories they encompass.

Past work presented empirical studies and taxonomies of API-usage directives [DH09,
METM12]. Many of these directives can be thought of as usage constraints in our
terminology and their violations, consequently, as misuses. Other directives, however,
do not formulate constraints. Examples are directives that explicitly allow null to be
passed as a parameter and directives that inform about alternative ways to achieve
a behavior (possibly with different trade-offs). Therefore, we cannot directly convert a
taxonomy of usage directives into a taxonomy of misuses. Instead, we create a taxonomy
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of API misuses based on the examples of API misuses we previously collected (see
Chapter 2). We consider the usage directives that can be viewed as usage constraint
in this process, through the hand-crafted examples of misuses that we derives from the
examples presented in the studies.

3.2. The Classification

We developed MuC using a variation of Grounded Theory [GS67]: Following our notion
of API misuses as API usages with one or more violations of usage constraints, the
first author of this work went through all the misuse examples identified in Chapter 2
and came up with labels for the characteristics of the respective violations, until each
misuse was tagged with at least one label. Subsequently, the author and three of his
colleagues iteratively revisited the labeled misuses to unify semantically equivalent labels
and group related labels, until we had a consistent taxonomy. In the end, we had two
dimensions whose intersection describes all violations in the examples: the type of the
involved API-usage element and the type of the violation.

Violation A violation is a pair of a violation type and an API-usage element.

API-Usage Element An API-usage element is a program element that appears in API
usages. The following elements are involved in the misuses in the misuse examples we
identified in Chapter 2: method calls, conditions, iterations, and exception handling.
Note that we consider primitive operators, such as arithmetic operators, as methods.
For conditions, we further distinguish null checks, synchronization conditions, context
conditions, and other value or state conditions, because of their distinct properties.

Violation Type The violation type describes how a usage violates a given usage con-
straint with respect to a given usage element. Among the misuse examples we identified
in Chapter 2, we find two violation types: missing and redundant. Violations of the
missing type come from constraints that mandate the presence of a usage element. They
generally cause program errors. An example of such a violation is a “missing method
call.” Violations of the redundant type come from constraints that mandate the absence
of a usage element or declare the presence of a usage element unnecessary. Note that
in either case the repetition of an element may have undesired effects, such as errors
or decreased performance. An example of such a redundant violation is a “redundant
method call.”

Table 3.1 shows a summary of MuC. The numbers in the cells denote how many mis-
uses with a respective violation among the misuse examples we identified in Chapter 2.
Note that since a single misuse may have multiple violations, the individual cells in the
table sum up to more than the 170 misuses we collected. The table shows that missing
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3.2. The Classification

Table 3.1.: The Misuse Classification (MuC), with the Number of Misuses with a Par-
ticular Violation among the Examples Identified in Chapter 2, Ordered by
Prevalence.

Violation Type

Missing Redundant
A

P
I-

U
sa

ge
E

le
m

en
t Condition 109 7

Value or State 56 1
null Check 51 4
Synchronization 1 1
Context 1 1

Method Call 45 17
Exception Handling 16 1
Iteration 1 2

value or state conditions and missing null checks are the most prevalent violations, fol-
lowed by missing method calls. Redundant calls and missing exception handling are less
frequent, but still prevalent, while we have only few examples for the other violations.

We now discuss the different violation categories shown in Table 3.1, grouped by the
API-usage element involved.

3.2.1. Method Calls

Method calls are the most prominent elements of API usages, as they are the primary
means of communication between client code and the API.

One violation category is missing method calls, which occur if a usage does not call a
certain method that is mandated by the API usage constraints. For example, if a usage
does not call validate() on a JFrame after adding elements to it, which is required for
the change to become visible.

The other case is redundant method calls, which occur if a usage calls a certain method
that is restricted by the API usage constraints. For example, if a usage calls remove() on
a list that is currently being iterated over, which causes an exception in the subsequent
iteration. Or, as another example, if a usage calls finalize() on an Object, which
should never be done from any user-defined code.

3.2.2. Conditions

Client code often needs to ensure conditions for valid communication to an API, in order
to adhere to the API’s usage constraints. There are often alternative ways to ensure
such conditions. For example, to ensure that a collection is not empty one may check
isEmpty(), check its size(), or add an element to it. Note that checks, in particular,
are also a means for the client code to vary usages depending on program inputs.
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One violation category is missing conditions, which occur if a usage does not ensure
certain conditions that are mandated by the API usage constraints. One case is missing
null checks, e.g., if a usage fails to ensure that a receiver or a parameter of a call is
not null. Another case is missing value or state conditions, e.g., if a usage fails to
ensure that a Map contains a certain key before using the key to access the Map. In
multi-threaded environments, missing synchronization conditions may occur, e.g., if a
usage does not obtain a lock before updating a HashMap that is accessed from multiple
threads [METM12]. Finally, missing context conditions may also occur, e.g., if a usage
fails to ensure that GUI components in Swing are updated on the Event Dispatching
Thread (EDT) [DH09].

The other case is redundant conditions, where a condition prevents a necessary part
of a usage, e.g., a method call, from being executed along certain execution paths or is
simply redundant. One case is redundant null checks, e.g., if the usage checks nullness
only after a method has been invoked on the respective object. Another case is redun-
dant value or state conditions, e.g., if the usage checks isEmpty on a collection that’s
guaranteed to contain an element. In multi-threaded environments, redundant synchro-
nization conditions may occur, e.g., if the usage requests a lock that it already holds,
which may cause a deadlock. Finally, redundant context conditions may also occur, e.g.,
if a JUnit assertion is executed on another thread, where its failing cannot be captured
by the JUnit framework.

3.2.3. Iteration

Iteration is another means of interacting with APIs, used, in particular, with collections
and IO streams. It takes the form of loops and recursive methods. Note that respective
usage constraints are about (not) repeating (part of) a usage, rather than about the
condition that controls the execution.

One violation category is missing iterations, which occur if a usage does not repeatedly
check a condition that the API usage constraints mandate must be checked again after
executing part of the usage. For example, the Java documentation states that calls
to Object.wait() must always happen in a loop. A usage calls wait() to pause the
current thread until it receives an interrupt. It does this to wait until a certain condition
holds, e.g., until a resource becomes available. Since interrupts may occur any time, the
resumed usage must check the condition and, if it does not hold, call wait() again. Note
that this may happen an arbitrary number of times before the condition becomes true.
Thus, a usage that checks the condition with an if still violated the usage constraint.

The other case is redundant iterations, which occur if part of a usage is reiterated
that the API usage constraints mandate may be executed not more than once or that is
imply redundant. For example, a Cipher instance might be reused in a loop to encrypt
a collection of values, but its initialization through calling init() must happen exactly
once, i.e., before the loop. Note that, if init() is called inside the loop, there is exactly
one call to the method—as required by the usage constraints—, but its inclusion in an
iteration causes a violation.
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3.2.4. Exception Handling

Exceptions are a way for APIs to communicate errors to client code. The handling of
different errors often depends on the specific API.

One violation category is missing exception handling, which occurs if a usage does not
take actions to recover from a possible error, as mandated by the API usage constraints.
For example, when initializing a Cipher with an externally provided cryptographic key,
one should handle InvalidKeyException. Another example is resources that need to
be closed after use, also in case of an exception. Such guarantees are often implemented
by a finally block, but also using the try-with-resources construct or even respective
handling in multiple catch blocks.

The other case is redundant exception handling, which occurs if a usage intercepts
exceptions that should not be caught or handled explicitly. For example, catching
Throwable when executing a command in an application might suppress a Cancellation-
Exception, preventing the user from cancelling the command.

3.3. Limitations

We derive MuC from the misuse examples identified in Chapter 2, i.e., from 147 API
misuses identified in 50 real-world projects and 17 further misuses identified through a
developer survey. These examples may not be representative for API misuses in gen-
eral, hence, MuC may miss some violation categories. However, the examples were
identified through a review of over 1,200 reports from state-of-the-art bug datasets as
well as developer input and we find that a relatively small number of criteria suffices to
characterize all these misuses. We see this as an indicator that we covered a large frac-
tion of the different kinds of API misuses. Meanwhile, we also classified the capabilities
of 18 existing misuse detectors according to MuC (see Chapter 4) and found that all
these detectors’ capabilities are covered by MuC. This makes it unlikely that we miss a
prevalent violation category. The classification enables us, for the first time, to gather
empirical data about API misuses.
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Figure 4.1 depicts the solution space for the detection of API-misuses. The detection
may be approached through static analyses of source code or binaries and through dy-
namic analyses, i.e., runtime monitoring or analysis of runtime data, such as traces or
logs. In either case, the detection requires either specifications of correct API usage to
find violations of or specifications of misuses to find instances of. Such specification may
be crafted manually by experts or inferred automatically by algorithms. Automatic spec-
ification inference (or mining) may, again, be approached both statically, e.g., based on
code samples or documentation, and dynamically, e.g., based on traces or logs. Statically
inferred specifications are often referred to as patterns.

Since manually crafting and maintaining specifications is costly, in this work, we focus
on automated detectors. We call such tools API-misuse detectors. In the literature,
we find static misuse detectors that statically mine specifications and detect misuse
through static analysis, e.g., [WZL07, NNP+09b, MM13]; dynamic misuse detectors
that dynamically mine specifications and detect misuses through dynamic analysis, e.g.,
[PG12, LZL+14]; and hybrid misuse detectors that, for example, combine dynamic spec-
ification mining with static detection [PJAG12].

To advance the state of the art of API-misuse detection, we need to understand the
capabilities and short-comings of existing misuse detectors. Therefore, we conduct a
systematic literature review to identify existing API-misuse detectors and assess their
underlying approach, their conceptual capabilities with respect to MuC, and the evalu-
ation setting they were tested in (Section 4.2). Then we compare the different detectors
and the respective evaluations to establish the big picture of the state of the art (Sec-
tion 4.3).

4.1. Methodology

We performed a systematic literature survey in two rounds: The first round was con-
ducted in early 2016 and started from a survey of automated API-property inference
techniques by Robillard et al. [RBK+13] and the 2013 to 2015 proceedings of the ICSE,
FSE, and ASE conferences (and their respective colocated events). The second round
was conducted in late 2017 and started from the 2016 and 2017 proceedings of the same
conferences. In both rounds, the author of this thesis proceeded as follows:

1. He filtered the proceedings for publications whose title or abstract contain one of
the keywords API, usage, error, mine, mining, specification, verification,
or bug.
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Figure 4.1.: Solution Space for the Detection of API Misuses.

2. He manually reviewed the title and abstract of filtered publications to identify those
about either API-usage specifications, specification mining, program verification,
or bug detection.

3. He checked any such publication for approaches to API-misuse detection. The
first round included only approaches based on static specification inference and
verification. The second round included also approaches based on dynamic analyses
or manual specifications or both.

4. If a publication presents such an approach and that approach targets Java APIs,
he added all references to other publications that supposedly present a misuse
detector to the list of publications to check.

We present the misuse detectors identified in this survey process chronologically by
their publication date. We mark approaches identified in the second round of the survey
with ∗, because subsequent parts of this thesis base on the results of the first round only.

We use MuC for a qualitative comparison of detectors, i.e., we assess the conceptual
capabilities of each detector with respect to MuC to obtain a conceptual classification of
the existing detectors. We use the published description and evaluation results of each
detector to identify which of MuC categories they can, conceptually, detect. To reduce
subjectivity, we confirmed our capability assessment and the detector descriptions with
the respective authors, except for PR-Miner and Colibri/ML, whose authors did not
respond.1 We also describe the strategies used to evaluate each detector and summarize
those in Table 4.2.

4.2. API-Misuse Detectors

We subsequently present the results of our survey. Table 4.1 summarizes the capabilities
of each detector with respect to MuC. Table 4.2 summarizes the empirical evaluation

1 Note that we did this only for the detectors identified in the first round of our survey in 2016.
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Table 4.1.: Capabilities of API-Misuse Detectors.  denotes the capability to detect
a violation. G# denotes the capability to detect a violation under special
conditions. # denotes the inability to detect a violation.
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PR-Miner [LZ05] C  # # # # # # # # # #
Chronicler [RGJ07a] C  # # # # # # # # # #
Colibri/ML [Lin07] C  # # # # # # # # # #
Jadet [WZL07] Java  # # # # # # # # G# #
RGJ07 [RGJ07b] C G# #   # # # # # # #
LKL08 [LKL08] Java  # # # # # # # # # #
Alattin [TX09a] Java G# #  G# # # # # # # #
AX09 [AX09] C G# # G# G# # # #  # # #
CAR-Miner [TX09b] C++/Java G# # # # # # #  # # #
GROUMiner [NNP+09b] Java  # G# G# # # # # # G# #
OCD [GS10] Java  # # # # # # # # G# #
DMMC [MBM10] Java  # # # # # # # # # #
SpecCheck [NK11] Java  # # # # # # # # # #
RRFinder [WLW+11] Java  # # # # # # # # # #
Tikanga [WZ11] Java  # # # # # # # # G# #
PJAG12 [PJAG12] Java   # G# # # # # # # #
PG12 [PG12] Java G# G# # G# # # # # # # #
DroidAssist [NPVN15] Java   # # # # # # # # #
Salento [MCJ17] Java   # # # # # # # # #

methodology and results for each of the detectors in our survey. The first column names
the detector and the respective publication presenting the evaluation. The second column
shows the number of projects the detector was applied to in the evaluation. The third
column shows which sample of the detector’s findings the authors reviewed, to determine
the detector’s precision. The last column shows the detector’s precision. If the precision
was reported per project, we report a range. We discuss the individual results for each
of the detectors below.

4.2.1. PR-Miner

PR-Miner [LZ05] is a misuse detector for C. It encodes usages as the set of all function
names called within the same function and then employs frequent-itemset mining to find
patterns with a minimum support of 15 usages.

Violations here are strict subsets of a pattern that occur at least ten times less fre-
quently than the pattern. To prune false positives, PR-Miner applies inter-procedural
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Table 4.2.: Evaluation Summary of Surveyed API-Misuse Detectors with the Number of
Target Projects (#TP) and the Number of Reviewed Findings (#RF).

Detector Eval. Setting #TP #RF Precision (Range)

PR-Miner [LZ05] per-project 3 Top 60 18.1% (10-27%)
Chronicler [RGJ07a] per-project 5 example-based
Colibri/ML [Lin07] per-project 5 example-based
Jadet [WZL07] per-project 5 Top 10/project 6.5% (0-13%)
Jadet [GWZ10] multi-project 20 Top 25% (50) 8.0% (0-100%)
RGJ07 [RGJ07b] per-project 1 example-based
LKL08 [LKL08] per-project 1 example-based
Alattin [TX09a] cross-project 6 Top 10/project 29.5% (13-100%)
AX09 [AX09] per-project 3 All (292) 90.4% (50-94%)
CAR-Miner [TX09b] cross-project 5 Top 10/project 60.1% (41-82%)
GROUMiner [NNP+09b] per-project 9 Top 10/project 5.4% (0-8%)
OCD [GS10] per-project 10 4 of 7 25.0%
OCD [GS10] per-project 2 All (15) 55.0% (40-70%)
DMMC [MBM10] per-project 1 All (19) 73.7%
DMMC [MM13] per-project 3 Top 30 56.7%
SpecCheck [NK11] per-project 7 All (24) 54.2% (0-100%)
RRFinder [WLW+11] cross-project n/s example-based
Tikanga [WZ11] per-project 6 Top 25% (121) 9.9% (0-33%)
PJAG12 [PJAG12] per-project 12 All (81) 32.1% (0-100%)
PG12 [PG12] per-project 10 All (54) 100% (100%)
DroidAssist [NPVN15] not evaluated
Salento [MCJ17] cross-project 250 Top 8% (48) 75%

analysis, i.e., for each occurrence of a violation, it checks whether the missing calls occur
within a transitively called method. This analysis follows the call path for at most three
levels. The reported violations are ranked by the respective pattern’s support.

PR-Miner detects missing method calls.

The evaluation by the authors of PR-Miner applied the detector to three target
projects individually, thereby finding violations of project-specific patterns. The authors
reviewed the top-60 violations reported across all projects and found 18.1% true positives
(26.7%, 10.0%, and 14.3% on the individual projects).

4.2.2. Chronicler

Chronicler [RGJ07a] is a misuse detector for C. It mines frequent call-precedence
relations from an inter-procedural control-flow graph. A relation is considered frequent,
if it holds on at least 80% of all execution paths. Paths where such relations do not hold
are reported as violations.

Chronicler detects missing method calls. Since loops are unrolled exactly once, it
cannot detect missing iteration.
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The evaluation by the authors of Chronicler applied the detector to five projects
individually, thereby finding violations of project-specific patterns. The authors compare
the identified protocols with the documented protocols for one API and discuss a few
examples of actual bugs found by their tool, but report no statistics on the quality of
the detector’s findings.

4.2.3. Colibri/ML

Colibri/ML [Lin07] is another misuse detector for C. It reimplements PR-Miner us-
ing Formal Concept Analysis [GW97] to strengthen the theoretical foundation of the
approach. Consequently, its capabilities are the same as PR-Miner’s.

The evaluation by the authors of Colibri/ML applied the detector to five target
projects individually, thereby finding violations of project-specific patterns. The authors
present some detected violations in the paper, but report no statistics on the quality of
the detector’s findings.

4.2.4. Jadet

Jadet [WZL07] is a misuse detector for Java. It uses Colibri/ML [Lin07], but instead
of only method names, it encodes method-call order and call receivers in usages. There-
fore, it first builds a directed graph whose nodes represent method calls on a given object
and whose edges represent control flows. From this graph, it then derives a pair of calls
for each call-order relationship, e.g., m() ≺ n(). Each usage is represented by the set
of these pairs. These sets of call pairs form the input to the mining, which identifies
patterns, i.e., sets of pairs, with a minimum support of 20.

A violation may miss at most two properties of the violated pattern and needs to
occur at least ten times less frequently than the pattern. Detected violations are ranked
by u × s/v, where s is the violated pattern’s support, v is the number of violations of
the pattern, and u is a uniqueness factor of the pattern. To compute u Jadet counts
for every API in the pattern the number of violations involving that API and takes the
inverse of the largest such number. Intuitively, if an API is involved in more violations,
any particular violation involving it is less likely to be problematic.

The encoding of call-order relations allows Jadet to detect missing calls, even if the
respective call appears at a different place in the usage. It may detect missing loops as
a missing call-order relation from a method call in the loop header to itself. However, it
cannot detect violations of patterns that consist of only two calls since such a pattern
would be encoded as a set of a single pair of method calls. The only strict subset of such
a pattern is the empty set, which is by definition not a violation.

The evaluation by the authors of Jadet applied the detector to five target projects,
thereby finding violations of project-specific patterns. The authors reviewed the top-10
violations reported per project and found 6.5% true positives (0%, 0%, 7.7%, 10.5%, and
13.3% on the individual projects). Other findings were classified as code smells (6.5%)
or hints2 (35.0%).

2Hints point at code that could be improved with respect to readability or maintainability [WZL07].
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A later study [GWZ10] applied Jadet to 6,097 projects at once (multi-project setting),
using a minimum pattern support of 200. The authors considered the findings on a
random sample of 20 of these target projects; a total of 136 findings. The authors
reviewed the top-25% findings per project, a total of 50 findings, and found 8% true
positives. Other findings were classified as code smells (14.0%).

4.2.5. RGJ07

RGJ07 [RGJ07b] is a misuse detector for C. It encodes usages as sets of properties for
each variable v. Properties are comparisons to literals, e.g., (6=, null), if v was checked to
be not null, argument positions in function calls, e.g., (arg(2), f) if v was passed as the
second argument to a function f, and assignments, e.g., (:=, res(f)) if the v was assigned
the result of a call to f. For each call, RGJ07 creates a group of the property sets of
the call’s arguments. To all groups for a particular function, it applies sequence mining
to learn common sequences of control-flow properties and frequent-itemset mining to
identify all common sets of all other property types. In both cases, the mining uses a
confidence threshold of 70%.

While mining patterns, RGJ07 also identifies violations of the common property se-
quences and sets (patterns), i.e., usages that cause the confidence for a particular pattern
to be less than 100%.
RGJ07 is designed to detect missing conditions. From the properties it encodes, it can

detect missing null checks and missing value/state conditions. Since patterns contain
preceding calls on arguments, it may also detect missing calls, if the respective call shares
an argument with another call in the pattern.

The evaluation by the authors of RGJ07 applied the detector to a single project,
thereby finding violations of project-specific patterns. The authors discuss several ex-
amples of actual bugs their approach detects, but report no statistics on the quality of
the detector’s findings.

4.2.6. LKL08
∗

LKL08 [LKL08] is a misuse detector for Java. It mines specifications of the form
consequences ↪→ premises from method-call traces, where both the premises and con-
sequences are sets of method calls. It requires that the respective traces contain only calls
to methods of the relevant API(s) and searches for specifications with a minimum support
of 15 and a confidence of 90% across all traces. The authors then manually transform the
mined specifications into LTL formulae and use the PRISM model checker [HKNP06]
to find respective violations.
LKL08 detects missing method calls and wrong call order.
The evaluation by the authors of LKL08 applied the detector to a single projects

containing four known bugs. An existing test harness was used to generate traces. The
authors reviewed the violations reported by LKL08 and found that the detector identifies
three of the four known bugs.

∗
We identified this approach in the second round of our survey in 2017.
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4.2.7. Alattin

Alattin [TX09a] is a misuse detector for Java, specialized in alternative patterns for
condition checks. For each target method m, it queries the code-search engine Google
Code Search3 to find example usages. From each example, it extracts a set of rules
about pre- and post-condition checks on the receiver, the arguments, and the return value
of m, e.g., “boolean check on return of Iterator.hasNext before Iterator.next” or
“const check on return of ArrayList.size before Iterator.next.” It then applies
frequent-itemset mining on the sets of these rules to obtain patterns with a minimum
support of 40%. For each such pattern, it extracts the rule sets that do not adhere to
the pattern and repeats mining on these, to obtain infrequent patterns with a minimum
support of 20%. Finally, it combines all frequent and infrequent patterns for m by
disjunction.

An analyzed method has a violation, if the set of rules that hold in it is not a superset
of any of the alternative patterns. Violations are ranked by the support of the respective
pattern.

Alattin detects missing null-checks and missing value/state conditions that are
ensured by checks and that do not involve literals. It may also detect missing method-
calls that occur in checks.

The evaluation by the authors of Alattin applied the detector to six projects. Since
it queries a code-search engine for usage examples, it detects violations of cross-project
patterns. The authors manually reviewed all violations of the top-10 patterns per project,
a total of 532 findings, and confirmed that 29.5% identify missing condition checks
(12.5%, 26.2%, 28.1%, 32.7%, 52.6%, and 100% for the individual projects). Considering
frequent alternative patterns reduced false positives by 15.2% on average, which increases
precision to 33.3%. Considering both frequent and infrequent alternatives even reduced
false positives by 28.1% on average, leading to a precision of 37.8%, but introduced 1.5%
additional false negatives, because misuses that occur multiple times are mistaken for
infrequent patterns.

4.2.8. AX09

AX09 [AX09] is a misuse detector for C, specialized in detecting wrong error handling,
realized through returning (and checking for) error codes. To this end, it distinguishes
normal paths, i.e., execution paths from the beginning of the main function to its end,
from error paths, i.e., paths from the beginning of the main function to an exit or return
statement in an error-handling block. It uses push-down model checking to generate
such paths as sequences of method calls and applies frequent-subsequence mining to find
patterns with a minimum support of 80% (but at least 5 usages).

AX09 uses push-down model checking also to verify adherence to patterns and to
identify respective violations. It then filters false positives by tracking variable values
and excluding error cases that cannot occur, for example, if a usage does not close a

3 https://en.wikipedia.org/wiki/Google Code Search (checked on Dec 18, 2017)
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file along the error path that is taken when the file could not be opened, i.e., when the
respective file handle is null.

AX09 detects missing error-handling as well as missing method calls among error-
handling functions. Since it identifies error-handling blocks through a predefined set of
checks, it also detects missing null-checks and missing value/state conditions in the case
of missing error-handling blocks.

The evaluation by the authors of AX09 applied the detector to three projects indi-
vidually, thereby finding violations of project-specific patterns. The authors manually
reviewed all 292 findings and confirmed 90.4% true positives (50.0%, 90.3%, and 93.5%
on the individual projects).

4.2.9. CAR-Miner

CAR-Miner [TX09b] is a misuse detector for C++ and Java, specialized in detecting
wrong error handling. For each analyzed method m in a given code corpus, it queries
the code-search engine Google Code Search4 to find example usages. From the
examples, it builds an Exception Flow Graph (EFG), i.e., a control-flow graph with
additional edges for exceptional flow to and within catch and finally blocks. From
the EFG, it generates normal call sequences that lead to the currently analyzed call and
exception call sequences that lead from the call along exceptional edges. Subsequently,
it mines association rules between normal sequences and exception sequences, with a
minimum support of 40%. It ranks association rules by their support.

To detect violations, CAR-Miner extracts the normal call sequence and the exception
call sequence for each target method call. It then uses the learned association rules to
determine the expected exception handling and reports a violation if the actual sequence
does not include it.

CAR-Miner detects missing exception-handling as well as missing method calls
among error-handling functions.

The evaluation by the authors of CAR-Miner applied the detector to five projects.
Since it queries a code-search engine for usage examples, it detects violations of cross-
project patterns. The authors manually reviewed all violations of the top-10 association
rules for each project, a total of 264 violations, and confirmed that 60.1% identify wrong
error handling (41.1%, 54.5%, 68.2%, 68.4%, and 82.3% on the individual projects).
Other findings were classified as hints (3.0%).

4.2.10. GROUMiner

GROUMiner [NNP+09b] is a misuse detector for Java. It creates a graph-based object-
usage representation (GROUM) for each target method. A GROUM is a directed
acyclic graph whose nodes represent method calls, branchings, and loops and whose
edges encode control and data flows. GROUMiner uses an a-priori-based algorithm to
detect frequent-subgraphs [RP15] on sets of such GROUMs, to detect recurring usage
patterns with a minimum support of six. A-priori-based algorithms start from frequent

4 https://en.wikipedia.org/wiki/Google Code Search (checked on Dec 18, 2017)
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single-node subgraphs and recursively extend known, frequent subgraphs by frequently
adjacent neighbor nodes.

When at least 90% of all occurrences of a sub-pattern can be extended to a larger
pattern, but some cannot, those rare inextensible occurrences are considered as viola-
tions. Note that such violations have always exactly one node less than a pattern. The
detection of patterns and violations happens at the same time. Violations are ranked by
their rareness, i.e., the support of the pattern over the support of the violation.

GROUMiner detects missing method calls. It also detects missing conditions and
loops at the granularity of a missing branching or loop node. However, it cannot consider
the actual condition.

The evaluation by the authors of GROUMiner applied the detector to nine projects
individually, thereby finding violations of project-specific patterns. The authors reviewed
the top-10 violations per project, a total of 184 findings, and found 5.4% true positives
(three times 0%, five times 6.7%, and once 7.8% on the individual projects). Other
findings were classified as code smells (7.6%) or hints (6.0%).

4.2.11. OCD
∗

OCD [GS10] is a misuse detector for Java. To mine and check temporal patterns,
OCD observes a window of 25 events from the method-call traces and identifies pairs
of subsequent calls to the same receiver. If no second call occurs within the window,
it considers the first call as isolated. Both types of occurrences serve as evidence (or
counter-evidence) for temporal patterns, based on a predefined set of pattern templates
for sequential calls (ab), loop begin and end (ab+ and a+b), pre- and post-conditions
(ab? and a?b), and association rules ((ab|ba)).

OCD uses multiple thresholds to decide—based on the collected evidence and counter-
evidence—whether a pattern should be enforced, i.e., the respective violations be re-
ported, or not. It self-tunes these thresholds such that it reports only around ten viola-
tions. A ranking strategy is mentioned, but not discussed in the publication.

OCD detects missing method calls and wrong call order. Based on the pattern tem-
plates, we assume that it should be able to identify missing iteration in some cases.

The evaluation by the authors of OCD is twofold: First, it applied the detector to ten
projects from the DaCapo benchmark suite [BGH+06] individually, thereby finding vio-
lations of project-specific specifications. The original test harnesses of the projects were
used for execution. The authors reviewed the three violations of Java Class Library
APIs reported by OCD and found one (33.3%) true positive. They also reviewed one of
the four violations of other APIs reported by OCD, but found it to be a (non-obvious)
false positive. Second, the evaluation applied OCD to the usages of Java Class Li-
brary APIs in two further projects individually. Both projects are applications that
the authors manually interacted with, to generate inputs. The authors reviewed all
violations reported by OCD and found 55% true positives (7 of 10 and 2 of 5 on the
individual projects).

∗
We identified this approach in the second round of our survey in 2017.
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4.2.12. DMMC

DMMC [MBM10] is a misuse detector for Java, specialized in missing method calls.
It does not mine patterns, but rather computes a likelihood for every usage to be a
misuse. This calculation is based on type usages, i.e., sets of methods called on a given
receiver type in a given method, and the usage context, i.e., the signature of the method
that the usage occurs in. Two usages are considered exactly similar if their respective
sets match and almost similar if one of them contains exactly one additional method.
DMMC assumes that violations should have only few exactly-similar usages, but many
almost-similar ones. The likelihood of a usage x being a violation is expressed in the
strangeness score = 1 − |E(x)|/(|E(x)| + |A(X)|), where E(x) is the set of usages that
are exactly similar to x and A(x) the set of those that are almost similar to x. Violations
are ranked by their strangeness score.

DMMC detects misuses with exactly one missing method-call.

The evaluation by the authors of DMMC applied the detector to a single project,
thereby finding project-specific violations for the Standard Widget Toolkit (SWT)
of Eclipse. The authors manually reviewed all findings with a strangeness score above
97%, a total of 19 findings, and confirmed 73.7% as true positives, for which they submit-
ted respective patches to the Eclipse project. Eleven of these patches were accepted,
one was rejected, and the remaining two remained unanswered.

A later study [MM13] applied DMMC to three projects individually, thereby finding
project-specific violations for a predefined set of APIs. The authors manually reviewed
approximately 30 findings,5 and confirmed 17 (≈ 56.7%) as true positives, for which
they submitted respective patches to the projects. Eleven of these patches where ac-
cepted, two where rejected, two were ignored, because the respective code was no longer
maintained, and two remained unanswered.

4.2.13. SpecCheck
∗

SpecCheck [NK11] is a misuse detector for Java. It uses the LM miner [DLMK10] to
obtain specifications of the form consequences ↪→ premises from method-call traces,
where both the premises and consequences are sets of method calls. In this step, Spec-
Check uses different values for support and confidence, depending on the size of the
trace (higher values for larger traces, in discrete steps).

To determine the subset of significant specifications, SpecCheck removes the premise
method calls from the instances of the specification in the training codebase and executes
the mutated program. If this causes an exception at a consequence method call of a
specification, for at least one instance of the specification, SpecCheck consider this
specification as signification. Otherwise, it drops the specification. For specification
with multiple premise method calls, SpecCheck repeats this check with a leave-one-
premise-out strategy and drops premises whose omission does not indicate significance

5This is the quantity as reported in the publication.
∗
We identified this approach in the second round of our survey in 2017.
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of the specification. Finally, SpecCheck combines multiple specification with the same
consequences by conjunction.

To find misuses, SpecCheck uses JFTA [DKM+10], a static typestate verifier.
SpecCheck detects missing method calls and wrong call order.
The evaluation by the authors of SpecCheck applied the detector to seven projects

individually, thereby finding violations of project-specific patterns. All projects were
taken from the DaCapo benchmark suite [BGH+06] and the respective test harnesses
were used for execution. The authors reviewed all violations reported by SpecCheck
and found 54.2% true positives (0%, 33.3%, 33.3%, 50%, 62.5%, 66.7%, and 100% on
the individual projects). Including the insignificant specifications produces no additional
true positives, but 613 (55.7 times) more false positives.

4.2.14. RRFinder
∗

RRFinder [WLW+11] is a misuse detector for Java, specialized in detecting resource
leaks. It first uses a classifier to identify resource-releasing (RR) methods in the imple-
mentation code of APIs that manipulate resources. This classifier uses several features
of methods, such as keywords appearing in the method name or documentation, whether
the class is overriding a known RR method, the percentage of statement in the method’s
body known to perform RR actions, and the percentage of other method in the class the
fail after the method was invoked. Since some of these features depend on the classifi-
cation of other methods, RRFinder implements an iterative classification approach.

For each identified RR method m(), RRFinder then heuristically determines respec-
tive resource-acquiring (RA) methods, by search for public methods that either assign a
field that is set to null in m() or invoke an RA method that corresponds to RR method
invoked in m(). If no such method exists, RRFinder assumes that the constructor of
the class declaring m() is the corresponding RA method. Each pair of an RR method
and the set of corresponding RA methods for a RR specification.

The verification mechanism of RRFinder is not detailed in the publication.
RRFinder detects misuses with missing RA-method calls.
The evaluation trained the RR-method classifier on a manually curated dataset of

19,080 method from the Java Class Library. It then applied RRFinder to an un-
specified set of open source projects, using resource-release specifications mined for the
APIs from eight popular libraries. The authors present one example of an actual bug
that their approach detects, but report not statistics on the quality of the detector’s
findings.

4.2.15. Tikanga

Tikanga [WZ11] is a misuse detector for Java that builds on the same algorithm as
Jadet. It replaces Jadet’s simple call-order properties by general Computation Tree
Logic formulae on object usages. Specifically, it uses formulae that require a certain call
to occur in a usage, formulae that require two calls in a certain order, and formulae that

∗
We identified this approach in the second round of our survey in 2017.
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require a certain call to happen after another. It uses model checking to determine the
subset of all those formulae with a minimum support of 20 in the codebase. It then
applies Formal Concept Analysis [GW97] to obtain patterns and violations at the same
time. Violations are ranked by the conviction measure [BMUT97] of the association
between the set of present formulae and the set of missing formulae in the violating
usage.

Tikanga’s capabilities are the same as Jadet’s, but it also detects violations of
patterns with only two calls.

The evaluation by the authors of Tikanga applied the detector to six projects indi-
vidually, finding violations of project-specific patterns. The authors manually reviewed
the top-25% of findings per project, a total of 121 findings, and confirmed 9.9% as true
positives (twice 0%, 8.3%, 20.0%, 21.4%, and 33.3% on the individual projects). Other
findings were classified as code smells (29.8%).

4.2.16. PJAG12
∗

PJAG12 [PJAG12] is a misuse detector for Java, specialized on multi-object method-
call protocols. Is uses a dynamic specification miner [PG09, PBG10] to obtain multi-
object specifications from method-call traces. The resulting specifications are finite-state
automata (FSA), where transitions are method calls and states represent the respective
objects’ state.

PJAG12 transforms the mined FSA specifications into Fusion specifications [JA09],
i.e., into triples of a set of relationships between the involved objects, a set of call pre-
conditions, and a set of call effects on relationships and object states. Fusion performs
a static inter-procedural analysis to verify the specifications on a give target codebase.

To avoid false positives, PJAG12 prunes specifications using a support threshold and
violations using thresholds on the number of illegal method calls in a violation divided
by the number of all methods calls in the respective violated specification and on the
number of calls to a method that are found to be illegal divided by the overall number
of calls to this method.

PJAG12 detects missing and redundant method calls. It may also implicitly identify
missing state conditions, if it finds a certain call to be illegal in the receivers current
state, according to the respective FSA specification.

The evaluation by the authors of PJAG12 applied the detector to twelve projects
from the DaCapo benchmark suite [BGH+06] individually, thereby finding violations of
project-specific patterns. The training data for the specification miner was taken from
prior work of the same authors [PBG10]. The authors reviewed all violations reported
by PJAG12 and found 32.1% true positives (0%, 0%, 0%, 0%, 13.3%, 13.3%, 23.1%,
28.6%, 61.5%, 69.2%, 100%, and 100% on the individual projects) and additional 18.5%
code smells.

∗
We identified this approach in the second round of our survey in 2017.
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4.2.17. PG12
∗

PG12 [PG12] is a misuse detector for Java, specialized on method-call protocols. Given
a target program and an API, PG12 first uses Randoop [PLEB07], a feedback-directed
random test generator, to automatically execute the target code, prioritizing parts that
use the API in question. Second, PG12 uses a dynamic specification miner [PG09,
PBG10] (same as in PJAG12) to obtain specifications from the method-call traces of
succeeding generated test runs, i.e., runs that did not terminate with an exception. Last,
PG12 filters the traces of failing generated test runs to those that violate one of the mined
specifications and where the violating code does not explicitly declare the respective
exceptional case, and reports them as violations. Each violation is accompanied by a
test case that provokes a respective crash.

PG12 detects missing and redundant method calls, if the respective violation causes
an exception. Like PJAG12, it may also implicitly identify missing state conditions, if
it finds a certain call to be illegal in the receivers current state (and this call causes an
exception).

The evaluation by the authors of PG12 applied the detector to ten projects from the
DaCapo benchmark suite [BGH+06] (the same projects that were used in the evaluation
of OCD) individually, thereby finding violations of project-specific specifications. The
authors reviewed all 54 violations reported by PG12 and found only true positives.

4.2.18. DroidAssist

DroidAssist [NPVN15] is a detector for Dalvik Bytecode (Android Java). It generates
method-call sequences from source code and learns a Hidden Markov Model from them,
using a modified version of the Baum-Welch algorithm, to compute the likelihood of
a particular call sequence. If the likelihood is too small, the sequence is considered a
violation. DroidAssist then explores different modifications of the sequence (adding,
replacing, and removing calls) to find a slightly modified, more likely sequence. This
allows it to detect missing and redundant method calls and even to suggest solutions
for them. The authors of DroidAssist present no evaluation of this mechanism in the
respective paper.

4.2.19. Salento
∗

Salento [MCJ17] is a detector for Dalvik Bytecode (Android Java). To detect misuses,
Salento takes a dataset with training code, a dataset with target code, and a set of
APIs to analyze. It uses symbolic execution to identify objects of the APIs’ types and
encodes each respective usage as a bag of all method calls on such an object. For each
method call, Salento also encodes boolean predicates that capture constraints on call
parameters, whether the call throws an exception, or other properties. Details on these
predicates are not provided in the paper.

∗
We identified this approach in the second round of our survey in 2017.

∗
We identified this approach in the second round of our survey in 2017.
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Salento assumes that each usage U conforms to a specification Z, which is unknown.
It further assumes that the method calls XU appearing in U inform about Z. The uncer-
tainty about Z is formalized as P (Z‖X = XU), where Z is a random variable over speci-
fications and X is a random variable over method calls in usages. Moreover, Salento
expresses the uncertainty regarding the behaviors Y of U as PU(Y ), where Y is a random
variable over behaviors, and allows for a distribution P (Y ‖Z = Z) over the behaviors
of usages that implement a given specification Z. In this framework, Salento learns a
joint distribution P (X,Y, Z) from the usage examples in the training code.

To detect misuses, Salento computes for each usage U in the target code the anomaly
score as the statistical distance between P (Y ‖X = XU) and PF(Y ). Salento reports U

as a violation, if the usage’s anomaly score exceeds a threshold. The reported violations
are ranked according to this score.

Salento detects missing and redundant method calls. It may be able to detect
other kinds of misuses, depending on the properties it captures in its boolean predicates.
However, the paper presents no evidence for Salento detecting other kinds of misuses.

The evaluation trained Salento on a dataset of 500 apps and applied it to detect
misuses in a disjoint dataset of 250 apps. The first author reviewed the top-ranked
violations for each target project with a violations in the top-10% of violations reported
across the entire target dataset. They chose this sampling to avoid counting multiple
findings that identify the same problem. Salento reports all its true positives in the
top-8% of these findings (48 violations), which leads to a precision of 75% in the top-8%
findings.

4.3. Discussion

Overall, we identified 19 API-misuse detectors in the literature. These detectors target
either C, C++, or Java. Only two detectors have been applied across multiple languages:
(1) CAR-Miner, which analyzes C++ and Java, and (2) Colibri/ML, which itself
analyzes only C, but is also the foundation of Jadet and Tikanga, which analyze
Java. Five detectors use dynamic analyses, while the other 14 exclusively use static
analyses.

All detectors approach the detection of misuses through the detection of deviant
code [ECH+01] (or deviant execution traces, in case of dynamic detection). The key
idea is that mistakes violate constraints that usages should adhere to and that, given
sufficiently many usage examples, such violations appear as anomalies. This follows two
assumptions:

1. It assumes that usages that occur frequent correspond to correct usage or, in other
words, that the majority of usages is correct. This seems intuitive, considering
that misuses often cause spurious behavior (see Chapter 2), which would likely be
noticed if it where the rule rather than the exception.

2. It assumes that anomalies with respect to frequent usages are misuses. This seems
less intuitive, since such anomalies are, first of all, simply rare usages, which does
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Iterator i = ...;

while (i.hasNext()) {
  E e = i.next();

}

Iterator.hasNext()

WHILE

Iterator.next()

Action Control

Dependency

Figure 4.2.: A Correct Iterator Usage in GROUMiner’s Graph Representation

not imply anything regarding their correctness per se. Therefore, misuse detectors
usually refine this assumption using some measure of distance between usages, i.e.,
they consider only anomalies that are very similar to a frequent usage as mistakes.

Previous evaluations show that respective approaches can successfully detect mistakes in
the usage of popular libraries [ECH+01, LZ05, WZL07, NNP+09b, WZ11, MM13]. How-
ever, the low precision reported for many detectors also suggests that many anomalies
with respect to correct usages are themselves correct usages.

4.3.1. Static Misuse Detectors

The static detectors all use code (snippets) as training and verification input. Some
require the code in a compiled format, such as Java Bytecode, while others directly
work on source code. They typically represent usages as sets, sequences, or graphs
and mine patterns through frequent-itemset/subsequence/subgraph mining, according to
their usage representation. Many static detectors perform pattern mining and anomaly
detection at the same time, since violations are simply in-extensible parts of patterns
that are themselves observed infrequently. Since many detectors produce a large number
of findings (including many false positives), they propose a variety of ranking strategies
to ensure true positives are reported first.

Two exceptions to the typical design of static detectors are DMMC and DroidAssist.
DMMC computes the probability of each usage missing a method call based on all
observed usages of the same type, i.e., it does not mine patterns. DroidAssist learns a
Hidden Markov Model [RJ86] that allows it to compute the likelihood of method-call
sequences to be correct. Consequently, it performs mining first and detection later.

The static detectors use both absolute and relative minimum-support thresholds to
identify patterns. Relative thresholds are defined with respect to the absolute number of
usage examples provided as input. The exceptions are, again, DMMC and DroidAs-
sist, which use fixed thresholds on the respective probabilities.

For ranking violations, most static detectors rely mainly on pattern support, but
some use different concepts, such as confidence, rareness, strangeness, or conviction. A
comparison of different ranking strategies is unavailable in the literature.
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A strength of static detectors is that their representations quite naturally encompass
different usage elements and their relations, since they encode usages as abstractions from
how they appear in code. GROUMiner, for example, represents a correct Iterator

usage as depicted in Figure 4.2, encoding the two respective method calls, the iterative
check on the result of hasNext(), and that it must precede the call to next(). Gener-
ally, graph representations seem promising for simultaneously encoding different usage
elements, order, and data-flow relations.

Another strength of static approaches is that they can train on code examples from
various sources, such as documentation, code-search engines, or Q&A sites, even if these
are not compilable or executable. This makes it easier to obtain sufficiently many usage
example for different APIs and enables cross-comparison of examples from different
sources, which might help to mitigated biases. None of the approaches from the literature
makes use of more than one source of usage examples, however.

A major limiting factor for the usefulness of static detectors is the availability of ex-
haustive examples of correct usage for pattern mining. Additionally, these examples
need to appear sufficiently often, in order to be considered frequent, i.e., patterns. In-
sufficient training data is likely one of the main reasons for the large number of false
positives that many static detectors report. It appears that the detectors that focus on
specific violations, such as error handling (AX09 and CAR-Miner) or missing method
calls (DMMC), have higher precision, possibly because they abstract more from the
usage code and, therefore, need fewer examples to mine good patterns.

An inherent limitation of many current static detectors is that they define violations
as in-extensible parts of patterns. As a consequence, they cannot detect redundant
elements, as such an element is never part of any pattern. DroidAssist shows an
alternative approach, using a probabilistic model, which might identify redundant calls
as being unlikely.

4.3.2. Dynamic Misuse Detectors

The dynamic detectors all use method-call traces as training input. They learn either
association rules between (sets of) method calls or finite-state automata representing
object states. With the exception of OCD, they all conduct specification learning and
validation in two separate phases, which allows them to prune both specifications and
violations separately. Validation of mined specifications happens either again on execu-
tion traces or via static verification. All dynamic detectors report relatively few findings,
compared to the static detectors. Therefore, evaluations simply consider all their findings
and none of the approaches presents a ranking strategy.

A strengths of dynamic detectors is that they can verify whether a misuse is prob-
lematic in the sense that it may cause an exception. This allows a significant reduction
of false positives (98.2% in the case of SpecCheck) or even their complete exclusion
(in case of PG12). Since reducing false positives is important for developers to adopt
misuse detectors [FLL+02, BBC+10, JS13] and many misuses cause exceptions (see Sec-
tion 2.2), this is an important achievement. However, there are many misuses that do
not cause exceptions, but nonetheless have severe consequences, such as vulnerabilities
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(see Section 2.4) and should not be neglected.

A major limiting factor for the usefulness of dynamic detectors is the availability of
exhaustive execution traces [PBG10]. Similar to static detectors, specifications need to
manifest in sufficiently many traces in order to be mined. In addition, if a misuse is not
triggered in any execution, it cannot be detected through verification of execution traces.
Most dynamic detectors rely on existing test harnesses—which is generally unreliable—
or manually curated training datasets—which is not scalable. The exception is PG12,
which uses random test generation to maximize the trace coverage. However, to make
this scale, PG12 focuses on code parts that call methods from a pre-specified set of
APIs.

An inherent limitation of all current dynamic approaches is that they do not consider
usage elements other than method calls. Method-call traces do not show whether checks
happened on the result of a call or, more generally, which subsequences of a trace is
control-dependent on which preceding calls. Therefore, the detectors cannot analyze
control dependencies and exception handling, which make up for a significant part of all
API misuses (see Chapter 3).

Another limitation is that current dynamic approaches can only search misuses of a
predefined set of APIs. This set may be defined explicitly [PG12] or implicitly, e.g., as
all APIs from a certain package [PJAG12] or library [LKL08, GS10, NK11]. They need
this, in order to decide whether a method call m() should itself become an event in the
call trace or whether the execution of m() should be tracked to potentially add transitive
calls to the trace. Therefore, dynamic detectors usually focus on detecting misuses of
widely used APIs, e.g., from the Java Class Library, and neglect less-commonly-used
APIs and project-specific APIs.

4.3.3. Coverage of the Problem Space

Table 4.1 shows that existing detectors cover only a small subset of all API-misuse cate-
gories. While all detectors can, to some degree, identify missing method calls, only four
detectors can identify missing conditions, only four can identify missing iterations in
some cases, and only two can identify missing exception handling. None of the detectors
targets all of these categories. Only three of the detectors can identify any redundant
usage elements—method calls, in all cases. All other detectors cannot identify such ele-
ments, by design of their usage representation and violation-detection strategy. Table 3.1
shows that the redundant violation type is much less common than the missing violation
type, which might, in part, explain this design choice. Overall, these findings suggests
that future work should develop detectors that target the neglected misuse categories
or cover more misuse categories at once or both. Part III of this thesis presents such a
detector.

4.3.4. Evaluation

Table 4.2 summarizes the empirical results of the surveyed detectors, as reported in their
original papers. Detectors are evaluated on one to twenty projects (average 5.7; median
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five). The concrete projects samples are all distinct and mostly even disjoint, except
in the evaluations of dynamic detectors that chose target projects from the DaCapo
benchmark suite [BGH+06].

Most evaluations apply detectors to projects individually. In this setting, the detectors
learn project-specific patterns and identify respective violations, assuming that correct
usages occur frequently within projects. If some API is, for example, only used once in
a project, the detectors cannot determine whether this usage is correct or not, even if
that particular usage is obviously incorrect. The exceptions to this are (1) Jadet, which
was also evaluated in a multi-project setting where it was trained on usages from 6,097
projects to detect misuses in 20 of these projects, (2) CAR-Miner and Alattin, which
mine patterns from examples retrieved via a code search engine, (3) RRFinder, which
was trained on a manually curated dataset of correct usage examples, and (4) PJAG12,
which was trained on a public dataset of execution traces. While Jadet shows a slightly
better performance in the multi-project setting, the evaluations indicate no general su-
periority of either approach.

To assess the detection performance, most authors review the top-X findings of their
detectors in their experiments, where X is either a fixed number or a percentage (some-
times 100%, i.e., all findings). They then either present anecdotal evidence of true pos-
itives or measure the precision of detectors. Many evaluations also present additional
categories of findings, such as code smells, to distinguish false positives from other non-
misuse findings that may still be valuable to developers. The definitions of when a finding
belongs to which category—if provided—differ between publications, even if they use the
same label, e.g., “bug” or “code smell.”

We argue that reviewing a fixed number of findings more realistically mirrors the end-
user scenario, where a developer is presented with a list of findings for review. Developers
are unlikely to review an arbitrarily large number of findings, especially if many of them
are false positives [FLL+02, BBC+10, JS13]. It is more likely that they focus on the
findings that are presented to them first. As a fixed number, authors reviewed 10-60
findings (average 24; median 10). Considering that many detectors present a significantly
larger number of findings, it becomes important that detectors effectively rank more
severe findings before others, e.g., crash bugs before code smells.

Precision is an important metric for API-misuse detectors, since large numbers of false
positives is one of the main reasons why developers reject code-analysis tools [FLL+02,
BBC+10, JS13]. However, we are also interested in the detectors’ recall, since our
conceptual assessment in Table 4.1 suggests that detectors miss many misuses. We argue
that it is important for developers to know which kinds of mistakes a detector misses,
in order to decide about additional quality measures. Past studies widely ignored the
recall of API-misuse detectors. One exception is LKL08, whose recall was measured with
respect to four known bugs in a single target project. Further exceptions are PJAG12
and Salento, whose recall was measured with respect randomly mutated usages. No
study in our survey measured recall with respect to a larger quantity of real-world usages.

Overall, the selection of different target-project samples and review samples sizes and
the varying definitions of finding categories make a direct comparison of the detectors,
solely based on their reported empirical results, unreliable. The only concrete comparison
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between detectors is presented by Pradel et al. [PJAG12], who compare the findings
of PJAG12 to those of GROUMiner and Tikanga and who discuss which misuses
are identified across detectors and which only by one of them. This calls for more
standardized evaluation of misuse detectors and for putting more effort into the cross-
comparison of detectors. Part II of this thesis such an evaluation and comparison.
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MuBench
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A Systematic Evaluation of
Static API-Misuse Detectors

To mitigate API misuse, researchers have proposed several API-misuse detectors that
are able to find misuses through static analysis. These detectors commonly analyze API
usages, i.e., code snippets that use a given API. They mine usage patterns, i.e., equivalent
API usages that occur frequently, and then report deviations from these patterns as
potential misuses. The detectors’ underlying techniques differ, especially with respect to
how they encode API usages and frequency, as well as in how they identify patterns and
violations thereof. Chapter 4 of this thesis presents a survey and qualitative comparison
of these detectors. In this part, we compare them quantitatively.

Our survey in Chapter 4 shows that previous empirical studies generally evaluated
detectors on different sets of target projects, such that the respective results are hardly
comparable. In many cases the exact versions of the projects are not reported or
became unavailable, which makes it impossible to reproduce results and to evaluate
other detectors on the same project versions. Moreover, we find that all studies focus
on the precision of detectors. Precision is an important metric, since large numbers
of false positives is one of the main reasons why developers do not use code-analysis
tools [FLL+02, BBC+10, JS13]. However, we are also interested in the detectors’ recall,
since our conceptual assessment in Chapter 4 suggests that detectors miss many misuses.
We argue that it is important for developers to know which kinds of mistakes a detector
misses, in order to decide about additional quality measures.

Comparing different misuse detectors with respect to both their precision and recall is
a challenging task, due to the different underlying mechanisms and representations used
by each detector. Moreover, it is very difficult to design a unified evaluation setup that
fairly compares both static and dynamic techniques, without resorting to compare apples
and oranges, since both generally require different input (code examples vs. execution
traces). Therefore, in this part of the thesis, we focus on static API-misuse detectors.

To achieve a reproducible empirical comparison of static misuse detectors, we build
MuBench, the first automated benchmark for Java-API-misuse detectors (Chapter 5).
We integrate the four state-of-the-art misuse detectors Jadet, GROUMiner, DMMC,
and Tikanga into the benchmark (Section 5.1). We exclude the other eight static detec-
tors that we identified in our survey in Chapter 4, because two rely on the discontinued
Google Code Search, five target C/C++ code, and one targets Dalvik Bytecode, while
our benchmark contains Java misuses.6 We use the misuse examples from Chapter 2 to
create a ground-truth dataset with 64 misuses from 13 real-world projects (Section 5.2).

6 Note that we selected these detectors in 2016, based on the results of the first round of our survey.
Therefore, the detectors that were published later were not initially considered for the benchmark.
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Then we design three experiments, to measure both the detectors’ precision and recall:

Experiment P (Section 5.3) measures the precision of the detectors in a per-project
setting, where they mine patterns and detect violations in individual projects from
MuBench. This is the same setting we find in most existing empirical evaluations
(see Table 4.2).

Experiment RUB (Section 5.4) determines upper bounds to the recall of the detectors
with respect to the known misuses in MuBench. We take the possibility of insufficient
training data out of the equation, by providing the detectors with crafted examples of
correct usages for them to mine required patterns.

Experiment R (Section 5.5) measures the recall of the detectors against both the mis-
uses from the MuBench dataset and the detectors’ own confirmed findings from Ex-
periment P in a per-project setting.

In Chapter 6, we present the MuBenchPipe, a pipeline that automates all parts of the
evaluation process, except for a manual review of the subset of a detector’s findings that
may potentially identify a misuse. MuBench pre-filters such candidates based on misuse
locations, to reduce the manual effort of evaluations and ease reproduction of benchmark
experiments. Moreover, MuBenchPipe enables full traceability of experiments and
review decisions through a ready-to-use artifact website.

In Chapter 7, we use MuBench to empirically evaluate and compare the four state-
of-the-art misuse detectors that we integrated. Our quantitative results show that these
detectors are practically capable of detecting misuses, when provided with correct us-
ages to mine patterns from, i.e., when they successfully mine the respective patterns.
However, they suffer from extremely low precision and recall in a realistic setting. We
identify four root causes for false negatives and seven root causes for false positives.
Most importantly, to improve precision, detectors need to go beyond the naive assump-
tion that a deviation from the most-frequent usage corresponds to a misuse, for example,
by building probabilistic models to reason about the likelihood of usages in their respec-
tive context. To improve recall, before all else, detectors need to learn better models
of API usage, for example, by obtaining more correct usage examples from different
sources, such as code-search engines, and considering program semantics, such as type
hierarchies and implicit dependencies between API usages. These novel insights are
made possible by MuBench. Our empirical results present a wake-up call, unveiling
serious practical limitations of tools and evaluation strategies from the field, especially
with respect to detectors’ recall, which is typically not evaluated, and the application of
detectors to individual projects, which do not seem to give them sufficient data to learn
good models of correct API usage.

In Chapter 8, we discuss the extensibility and reusability of MuBench. The bench-
mark eases the integration of new misuse examples and of further misuse detectors,
to increase generalizability of experiment results and encourage cross-detector compar-
ison. We demonstrate extensions to the dataset, e.g., from the findings of a study of
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runtime-verification techniques [LHX+16] and integrate the static bug finder FindBugs7

to compare its capabilities to those of API-misuse detectors.
In Chapter 9, to conclude this part of the thesis, we provide an overview over related

work on both benchmarking bug-detection tools and evaluating API-misuse detectors.

7http://findbugs.sourceforge.net/ (checked on Mar 20, 2018)
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5. Evaluation Setup

In this chapter, we describe the evaluation setup we use to empirically compare the
capabilities of API-misuse detectors. We design three experiments, to measure both
the detectors’ precision and recall. As the basis of these experiments, we assemble a
ground-truth dataset from the misuse examples we identified in Chapter 2. This enables
us to compare all detectors on the same target projects and with respect to the same
known misuses.

5.1. Subject Detectors

To evaluate detectors, ideally, we use the exact same implementations as were used for
the original evaluations presented in the respective publications. Compared to reimple-
mentations, this avoids bias that might come from misunderstandings of the approaches
or diverging decisions with respect to implementation details that are not described in
the publications. Moreover, it reduces the effort to obtain implementations of multiple
detectors. To obtain the original implementations, we contact the authors of existing
API-misuse detectors and ask them to provide the prototypes they used in the original
empirical evaluations. We focus on misuse detectors for Java APIs, in order to evaluate
them using the examples of Java-API misuse we presented in Chapter 2. Our survey in
Chapter 4 identifies seven such detectors.1 We contacted the respective authors and got
responses from all of them:

• The authors of Jadet [WZL07], GROUMiner [NNP+09b], DMMC [MBM10],
and Tikanga [WZ11] provided their implementations and assisted us in setting
them up for execution on our benchmark.

• The authors of DroidAssist [NPVN15] also provided their implementation, but
we found that it supports only Dalvik Bytecode,2 while the examples in our dataset
originate from general Java projects, which compile to Java Bytecode. Therefore,
we exclude DroidAssist from our experiments.

• The authors of Alattin [TX09a] and CAR-Miner [TX09b] informed us that we
can no longer run their respective implementations, because they both depend

1Note that this bases on the results of the first round of our survey in 2016. Meanwhile, new detector
were published.

2A bytecode format developed by Google, which is optimized for the characteristics of mobile operating
systems (especially for the Android platform).
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on Google Code Search to retrieve usage examples, a service that is no longer
available.3

This leaves us with the four detectors Jadet, GROUMiner, DMMC, and Tikanga.

5.2. API-Misuse Dataset

Our goal is to empirically evaluate and compare API-misuse detectors. To this end, we
need a dataset with targets to run all these detectors on. We use the misuse examples
that we identified in Chapter 2 as a starting point to create such a ground-truth dataset,
turning each example into a candidate for inclusion as follows.

For the misuses we identified in real-world projects (see Section 2.2 and Section 2.4),
we locate the actual occurrences from the respective codebases. For each misuse, we
manually identify the respective project’s version-control system and extract the revision
Id of a project version that contains the misuse, as well as the path of the file and
signature of the method that the misuse occurs in, and the name of the API that is
misused. In addition, if the misuse was fixed in the project history, we extract the
revision Id of the version immediately after the fix. Finally, we assemble a description
from the respective issue report, the fix, and the API documentation. In total, we obtain
such data about 103 misuses from 49 projects. Note that we had to exclude the misuse
examples from the AspectJ project, as identified by the iBugs dataset, at this point,
because we could not locate the version-control revisions designated in the dataset in the
project’s version-control system, which has been migrated since the release of iBugs.

For the misuses we identified through the developer survey (see Section 2.3) and the
misuses we identified in studies on API-usage directives (see Section 2.1), we manually
create respective code examples and add them to our dataset. We aim to create minimal-
yet-realistic examples, as they might appear in a real codebase, if the respective usage
has been factored out into a single method. We do not create any call sites for the
methods containing the misuses, since any additional code beyond the API usage in
question would be arbitrary and, thus, might introduce bias. As for the misuses from
real-world projects, we create a description of each of the misuse examples from the
survey. This gives us an additional 28 misuse examples.

Following this process gives us in total 131 misuse examples as candidates for inclusion
in our ground-truth dataset. For each candidate, we now possess a respective occurrence
in source code. However, while GROUMiner works on source code, Jadet, Tikanga,
and DMMC require Java Bytecode as input. Thus, we can only compare these detectors
on misuse examples for which we have both source code and Bytecode.

Since Bytecode is not readily available for most of our misuse examples, we resort to
compiling them ourselves. For the hand-crafted examples this is relatively easy, since
the examples are small and we can easily create a minimal Gradle build configuration
to compile them. For the examples from real-world projects, we need to compile the

3 https://google-opensource.blogspot.com/2015/03/farewell-to-google-code.html (checked on
Mar 09, 2018)
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respective project versions that contain the misuses, by adding necessary build files and
fixing any dependency issues. Unfortunately, this task cannot be entirely automated.
To make it at least reproducible, we manually determine a sequence of commands that
compile a project version starting from a clean checkout. To bound the manual effort
in determining these commands, we define a procedure that we follow for each project
version:

1. If the project version uses a build configuration, such as Ant, Gradle, or Maven,
we add a respective compilation command and run it.

2. If running the build fails for local reasons, such as a build directory that needs to
be created, we add respective preparation commands to resolve the problems.

3. If running the build fails because the configuration is outdated or erroneous, we
try to fix it and add respective transformation commands. If we cannot fix the
configuration within one day, we continue with the next step.

4. If there is no build configuration or we cannot get it to run, we try to manually
construct a minimal Gradle configuration to compile the project version. If we
cannot construct a configuration within one day, we exclude the project version
from our dataset.

5. If running the build fails because required dependencies are not included in the
project version and cannot automatically be resolved, we manually search for the
respective JAR files and add them to a dedicated Maven repository for use in the
benchmark compilation. If we cannot manually resolve some dependencies within
one hour, we manually create stubs for the types required by the project version, if
this requires to stub at most ten types. Otherwise, we exclude the project version
from our dataset.

6. If the project version contains compilation errors with an obvious fix, we add
respective transformation commends to fix them. For example, in one project
version, an instance of java.security.CodeSource is created with null as the
second constructor argument. With Java 1.4 this was valid, because CodeSource

had only a single constructor. However, Java 1.5 introduced a second constructor,
which makes the call ambiguous. To fix this problem, we insert a cast of null to
java.security.CodeSignature[], the type it was implicitly cast to before. If we
cannot fix all compilation problems after one day or we encounter an error without
an obvious fix, we exclude the project version from our dataset.

Following this process we obtain 29 compilable versions of 13 projects. We have to
exclude 29 versions of 19 projects, because 22 versions contain compile errors that we
cannot fix and seven versions miss dependencies that we cannot resolve. Furthermore,
we have to exclude 17 versions from as many Android apps, because Android has it’s
own bytecode format, Dalvik,4 which we cannot feed to misuse detectors that read Java

4 https://en.wikipedia.org/wiki/Dalvik (software) (checked on Nov 16, 2017)
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Table 5.1.: Datasets Used Throughout Part II of This Thesis, with the Number of Hand-
crafted Misuses (#HM), the Number of Real-world Projects (#P), the Num-
ber of Project Versions (#PV), the Number of Misuses in These Project
Versions (#PVM), and the Total Number of Misuses (#M). “n/a” Denotes
that the Number Is Irrelevant for the Use of the Dataset.

Dataset #HM #P #PV #PVM #M

1 Experiment P n/a 5 5 n/a n/a
2 Experiment RUB 25 13 29 39 64
3 Experiment R 0 13 29 53 53

Bytecode. We proceed likewise for three misuses examples from the developer survey
that are specific to the Android standard library.

In the end, we have 64 misuses in total for our experiments; 39 misuses from the 29
versions of 13 real-world projects and 25 hand-crafted examples. Note that some project
versions contain multiple misuses. Table 5.1 describes the subsets of this dataset that
we use in the individual experiments. We publish the dataset5 for others to use in future
studies.

5.3. Experiment P

We design Experiment P to assess the precision of detectors.

Motivation Past studies show that developers rarely use analysis tools that produce
many false positives [FLL+02, BBC+10, JS13]. Therefore, for a detector to be adopted
in practice, it needs a high precision.

Setup To measure precision, we follow the most-common experimental setting we
found in the literature (cf. Table 4.2), i.e., the per-project setting. In this setting, detec-
tors mine patterns and detect violations on a per-project basis. First, we run detectors
on individual project versions. Second, we manually validate the top-20 findings per de-
tector on each version, as determined by the respective detector’s ranking strategies. We
limit the number of findings, because it seems likely that developers would only consider
a fixed number of findings, rather than all of a potentially very large number of findings.
Hence, the precision in a detector’s top findings is likely crucial for tool adoption. Also,
we need to limit the effort of reviewing findings of multiple detectors on each project
version.

Dataset Since manually reviewing findings of all detectors on all project versions is
infeasible, we sample five project versions. To ensure a fair selection of projects, we first
run all detectors on all project versions. For practical reasons, we timeout each detector
on an individual project version after two hours. The run statistics are summarized in

5https://github.com/stg-tud/MUBench/ (checked on Mar 20, 2018)
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Table 5.2.

Jadet and Tikanga fail on one project version and DMMC fails on four project
versions, since the Bytecode contains constructs that the detectors’ respective Bytecode
toolkits do not support. GROUMiner times out on eight project versions and produces
an error on one other version. We exclude any project version where a detector fails.

For the remaining 15 versions, we observe that the total number of findings corre-
lates across detectors. Table 5.3 shows that the pairwise correlation (Pearson’s r) is
strong (≥ 0.75) or medium (≥ 0.5) for all pairs of detectors, except for Jadet and
GROUMiner (r = 0.49). This means that either all detectors report a relatively large
or a relatively small number of findings on any given project version. We hypothesize
that the total number of findings might be related to the detectors’ ability to precisely
identify misuses in a given project version. Therefore, we sample project versions ac-
cording to the average normalized number of findings across all detector. We normalize
the number of findings per detector on all project versions by the maximum number
of findings of that detector on any project version. We sample the two projects with
the highest average normalized number of findings across all detectors (Closure6 v319
and iText7 v5091) and the two projects with the lowest average normalized number
of findings across all detectors (JMRTD8 v51 and Joda-Time9 v1231). Additionally,
we randomly select one more project version (Apache Lucene10 v1918) from the re-
maining projects, to cover the middle ground. Note that we select at most one version
from each distinct project, because different versions of the same project may share a
lot of code, such that detectors are likely to perform similarly on them. This dataset for
Experiment P is summarized in Row 1 of Table 5.1.

Metrics We calculate the precision of the detector, i.e., the ratio between the number
of true positives over the number of findings.

Review Process Two authors independently review each of the top-20 findings of the
sampled project versions and mark it as a misuse or not. To determine this, they consider
the logic and the documentation in the source code, the API’s documentation, and its
implementation if publicly available. After the review, any disagreements between the
reviewers are discussed until a consensus is reached. We report Cohen’s Kappa score as
a measure of the reviewers’ agreement. Note that we follow a lenient reviewing process.
For example, assume a usage misses a check if (Iterator.hasNext()) before calling
Iterator.next(). If the detector finds that hasNext() is missing, we mark the finding
as a hit, even though this does not explicitly state that the call to next() should be
guarded by a check on the return value of hasNext(). This follows our intuition that
such findings may still provide a developer with a valuable hint about the problem.

6https://developers.google.com/closure/compiler/ (checked on Feb 24, 2017)
7https://sourceforge.net/projects/itext/ (checked on Feb 24, 2017)
8http://jmrtd.org/ (checked on Feb 24, 2017)
9http://www.joda.org/joda-time/ (checked on Feb 24, 2017)

10https://lucene.apache.org/core/ (checked on Feb 24, 2017)
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Table 5.2.: Number of Findings per Detector on All Compilable Project Versions in
MuBench. Detectors timeout after two hours. Experiment P includes the
two projects with the highest number of findings (t), the two projects with
the lowest number of findings (u), and one randomly selected project (◦).
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Apache Commons Lang 587 0 28 0 157 0.06
Apache Commons Math 998 17 error 17 686 0.20
ADempiere 1312 0 27 0 116 0.05
Alibaba Duid e10f28 17 timeout 5 520 0.13
Closure 114 113 101 24 1233 0.49
Closure 319 176 126 45 1945 0.74 t
Closure 884 71 167 33 1966 0.63
Apache HttpClient 302 0 12 0 114 0.03
Apache HttpClient 444 0 15 0 110 0.03
Apache HttpClient 452 0 12 0 113 0.03
iText 5091 17 198 55 1138 0.55 t
Apache Jackrabbit 1601 12 186 22 error 0.41
Apache Jackrabbit 1678 0 15 0 error 0.03
Apache Jackrabbit 1694 13 186 22 error 0.41
Apache Jackrabbit 1750 10 timeout 8 434 0.12
JFreeChart 103 167 timeout 88 673 0.69
JFreeChart 164 168 timeout 90 664 0.69
JFreeChart 881 194 timeout 93 745 0.76
JFreeChart 1025 194 timeout 93 747 0.76
JFreeChart 2183 190 timeout 100 906 0.81
JFreeChart 2266 195 timeout 102 913 0.82
JMRTD 51 0 11 0 29 0.02 u
JMRTD 67 0 10 0 35 0.02
Joda-Time 1231 0 0 0 1 0.00 u
Apache Lucene 207 0 140 0 182 0.20
Apache Lucene 754 0 54 0 265 0.10
Apache Lucene 1251 2 62 0 error 0.11
Apache Lucene 1918 2 88 4 583 0.20 ◦
Mozilla Rhino 286251 error 55 error 257 0.20
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Table 5.3.: Correction of the Number of Findings per Project Version For All Pairs of
Detectors (Pearson’s r). Strong correlation (r ≥ 0.75) in bold. Medium
correlation (r ≥ 0.5) in italic.

Jadet GROUMiner DMMC Tikanga

Jadet 1.00
GROUMiner 0.49 1.00
DMMC 0.85 0.78 1.00
Tikanga 0.70 0.82 0.88 1.00

5.4. Experiment RUB

We design Experiment RUB to assess the detection capabilities of our subject detectors,
i.e., to measure an upper bound to their recall under the assumption that they always
mine the required pattern.

Motivation We argue that it is important for developers to know which misuses a
particular tool may or may not find, in order to decide whether the tool is adequate for
their use case and whether they must take additional measures. Moreover, it is important
for researchers to know which types of misuses existing detectors may identify, in order
to direct future work. Therefore, we measure detectors’ recall while providing sufficiently
many correct usages that would allow them to mine the required pattern.

Dataset For this experiment, we use all compilable project versions from the MuBench
dataset with the respective known misuses, as well as the hand-crafted misuse examples.
This dataset for Experiment RUB is summarized in Row 2 of Table 5.1.

Setup Recall that all our subject detectors mine patterns, i.e., frequently reoccurring
API usages, and assume that these correspond to correct usages. They use these patterns
to identify misuses. Recall further that each detector has a distinct representation of
usages and patterns and its own mining and detection strategies. If a detector fails to
identify a particular misuse, this may be due to (1) an inherent limitation of the detector,
e.g., because it cannot represent some usage element such as conditions, or (2) a lack of
examples of respective correct usage for pattern mining, i.e., a limitation of the training
data. With Experiment RUB, we focus on (1), i.e., we take (2) out of the equation and
assess the detectors’ general ability to identify misuses. To this end, we provide the
detectors with sufficiently many examples of correct usage corresponding to the misuses
in question. This guarantees that they could mine a respective pattern. If the detector
is unable to identify a misuse in this setting, we know the problem lies with the detector
itself.

We manually create a correct usage for each misuse in the dataset. For the misuse
examples from the real-world projects, we derive the correct usages from the fix that
we find in the respective project’s version-control history, if one exists. While gathering
candidates for inclusion in our benchmark dataset in Section 5.2, we identified these
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fixes at the granularity of a commit. However, we find that these commits often contain
many unrelated changes, such as refactorings or reformatting, in addition the actual fix.
To make comparison of the usage before and after the fix easier, we manually reduce the
changeset to only those changes required to turn the misuse into a correct usage and
apply only this reduced changeset to the code before the fix. Then we remove from the
fixed code anything that does not impact the usage in question, such as other usages
with not data or control dependencies to the usage in question. For the hand-crafted
misuses examples derived from API usage directives (see Section 2.1) and the developer
survey (see Section 2.3), we derive the correct usages by following the directives that
we knowingly violated and from the problem descriptions of the survey respondents,
respectively. As for the misuse examples themselves, we aim to create minimal-yet-
realistic examples of correct usage. To this end, we take the misuse examples and apply
only the necessary modifications to turn them into correct usages, just as a developer
fixing the misuse might proceed. We store the code of this crafted correct usage in our
dataset.

In the experiment, we run each detector once for each individual known misuse in
the dataset. In each run, we provide the detector with the file that contains the known
misuse and with 50 copies of the respective crafted correct usage. We ensure that the
detector considers each copy as a distinct usage. We configure the detectors to mine
patterns with a minimum support of 50, thereby ensuring that they mine patterns only
from the code in the crafted correct usage. We chose 50 as a threshold, since it is high
enough to ensure that no detector mines patterns from the code in the file with the
misuse.

Metrics We calculate two numbers for each detector. The first is its conceptual recall
upper bound, which is the fraction of the known misuses in the dataset that match its
capabilities from Table 4.1. Note that the conceptual recall upper bound is calculated
offline, without running any experiments. The second is the detector’s empirical recall
upper bound, which is the fraction of misuses a detector actually finds from all the known
misuses in the dataset. An ideal detector should have an empirical recall upper bound
equal to its conceptual recall upper bound. Otherwise, its practical capabilities do not
match its conceptual capabilities. In such cases, we investigate the root causes for such
mismatches. Note that we use the term “upper bound,” because neither metric reflects
the detectors’ recall in a setting without guarantees on the number of correct usages for
mining.

Review Process To evaluate the results, we review all potential hits, i.e., findings from
each detector that identify violations in the same files and methods as known misuses.
Two authors independently review each such potential hit to determine whether it actu-
ally identifies one of the known misuses. If at least one potential hit identifies a misuse,
we count it as a hit. After the review, any disagreements between the reviewers are dis-
cussed until a consensus is reached. We report Cohen’s Kappa score as a measure of the
reviewers’ agreement. We follow the same lenient review process as for Experiment P.

74



5.5. Experiment R

5.5. Experiment R

We design Experiment R to assess the recall of detectors.

Motivation While Experiment RUB gives us an upper bound to the recall of misuse
detectors, we also want to assess their actual recall where we do not provide them with
correct usages ourselves. Due to the lack of a ground-truth dataset, such an experiment
has not been attempted before in any of the misuse-detection studies we surveyed in
Chapter 4.

Dataset As the ground truth for this experiment, we use all known misuses from real-
world projects in MuBench plus the true positives identified by any of the detectors in
Experiment P. This means that Experiment R not only evaluates recall against the mis-
uses of MuBench, but also practically cross-validates the detector capabilities against
each other. We exclude the hand-crafted misuse examples from this experiment, since
there is no corresponding code for the detectors to mine patterns from. The dataset we
use for Experiment R is summarized in Row 3 of Table 5.1.

Setup We run all detectors on all projects versions individually, i.e., we use the same
per-project setup as for Experiment P.

Metrics We calculate the recall of the detectors, i.e., the number of actual hits over
the number of known misuses in the dataset.

Review Process We review all potential hits in the same process as for Experi-
ment RUB. This gives us the detectors’ recall with respect to a large number of known
misuses from MuBench.

5.6. Limitations

Ideally, our experiments would include thousands of misuses from a large number of
projects and in each individual project version, to give us greater confidence in the
generalizability of our benchmark. However, currently, there is no such dataset. We
invested several months of effort to collect and prepare the dataset in its current state,
to make a first step towards such a dataset. Now that the we have the infrastructure
in place, it is straightforward to extend the dataset with misuse examples from different
sources.

Our benchmark dataset is subject to the limitations of how we identified examples
of API misuse in the wild (see Section 2.6). The benchmark dataset may not be rep-
resentative for API misuses in the wild, especially, because we could only compile 29
(50%) of the project versions with misuses and, therefore, had to exclude 38 (37.2%) of
the misuses, which appear in the other versions, from our experiments (see Section 5.2).
Compiling arbitrary versions of projects from the source control history of project is a
challenging task. The author of this thesis invested two full weeks and additional three
months work of a student, to include as many project versions as possible. Still, loosing
the examples for which we could not compile the respective project versions may bias
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the benchmark. For example, it may be that the projects we could compile generally
adhere to higher quality standards and that, therefore, the misuses they contain are
more complex. Conversely, it is possible that they adhere to lower quality standards,
since they contain relatively more misuses. Future work may mitigate this limitation by
adding further project versions and misuse examples to the dataset. To make this as
easy as possible, we build our benchmarking pipeline agnostic to the concrete dataset,
such that the benchmarking experiments automatically consider new additions to the
dataset.

The concrete misuses instances we include in our dataset may not be representative for
all instances of the same misuse. For example, a certain misuse might often be distributed
over multiple methods, while our dataset contains only occurrences in a single method
or vice versa. This threat will likely become smaller, as the dataset increases in size.

We did not design an experiment to measure an upper bound to the precision of
detectors. To measure the upper bound of recall, we provide detectors with the misuses
and the corresponding fixed usages and check whether they can detect the difference.
To measure the upper bound of precision, however, we would have to provide detectors
with a minimal version of the fixed usage, because every additional element may cause
false positives. It is unclear how to construct such minimal examples.
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Following the idea of automated bug-detection benchmarks for C programs, such as Bug-
Bench [LLQ+05] and BegBunch [CHK+09], we facilitate the task of benchmarking
multiple detectors on our misuse dataset with an automated experiment pipeline. We
call this pipeline MuBenchPipe. The goal of MuBenchPipe is (1) to automate as
much as possible of the experimental setup presented in Chapter 5, to reduce the ef-
fort of evaluating API-misuse detectors, and (2) to make benchmarking experiments
reproducible and extensible. The pipeline also enables adding new detectors to the com-
parison, as well as benchmarking with different or extended datasets, in the future. We
publish MuBenchPipe1 for future studies.

6.1. Representation

To enable automated processing of our dataset, we store it in the data schema depicted
by Figure 6.1. Each misuse example that we collected appears in a particular project.
More specifically, we identified each misuse in one particular version of a project, i.e.,
in one particular version-control revision. Usually, the same misuse also exists in other
versions of the project, i.e., in all revisions from its introduction up until the revision
immediately before it got fixed. To be able to count distinct misuses both per project
version and per project, we represent all three as separate entities in our dataset, where
a project has one or more versions and contains one or more misuses, and each of the
project’s versions contains one or more of the project’s misuses. For the hand-crafted
misuse examples, we create artificial project named synthetic and distinct project
versions that contain the source code of one crafted example each.

For each project, the dataset records the project name, the project website, and the
project repository. We use the repository to uniquely identify a project, because this
allows us to uniquely identify project versions using their respective revision Id.

For each project version, the dataset records the revision Id, the relative path to the
source files and class files (after build), as well as the list of build commands obtained
in Section 5.2. This information suffices to checkout the project versions, compile them,
and provide the source code or Bytecode or both to a misuse detector.

For each misuse, we store the source that we identified it from, the description of
the misuse, its location in the project version’s source folder, and a reference to its fix.
Listing 6.1 shows an example of such metadata, using the YAML format.2

1https://github.com/stg-tud/MUBench/ (checked on Mar 20, 2018)
2 http://yaml.org/ (checked on Nov 24, 2017)
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Figure 6.1.: Structure of the API-Misuse Dataset

The source designates where we found the misuse example. The name either iden-
tifies one of the existing datasets we analyzed (Section 2.2), the JCA usages or JCA
fixes study (Section 2.4), our developer survey (Section 2.3), or the publication we took
the misuse example from. We provide a url to the original dataset or publication, if
applicable. The report designates a ticket—usually in an issue tracker—reporting the
misuse.

The metadata contains a textual description of the misuse and its fix. Furthermore,
we document whether the report indicates that the misuse may cause a crash, list all
types that are involved in either the misuse or the respective correct usage (api), and
document whether any of these types is declared in the project containing the misuse or
whether they are declared by some dependency (internal).

The location points to the source-code location of the misuse in the project. We
report the Java source file and the signature of the enclosing method. We use this
information to uniquely identify a misuse. Additionally, we provide the revision Id for
the respective fix and a URL to the fixing commit, if available from the report.

6.2. Benchmark Automation

MuBenchPipe automates many of our evaluation steps including retrieving and com-
piling the project versions’ source code, running detectors, collecting their findings, and
performing the manual reviews of potential hits. It provides a command-line interface
to control these tasks. We subsequently describe the pipeline steps we implemented to
facilitate our evaluation and to enable easy replication of our experiments.
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1 source:

2 name: BugClassify

3 url: https://www.st.cs.uni-saarland.de/softevo/bugclassify/

4 report: https://bugzilla.mozilla.org/show_bug.cgi?id=286251

5 description: >
6 IRFactory.initFunction() is called twice along one possible execution path,

7 which causes an infinite loop. This is fixed by removing the second call.

8 crash: yes

9 api:

10 - org.mozilla.javascript.IRFactory

11 internal: yes

12 location:

13 file: org/mozilla/javascript/Parser.java

14 method: function(int)

15 fix:

16 commit:

https://github.com/mozilla/rhino/commit/ed00a2e83de1e768918604a65def097895b71dd4

17 revision: ed00a2e83de1e768918604a65def097895b71dd4

Listing 6.1.: Metadata of an API Misuse from the Rhino Project.

Checkout MuBenchPipe uses the recorded repository URL and commit Id from the
dataset to obtain the source code of the respective project version. It supports SVN and
Git repositories, source archives (zip), as well as a special handling for the hand-crafted
examples in the dataset.

Compile For every project version, MuBenchPipe first copies the entire project source
code, the individual files containing known misuses, and the respective crafted correct
usages for Experiment RUB each into a separate folder. Then, it uses the respective
build configuration from the dataset to compile all Java sources to Bytecode. During
compilation, MuBenchPipe captures all build dependencies from any Maven, Gra-
dle, and Ant execution and copies them into a dedicated folder. After compilation, it
copies the entire project Bytecode, the Bytecode of the individual files containing known
misuses, and the Bytecode of the respective crafted correct usages each into a separate
folder. From the Bytecode of the entire project it additionally creates a Java archive
(jar) file. This way, the pipeline can provide the detectors with the source code and
Bytecode of each of these project parts individually, as well as with class paths that
contains all respective dependencies.

Detect For each detector, we build a runner to have a unified command-line interface
for all detectors. These runners invoke the detectors with the best configuration reported
in the respective publication. To run a detector on a project version, MuBenchPipe
invokes the detector’s runner with the paths to the respective source code, Bytecode, and
dependencies. The runner uses these paths to provide the right input to the detector and
to output its findings. The pipeline can be run in Experiment RUB, Experiment P, and
Experiment R mode. From the detector’s point of view, running Experiment R is the
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Figure 6.2.: A Finding of GROUMiner Presented on the Review Site

same as running Experiment P. The difference comes in the reviewing process where only
findings that match the known misuses are reviewed in Experiment R, while a sample of
all findings is reviewed in Experiment P. After running the actual detector, the runner
converts the detectors’ findings into a unified format to facilitate the following validation
step. For each finding, this format specifies the name of the file and the name of the
method that the finding is in. In addition, the runners may add tool-specific data that
helps with validation (e.g., the detector’s confidence value, a description of the violated
pattern, or a description of the violation).

Apart from adding some accessor methods that allow us to obtain the detectors’
output, we leave the detector implementations unchanged. We sent the runner code
to the original authors of the detector implementations and they confirmed that our
invocations of their code are correct.

Validation To help with the manual review of findings, MuBenchPipe automatically
publishes experiment results to a review website that shows for every detector finding
the source code it is found in along with any metadata the detector provides, such as the
violated pattern, the properties of the violation, and the detector’s confidence. Figure 6.2
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shows an example of this for a finding of the GROUMiner detector.

For Experiment RUB and Experiment R, MuBenchPipe automatically filters poten-
tial hits, by matching findings to known misuses by file and method name. On the review
website, a reviewer sees the description of the known misuse as well as its fix, along with
the set of potential hits that need to be reviewed. For Experiment P, MuBenchPipe
shows all findings of the detector on the review site, each with the source code it is
located in.

The review website allows reviewers to save an assessment and comment for each find-
ing. It also ensures at least two reviews for each finding, before automatically computing
the experiment statistics, such as the precision, recall, and Kappa scores.

6.3. Reproducibility and Traceability

We publish MuBench3 and encourage others to use and contribute to the dataset and
the automated pipeline to conduct and repeat experiments and to extend the benchmark
itself. MuBench comes with a Docker4 container, which allows running reproducible
experiments across platforms, without the need to ensure a proper environment setup.

For legal reasons, we do not include source code or binaries of target projects in the
benchmark itself, but instead provide links to the respective version-control systems and
tooling that automates the retrieval of respective checkouts and their compilation. This
minimizes the effort to collect the dataset and ensures access to the exact same versions
of the projects. The results of checkout and compilation are stored locally, such that the
respective data remains available for subsequent use.

We provide binaries of the misuses detectors integrated into MuBench via our artifact
page. Like the target code, MuBench retrieves them automatically upon first use and
stores them locally for subsequent use. Multiple versions of a detector may be registered
to MuBench, each with a version id and (optionally) a tag. This provides access to the
specific detector versions used in a concrete experiment, even if the respective detectors
have meanwhile been updated.

MuBench’s review website—based on PHP and MySQL, such that it can be hosted
on any of-the-shelf webspace—facilitates independent reviews, even when researchers
work from different locations, while ensuring review integrity using PHP Basic Auth.
The website may directly be used as an artifact to publish review results and experiment
statistics. While reviews may not be completely reproducible, due to the subjectivity
of human reviewers, publishing the review details, including review comments justifying
the decisions, makes them at least traceable. All detector findings, review, and statistical
data may be exported from the review site in CSV format, for processing with other
tooling.

3https://github.com/stg-tud/MUBench/ (checked on Mar 20, 2018)
4 https://www.docker.com/ (checked on Dec 14, 2017)
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6.4. Limitations

A crucial step of any evaluation of an API-misuse detector is the verification whether
a particular finding correctly identifies an actual API misuse. While MuBench eases
reviews by providing a uniform representation of findings and pre-filtering potential hits
based on their location, it cannot fully automate this step. Full automation is indeed
impossible for Experiment P, because any finding might identify a previously unknown
misuse, such that automated verification would require an approach that can determine
for any given usage whether it is a misuse or not. If such an approach existed, it would
itself be the perfect misuse detector. For Experiment RUB and Experiment R we provide
MuBench with specifications of the known misuses and use the location information
from this specification to pre-filter potential hits. It may be possible to improve this
filtering using additional data. However, since all detectors use different representations
of API usage, patterns, and violations, there is no general way to decide for any misuse
detector whether one of its findings identifies a particular misuse, especially if both the
misuse and the detector’s output format are unknown in advance. Therefore, we can
only reduce the manual review effort, but not entirely eliminate it.

Considering that benchmarking experiments require the validation of detector findings
by human reviewers, their assessment might be subjective. To mitigate this problem, we
propose that at least two reviewers independently review each finding and discuss any
disagreements. Furthermore, with the MuBench review site, we provide a tool to easily
publish review results, including reviewer comments justifying decisions, which makes
assessments at least traceable, if not strictly reproducible.
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7. An Empirical Study of API-Misuse
Detectors

With MuBench, our benchmark for static API-misuse detectors, in place, we want
to empirically evaluate and compare the misuse detectors Jadet, GROUMiner, Ti-
kanga, and DMMC in the experiments described in Chapter 5. We run all experiments
on a MacBook Pro with an Intel Xeon @ 3.00GHz and 16GB of RAM. The full results
are available on our artifact page.1

7.1. Experiment P: Precision of the Detectors

Table 7.1 shows our precision results, based on reviewing the top-20 findings per detector
on each of our five sample projects. The second column shows the total number of
findings in the detectors’ top-20, 230 in total across all detectors. Note that all detectors
report less than 20 findings for some projects. The third column shows the confirmed
misuses after resolving disagreements, and the fourth column shows the precision with
respect to the reviewed findings. The fifth column shows the Kappa score for the
manual reviews, and the remaining columns show the frequencies of root causes for false
positives. We find that the precision of all detectors is extremely low. Tikanga shows
the best precision of only 11.4%. Jadet and DMMC follow immediately behind, with
a precision of 10.3% and 9.9%, respectively. GROUMiner reports only false positives
in its top-20 findings.

Obs.1: All detectors have extremely low precision (below 12%). On average, they
report less than 1.5 actual misuses in their top-20 findings.

The Kappa scores indicate high reviewer agreement, which shows that all detectors
produced mostly clear false positives. The score is a little lower for Tikanga, because
it reported one confirmed misuse twice, which one of the reviewers first accepted as
an actual hit while the other did not. The score is also lower for DMMC, because we
initially disagreed on several violations it identifies in Iterator usages that do not check
hasNext(), but the underlying collection’s size.

1Artifact Page: A Systematic Evaluation of Static API-Misuse Detection (http://www.st.informatik.
tu-darmstadt.de/artifacts/mustudy/)
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Table 7.1.: Experiment P: Precision of the Detectors on the Top-20 Findings on Five
Projects and Root Causes for False Positives.
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Jadet 39 4 10.3% 0.97 21 3 8 0 1 0 2
GROUMiner 66 0 0.0% 0.97 25 22 8 7 2 1 1
Tikanga 44 5 11.4% 0.93 18 7 7 0 7 0 0
DMMC 81 8 9.9% 0.91 9 19 18 19 4 4 0

Total 230 17 0.94 73 51 41 26 14 5 3

True Positives

Out of the 230 reported findings we reviewed, we confirm 17 true misuses. DMMC
reports 8 misuses of the Iterator API where hasNext() is not checked. Jadet reports 4
misuses that access a collection without previously checking its size. Also for collections,
Tikanga reports 4 misuses with a missing hasNext() and 1 misuse with a missing
size check. One misuse is reported by both Tikanga and Jadet and another by both
Tikanga and DMMC. Additionally, Jadet reports one misuse twice. This leaves a
total of 14 unique misuses in the detectors’ top-20 findings, all different from the known
misuses in MuBench. Interestingly, all these misuses are missing value/state conditions,
for which the detectors report only missing calls to methods that would be used in the
respective missing checks (i.e., misuses we accept as hits in our lenient review process).

Obs.2: All 14 confirmed misuses in Experiment P are missing value/state-condition
checks before accessing the elements of a collection, either directly or through an
iterator.

False Positives

To identify opportunities to improve the precision of misuse detectors, we systematically
investigate the root causes for the false positives they report. In the following, we discuss
these root causes summarized across all detectors, in order of their absolute frequency.
We label these root causes (FPN ).

Root Cause FP1: Uncommon-but-correct Usage. Particular usages may violate the
patterns that detectors learn from frequent usages, without violating actual API usage
constraints. Detectors cannot differentiate such infrequent usage from invalid usage.
For example, DMMC and Jadet learn that the methods getKey() and getValue()
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of MapEntry usually appear together in code. They both report violations if a call to
either of these method is missing, or, in case of Jadet, if the calls appear in a different
order. However, there is no requirement by the API to always call both getter methods,
let alone in a specific order. Across the reported violations we analyzed, the detectors
falsely report 42 missing method calls in cases where one out of a number of getter
methods is missing or invoked in a different order. Another example is that Jadet and
Tikanga learn that methods such as List.add() and Map.put() are usually invoked in
loops and report five missing loops for respective invocations outside a loop, which are
perfectly fine according to the API. Approaches such as multi-level patterns [SBAS15]
or Alattin’s alternative patterns [TX09a] may help to mitigate this problem. Also note
that the four detectors in our experiments all use absolute frequency thresholds, while
some of the detectors from our survey in Chapter 4 also used relative thresholds. Future
work should investigate how these two alternatives compare.

Obs.3: Particular usages may be uncommon without violating API constraints. Ne-
glecting this causes 73 (34.3%) of the detectors’ false positives in their top-20 findings.
This calls for research on detecting patterns without setting a hard threshold on oc-
currence frequencies. Meanwhile, relaxing requirements on the co-occurrence of getter
methods might reduce false positives significantly.

Root Cause FP2: Imprecise Analysis. The detectors use static analysis to determine
the facts that belong to a particular usage. Imprecisions of these analyses lead to false
positives. For example, the detectors mistakenly report five missing elements in code
that uses multiple aliases for the same object and another 17 in code with nested control
statements, where they fail to capture all calls belonging to a usage. GROUMiner
reports two missing method calls, because it cannot resolve the receiver type for chained
method calls, such as for m() in o.getX().m(), which is not generally possible from
source code alone. Therefore, GROUMiner fails to match a call between the pattern
and the usage. Another example is that the detectors report eight missing method
calls due to chained calls on a fluent API, such as StringBuilder, where their intra-
procedural analyses cannot determine that all calls actually happen on the same object.
Jadet, GROUMiner, and DMMC together report nine missing calls that happen
transitively in a helper method of the same class or through a wrapper object, such as a
BufferedStream. DMMC reports a missing call that is located in the enclosing method
of an anonymous class instance and a missing close() call on a parameter that is, by
contract, closed by the callers. Moreover, GROUMiner reports four missing conditions
that are checked by assertion helper methods. An inter-procedural detection strategy,
as proposed by PR-Miner [LZ05], could mitigate this problem.

Obs.4: Imprecisions of the detectors’ static analyses cause 51 (23.9%) of the false
positives in their top-20 findings. An inter-procedural detection strategy might be
able to eliminate 14 (6.6%) of these false positives.
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Root Cause FP3: Alternative Patterns. The detectors often learn a pattern and then
report instances of alternative usages as violations. We define alternative usages as a
different correct way to use an API, either to achieve the same or a different functionality.
When multiple alternatives occur frequently enough to induce patterns, the detectors
learn alternative patterns. For example, Jadet, Tikanga, and DMMC learn that
before a call to next() there should always be a call to hasNext() on an Iterator.
Consequently, they report 16 violations in usages that only pull the first element and
check either isEmpty() or size() on the underlying collection to ensure this element
exists. DMMC reports another violation, because isEmpty() is used instead of size()
before accessing a List. Another example is that Jadet, Tikanga, and DMMC learn
that collections are filled one element at a time, e.g., by calling add(), and report
10 missing methods in usages that populate a collection differently, e.g., through the
constructor or using addAll(). GROUMiner reports four usages where an alternative
control statement is used, e.g., a for instead of a while.

A special case of this root cause is alternatives to obtain an instance of a type. For
example, GROUMiner mistakenly reports two missing constructor calls where the in-
stance is not created through a constructor call as in the pattern, but returned from
a method call. Jadet and DMMC each report one missing constructor call where
an instance is not created, but received as a parameter. While handling alternative
patterns is an open problem, some tools such as Alattin already propose possible so-
lutions [TX09a].

Obs.5: A violation of one pattern might be an instance of another, alternative pattern.
Not considering this causes 41 (19.2%) of the detectors’ false positives in their top-20
findings.

Root Cause FP4: Cross-method Usage. Objects that are stored in fields are often
used across multiple methods of the field’s declaring class. The respective API usages
inside the individual methods might then deviate from usage patterns without being
actual misuses. Listing 7.1 shows an example of such a case, where two fields of type
Iterator, in and out, are used to implement the class NeighborIterator. When in

yields no more elements (Line 12), the call to next() in Line 14 happens on out without
a prior check whether it has more elements. While this appears to be a misuse of the
Iterator API inside the enclosing method, it is a correct usage inside the enclosing
class, since NeighborIterator itself implements Iterator and, thereby, inherits its
usage constraints. Correct usages of NeighborIterator need to check its hasNext()

method (Line 6) before calling its next() method (Line 11), which ensures that out has
more elements when next() is called on it. DMMC and GROUMiner report sixteen
violations for such usages of fields of a class.

A special case of this root cause is when a class uses part of its own API in its
implementation, for example, when a Collection calls its own add() method in the
implementation of its addAll() method. DMMC and GROUMiner report four such
violations. This is particularly interesting, because these are actually self usages of the
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1 class NeighborIterator implements Iterator<GraphNode> {

2 private final Iterator<DiGraphEdge> in = ...;

3 private final Iterator<DiGraphEdge> out = ...;

4

5 @Override

6 public boolean hasNext() {

7 return in.hasNext() || out.hasNext();

8 }

9

10 @Override

11 public GraphNode next() {

12 boolean isOut = !in.hasNext();

13 Iterator<DiGraphEdge> curIterator = isOut ? out : in;

14 DiGraphEdge s = curIterator.next();

15 return isOut ? s.getDestination() : s.getSource();

16 }

17

18 ...

19 }

Listing 7.1.: Correct Usages of Iterator Instances in the Closure Project that Violate
Usage Patterns.

API, while the detectors target client usages. Since any codebase likely contains such
self usages, detectors should consider this.

Obs.6: The implementation code of a class may contain partial usages of the class’
own API or fields. Such usages cause 26 (12.2%) of the detectors’ false positives in
their top-20 findings.

Root Cause FP5: Dependent Object States. When two objects’ states depend upon
each other, usages sometimes check the state of one and implicitly draw conclusions
about the state of the other. The detectors do not consider such inter-dependencies. For
example, when two collections are maintained in parallel, i.e., always have the same size,
it is sufficient to check the size of one of them before accessing either. The detectors
falsely report 14 missing size checks in such usages. In 10 of these cases, the equal
size is ensured by construction of the collections in the same method. In the remaining
four cases, it is ensured elsewhere in the same class. We consider this a dangerous
practice, because should the dependency between the collections ever change, it is easy
to miss some of the code that relies on it. Thus, warning developers might be justified.
Nevertheless, we count these cases as false positives, since the current usages are correct.

Obs.7: Semantic dependencies between objects’ states may implicitly ensure condi-
tions. Not considering such inter-dependencies causes 14 (6.6%) of the detectors’ false
positives in their top-20 findings.

Root Cause FP6: Call Multiplicity. The detectors cannot handle methods that may
be called arbitrarily often. GROUMiner and Jadet both learn a pattern where the
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Table 7.2.: Experiment RUB: Recall of the Isolated Detection Strategies and Root
Causes for Divergences.
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Jadet 19 15 29.7% 23.4% 0.76 4 4 1 0 3 2
GROUMiner 46 31 75.0% 48.4% 0.84 9 4 6 0 8 0
Tikanga 23 13 29.7% 20.3% 0.84 4 7 2 0 5 2
DMMC 40 15 26.6% 23.4% 0.85 5 0 0 2 5 0

Total 128 74 0.83 22 15 9 2 21 4

append() method of StringBuilder is called twice and falsely report three missing
method calls where it is called only once.

Obs.8: Detectors should distinguish methods that require a specific number of calls,
from methods that require one or more calls, and methods that may be called arbi-
trarily often. Not considering this causes 3 (1.4%) of the detectors’ false positives in
their top-20 findings.

Root Cause FP7: Bug. A few findings are likely caused by mistakes in the detector
implementations. DMMC reports four violations with an empty set of missing methods.
These empty sets are produced when none of the potentially missing methods match
DMMC’s prevalence criteria. DMMC should probably filter such empty-set findings
before reporting. GROUMiner reports one missing if that actually appears in all
respective usages, because its graph mapping does not match the respective if node
from one of the usages with the corresponding nodes of all the other usages.

7.2. Experiment RUB: Recall Upper Bound of the Detectors

We run all detectors to see which of the 64 known misuses from MuBench they can
detect when given the respective crafted correct usages for pattern mining. Table 7.2
shows the results per detector. The second and third column show the number of po-
tential hits and the number of actual hits, after resolving disagreements. The fourth
and fifth column show the detector’s conceptual and empirical upper bounds of recall,
respectively. The sixth column shows the Kappa score for the manual reviews. The re-
maining columns show the frequencies of root causes for divergences between a detector’s
conceptual capabilities from Table 4.1 and its actual findings in this experiment. Note
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that two detectors sometimes have the same root cause for their respective divergence
on the same misuse.

We find that GROUMiner has by far the best conceptual recall upper bound and
also shows the best empirical recall upper bound in Experiment RUB. This suggests
that its graph representation is a good choice to capture the differences between correct
usages and patterns. However, the gap between GROUMiner’s conceptual and empir-
ical upper bounds of recall is quite noticeable. Actually, Table 7.2 shows that all four
detectors fall considerably short of their conceptual recall upper bound in practice.

Generally, we observe two kinds of divergences between the actual findings and the
conceptual capabilities: Unexpected false negatives, i.e., misuses that a detector should be
able to detect, but does not, and unexpected hits, i.e., misuses that a detector supposedly
cannot detect, but does. We investigate the root causes of each divergence to identify
actionable ways to improve misuse detectors.

Obs.9: All detectors’ empirical upper bound of recall is much lower than their concep-
tual upper bound of recall and their findings frequently diverge from their conceptual
capabilities.

The Kappa scores indicate good reviewer agreement, albeit a little lower than in
Experiment P. Since we only reviewed potential hits, i.e., findings in the same method
as a known misuse, many potential hits were related to the known misuses. Consequently,
we had several disagreements on whether a particular potential hit actually identifies a
particular misuse. In total, we had 18 such disagreements (Jadet: 4; GROUMiner: 6;
DMMC: 5; Tikanga: 3), which led us to formulate the lenient review process described
in Section 5.3. We decided in favor of the detectors in eight of these cases. We observe
that the Kappa score is a little lower for Jadet, compared to the other detectors.
Since the absolute number of disagreements is comparable and Jadet had relatively
few potential hits, i.e., a small number of decisions as a basis for the Kappa score, we
attribute the lower score to chance.

Unexpected False Negatives

To identify opportunities to improve the recall of misuse detectors, we systematically
investigate the root causes for the false negatives they report. In the following, we discuss
these root causes summarized across all detectors, in order of their absolute frequency.
We label these root causes (FNN ).

Root Cause FN1: Imprecise Representation. Current usage representations are not
expressive enough to capture all details that are necessary to differentiate between mis-
uses and correct usages. For example, DMMC and GROUMiner encode methods by
their name only and, therefore, cannot detect a missing method call, when the usage
calls an overloaded version of the respective method. For example, assume that a pattern
requires a call to getBytes(String), but the target usage calls getBytes() instead. An
ideal misuse detector would still report a violation, since the expected method, with the
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1 writer.write(value);

1 try {

2 writer.write(value);

3 } finally {

4 if (writer != null)

5 writer.close();

6 }

Listing 7.2.: Not Closing Writer vs. Correctly Closing Writer.

correct parameters, is not called. However, since only the method name is used for
comparison in both these detectors, such a violation is not detected. Another example
is that, to use a Cipher instance for decryption, it must be in decrypt mode. This state
condition is ensured by passing the constant Cipher.DECRYPT to the Cipher’s init()

method. None of the detectors captures this way of ensuring that the condition holds,
because they do not encode method-call arguments in their representations.

Obs.10: Inability to capture details necessary to differentiate misuses from correct
usages in the usage representation is responsible for 22 (45.8%) of the unexpected false
negatives.

Root Cause FN2: Imprecise Pattern Matching. The detectors fail to relate a pattern
and a usage. Typically, detectors relate patterns and usages by their common facts. If
there are no or only few common facts, detectors report no violation. For example, Ja-
det’s facts are pairs of method calls. In a scenario where JFrame’s setPreferredSize()
method is accidentally called after its pack() method, Jadet represents the usage with a
pair (pack, setPreferredSize) and the pattern with the reverse pair. Since it compares
facts by equality, Jadet finds no relation between the pattern and the usage. Without
common facts between a usage and a pattern, the detector assumes that these are two
completely unrelated pieces of code and does not report a violation. Another example is
when the pattern’s facts relate to a type, e.g., List in List.size(), while the usage’s
facts relate to a super- or sub-type such as ArrayList.size() or Collection.size().
The detectors cannot relate these facts, since they are unaware of the type hierarchy.
Also, Tikanga misses four misuses, because the target misses more than two formulae
of the pattern (Tikanga’s maximum distance for matching). For example, Listing 7.2
shows a misuse that does not close a Writer and the corresponding correct usage. In Ti-
kanga’s representation, the difference between the misuse and the correct usage consists
of three formulae: (1) that close() follows write() in case of normal execution, (2) that
close() follows write() if the latter throws an exception, and (3) that close() is
preceded by a null check.

Obs.11: When matching patterns and misuses, detectors should consider the semantics
of their representation, e.g., call order and the number of usage facts generated by
adding specific usage constructs, as well as code semantics, e.g., subtype relations.
Neglecting this is responsible for 15 (31.3%) of the unexpected false negatives.
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1 ArrayList markers;

2 if (layer == Layer.FOREGROUND) {

3 markers = (ArrayList) this.fgMarkers.get(index);

4 }

5 else {

6 markers = (ArrayList) this.bgMarkers.get(index);

7 }

8 // if (markers != null) { // <-- missing in misuse

9 boolean removed = markers.remove(marker);

10 // }

Listing 7.3.: Example of an Analysis Problem of GROUMiner.

Root Cause FN3: Imprecise Analysis. The detectors rely on static analysis to extract
their usage representations. Imprecisions in these analyses may obscure relations be-
tween patterns and usages. For example, GROUMiner fails to detect one missing null

check, because it cannot determine the receiver type for chained calls, such as for m()

in o.getX().m(), which is not generally possible from source code alone. Also, it fails
to detect another four missing null checks, because it overlooks dataflow dependencies.
Listing 7.3 shows such a case. In addition to the null check, GROUMiner also misses
the dataflow from the get() calls to the remove() call in the misuse, which makes the
pattern and usage differ by multiple facts. GROUMiner, however, only reports a vio-
lation if the difference is a single fact. Tikanga misses a call that occurs in the correct
usage in one case and fails to capture the call order between two calls from the correct
usage in another case. We assume that the cause is a limitation of its analysis, but could
not ultimately verify this, because the tool’s developer is not available to confirm the
implementation details.

Obs.12: Imprecision of the analysis, which obscures the relation between patterns and
misuses, causes nine (18.8%) of the unexpected false negatives.

Root Cause FN4: Bug. DMMC skips the comparison of a usage and a pattern if the
pattern contains fewer calls than the usage, presumably to improve performance. The
pattern for AuthState from Apache’s HTTPClient, for instance, requires three calls,
of which the misuse scenario misses one. However, if this misuse has an additional,
optional call that is not in the pattern, DMMC skips the comparison since now both
the pattern and the target each contain three calls. This causes two unexpected false
negatives in our experiment.

Unexpected Hits

We find that the detectors identify some misuses that we did not expect them to find,
according to their conceptual capabilities (see Chapter 4). We systematically investigate
the root causes for these unexpected hits. In the following, we discuss these root causes.
We label them (UHN ).
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JFrame.new

JFrame.setVisible()

public static void main(String[] args) {
    SwingUtilities.invokeLater(new Runnable() {
        public void run() {
            JFrame f = new JFrame("Main Window");
            // add components...
            f.setVisible(true);
        }
    });
}

Runnable.new

SwingUtilities.invokeLater()
Action

Dependency
Missing

Missing

Figure 7.1.: Code and GROUM of a Usage That Instantiates a swing Component (on
the Event Dispatching Thread).

1 writer.write(value);

2 writer.close();

1 try {

2 writer.write(value);

3 } finally {

4 writer.close();

5 }

Listing 7.4.: Closing Writer Without and With Exception Handling.

Root Cause UH1: Lenient Review Process. In all but two cases, the reason for un-
expected hits is our lenient review process described in Section 5.3. In most cases, the
detectors report a missing call that indicates a missing condition check. The only other
case is that GROUMiner detects a missing context condition, in a scenario where some
swing code is required to run on the Event Dispatching Thread (EDT). The delega-
tion to the EDT is implemented by wrapping the code in an anonymous instance of
Runnable, as shown in Figure 7.1. GROUMiner considers the code in run() as part
of code of the enclosing method. Consequently, it suggests the misuse by reporting a
missing instantiation of Runnable before the instantiation of the JFrame.

Obs.13: Missing method calls may indicate missing condition checks. Detectors that
report these missing calls, despite not reporting the exact condition, find violations
outside of their conceptual capabilities.

Root Cause UH2: Capturing Exception Handling. In the remaining two cases, Ja-
det and Tikanga correctly report missing exception handling. For example, Listing 7.4
(left) shows a misuse where close() is not called when write() throws an exception.
A corresponding correct usage is shown on the right. Tikanga and Jadet both repre-
sent the correct usage with two facts {(write, close), (write:EXC, close)}, effectively
encoding that close() is called after write() in normal execution and in case of an
exception. In the misuse, they find the second fact missing. This capability of the
implementations is not mentioned in the respective publications.
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Table 7.3.: Experiment R: Recall of the Detectors on MuBench and the New Misuses
from Experiment P.
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GROUMiner 4 0 0.0% 1.00
Tikanga 9 7 13.2% 1.00
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Total 42 21 0.97
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11
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Figure 7.2.: Recall of the Detectors in Experiment R

7.3. Experiment R: Recall of the Detectors

In Experiment R, we run all detectors to assess their recall when using their own pattern
mining. To MuBench’s 64 misuses we add the 14 new misuses from Experiment P and
exclude the 25 hand-crafted examples for which there is no project code to mine patterns
from. This leaves us with 53 misuses for Experiment R.

In total, the detectors report 18,384 findings on all projects. Due to the automated
filtering for potential hits based on the finding location, we have to review only 62 (0.3%)
of these findings to determine the detectors’ recall in Experiment R. This shows that
MuBench drastically reduces the review effort required to measure recall, which makes
our experiment practically feasible at all.

Table 7.3 shows the results of Experiment R and Figure 7.2 visualizes the recall. Ja-
det finds only the three misuses it already identified in Experiment P. GROUMiner
does not find any of the misuses. Tikanga finds the five misuses it already identified
in Experiment P, one of the misuses that DMMC identified in Experiment P, and one
of the misuses that Jadet identified in Experiment P. DMMC finds two misuses from
MuBench (both missing method calls), the eight misuses it reported in Experiment P,
and one misuse both Jadet and Tikanga reported in Experiment P.
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DMMC shows by far the best recall in Experiment R. This suggests that its relatively
simple detection strategy works well when focusing on missing method calls. However,
the recall of all detectors in the real setting offered by Experiment R is low. Analyzing
the root causes for their bad performance, we identify two general problems with the
design of the detectors and their evaluation setting.

Problem 1: Poor Ranking. While Experiment R shows that the detectors identify
more misuses beyond their top-20 findings, they, unfortunately, rank those very low.
For example, the two MuBench misuses DMMC finds are ranked 309 and 613. This
is far beyond the number of findings that we can reasonably expect a user to assess.
The four detectors in our experiments all use different ranking strategies, but none of
the detectors from our survey in Chapter 4 compared different strategies on the same
detector.

Obs.14: Detectors need better ranking strategies to report true positives within their
top findings. Furthermore, researchers should compare alternative ranking strategies
for single detectors.

Problem 2: Lack of Usage Examples. The huge difference in the detectors’ perfor-
mance between Experiment RUB and Experiment R suggests that the cause may be a
shortage of correct usage examples in the target projects. One possibility is that the
number of such examples is smaller than the detectors’ minimal support for pattern
mining, in which case we could simply lower these thresholds. However, this would
likely also increase the number of false positives as the mined patterns generally be-
come less reliable, which underlines the need to effectively filter false positives (Obs.1)
and improve ranking (Obs.14). Another possibility is that no, or only very few, such
examples exist in the projects. This would be a general problem with the evaluation
setting of misuse detectors. To solve it, we need additional sources of usage examples
to mine patterns from. Gruska et al. [GWZ10] demonstrated one possible approach
by applying Jadet in a multi-project setting with 6,000 projects, but did not measure
recall. Other recommender systems for software engineering, such as code-completion
engines [PLM15], work cross project, i.e., they learn from a large number projects to pro-
vide recommendations for other projects. The misuse detectors CAR-Miner [TX09b]
and Alattin [TX09a] implement an alternative approach, by specifically searching for
usage examples of the APIs used in the target project via a code-search engine. Related
to this, other lines of research proposed code-search engines to find usage examples in
open source projects [GFX+10, MGP+11] or on StackOverflow [PBDP+14].

Obs.15: All detectors have low recall, likely due to lack of correct usage examples in
target projects. Adoption of existing code-search techniques and cross-project mining
could mitigate this problem.

The Kappa scores indicate mostly perfect reviewer agreement in Experiment R. This
is because the detectors found almost exclusively the misuses that one of them also
identified in Experiment P, i.e., the misuses we already agreed on before. The exception
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Table 7.4.: JCA Misuses Identified by the Detectors in Experiment RUB

Identified by

Total Jadet GROUMiner Tikanga DMMC Any

JCA Misuses 22 2 (9.1%) 2 (9.1%) 1 (4.5%) 1 (4.5%) 3 (13.6%)

is DMMC, where we initially disagreed on one of its 14 potential hits for misuses from
the original MuBench dataset.

7.4. Vulnerability Detection

We are particularly interested in whether the misuse detectors identify the misuses of the
Java Cryptograph Architecture (JCA) APIs, because our study in Section 2.4 suggests
that these are prevalent and rarely fixed, possibly because they do not cause spurious
behavior. We have 22 JCA misuses in compilable project versions of our ground-truth
dataset. Among these we find 15 security vulnerabilities: eight cases specify an insecure
algorithm,2 five cases rely on a potentially insecure default configuration, and two cases
hard-code the cryptographic key. The remaining seven cases have some functional defect
that may cause an exception or data loss.

Table 7.4 shows how many of the JCA misuses each of the detectors identifies in
Experiment RUB. Each individual detector identifies at most two of the misuses and
even together they identify only three of them: A missing reinitialization call, a missing
exception handling in case of an invalid cryptographic key being supplied, and a resources
leak (missing call to close()) that may cause loss of encrypted data. All three misuses
cause spurious behavior (exceptions or data loss), rather than security vulnerabilities.
This indicates that current misuses detectors are not particularly good at identifying
JCA vulnerabilities.

Looking at the concrete misuses, we find that this is actually unsurprising, since
all vulnerabilities manifest in illegal parameter values, either in the string parameter
passed to Cipher.getInstance() (insecure algorithm or algorithm configuration) or
in the algorithm’s parameters (e.g., a hard-coded cryptographic key). While we might
generally design misuse detectors that consider parameter values, we find that the design
of the Cipher API poses four particular challenges:

First, the algorithm configuration is passed to getInstance() in a single string pa-
rameter, which encodes the algorithm name, the algorithm mode, and the algorithm
padding to use for encryption, separated by slashes, e.g., "AES/CBC/PKCS5Padding".
The second and third part may be omitted, in which case a default configuration is

2In five cases (62.5%) it is the DES algorithm. We hypothesize that a major factor for the prevalence
of this particular mistake might be that the official Android developer documentation contains an
example of using Cipher with DES:
https://developer.android.com/reference/javax/crypto/Cipher.html (checked on Jul 18, 2017)
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used. This makes it difficult for a misuse detector to learn about safe and unsafe config-
urations, except through memorizing all respective values. For example, without special
knowledge about how to parse configuration strings, detectors cannot abstract that both
"DES" and "DES/ECB" are insecure for the same reason, i.e., the insecure DES algorithm.

Second, static API-misuse detectors generally assume that Liskov’s Substitution Prin-
ciple [Lis87] holds, i.e., that all instances of the same static type behave the same.
Consequently, they assume that a valid usage of one instance of a type is also a valid
usage for any other instance of the same type. This assumption does not hold for the
Cipher API:

1. The JCA uses the provider pattern, i.e., calls to Cipher.getInstance() are del-
egated to some provider entity, which is responsible for instantiating a respective
Cipher instance. The concrete provider may change depending on the system or
application configuration. While the JCA requires all providers to supply certain
algorithms, they may supply additional algorithms. Hence, whether a particu-
lar algorithm is available may depend on the concrete provider, which may be
unknown statically.

2. Valid algorithm configurations depend on the provider as well. For example, with
the BouncyCastle provider,3 "RSA/None/..." is a valid configuration. Since the
RSA algorithm does not use an algorithm mode, the provider expects usages to
specify None as the mode. The Java default provider, however, expects respective
usages to specify ECB as the mode. Either provider throws an exception, if the
respective other value is passed.

3. How an instance of Cipher behaves depends on the algorithm it was created with.
For example, while the RSA algorithm expects a PublicKey instance for initializa-
tion, the AES algorithm expects a SecretKey instance and a random initialization
vector. This means that part of the string parameter to getInstance() effectively
determines the behavioral type of the respective Cipher instance. Interestingly,
both the BouncyCastle and the Java default provider implement the different
algorithms as individual subtypes of Cipher. Thus, the runtime type of a Cipher

instances uniquely identifies its behavioral type.

Third, what can be considered secure usage of the JCA changes over time, since what
was considered secure encryption 20 years ago might not be considered secure anymore.
This is quite different compared to functional aspects of APIs, where a correct usages
remains correct, unless one migrates to another version of the API.

Fourth, it seems likely that we cannot learn about the correct usage of JCA APIs
from client code. Egele et al. [EBFK13] report that 88% of all Android apps misuse
cryptographic APIs. We find a comparably high fraction of GitHub project (73.1%) does
the same (see Section 2.4). This suggests that for the JCA API the general assumption
that frequently reoccurring usages correspond to correct usages might not hold.

3http://www.bouncycastle.org (checked on Nov 02, 2017)
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Considering these particular challenges, most of which are specific to the JCA APIs,
we deem it unlikely that general API-misuse detectors can be adapted to reliably identify
misuses of the JCA APIs that cause security vulnerabilities.

7.5. User Experience

We now report on our experiences as users of our subject misuse detectors. Our obser-
vations are based on the experience we gained while reviewing the detectors’ findings in
our experiments.

DMMC simply reports present and missing method calls, along with the source line
number of the first present call. We find this output generally easy to interpret. The
line number helps, especially, to locate usages in large methods. GROUMiner reports
pattern and usage graphs, which are more difficult to understand. However, we find that
the structural properties of the source code that the graph representation captures help
with the interpretation. Jadet and Tikanga report the present and missing facts of
their respective representations. We find that it is often difficult to relate the facts to
each other, especially in the presence of multiple usages of the same API. This might
be, in part, due to the textual representation we look at. While none of the detector
implementations was intended to present their findings to end users, we still find it
interesting to note that the challenge of explaining findings seems to correlate with the
distance between the source code and the usage representation.

We also find that Bytecode-based detectors may report findings in code that the
compiler introduces. For example, the compiler translates foreach loops into Iterator

usages. Tikanga reports a missing call in such a usage, i.e., it reports a missing call on
Iterator in a method where Iterator does not appear in the source code. This finding
confused us at first. While additional steps could be taken to assist the user in mapping
such findings back to the source code, source-based detectors do not face this problem.

Our lenient review process shows that missing method calls frequently indicate missing
conditions ( Obs.2 and Obs.13). While such findings do not report the entire problem,
we found it relatively easy to deduce their meaning. Contrarily, GROUMiner reports
only a missing if node, when it captures a missing condition. While these findings more
explicitly indicate the problem of a missing check, we feel that they are actually harder
to act upon, because they give no information about what should be checked. This
indicates a gap between a detector’s capability to identify a violation and its ability to
explain this violation to users.

Above all, we believe that the detectors’ precision is likely to be the biggest threat to
their applicability in practice. As a previous studies show, large numbers of false positives
are a major barrier in the adoption of code analysis tools [FLL+02, BBC+10, JS13].
This problem is made worse by the low recall of the detectors, which implies that even
if developers would take the time to review all reported warnings, they would still likely
miss the vast majority of misuses.
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7.6. Call to Action

We find that misuse detectors are practically capable of detecting a considerable part
of the misuses in MuBench, when provided with the correct usages to compare to
(Experiment RUB). However, even though the detectors are also capable of finding
some misuses in a realistic setting (Experiment P and Experiment R), they suffer from
extremely low precision (Obs.1) and recall (Obs.15). We identify four root causes for
false negatives, seven root causes for false positives, and two general problems with
the design of detectors and how they are typically evaluated. This leads us to several
observations on how to advance the state of the art in API-misuse detection. Therefore,
we call researchers to action:

• We first need a precise definition of API usages, considering usage properties, such
as the usage location (Obs.6) and call multiplicities (Obs.8).

• We need a representation of such usages that captures all code details necessary
to distinguish correct usages from misuses (Obs.10) and more precise analyses to
identify usages in code (Obs.4 and Obs.12).

• We need detectors that retrieve sufficiently many usage examples using project-
external sources, such as large project sets or code-search engines (Obs.15).

• We need detectors that go beyond the naive assumption that a deviation from
the most-frequent usage corresponds to a misuse (Obs.3), but consider program
semantics, such as type hierarchies (Obs.11) and implicit dependencies between
objects (Obs.7). We hypothesize that probabilistic models might be a way to
tackle this problem.

• We need strategies to properly match patterns and usages in the presence of vio-
lations (Obs.9 and Obs.11).

• We need strategies to properly handle alternative patterns for the same API
(Obs.5).

• Finally, we need good ranking strategies, to reduce the cost of reviewing find-
ings (Obs.14).

In order to achieve all this, we need repeatable and replicable studies that enable
systematic evaluation and analysis of alternative approaches and strategies. We publish
MuBench,4 as a foundation for such work, and call researchers to use and contribute
to our automated benchmark, to advance the state of the art in API-misuse detection.

4https://github.com/stg-tud/MUBench/ (checked on Mar 20, 2018)
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7.7. Threats to Validity

7.7. Threats to Validity

Construct Validity Our study focuses on static misuse detectors. Approaches based on
dynamic analyses may perform differently and have unique strengths and weaknesses. To
enable dynamic analyses of the project versions in MuBench, we would have to ensure
that the respective code is executable (which requires a sufficient runtime environment, in
addition to compile time dependencies) and to provide example inputs for the execution.
It is unclear how to do this such that it results in a fair comparison of both static and
dynamic techniques, without resorting to comparing apples to oranges. Therefore, we
chose to focus only on static approaches.

Our experiments focus on detectors that detect misuses in Java code. Therefore, the
results may not generalize to detectors for other languages. We decided to focus on
this subset of detectors, because the majority of approaches we identified in our survey
targets Java. To include detectors that target other languages, we would have to either
migrate them to Java or build up additional datasets for the respective languages, either
of which is outside the scope of this thesis.

We could not obtain working implementations of all detectors that target Java, since
the original prototypes of Alattin [TX09a] and CAR-Miner [TX09b] are no longer
operational. Therefore, we excluded these detectors from our experiments. Since they
are the only to obtain evidence about correct usage from a code-search engine, as opposed
to from the target project, our results might not generalize to them. To allow future
work to include these detectors (and others) in the comparison, we publish MuBench5

and all review data from this study.6

Any detector’s performance is dependent on its configuration. It is possible that the
detectors we compared perform better on our benchmark, given a different configuration.
Due to the high effort of reviewing the findings of multiple detectors, we could not try
different configurations for each detector. To give each detector a fair chance, we used
the optimal configurations reported in the respective publications.

Internal Validity Reviewing the detectors’ findings was done by the author of this the-
sis and two colleagues and was not blind (i.e., we knew the detectors we were reviewing
findings for). We could not blind reviews, because each approach has a distinct rep-
resentation of usages and violations that cannot be anonymized. Moreover, one of the
colleagues is among the original authors of GROUMiner. We did our best to review
objectively. To avoid bias, at least two reviewers independently looked at every find-
ing. For the findings of GROUMiner, at least one of these reviewers was not involved
in the original work. Judging from the comparably bad performance of GROUMiner
in Experiment P and 3, we are convinced that we did not favor this detector over the
others.

While we did ask the original authors to confirm our assessment of the conceptual
capabilities of their tools (see Chapter 4), we did not ask them to confirm the em-

5https://github.com/stg-tud/MUBench/ (checked on Mar 20, 2018)
6Artifact Page: A Systematic Evaluation of Static API-Misuse Detection (http://www.st.informatik.
tu-darmstadt.de/artifacts/mustudy/)
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7. An Empirical Study of API-Misuse Detectors

pirical results of our experiments. We estimate that, including discussions to resolve
disagreements, it required each reviewer on average 2 minutes to verify whether a de-
tector identified one of the known misuses in Experiment RUB and 3 and 5 minutes to
verify whether a detector’s finding identifies an actual misuse in Experiment P, where
we needed to understand the respective code, check documentation, and sometimes also
look into transitively called methods. This amounts to 24.8 hours of review effort per
reviewer, 4 hours for Jadet, 7.2 hours for GROUMiner, 4.7 hours for Tikanga, and
8.9 hours for DMMC. We decided it is unreasonable to expect the original authors to
invest this amount of time in verifying our assessments. We do, however, publish all our
review data7 to allow them and others to revisit our decisions.

External Validity The study is subject to the limitations of MuBench, as discussed
in Section 5.6 and Section 6.4.

We publish MuBench8 and encourage others to extend the benchmark dataset and
repeat our experiments, also with other detectors and detector configurations.

7See footnote 6.
8See footnote 5.
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We design MuBench as an extensible automated benchmark, to facilitate not only our
own study of API-misuse detectors presented in Chapter 7, but also future work. As
the most important extension points we consider (1) extensions to the benchmarking
dataset, to increase our confidence in the generalizability of the benchmarking results,
and (2) integrating additional misuse detectors, to move further towards a comprehensive
comparison of existing approaches. In this chapter, we discuss examples of respective
work by others and ourselves.

8.1. Dataset Extensions

The benchmark dataset forms the basis for all benchmarking experiments. The represen-
tativeness of the software projects it contains as well as of the known misuses examples
it refers to are crucial to the generalizability of benchmarking results. Though ideally a
benchmark dataset is a minimal representative sample, to the best of our knowledge, it is
unclear how such a sample may be determined. Therefore, the best way to approximate
representativeness is to extend the dataset by additional projects and further examples
of API misuses as they occur in real-world projects and as developer face them in their
day-to-day work. In this section, we discuss examples of how we extended the bench-
marking dataset. Table 8.1 summarizes these extensions. For further technical details
on how to extend MuBench, we refer to the project website.1

1https://github.com/stg-tud/MUBench/ (checked on Mar 20, 2018)

Table 8.1.: MuBench Dataset Extensions by Source, with the Number of Projects (#P),
the Number of Project Versions (#PV), and the Number of Misuses (#M).

Source #P #PV #M

Runtime-Verification Study (Section 8.1.1) 13 18 77
Misuse-Detector Evaluations (Section 8.1.2) 2 2 5
Java 8 Misuse Repository (Section 8.1.3) 0 0 5
Original Misuse Collection (Section 8.1.4) 9 9 20

Total 24 29 107
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8.1.1. Misuses from a Runtime-Verification Study

Runtime verification of API specifications identifies misuses by monitoring executions
against formal specifications. The quality of the verification naturally depends on the
quality of the specifications. Legunsen et al. [LHX+16] studied the precision of run-
time verification for misuse detection, using a set of 182 manually written specifica-
tions [LJMR12] and 17 automatically mined specifications [PG09] for APIs from the
Java Class Library. Using these specifications, they applied the runtime verifier
JavaMOP [JMLR12] to the 200 most-popular GitHub projects that use Maven for
build automation, have at least on test, and have all tests passing with and without
JavaMOP monitoring. Subsequently, they reviewed 852 (13.3%) of the reported viola-
tions and submitted bug reports with fixes, i.e., pull requests, for the 114 violations that
they found to be potential bugs.

Integrating these true-positive findings into MuBench is interesting in two ways:
First, it gives us additional examples of known misuses to evaluate the recall of mis-
use detectors. Second, it enables an empirically assessment of the fraction of misuses
identifiable through runtime verification that can also be detected by static API-misuse
detectors, allowing for a limited comparison of the recall of both static and dynamic
detectors.

Legunsen et al.’s artifact page2 lists 114 potential misuses with corresponding pull
requests. To reduce the manual effort of adding the misuses examples to MuBench, we
partly automated the process. The artifact page provides a list of the misuses in CSV
format. For each misuse, the list names the specification that the misuse violates and the
respective pull request URL. From the specification, we infer the API that is misused
and whether the misuse causes a crash. From the pull request, we programmatically
retrieve additional misuse metadata, via the GitHUB API3. We capture the respective
project’s name and repository URL, the commit Id of the project version immediately
before the fix was accepted, the problem and fix description, the fix changeset, and the
file location of the misuse. We also check whether the pull request has been accepted by
the project’s developers and filter misuses for which this is not the case. This leaves us
with 86 misuses with metadata. We store this data according to the schema presented
in Section 6.1.

Afterwards, we manually reviewed each misuse, to validate the data and to add the
method location, which we could not automatically determine. We also hand-craft re-
spective examples of correct usage, following the same process as in Section 5.2. This
manual review revealed that some of the misuses are duplicates. JavaMOP analyzes
both the target project’s own code as well as the code of its dependencies. If it identifies
a misuse in a dependency and that dependency is shared by multiple target projects, the
misuse is reported once for each target project. This happens, for example, for misuses
identified in the TestNG project. We exclude all 15 respective duplicates. At the same
time, we found that in two cases the pull request fixes additional instances of a mis-
use, which JavaMOP did not identify. We include all 6 respective misuses as separate

2 http://fsl.cs.illinois.edu/spec-eval/ (checked on Dec 15, 2017)
3 https://developer.github.com/v3/ (checked on Mar 17, 2018)

102

https://web.archive.org/web/20171215115654/http://fsl.cs.illinois.edu/spec-eval/
https://web.archive.org/web/20180317035254/https://developer.github.com/v3/


8.1. Dataset Extensions

misuses. This leaves us with a total of 77 confirmed misuse instances for inclusion in
MuBench.

Finally, to include the misuse in MuBench, we need compile instructions for the
respective project versions. Since all projects use Maven for their build configuration, we
assumed the respective default paths for source and classes files and used the command
mvn compile for compilation. This was sufficient to compile all-but-two project versions;
one compilation failed due to an underspecified dependency version and one due to a
file encoding issue. Both problems were easily fixed, which gave us compilable project
versions for all confirmed misuses.

Overall, this process resulted in a dataset extension of 77 misuses from 18 versions of 13
projects. One of these projects, namely JodaTime, was already part of the benchmark
dataset. It took the author of this thesis and a student assistant less than one week
to build this dataset extension, which more than doubled the dataset, in terms of the
number of known misuses. We are grateful to Legunsen et al. for publishing their dataset,
which enabled this extension of MuBench.

8.1.2. Misuses from Previous Evaluations of Misuse Detectors

For the cross-comparison of misuse detectors, it is interesting to extend MuBench by
misuses that detectors identified in previous evaluations, like we added the confirmed
misuses from Experiment P for Experiment R (see Section 7.3). Unfortunately, the
publications we identified in our survey in Chapter 4 do not report lists of the respec-
tive true-positive findings. However, we noticed that Pradel et al. [PJAG12] verified
whether their detector PJAG12 identifies the true-positive findings of the misuse detec-
tors GROUMiner [NNP+09b] and Tikanga [WZ11]. Therefore, we contacted Michael
Pradel about the respective misuse data, which he promptly provided.

Overall, GROUMiner and Tikanga identified 19 true positives in eight projects.
We excluded three projects, because the source code of the respective project versions
is no longer available. We exclude two more projects, because we can neither compile
them following the process described in Section 5.2 nor obtain binaries for the respective
project versions. We exclude another project, because we cannot locate the single misuse
it contains. This leaves us with two projects containing five true-positive findings for
inclusion in MuBench. We added the respective data manually.

We observe that this attempt to extend MuBench was of little success mainly due to
the unavailability of original evaluation data. In our eyes, this stresses the importance
of building and maintaining public benchmarks like MuBench.

8.1.3. Java 8 Misuses

The evolution of programming languages certainly impacts the problem of API misuse.
For example, the introduction of the foreach loop with Java 5 gave developers a language
construct that ensures correct iteration of collections, i.e., correct usage of the Iterator

API. Similarity, the introduction of the try-with-resources statement with Java 7 gave
developers a language construct that ensures correct closing of IO streams.
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Conversely, new language versions often introduce new APIs to the Java Class Li-
brary, which may be misused. For example, Java 8 introduced the Optional API as an
alternative to using null for the representation of absent values. While this potentially
reduces the need for null checks, developers might, in turn, misuse the Optional API,
e.g., by omitting checks on Optional.isPresent(). Java 8 also introduced the Stream

API to extend the language by elements of the functional-programming paradigm. Many
of the methods of this API, such as filter() or map(), have lazy-evaluation seman-
tics, i.e., invoking them does not actually perform the respective operation. Instead,
the operation is deferred until a subsequent terminal operation, e.g., until iterating over
the elements in the stream. Developers might misuses the Stream API, e.g., by omit-
ting a terminal operation. Alimenkou et al. maintain a repository of such Java 8 mis-
uses,4 which they identified during code reviews. In this repository, we find compilable,
hand-crafted examples of five Java-8-API misuses with explanations and corresponding
examples of correct usage. We add all of them to MuBench.

8.1.4. Misuse from the Original Misuse Collection

When we created the original MuBench dataset from the misuse examples we collected
in Chapter 2, we had to exclude 50% of project versions due compile errors or missing
dependencies that we could not resolve within the time limit we gave us per project
version. Excluding such a large fraction of the projects might bias the dataset. Therefore,
we invested additional time on compiling project versions. We succeeded for nine project
versions, which adds 20 further misuses to the set of misuses available for benchmarking
experiments.

8.2. Comparison to Further Detectors

To achieve a broad empirical comparison of state-of-the-art misuse detectors, it is crucial
that we integrate further detectors into the benchmark. To make this easy, MuBench-
Pipe provides a small Java framework, which simplifies the implementation of MuBench
runners, i.e., adapters for the integration of existing detectors into MuBench (see Sec-
tion 6.2). The framework handles the entire communication with MuBenchPipe, such
that runners need only pass the experiment input data to the detector and return a list
of its findings. For convenience, we provide the framework as a Maven dependency.
For further technical details on how to integrate detectors into MuBench, we refer to
the project website.5 In this section, we discuss examples of integrating detectors and
present respective benchmarking results.

4https://github.com/xpinjection/java8-misuses (checked on Mar 20, 2018)
5https://github.com/stg-tud/MUBench/ (checked on Mar 20, 2018)
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8.2. Comparison to Further Detectors

Table 8.2.: Precision of FindBugs Compared to API-Misuse Detectors.
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Jadet 39 4 10.3% 0.97
GROUMiner 66 0 0.0% 0.97
Tikanga 44 5 11.4% 0.93
DMMC 81 8 9.9% 0.91
FindBugs 82 43 52.4% 0.83

8.2.1. A Study of Using FindBugs for Misuse Detection

FindBugs is a popular6 Open Source static code analyzer created by Hovemeyer and
Pugh [HP04]. The tool detects possible bugs in Java Bytecode, using a set of predefined
bug patterns, which are matched to the target code by dedicated static analyses. The
patterns are classified into four categories of severity, namely scariest, scary, troubling,
and of concern, and the tools’ findings are ranked according to this discrete scale.

While FindBugs does not implement general techniques to identify particular types
of misuses, say, missing method calls, it contains bug patterns that identify misuses for
specific APIs. For example, one pattern identifies misuses that leave IO streams open
(missing call to close()) and another pattern identifies misuses that invoke a Swing
UI method outside the UI thread (missing context condition). To determine which of
FindBugs’ bug patterns identify API misuses, the author of this thesis and one student
independently reviewed all 424 FindBugs bug patterns.7 Subsequently, they discussed
each pattern that they disagreed on, until an agreement was reached. The process led
to a list of 164 bug patterns that identify API misuses.

Since FindBugs apparently searches for many API misuses, we want to compare its
capabilities to state-of-the-art API-misuse detectors. Therefore, a student implemented
a MuBench runner to integrate FindBugs into the benchmark.8 Before developing the
runner, the student was completely unfamiliar with both MuBench’s runner framework
and FindBugs. It took him approximately four days to complete the task. This enables
us to compare FindBugs’ detection capabilities with state-of-the-art misuse detectors,
using the setup described in Chapter 5.
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Precision of FindBugs

We first apply FindBugs to the five target projects for Experiment P, to determine
its precision. We assess the top-20 findings of the tool, following the review process
described in Section 5.3. Table 8.2 shows that FindBugs reaches a precision of 52.4%
in this experiment, which is significantly better than the other detectors.

In total, FindBugs identifies 43 true positives among its top-20 findings. The largest
category of findings (eleven findings) identifies missing or redundant null checks. Find-
Bugs identifies these based on present null checks within a method that do not guard
all usages of the checked variable. The second-largest category (ten findings) identifies
usages that ignore a signal return value. For example, when creating directories through
File.mkdirs(), on should check the return value, which indicates whether all directories
where successfully created. Further categories of findings identify usages that perform
string concatenation in a loop using the + operator instead of a StringBuilder (five
findings), usages of that invoke the constructors of primitive-type object wrapper classes
instead of the more-efficient valueOf() methods (four findings), usages that compare
strings using the == operator instead of the equals() method (three findings), and
usages that suppress all exceptions (three findings).

Conversely, FindBugs report 39 false positives among its top-20 findings. Most false
positives (33 findings) are caused by limitations of FindBugs’ static code analysis,
e.g., because the tool does not analyze transitively called methods or because it over-
approximates statement reachability. Another two false positives are caused by Find-
Bugs’s bug patterns being too restrictive. For example, FindBugs reports all invo-
cations of System.exit() that occur outside a program entrypoint (main() method).
However, one usage invokes exit() in a different method that is explicitly documented as
the program entrypoint. The last four false positives are code smells, such as redundant
checks, which are not API misuses per se.

These results show that a more targeted analysis using specific bug patterns may
increase precision. Nevertheless, the FindBugs’ precision is still far from perfect. In-
terestingly, most of its false positives are cause by imprecisions of the underlying static
analyses, a root cause that we also identified for 23.9% of the false positives reported by
the other detectors (see Section 7.1).

Recall of FindBugs

Since FindBugs does not learn from usage examples its recall upper bound we measure
in Experiment RUB equals its actual recall. The left part of Table 8.3 shows the recall
of FindBugs and the recall upper bound of the API-misuse detectors. We find that
FindBugs misses 84.3% of the misuses in MuBench, more than any of the misuse
detectors. The single reason for all false negatives is that FindBugs does not have a
bug pattern that identifies the respective misuses. Therefore, the misuse detectors, which

6The FindBugs website reports over a million downloads: http://findbugs.sourceforge.net/index.html

(checked on Oct 18, 2017)
7 http://findbugs.sourceforge.net:80/bugDescriptions.html (checked on Jun 08, 2017)
8Repository: https://github.com/MUBench/FindBugs (checked on Jun 27, 2018)
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8.2. Comparison to Further Detectors

Table 8.3.: Recall of FindBugs Compared to API-Misuse Detectors.

Experiment RUB Experiment R

Detector A
ct

ua
l H

its

R
ec

al
l

U
pp

er
B
ou

nd

K
ap

pa
Sc

or
e

A
ct

ua
l H

its

R
ec

al
l

K
ap

pa
Sc

or
e

Jadet 15 23.4% 0.76 3 2.5% 1.00
GROUMiner 31 48.4% 0.84 0 0.0% 1.00
Tikanga 13 20.3% 0.84 7 5.8% 1.00
DMMC 15 23.4% 0.85 11 9.1% 0.95
FindBugs 10 15.7% 0.92 53 43.8% 1.00

can learn patterns for any API from usage examples, have the potential to outperform
FindBugs in terms of recall.

For Experiment R we add FindBugs’ 43 true positives from Experiment P to the
dataset. Since FindBugs can detect misuses even if there is no example usage to learn
from, we also include the 25 hand-crafted misuses examples, which we previously only
considered in Experiment RUB. This gives as a total of 121 misuses to measure recall.
The right part of Table 8.3 shows the results. FindBugs correctly identifies its own 43
true positives and the ten misuses it also identified in Experiment RUB. This leads to
a recall of 43.8%. While this recall is much higher than that of the misuse detectors,
we note that FindBugs’ own findings accumulate to more than a third of the dataset,
which likely biases the results in its favor.
Jadet, GROUMiner, Tikanga, and DMMC identify only the same misuses they

already identified in our previous experiment (cf. Section 7.3) and miss all of FindBugs’
true positives. Conversely, FindBugs misses all true positive findings of the misuse
detectors. This suggests that misuse detectors and FindBugs should not be considered
alternatives for the identification of API misuses, but rather as complementary tools
with distinct strengths.

8.2.2. Integration of Salento

Murali et al. [MCJ17] recently presented the API-misuse detector Salento. We intro-
duce this detector in our survey in Chapter 4. Their promising evaluation results moti-
vated us to try integrating Salento into MuBench. When we contacted the authors
in December 2018 they were enthusiastic about the idea. Unfortunately, their original
detector implementation supports only Dalvik Bytecode, while MuBench provides only
Java Bytecode. For this reason, among others, Murali et al. started migrating Salento
to a different analysis framework. Afterwards, they want to integrate Salento into
MuBench for a respective evaluation. At the point of this writing, the migration is still
in progress.

107





9. Related Work

To the best of our knowledge, MuBench is the only existing automated benchmark
for Java API misuses. There are, however, several existing reference datasets with gen-
eral software-defect data and code-analysis benchmark datasets, as well as automated
pipelines for the evaluation of defect detectors. There are also other studies that pre-
sented some empirical comparison of API-misuse detectors. This chapter presents an
overview over the respective work.

Benchmark Datasets As our survey of misuse-detection literature (see Section 4.3)
shows, most prior work used custom collections of target projects for the evaluation of
the respective detectors. The only dataset that was used for the evaluation of mul-
tiple dynamic detectors [GS10, NK11, PJAG12, PG12] is the DaCapo benchmark
suite [BGH+06]. Unfortunately, this suite does not provide the source code for the con-
tained projects, which we need as the input for some static misuses detectors, such as
GROUMiner [NNP+09b]. While we could obtain corresponding source code through
decompilation, this might introduce bias in the evaluation, since decompiled sources
likely differ from human written code. Furthermore, the only known misuses in the Da-
Capo projects are those identified by said dynamic misuse detectors. Using them as the
ground truth for comparing the recall of misuse detectors likely biases the benchmark
towards the capabilities of these detectors.

The Qualitas Corpus [TAD+10], another benchmark suites for static code analy-
ses, provides both source code and Bytecode for each contained project version. Reif et
al. [REHM17] present an approach to assemble minimal representative datasets of projects
for the evaluation of static analyses, which might be adapted to define a representa-
tive dataset for benchmarking of misuse detectors. However, in both cases, obtaining a
ground truth about existing misuses in the respective dataset remains an open challenge.

Researchers presented various datasets with general software-defect data from soft-
ware projects, identified in projects’ issue trackers or version-control systems. While
these datasets are valuable for many research directions, such as triaging of bug reports,
defect localization, or defect prediction, they identify all kinds of bugs, which is too
general for evaluations of misuse detectors. We use four such datasets, namely Bug-
Classify [HJZ13], Defects4J [JJE14], iBugs [DZ07], and QACrashFix [GZW+15],
to study the prevalence of API misuses compared to other types of bugs (see Section 2.2)
and derive many of the misuse examples in our benchmark dataset from the results of
this study (see Section 5.2). Moreover, we find that developers struggle with API mis-
uses that may not ever be committed to version-control systems and, consequently, may
never be mentioned in issue trackers (see Section 2.3). Considering only misuse exam-
ples observable in these sources might miss important cases and bias the evaluation of
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API-misuse detectors. Therefore, we add examples from a developer survey and a study
of documented API constraints to our benchmark dataset as well (see Section 5.2).

Automated Benchmarks To the best of our knowledge, there is no existing automated
benchmark for any type of Java software defects. There are, however, two such projects
for other programming languages:

BugBench [LLQ+05] is a defect-detection benchmark of C and C++ programs. Its
dataset names 13 memory-related defects, four concurrency bugs, and two logic bugs
from 17 programs. It comes with a pipeline that automates an experiment to measure
detector accuracy, which is used to measure and compare the accuracy of 13 detectors.

BegBunch [CHK+09] is a defect-detection benchmark of C programs. Its dataset
identifies several defects from the categories of buffer overflows, memory and pointer
bugs, integer overflows, and faulty format strings. It comes with a pipeline that auto-
mates an experiment to measure detector accuracy and another experiment to measure
detectors’ runtime performance and scalability.

While neither of these benchmarks focuses on API misuses, the underlying idea of
providing a pipeline that automates as much as possible of the evaluation process, to
make it repeatable and comparable, motivated the development of MuBenchPipe.

Comparison of Misuse Detectors To the best of our knowledge, the only prior work
that directly compared the results of multiple API misuse detectors is a study by
Pradel et al. [PJAG12]. They evaluate their detector PJAG12 on the same target
projects as were used in the evaluations of GROUMiner and Tikanga. They show
that PJAG12 successfully identifies six misuses that GROUMiner misses, but misses
four misuses that GROUMiner identifies, while there is not a single misuse identified by
both detectors. In comparison to Tikanga, PJAG12 identifies nine additional misuses,
but misses two, while three misuses are identified by both detectors. As the main reason
for their additional findings they identify that PJAG12 is able to capture calls that are
illegal in a particular state of an object, i.e., calls that are missing a precondition, which
both other detector cannot, by design. Furthermore, they find that all three detectors
miss some misuses, because they did not mine the respective specifications. To address
this issue, they suggest to mine larger sets of programs or to generate additional min-
ing input, e.g., through automated test generation to obtain more execution traces for
dynamic detectors. We confirm these findings on the basis of a larger dataset and includ-
ing two further detectors, namely Jadet and DMMC, and provide additional insights
on the specific problems of static misuse detectors. Additionally, with MuBench, we
provide an automated pipeline to conduct similar comparisons with less manual effort,
including additional detectors and using a larger dataset.

Legunsen et al. [LHX+16] present a study of the effectiveness of both manually writ-
ten and mined specifications for misuse detection. While this work does not provide an
explicit comparison of different detectors, it provides general insights on the practical
capabilities of misuse detectors based on runtime verification. They find that, while run-
time verification identifies actual misuses, it also produces large number of false positives,
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namely 82.8% for the manually written specifications and 97.9% for the mined specifi-
cation. They report that only a small number of all specifications effectively identify
true positives. These results suggest that the problems of dynamic API-misuse detectors
might be quite similar to those of static detectors. We integrated the true positives from
Legunsen’s study into MuBench (see Section 8.1.1), to enlarge our benchmark dataset
and to enable a more direct comparison between static and dynamic misuse detectors in
future work.
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The Next Step in
Static API-Misuse Detection

Despite the amount of previous work, API misuse remains a problem in practice [LHX+16,
ABF+16]. Therefore, in Chapter 7 of this thesis, we empirically evaluated and compared
existing API-misuse detectors using our automated benchmark MuBench (Chapter 5).
In this study, we identified several major problems, that affect precision and recall:

• Detectors fail to distinguish correct usages from misuses, due to not capturing
sufficient code details in their representations.

• Detectors ignore alternative usage patterns and semantically correct deviations,
e.g., using a subtype versus a supertype, naively assuming that all deviations from
usage patterns are misuses.

• Detectors often fail to relate misuses with patterns, because the difference between
the two exceeds an assumed threshold.

• Detectors have poor ranking strategies that rank many false-positive findings higher
than true-positive ones.

Furthermore, the study observed that evaluations mostly apply detectors in a per-project
setting, where they mine usage patterns solely from the project in which they detect
misuses. A presented hypothesis is that individual projects contain too few usages
examples to mine good patterns, which limits the detectors’ recall. All these problems
need to be properly addressed for API-misuse detectors to be practically useful. In
Chapter 10, we discuss these problems in more detail and sketch how we address them
with the new API-misuse detector that we introduce in this part of the thesis.

In Chapter 11, we present MuDetect, a new API-misuse detector that we designed
based on the strengths and deficiencies of existing detectors. MuDetect encodes API
usages as API Usage Graphs (AUGs), a new, comprehensive usage representation de-
signed to capture the differences between correct usages and misuses. MuDetect em-
ploys a greedy, frequent-subgraph-mining algorithm to mine patterns and a specialized
graph-matching strategy to identify (violating) occurrences of patterns. Both compo-
nents consider code semantics of API usages to improve the overall detection capabilities.
On top, MuDetect uses an empirically optimized ranking strategy to effectively report
true positives among its top-ranked findings.

We investigated and designed our solution via learning from the findings of detectors
that we evaluated against MuBench in Chapter 7. We then extended MuBench by
107 misuses identified in a recent study on runtime verification [LHX+16], which more
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than doubles its size. We assess and compare the performance of MuDetect and four
other state-of-the-art detectors on this extended benchmark. In Chapter 12, we present
the evaluation setup we use to this end. In Chapter 13, we present the respective results,
which show that MuDetect significantly outperforms the other detectors in terms of
both precision and recall. In a setting with perfect training data, MuDetect achieves
a recall of 72.5%, which is 20.3% higher than the second-best detector and over 50%
higher than the other three detectors. In the typical per-project setting, MuDetect
achieves a recall of 20.9%, which is 10.2% better than the second-best detector, and a
precision of 21.9%, which is 13.1% better than the second-best detector. In a cross-
project setting, where we use a large quantity of usage examples from 3rd-party projects
for pattern mining, MuDetect achieves a recall of 42.2% and a precision of 34.1%,
again significantly outranking its own performance from the per-project setting.

These results show that our systematic design approach, based on the strengths and
deficiencies of existing detectors, successfully led us to a significantly better detector,
while balancing recall and precision. The most-important decision was to separate pat-
tern mining and violation detection, which allowed us to train MuDetect on cross-
project usage examples. Future work should focus more on providing detectors with
high-quality training examples.

In Chapter 14, we discuss the threats to the validity of our results and in Chapter 15,
to conclude this part, we provide an overview over related work on API-misuse detection.
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10. Motivation

Our goal is to design a new misuse detector that addresses problems of the detectors
GROUMiner, Jadet, Tikanga, and DMMC, as identified in Chapter 7. Section 4.2
contains a detailed description of these detectors. We briefly reintroduce them here.

GROUMiner [NNP+09b] represents usages as directed acyclic graphs that encode
method calls, field accesses, and control structures as nodes and control-flow and data-
flow dependencies among them as unlabeled edges. GROUMiner uses sub-graph mining
to find patterns and then detects violations of these patterns as missing nodes. It detects
missing method calls, as well as missing conditions on the granularity of a missing
branching or loop node.

Jadet [WZL07] encodes the transitive closure of the call-order relation in each usage
as pairs of the form m()≺ n(). It uses Formal Concept Analysis [GW97] to identify
violations, i.e., rarely missing call order pairs. Tikanga [WZ11] builds on the same al-
gorithm as Jadet, but encodes usages using temporal properties (CTL). Both detectors
detect missing calls. However, Jadet cannot detect violations of patterns with only two
calls, because it works on multiple call pairs, since this would be a usage with a single
call, which cannot be encoded using call pairs. Tikanga can detect such violations.

DMMC [MM13] encodes usages as sets of methods called on the same receiver type.
It identifies violations by computing, for every usage, the ratio between the number of
equal usages and the number of usages with exactly one additional call. Intuitively, a
violation should have only few exactly-similar usages, but many almost-similar usages.
DMMC detects misuses with exactly one missing method call.

The empirical evaluation and comparison of these four detectors revealed several prob-
lems that result in low recall and precision (Chapter 7). We now give a brief description
of these problems and how we mitigate them.

Problem P1: Imprecise Representation On average, 45.8% of the false negatives were
due to the inability of the detectors’ underlying representations to capture details nec-
essary for differentiating misuses from correct usages (see Section 7.2). For example,
DMMC and GROUMiner encode methods by their names only and, hence, cannot de-
tect a missing method call when an overloaded version of the method is called (e.g., the
pattern requires String.getBytes(String), while the misuse calls String.getBytes()).
MuDetect’s representation tracks method-call arguments. Additionally, for the first
time, we provide a representation that combines tracking of control flow, exceptional
flow, order of method calls, synchronization, and data flow. Such features have typi-
cally been captured in isolation by previous detectors, but never all combined in one
representation.
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10. Motivation

Problem P2: Imprecise Pattern Matching On average, 31.3% of false negatives were
due to detectors not matching patterns to misuses (see Section 7.2). For example,
to identify that two methods are called in the wrong order, say b() ;a() instead of
a(); b(), a detector needs to both capture the call order in its representation and
match the pattern and misuse despite the different order. Similarly, a detector needs to
consider sub-typing information to match a Collections.size() call found in a pattern
to an ArrayList.size() call found in a usage. Another issue is that some detectors
use a distance threshold to filter their findings, which may filter true positives, e.g., if
a misuse contains additional, optional method calls. MuDetect matches calls even if
their order differs, considers type-hierarchy information, and does not employ a distance
threshold, but rather enforces a ranking strategy.

Problem P3: Uncommon-but-correct Usage On average, 34.3% of the false positives
were uncommon-but-correct usages (see Section 7.1). It is generally difficult, if not
impossible, to automatically and precisely distinguish uncommon usages from misuses.
However, we observed that many of the false positives for uncommon usages involved
methods without side effects (pure methods), such as getters. These violation typically
report that a pure method call is missing or that there is a wrong call order of several pure
methods. For example, MapEntry.getKey() and MapEntry.getValue() often occur
together, but there is neither a requirement that both are called in the same usage nor
that these call occur in a particular order. Since invocations of pure methods cannot be
required, unless their return value is actually needed, MuDetect removes calls to pure
methods from patterns, unless their return value is used in the pattern.

Problem P4: Alternative Patterns On average, 19% of false positives were usages
that deviated from some individual pattern, but conformed to another pattern (see Sec-
tion 7.1). Other previous work reports that alternative-pattern instances may even accu-
mulate to 28% of the false positives [TX09a]. Therefore, MuDetect filters alternative-
pattern instances. In addition, MuDetect abstracts over some usage variants to reduce
the number of alternative patterns.

Problem P5: Self- and Cross-method Usages On average, 12.2% of false positives were
due to self- and cross-method usages (see Section 7.1). In a self usage, a class uses part of
its own API in its implementation, e.g., Collection.addAll() calls Collection.add().
Constraints that client usages must adhere to, e.g., guarding calls by checks, may not
apply to self usages. In a cross-method usage an object in fields is used across methods,
e.g., initialized in the constructor and used in other methods. From the perspective of
an individual method, we have only a partial view on the entire usage scattered across
methods. For both types of usages, an intra-procedural analysis potentially detects
partial usages, i.e., violations, that are unlikely to be actual misuses. Therefore, Mu-
Detect ignores usages on the API’s own implementation.
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Problem P6: Call Multiplicity On average, 1.4% of the false positives were due to the
inability of detectors to distinguish methods that must be called exactly n times from
methods that must be called at least once and methods that may be called arbitrarily
often (see Section 7.1). In its usage representation, MuDetect distinguishes whether a
method is not called, called once, or called multiple times consecutively.

Problem P7: Poor Ranking Often, the detectors correctly identified misuses, but
ranked them extremely low (see Section 7.3). Since developers are unlikely to go through
hundreds of findings, an effective ranking mechanism that pushes true positives to the
top is essential. We empirically investigate several ranking factors from the literature
through MuDetect and compose a ranking strategy that effectively prefers true posi-
tives.

Problem P8: Lack of Usage Examples A possible cause of the detectors’ low recall is
a lack of correct usages in the target projects that they train on (see Section 7.3). To
validate this hypothesis, we evaluate MuDetect in both a per-project setting, which is
the norm in the literature, and a cross-project setting that provides more usage examples
for training.
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11. A New Detector

We design a new API-misuse detector, MuDetect, to address the problems summarized
in Chapter 10 as follows:

1. We design API-Usage Graphs (AUGs), a new representation of API usages that si-
multaneously captures many properties of API usages that can distinguish misuses
from correct usages.

2. We design a new pattern-mining algorithm based on the idea of frequent-subgraph
mining that exploits domain knowledge about API usages to efficiently identify
usage patterns.

3. We design a new violation-detection algorithm, which uses domain knowledge to
efficiently identify API-usage violations.

4. We design a ranking strategy based on factors from the literature that effectively
ranks true positives before false positives.

We subsequently introduce MuDetect’s four components, one at a time.

11.1. API-Usage Graphs

Graph-based representations are well-suited to simultaneously encode different aspects of
API usages, however, existing graph representations do not capture all details necessary
to identify API misuses (see Section 7.2). To address the problem of insufficient details
in the usage representation (P1 (Imprecise Representation)), we propose API-Usage
Graphs (AUGs), a new representation of API usages. An AUG is a directed, acyclic,
connected multigraph with labeled nodes and edges. Nodes represent data entities, such
as variables, and actions, such as method calls; edges represent control and data flow
between entities and actions represented by nodes. In the following, we discuss all AUG
elements in detail using the AUG in Figure 11.1 for illustration.

11.1.1. Usage Actions

We use action nodes to represent method calls, operators, and instructions in API usages
(boxed shapes in Figure 11.1). We encode method calls, because they are the primary
components of APIs. We treat field accesses like method calls, because we regard them
as calls to respective getter or setter methods. For method calls, we use labels of the
form T.M(), where M is the method’s name and T is the simple name of its declaring
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if (file != null) {
  try {
    FileInputStream fis =
      new FileInputStream(file);
    return fis.read();
  } catch(FileNotFoundException e) {
    handle(e);
  }
}

Action Data

Control Flow

Data Flow

Figure 11.1.: A Code Fragment and its API-Usage Graph.

type. For constructor calls, we use labels of the form T.<init>. Using the declaring
type abstracts over different static receiver types (P2 (Imprecise Pattern Matching)),
since, for example, all calls to size() on a List, LinkedList, or ArrayList are labeled
Collection.size().

We encode equality and relational operators to capture conditions such as var != null
or list.size() > 0. To abstract over alternative ways to express the same condition,
e.g., l.size() != 0 and !(l.size() == 0), we use the label <r> for all equality and
relational operators and drop the unary negation operator. To further abstract over
alternative ways to compose conditions, e.g., a && b and !(!a || !b), we drop the con-
ditional operators && and ||. With this abstraction level, we focus on detecting the
absence or presence of conditions in API usages, rather than subtle logical mistakes
in the conditions. We explicitly capture null checks, e.g., the null check on file

in Figure 11.1, by action nodes with the dedicated label <nullcheck> to distinguish
this special kind of condition from comparisons with values or other literals. We drop
arithmetic and bitwise operators, because their usage is mostly related to program logic
rather than API usage constraints. We encode unconditional control instructions, such
as return, throw, and catch, by action nodes with dedicated labels, e.g., the <catch>
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11.1. API-Usage Graphs

and <return> nodes in Figure 11.1.

11.1.2. Data Entities

We use data nodes to represent objects, values, and literals that appear in API usages
(circular shapes in Figure 11.1). We encode data entities as nodes to make data de-
pendencies between actions, such as multiple method calls on the same object, explicit.
This ensures that we have a connected subgraph for each usage of an individual ob-
ject, regardless of the order of method calls, which improves our ability to match usages
(P2 (Imprecise Pattern Matching)). It also enables us to distinguish overloaded versions
of methods by their parameter entities (P1 (Imprecise Representation)).

We uniformly create data nodes for local variables and fields, as well as for values and
objects that are not explicitly assigned but directly used, e.g., in a method-call chain.
For example, Figure 11.1 shows a data node for the FileInputStream assigned to the
local variable fis, for the FileNotFoundException captured as e, as well as for the int

value that is returned from read() and directly passed on as the snippet’s return value.

Since certain types, such as List, ArrayList, and LinkedList, appear almost inter-
changeably in API usages, we decided to label all data nodes by the label <Object>.
This allows us to abstracts over different static types (P2 (Imprecise Pattern Matching)),
while checking the data- and control-flow that the data entities take part in. Note that
Figure 11.1 shows the simple type names for better readability.

We use the label <Object> also for all data nodes created from literals, to unify
over equivalent alternatives. For example, both l.size() > 0 and l.size() >= 1 rep-
resent the same condition using different literals and both b.setEnabled(true) and
b.setEnabled(b) are instances of the same usage, where one uses a literal and the
other a value.

11.1.3. Control Flow and Data Flow

We use edges to represent control flow and data flow. We distinguish nine types of edges
and label them with their type. Figure 11.1 shows seven of these edge types, labeled
with acronyms for brevity.

• A receiver edge connects a data node to a method call that is invoked on the
respective object.

• A parameter edge connects a data node to an action that takes the respective
object or value as a parameter.

• A definition edge connects an action that creates or returns a value or object to
the respective data node.

• An order edge connects, in the order of their execution, two action nodes operating
on the same data entity (receiver or parameter). Since we want MuDetect to
discover wrong method-call order, we over-approximate temporal relations between
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11. A New Detector

actions by building the transitive closure over order edges. To keep AUGs acyclic,
we exclude backwards edges from loops.

• A condition edge connects an action a whose result is considered for a branching
to all actions that depend on that branching.

• A synchronize edge connects a data node that the program obtains a lock on to
all actions executed while holding the lock.

• A throw edge connects an action that may throw an exception to a data node rep-
resenting that exception object. We use the throws information, if it is resolvable,
to determine which exception may be thrown by an action. We connect exception
data nodes to respective <catch> nodes with parameter edges.

• A handle edge connects a <catch> node to all actions in the respective exception
handling block.

• A contain edge connects a data node representing an anonymous-class instance
to the data nodes representing each of its declared methods and a data node
representing such a declared method to all actions in its body.

This detailed dependency information helps us to distinguish misuses from correct usages
(P1 (Imprecise Representation)), to relate usages despite notational differences (P2 (Im-
precise Pattern Matching)), and to consider code semantics in both pattern mining and
violation detection.

11.1.4. Building API-Usage Graphs

We implemented a transformation from Java source code to AUGs. This transformation
takes a single source file or a source-file directory as input. It parses each source file
into an abstract syntax tree (AST) and traverses the AST to generate one AUG for
each method body in the file, using an intra-procedural analysis. The transformation
optionally takes a classpath of the source code’s dependencies, such as it would be
available in an IDE, for type resolution. If type information is unavailable, it falls back
to the partial information available in the source code. For each method in the source
code, the transformation proceeds in the following steps.

1. We create action nodes for all the method calls, operators, and instruction. To
reduce false positives due to P5 (Self- and Cross-method Usages), we heuristically
exclude self- and cross-method usages from AUGs: We skip method calls on this

and super as well as on field accesses on both these qualifiers when creating action
nodes.

2. We create data nodes for all the objects and values and connect actions that
produce data to the respective data nodes through definition edges and data nodes
that are consumed by actions to the respective action nodes through receiver and
parameter edges. For example, in Figure 11.1 the FileInputStream receives a
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11.1. API-Usage Graphs

read() method call, which produces an int as a result, which is then passed as a
parameter to the return.

3. We create order edges between each pair of actions that share a receiver or pa-
rameter data node, in the order of their execution. Since our intra-procedural
analysis is likely to miss data dependencies and, thereby, order relations, we build
the transitive closure over order edges. This conservatively over-approximates the
order relation.

4. We add condition edges from each action whose result is checked in an if-condition
or loop header to all actions within the controls code block(s). This encodes that
the execution of these actions depends on the check, as, for example, the creation
and use of the FileInputStream happens only if the file variable is not null

in Figure 11.1. For consistency, we translate foreach loops into the corresponding
Iterator usages, such that they, too, have a condition that we may capture with
a condition edge. This unification abstracts over two alternative usage patterns
(P4 (Alternative Patterns)). If an action’s result is used in a condition that guards
a return or throw instruction (or continue or break within a loop), we also
add condition edges to all actions after the condition (within the respective loop),
because depending on the result these may or may not get executed.

5. We use the throws information, if it is resolvable, to determine which exceptions
may be thrown and create throw edges from the call nodes to the respective ex-
ception data nodes. If there is a respective catch block capturing this type of
exception, we add a parameter edge from the exception data node to the respec-
tive <catch> node. Furthermore, we add handle edges from each <catch> node
to all actions within the respective code block. This happens for example, for the
FileNotFoundException in Figure 11.1. We translate the try-with-resources

statement into a try/finally statement to abstract over manual and automatic
resource closing. This unification abstracts over two alternative usage patterns
(P4 (Alternative Patterns)).

6. If the code synchronizes on some object, we create synchronize edges from the
respective data node to all actions within the synchronize block.

7. If some code appears within a method of an anonymous-class instance, we create
a data node to present that method. We add contain edges from the data node
representing the instance to this method node and from the method node to all
action nodes within the method. This is motivated by how GROUMiner detects
missing context conditions through its encoding of anonymous inner classes (see
the unexpected hits discussed in Section 7.2), but makes the representation more
explicit. Figure 11.2 shows an example.
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        public void run() {
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Figure 11.2.: Representation of Anonymous-Class Instances in AUGs.

11.2. Pattern Mining

Algorithm 11.1 shows our pattern-mining algorithm, which takes a set A of AUGs,
a frequency measure f , and a frequency threshold σ and produces a set of frequent
patterns. A pattern is an AUG that reoccurs as a subgraph inA, and a pattern instance is
one such occurrence. We consider a pattern p as frequent if its frequency f(p) is greater or
equal to σ. The algorithm is (1) an instance of a-priori-based frequent-subgraph mining
that (2) considers action semantics while (3) greedily exploring pattern alternatives. We
subsequently discuss these three key ideas in detail.

11.2.1. Apriori-based Mining

The algorithm follows the general idea of an a-priori-based algorithm for frequent-
subgraph mining [RP15], i.e., it mines patterns by starting from all single-method-call
patterns (Line 2) and recursively extending them to larger patterns (Line 6). The key
idea here is that if a graph occurs frequently, all of its subgraphs also occur frequently.
To extend a pattern p of size k, the algorithm generates all suitable extensions of size
k+ 1 for all pattern instances of p (Line 12), by exploring each adjacent node (Line 31).
An adjacent node to a pattern instance i in an AUG a is a node from a that is not in
i and has an edge from or to a node in i. When i is extended by an adjacent node,
all edges from a that connect i and the node are added as well. Extending by nodes,
as opposed to by edges, enables scalable mining of AUGs, which usually have a large
number of edges.
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11.2. Pattern Mining

1 def mine(A: Set[AUG], f: Pattern → int, σ: int)

2 P0 = {p | p ∈ single_call_node_patterns(A) and f(p)≥ σ}
3 P = ∅
4

5 for p in P0:

6 extend(p, P, f, σ)
7

8 return P
9

10

11 def extend(p: Pattern, P: Set[Pattern], f: Pattern → int, σ: int)

12 E = {e | i ∈ p and e ∈ generate_extensions(i)}
13 PC = {c | c ∈ isomorphic_clusters(E) and f(c)≥ σ}
14 UC = PC \ P
15

16 if UC 6= ∅:
17 c = most_frequent(UC)
18 extend(c, P, σ)
19 else:

20 P = P ∪ {p}
21

22 ip = {i | i ∈ p and ∀c ∈ PC. generate_extensions(i)∩ c = ∅}
23

24 if f(ip) ≥ σ:
25 P = P ∪ {ip}
26

27

28 def generate_extensions(i: Instance)

29 extensions = ∅
30

31 for n in adjacent_nodes(i):
32 if has_non-order_connection(n, i)
33 and (not is_consecutive_call(n, i))
34 and ((not is_pure_method_call(n))
35 or (is_pure_method_call(n) and has_out_connection(n, i)):
36 or (is_operation_node(n) and has_in_and_out_connection(n, i))
37 or (is_data_node(n) and has_out_connection(n, i))):
38 extensions = extensions ∪ {i⊕ n}
39

40 return extensions

Algorithm 11.1.: MuDetect’s Pattern-Mining Algorithm.
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11.2.2. Code Semantics

When extending a pattern instance i, the algorithm distinguishes different types of
adjacent nodes. Specifically, the algorithm decides whether an adjacent node is suitable
for extending i as follows:

• A node that is only connected by an order edge is unsuitable (Line 32). This
prevents MuDetect from mining patterns with data-independent parts, since
we found that the relations between such parts never correspond to API usage
constraints.

• A method call m() is also unsuitable, if the extension of i by that call contains two
consecutive calls to the same method m() (Line 33). This prevents MuDetect
from reporting violations where the pattern would have, for example, four calls to
m() while the target code has only three calls (P6 (Call Multiplicity)).

• Otherwise, a non-pure method call is always suitable (Line 34). Recall that a
method is non-pure when it has a side effect, i.e., when its presence in the usage
implies some observable action.

• A pure method call is suitable only if it has an outgoing edge to a node in i
(Line 35), i.e., if it defines a data node or controls an action node in i. Since
pure methods have no side effects they can impact a usage only through their
return value. To avoid the complexity of inter-procedural analysis, the algorithm
identifies pure methods heuristically: It considers any method whose name starts
with get as pure, since getter methods are mostly pure and very prevalent.

• An operator is suitable only if it has at least one incoming and one outgoing edge
to i (Line 36), because operators are like pure methods whose result is based solely
on their parameters, as opposed to parameters and state.

• A data node is suitable only if it has an outgoing edge to i (Line 37), because a
data node does not impact a usage unless it is used in it.

These decisions based on code semantics contribute to obtaining meaningful patterns,
thereby mitigating the problem of flagging uncommon usages as misuses (P3 (Uncommon-
but-correct Usage)).

11.2.3. Greedy Exploration

To identify (k+1)-patterns in the set of all extensions of the instances of p, the algorithm
clusters equivalent extensions, i.e., isomorphic graphs, to pattern candidates, of which
it keeps the frequent ones (Line 13). To reduce the complexity of graph isomorphism
detection, the algorithm uses a heuristic that combines graph vectorization and hash-
ing [NNP+09a]. More specifically, a graph is represented as a vector of features, each of
which is extracted from the labels of a sequence of nodes and edges along a path in the
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graph. Two graphs are isomorphic if their corresponding feature vectors have the same
hash value.

The algorithm then filters out all candidates that it found before (Line 14). If there
are no further frequent extensions of p, i.e., p is inextensible, the pattern is added to
the set of final patterns P (Line 20). If any unexplored candidate remains (Line 16),
the algorithm selects the most-frequent one (Line 17) and recursively searches for larger
patterns (Line 18). This greedy strategy avoids the combinatorial explosion problem
of exhaustive search with backtracking and makes our mining scale to a large number
of large graphs, unlike GROUMiner, which times out on many target projects (see
Section 7.1).

In addition to the possible extensions, the algorithm also keeps track of those instances
that do not have any frequent extension (Line 22). If these inextensible pattern instances
form themselves a frequent pattern, it adds this pattern to the set of final pattern P
(Line 25). This follows an observation by Lindig et al. [Lin07], who found that an
API might have a core pattern and additional alternative patterns that contain this
core pattern. Considering both ensures that all these alternative patterns are found
(P4 (Alternative Patterns)).

11.3. Violation Detection

Algorithm 11.2 shows our detection algorithm, which takes a set T of target AUGs, a
set P of patterns, and a ranking function r and produces a list of violations. A violation
is a strict subgraph of a pattern, i.e., an AUG with at least one missing edge. Note that
since AUGs are connected graphs, a missing node always implies at least one missing
edge. The detection algorithm (1) identifies full occurrences (instances) and partial
occurrences (violations) of patterns in a target codebase, (2) eliminates violations that
are instances of an alternative pattern, (3) ranks the remaining violations, and (4) filters
alternative violations of the same usage. We subsequently discuss these four steps in
detail.

11.3.1. Graph Matching

To find violations of the patterns in the targets, the detection algorithm checks each pair
of a target and a pattern for common subgraphs (Line 8). To identify the subgraphs, the
algorithm follows the general idea of the pattern-growth approach for frequent-subgraph
mining [RP15], i.e., it discovers the largest common subgraphs of each pair of a pattern
and a target (Line 8), by starting from all common method-call nodes (Line 20) and
recursively extending the common subgraph (Line 21), one adjacent edge at a time.
This allows us to find even single missing edges, e.g., in case of a wrong order of two
method calls.

When searching for possible mappings of a pattern AUG onto a target AUG, the
detection algorithm follows a greedy extension strategy. It continuously selects the next-
best pattern edge, while exploring all alternative mappings to the target. This avoids
the combinatorial explosion problem of an exhaustive search with backtracking. The
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1 def find_violations(T: Set[AUG], P: Set[Pattern],

2 r: (Set[Violation], Set[Instance], Set[Pattern]) → List[Violation]):

3 V = ∅
4 I = ∅
5

6 for target in T:
7 for pattern in P:
8 for overlap in common_subgraphs(target, pattern):
9 if overlap = pattern:

10 I = I ∪ {Instance(target, pattern)}
11 elif overlap < pattern:
12 V = V ∪ {Violation(target, pattern, overlap)}
13

14 VA = filter_alternatives(V , I)
15 VR = r(VA, I, P)
16 return filter_alternative_violations(VR)
17

18

19 def common_subgraphs(t: AUG, p: Pattern):

20 S = single_call_node_overlaps(t, p)
21 return {lcs | lcs ∈ extend_subgraph(s, t, p) and s ∈ S}
22

23

24 def extend_subgraph(o: Overlap, t: AUG, p: Pattern)

25 es = next_extension_edge(o, t, p)
26

27 if e 6= none:

28 return extend_subgraph((o⊕ n), t, p)
29 else:

30 return i
31

32

33 def next_extension_edge(o: Overlap, t: AUG, p: Pattern):

34 ebest = none,

35 wmin = inf
36

37 for e in adjacent_edges(o, t):
38 w = count_equivalent_edges(e, t) * count_equivalent_edges(e, p)
39 if (0 < w and w < wmin)

40 ebest = e
41 wmin = w
42

43 return ebest

Algorithm 11.2.: MuDetect’s Detection Algorithm.
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algorithm explores all alternatives in the target, as opposed to in the pattern, because
targets are usually larger and, therefore, likely contain more alternatives. This results
in higher precision. Nevertheless, the algorithm might discover a non-optimal mapping
between a pattern and a target, producing a false positive. This may happen whenever
there are multiple equivalent candidate edges for extension. Two edges are equivalent
if they have the same type, both their source and target nodes have the same label,
respectively, and mapping them onto each other is consistent with the current mapping
between target and pattern nodes. The node mapping is consistent if every node from
the target is mapped to at most one node from the pattern and vice versa. Intuitively,
the larger the number of equivalent edges is, the more alternative mappings there are
and the more likely it is for the algorithm to select a non-optimal mapping. To decrease
the likelihood of this to happen, the algorithm counts the number of equivalent edges in
the target and the pattern (Line 38) and gives priority to edges with fewer equivalent
alternatives. Mapping these first potentially eliminates equivalent alternatives, since
additional nodes get mapped and some alternatives become inconsistent with the node
mapping.

11.3.2. Alternative-Pattern Instances

There may be multiple alternative ways to use an API. For example, before fetching an
item from a Set, we may either check that it is not empty or that its size is larger than
zero. If we have patterns for both cases, these overlap, since fetching an item requires
the same method calls in both cases. Consequently, an instance of one of the patterns
necessarily violates the other pattern (P4 (Alternative Patterns)), because the instance
shares elements with both patterns and either misses the check for emptiness or the
check of the size. Following this insight, our detection algorithm separates all common
subgraphs of a target and a pattern into (1) pattern instances, i.e., target subgraphs
equal to the pattern (Line 9), and (2) violations, i.e., strict subgraphs of the pattern in
the target (Line 11). When all targets and patterns have been processed, it uses the
set of instances to filter violations that are subgraphs of instances of another pattern
(Line 14).

11.3.3. Ranking Violations

After identifying all violations in the target code base, the detection algorithm ranks
the findings (Line 15). The concrete ranking strategy is a parameter to our detection
algorithm. This allows us to compare how different ranking strategies impacts Mu-
Detect’s performance. A detailed discussion of possible ranking strategies follows in
Section 11.4.

11.3.4. Alternative Violations

If a usage violates all alternative patterns, the previous steps produce multiple violations
for the same usage, one for each alternative pattern. Note that filtering instances of
alternative patterns, as described in Section 11.3.2, leaves all these violations in place.
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To avoid reporting such duplicate violations, we filter out any violation that involves a
method call that is already part of another violation at a higher rank (Line 16). In this
step, the algorithm might remove true positives, if a false positive involving the same
usage elements is ranked higher.

11.4. Ranking

Ranking the detected violations is crucial for MuDetect’s precision, since it controls
how many true positives are ranked among the top findings (P7 (Poor Ranking)). The
ranking may also impact MuDetect’s recall, since we filter alternative violations based
on the ranking order of the findings (see Section 11.3.4), which may eliminate true
positives. To design MuDetect’s ranking strategy, we first survey existing ranking
strategies and discuss their individual factors. Then, we compose new ranking strategies
from these factors.

Distance Some detectors use a maximal distance between a pattern and a usage to
classify it as a violation of the pattern [WZL07, NNP+09b, WZ11]. Here, the distance
is the number of facts from the pattern that the usage misses. Facts might be method
calls, order relations between pairs of calls, or nodes and edges, depending on the usage
representation. Intuitively, usages that are very different from a pattern P are more
likely to be occurrences of an alternative pattern than violations of P . We observe that
a strict classification by the number of missing facts may lead to false negatives (see
Section 7.2), because some kinds of API misuses lead to multiple missing facts. For
example, if a method call is missing, then so are all order relations between this call and
others. Therefore, we propose to use the distance between a pattern and a violation as
a ranking factor, such that violations that are farther away from the pattern simply get
ranked lower.

We compute the distance between a pattern and a usage AUG via the number of
nodes and edges nm that the usage misses from the pattern. We normalize nm by
the total number of elements np of the pattern. Since a missing node always implies
that all edges connecting to it are also missing, we take the number of missing edges
from/to missing nodes ne out of the equation. This leads to our violation-overlap measure
vo = (nm − ne)/(np − ne).

Pattern Support Some detectors rank their findings by the support of the violated
patterns (ps) [LZ05, TX09b, TX09a], i.e., by the number of instances of the pattern
discovered during pattern mining. Intuitively, ps expresses the miner’s confidence in the
correctness of the pattern and, consequently, in its violations being problematic. Note
that this leaves the relative order of multiple violations of the same pattern unspecified.

Confidence Monperrus et al. [MM13] rank their findings by the confidence, which
combines the pattern support (ps) and the number of violations of the pattern (pv) into
ps/(ps + pv). Intuitively, patterns with more violations are more likely to contain usage
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properties that are not strictly required and, hence, their violations are more likely to
be false positives. Similar to the pattern support, the confidence depends solely on the
pattern and, therefore, leaves the relative order of multiple violations of the same pattern
unspecified.

Rareness Some detectors [LZ05, NNP+09b] rank their findings by their rareness, which
combines the pattern support (ps) and the number of times the violation reoccurs, i.e.,
the violation support (vs), into (ps − vs)/ps. Intuitively, a violation that occurs more
often is less likely to be problematic.

Defect Indicator Wasylkowski et al. [WZL07] rank findings by a defect indicator, which
combines the pattern support (ps), the violation support (vs), and a pattern uniqueness
factor (pu), into pu× ps/vs. To compute pu they count for every API in the pattern the
number of violations involving that API and take the inverse of the largest such number.
Intuitively, if an API is involved in more violations, any particular violation involving it
is less likely to be problematic.

MuDetect’s Ranking Strategy We observe that all ranking strategies from the litera-
ture are composed from a small number of ranking factors, namely pattern support (ps),
the uniqueness factor (pu), number of pattern violations (pv), violation support (vs), and
the violation overlap (vo). Each of these factors captures a characteristic of a violation
(or the respective pattern) that makes it more or less likely to be an actual problem.

As candidates for our ranking strategy, we consider the strategies from the literature
and all combinations of the individual ranking factors by multiplication. For the latter,
we use the factors ps, pu, and vo as is, but invert pv and vs, such that smaller values
imply lower probability of the violation being problematic. We multiply them, such
that, if any of the factors is low, the overall ranking weight is low. Since it is unclear
which candidate strategy is most useful, we empirically evaluate them. We explain the
respective experiment in Section 12.2.4 and its results in Section 13.1.

11.5. Per-project and Cross-project Settings

As Section 11.2 and 11.3 show, we designed MuDetect with separate pattern mining
and detection phases. This allows us to run MuDetect in two different settings.

Per-project Setting In the per-project setting, we configure MuDetect to use the
AUGs from its target project as the input for both pattern mining and violation de-
tection. This enables a fair comparison to existing detectors that combine mining and
detection in a single phase—such as the detectors we evaluated in Chapter 7—and, thus,
always mine and detect on the same input.

In this setting, we follow existing work [LZ05, NNP+09b, WZL07, WZ11] and define
the frequency measure f(p) of a pattern as the number of distinct instances of the
pattern.
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Cross-project Setting In a cross-project setting, we configure MuDetect to use the
AUGs from its target project as the input for violation detection and AUGs from other
projects as input for pattern mining. This allows us to provide additional usage examples
for mining (P8 (Lack of Usage Examples)). For easier differentiation in the text, we call
this configuration MuDetectXP.

In this setting, we define the frequency measure f(p) of a pattern p as the number
of projects from which at least one instance of the pattern originates. The intuition
is that a pattern that occurs in more projects is used by more developers (a generally
reusable pattern) and, therefore, more likely to be correct than a pattern that occurs
only in a single project (a project-specific pattern), even if it occurs frequently within
that project.
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In this section, we present the setup that we use to assess MuDetect’s ability to detect
API misuses. Our main goal is to evaluate MuDetect’s precision and recall, especially
compared to existing detectors, to understand whether our mitigation strategies are
effective in practice. Additionally, we want to compare the various ranking strategies
discussed in Section 11.4 in a practical setting.

12.1. Detectors and Dataset

In Chapter 7 we empirically evaluated and compared the four misuse detectors Jadet,
GROUMiner, Tikanga, and DMMC. In this part, we compare MuDetect against
these four detectors.

As the ground-truth for the previous experiments, we used MuBench, a dataset of
84 API misuses that we collected from general-purpose bug datasets, a developer survey,
and confirmed findings of existing misuse detectors (Table 12.1, Row 1). For 64 of these
misuses, MuBench also contains examples of correct usages, which are derived from
the fix of the misuse, when available. Since we designed MuDetect using insights from
the study presented in Chapter 7, an evaluation only on MuBench may suffer from
overfitting. Therefore, we extend the benchmark dataset by misuses from four sources:

1. We add misuses identified in a recent study by Legunsen et al. [LHX+16]. They
applied runtime verification of API specifications to 200 open-source projects and
submitted 114 pull requests that fix API misuses identified in this process. From
this set, we take the 77 misuses for which the pull request was accepted as of
August 8, 2017.

2. We add 5 misuses identified in two previous misuse-detector evaluations [NNP+09b,
WZ11].

Table 12.1.: MuBench: Number of Misuses (#MU) and Number of Misuses with Cor-
responding Correct Usages (#CU).

Dataset #MU #CU

1 Original MuBench 84 64
2 Dataset Extension 107 107

3 Extended MuBench 191 171
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3. We add 5 misuses from a public collection of common misuses of APIs from the
Java 8 Standard Library.1

4. We invest more time trying to compile project versions from our original collection
of API misuses that we could not compile when we first created the MuBench
dataset (see Section 5.2). We manage to compile nine additional project versions
with 20 misuses.

Section 8.1 discussed all these extension in detail. In total, we obtain 107 new misuse
examples from 30 projects for our experiments (Table 12.1, Row 2).2 Following the
structure of MuBench, we hand-craft examples of correct usage for all newly added
misuses. We publish the extended dataset with MuBench.

Overall, this gives us a benchmark dataset with 191 API misuses from real-world
projects (Table 12.1, Row 3). We use this dataset in the subsequently described exper-
iments. For simplicity, we refer to this extended dataset as MuBench throughout this
part of the thesis.

12.2. Experimental Setup

To evaluate the precision and recall of MuDetect, we conduct three experiments,
namely Experiment P to measure precision, Experiment RUB to determine a recall
upper bound, and Experiment R to measure the actual recall. This is the same per-
project experimental setup proposed in Chapter 5. In addition, we design two further
experiments: Experiment RNK, to compare the various ranking strategies discussed in
Section 11.4, and Experiment XP, to evaluate MuDetectXP in a cross-project setting,
since one reason for the bad performance of detectors may be a lack of usage examples
in the per-project setting (see Chapter 7). For the experiments, we set the frequency
threshold σ = 10 for MuDetect and σ = 5 for MuDetectXP. For the other detectors,
we use the best configurations as reported in the respective publications.

We execute the experiments using MuBenchPipe, the public automated benchmark-
ing pipeline that we built on top of MuBench (see Chapter 6). MuBenchPipe facil-
itates preparing the target projects from MuBench, executing the detectors on them,
and collecting result statistics about the detectors’ performance we manually reviewed
the detectors’ findings. In all our experiments, two authors first independently reviewed
each detector finding and then discussed any disagreements until a consensus was reached
about whether the finding correctly identifies a misuse. We report Cohen’s Kappa score
as a measure of the reviewers’ initial agreement. We now introduce these five experiments
in detail.

1https://github.com/xpinjection/java8-misuses (checked on Mar 20, 2018)
2Jadet and Tikanga initially crashed on most of these new projects, because both detectors use the

outdated Bytecode toolkit ASM 3.1. To fix this, we migrated them to the most recent version ASM
6.0. To ensure that this change did not hamper with their capabilities, we repeated the experiments
from Chapter 7 and successfully verified that the detectors still produce the exact same results.
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12.2.1. Experiment P

The goal of Experiment P is to measure the detectors’ precision. We run the detectors
on all projects from MuBench, letting them mine patterns and detect violations on a
per-project basis. Since some detectors report several hundreds of findings, reviewing all
findings of all detectors on all projects is practically infeasible. Therefore, we sample ten
projects and review the top-20 findings per detector on each of them, as determined by
the detectors’ individual ranking strategies. In this sample, we include the five projects
that we used in the precision experiment in Chapter 5. In addition, we choose another
five of the new projects we added to MuBench. To this end, we compute the average
normalized number of findings (ANNF) across detectors for each project. The NNF for
a given detector for a given project, is the number of findings the detector has on that
project divided by the maximum number of findings the detector has on any project.
Then, we select two projects with the highest ANNF, two projects with the lowest ANNF,
and one random project from the mid range. For fairness, we exclude projects where
one of the detectors failed or where two or more detectors did not report any findings.
We cannot exclude all projects where one of the detectors did not report any findings,
because this left us with less than five projects to chose from.

12.2.2. Experiment RUB

The goal of Experiment RUB is to assess the detectors’ recall upper bound, given perfect
training data. This helps us separate conceptual limitations from the effect of insufficient
training data. Since we need to provide a correct usage as input training data, we limit
this experiment to the 171 misuses in MuBench that have corresponding correct usages
(see Table 12.1). We run the detectors once for each of these misuses, providing them
with enough copies of the corresponding correct usage for pattern mining. This ensures
that detectors always find sufficient evidence to mine the pattern required to identify
the misuse. We review all potential hits, i.e., all detector findings in the same method
as the known misuse.

12.2.3. Experiment R

The goal of Experiment R is to measure the detectors’ recall. We run the detectors on
all projects of MuBench, letting them mine patterns and detect violations on a per-
project basis. Then, we review all potential hits, i.e., all findings in the same method as
a known misuse. As the ground truth, we use all 191 known misuses from MuBench,
plus any previously unknown true positives identified by the detectors in Experiment P.
This gives us the recall of the detectors with respect to a large number of misuses and,
at the same time, crosschecks which of the detectors’ findings are also identified by other
detectors.
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12.2.4. Experiment RNK

The goal of Experiment RNK is to find the best ranking strategy for MuDetect among
the candidate strategies discussed in Section 11.4. Ideally, we would repeat both Exper-
iment P and Experiment R for all 34 candidate ranking strategies to determine the best
strategy. However, repeating Experiment P would require us to review up to 20 findings
for each of the ten target projects per candidate strategy—a total of 6,800 findings—,
which is practically infeasible. Therefore, we only repeat Experiment R for each of the
candidate ranking strategies. This gives us both the recall of the detector, as well as the
ranks of all confirmed hits, i.e., findings that identify a known misuse from MuBench
through reviewing a relatively small number of findings. We use the number of hits, the
average rank of all hits, and the number of hits in the top-20 findings as quality measures
for the ranking strategies.

12.2.5. Experiment XP

The goal of Experiment XP is to measure MuDetectXP’s precision and recall. To
measure precision, we run MuDetectXP on the ten sample projects from Experiment P
review its top-20 findings. To measure recall, we run MuDetectXP on all projects in
MuBench and review all its potential hits for all known misuses, as in Experiment R.
For each target project, we provide the detector with training projects for all APIs
with known misuses in the target project. To ensure that the training projects contain
examples of the APIs with known misuses in MuBench, we collect client projects of the
respective APIs using the code-repository mining platform BOA [DNRN13] (full 2015
GitHub dataset). For each API, we query BOA for projects that either declare a field,
variable, or parameter, or call a static method of the respective API type. We publish
the query template and the result lists.3 From each list, we take the first 50 projects4

and randomly sample up to 20 usage examples of the respective API from each project.
This gives us a diverse cross-project sample of up to 1,000 usage examples per API.

3Artifact Page: MuDetect: The Next Step in Static API-Misuse Detection (http://www.st.
informatik.tu-darmstadt.de/artifacts/mudetect/)

4Some projects that the latest BOA dataset (2015) refers to have meanwhile been deleted or renamed.
We exclude projects that are unavailable as of February 2018.
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In this chapter, we present the results of our experiments and compare MuDetect’s
performance with the detectors Jadet, GROUMiner, Tikanga, and DMMC. All
experiments ran on a MacBook Pro with an Intel Xeon @ 3.00GHz and 32GB of RAM.
The full results are available on.1

13.1. Experiment RNK: Ranking Violations

We first run Experiment RNK to determine the best ranking strategy for MuDetect.
Table 13.1 shows the number of hits in the top-20 findings (@20), the number of
hits (#H), and the average hit rank (AHR) for the best and worst ranking strategies
we evaluated. We order the ranking strategies by these three metrics in the mentioned
order. The full list is available on our artifact page.2

The results show that the ranking has a huge impact on how many misuses MuDetect
finds and how well it ranks them in the top findings. We observe that the pattern
support (ps) appears in all of the top-16 and in none of the bottom-10 ranking strategies.
Contrarily, the pattern uniqueness (pu) appears in 11 of the bottom-15 strategies and
in none of the top-10. The violation-overlap measure (vo), the violation support (vs),
and the pattern violations (pv) appear in different combinations in ranking strategies
throughout the field. While this clearly shows that the pattern support is the most
important ranking factor, the strategy consisting of only this factor is only the 9th-best
strategy. This suggests that detectors should consider other factors as well. The best
strategy combines the pattern support (ps), the support of the violations (vs), and the
violation-overlap measure (vo) into ps/vs×vo. We use this strategy for both MuDetect
and MuDetectXP in all remaining experiments.

13.2. Experiment P: Precision

We measure the detectors’ precision in their top-20 findings in Experiment P Table 13.2
summarizes the results. MuDetect reports 146 violations in the top-20 findings in
the ten projects. Among these findings, we find 32 true positives, 19 of which were
previously unknown. This results in a precision of 21.9%, which exceeds the precision of
the other detectors more than two-fold.

1Artifact Page: MuDetect: The Next Step in Static API-Misuse Detection (http://www.st.
informatik.tu-darmstadt.de/artifacts/mudetect/)

2Artifact Page: MuDetect: The Next Step in Static API-Misuse Detection (http://www.st.
informatik.tu-darmstadt.de/artifacts/mudetect/)
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Table 13.1.: Results of Experiment RNK: Alternative Ranking Strategies Ordered by
The Number of Hits in the Top-20 (@20), The Total Number of Hits (#H),
and The Average Hit Rank (AHR).

# Strategy @20 #H AHR

1. ps/vs × vo 19 34 91.6
2. ps/vs 17 34 91.8
3. ps/vs × vo × pv 16 34 90.1
4. Rareness ((ps − vs)/ps) 16 33 94.3

. . .
9. ps 14 34 305.5

. . .
33. pu/vs 2 18 53.2
34. vo 1 26 1187.4

Table 13.2.: Results of Experiment P: Precision of the Detectors in Their Top-20
Findings.

Detector Confirmed Misuses Precision Kappa Score

Jadet 8 8.8% 0.64
GROUMiner 4 2.6% 0.49
Tikanga 7 8.2% 0.52
DMMC 12 7.5% 0.72
MuDetect 32 21.9% 0.90

While clearly outperforming the precision of the other detectors, considered on its
own, MuDetect’s precision is still low. Hence, we analyze the root cause for each false
positive it reports. We label these root causes (FPN ). A detailed discussion of possible
mitigation strategies follows in Section 13.6.

Root Cause FP1: Uncommon-but-correct Usages. 84 (73.7%) of the false positives
are uncommon-but-correct usages. MuDetect does not mine patterns for these usages,
since they occur only infrequently in the target projects. It reports them as violations,
because they deviate from an alternative pattern that MuDetect mined.

In eleven cases, for example, the usage checks for the presence of sufficiently many
elements in an Iterator through either size() or isEmpty() on the underlying collec-
tion. Both are valid alternatives, but occur themselves too infrequent for MuDetect
to learn a pattern. Since it, however, learns a pattern for checking hasNext() to ensure
sufficiently many elements, it reports missing checks of hasNext() in all cases.

In another seven cases, the usage calls size() on a collection for another purpose than
controlling access to the collection’s elements, e.g., to write the size into a log message.
In these cases, MuDetect reports that the call to size() should control an access to
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the collection. This shows two problems:

1. The heuristic for identifying pure methods by looking for methods with the prefix
get is insufficient, e.g., it fails to tag size() as pure.

2. The detection algorithm does not recognize that retrieving the size of a collection
is perfectly fine for purposes other than guarding access to that collection, i.e., it
does not consider that an action requires that its preconditions are ensured, but
not vice versa.

These problems also cause nine cases where a loop calls Iterator.hasNext() again
after calling next(), to check whether there will be a subsequent iteration. MuDetect
reports a missing call to next() after this second call to hasNext(). Here, the heuristic
for pure methods fails to recognize that hasNext() is pure and the detection algorithm
does not recognize that hasNext() does not need to guard a call to next().

Root Cause FP2: Imprecise Analysis. 18 (15.8%) of the false positives are due to
limitations of MuDetect’s static analysis. In seven cases, the usage elements that
MuDetect reports missing happen in a transitively called method, which our intra-
procedural analysis cannot consider. In another four cases, the usage ensures a precon-
dition through an assert statement, which our analysis does not recognize to control
the execution of subsequent actions.

Root Cause FP3: Dependent Object States. Five (4.4%) of the false positives are due
to implicit dependencies. In two case, for example, the code ensures that two collections
have the same size and then iterates over one, while checking the size of the other. In
another case, the usage iterates over the key set of a Map, while checking the Map’s size.
In the two remaining cases, the usages loop over a List in a for loop with an index
i, while accessing the list with an index j that is guaranteed to be smaller than i. All
these usages are safe, but MuDetect cannot capture the implicit dependencies between
object states and values.

Root Cause FP4: Non-optimal Mapping. Another five (4.4%) of the false positive are
due to MuDetect’s detection algorithm choosing a non-optimal mapping between a
pattern and a target. In these cases, the target is actually an instance of the pattern,
but MuDetect fails to recognize this. This shows that the greedy extension strategy in
the detection, which we chose to keep the detection scalable while detecting even single
missing edges, comes at the cost of precision.

Root Cause FP5: Cross-method Usages. One false positive is a cross-method usage,
which our filtering misses, because the respective object is initialized as a local variable
and only later assigned to a field.
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Table 13.3.: Results of Experiment RUB: Recall Upper Bound of the Detectors with
Respect to the Misuses with Corresponding Correct Usages from MuBench.

Detector Hits Recall Upper Bound Kappa Score

Jadet 29 16.9% 0.79
GROUMiner 88 51.2% 0.85
Tikanga 15 8.8% 0.73
DMMC 28 16.3% 0.88
MuDetect 124 72.5% 0.89

Root Cause FP6: Alternative Patterns. The last false positive is a case where a vio-
lation is an instance of a combination of two alternative patterns, which our alternative-
pattern filtering cannot detect.

13.3. Experiment RUB: Recall Upper Bound of the Detectors

Table 13.3 summarizes the results of measuring the upper bound to the detector’s recall.
MuDetect identifies 124 of the 171 misuses used in this experiment (72.5%). This upper
bound of recall clearly outranks that of the other detectors by 20.3% for GROUMiner
and by over 54% for each of the other three detectors. This shows that (1) AUGs are
able to better capture the difference between correct usages and misuses, and (2) our
detection algorithm succeeds in identifying these differences.

MuDetect identifies 39 misuses that all other detectors miss. In turn, MuDetect
misses ten misuses that at least one of the other detectors finds. Eight of these cases we
miss due to one of the heuristics we introduced to improve precision, such as the filtering
of cross-method usages. There are 38 more misuses that all detectors miss.

Next, we analyze the root causes for each of these 47 false negatives of MuDetect.
We label these root causes (FNN ). A detailed discussion of possible mitigation strategies
follows in Section 13.6.

Root Cause FN1: Imprecise Representation. In 15 cases, an illegal parameter value
(constant or literal) is passed to a method as a parameter. MuDetect cannot detect
this, because AUGs do not capture concrete values. In one other case, a condition is
checked with an if, but should be checked repeatedly using a loop.

Root Cause FN2: Filtering of Self Usages. Eight cases are due to our removal of self
usages (five cases) and cross-method usages (three cases) to counteract their potential
to cause false positives.

Root Cause FN3: Imprecise Pattern Matching. In Seven cases, MuDetect cannot
match the respective pattern and the target usages, because they contain only a single,
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Table 13.4.: Results of Experiment R: Recall of the Detectors with Respect to The
Known Misuses in MuBench and the Detectors’ Own True-Positive Find-
ings from Experiment P.

Detector Hits Recall Kappa Score

Jadet 15 6.7% 0.64
GROUMiner 7 3.1% 1.00
Tikanga 17 7.6% 0.69
DMMC 24 10.7% 0.91
MuDetect 47 20.9% 1.00

distinct call each. Our detection algorithm, by design, does not match AUGs that have
nothing in common.

Root Cause FN4: Inability to Identify Redundant Usage Elements. Seven cases are
misuses where the usage has a redundant element that should be removed. Since all
detectors in our experiments are designed to detect missing elements, none can detect
these misuses.

Root Cause FN5: Filtering of Pure-Method Calls. In six cases, our mining excludes
elements from the pattern when heuristically determining semantically irrelevant nodes
(calls to getter methods in all cases). The remaining pattern can no longer be matched
to the target usage, because they have nothing in common.

Root Cause FN6: Imprecise Analysis. In one case, our analysis misses data-flow rela-
tions, because it assumes single static assignment. In the correct usage if (v == null)

{ v = ... } v.m(), which ensures the initialization of v before its use, it regards v

before and after the assignment as two different objects. Therefore, our pattern mining
sees no data flow between the null check and the subsequent usage and excludes the
check from the pattern. Consequently, MuDetect cannot identify the missing check in
the respective misuse.

Root Cause FN7: Operator Abstraction. In one case, the misuse is an accidentally
inverted condition, which we miss because we abstract from concrete operators in rep-
resenting conditions.

13.4. Experiment R: Recall of the Detectors

Overall, the detectors identified 34 unique previously unknown misuses in Experiment P.
We add these misuses to the 191 misuses from MuBench for Experiment R. Table 13.4
summarizes the results of measuring the detectors’ recall. MuDetect identifies 47 of
the 225 misuses. This results in a recall of 20.9%, which exceeds the recall of the other
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detectors almost two-fold. MuDetect correctly identifies 13 misuses that none of the
other detectors identifies, eleven of which it already identified in Experiment P. The
other six previously unknown misuses from Experiment P are also correctly identified
by at least one other detector.

In turn, MuDetect misses 13 misuses that one of the other detectors finds. Six of
these are misuses that only DMMC identifies, because the projects contains too few
usage examples for any of the other detectors to mine a respective pattern. DMMC’s
probabilistic approach is able to identify misuses with very little evidence. In the extreme
case (three of the six cases), DMMC finds exactly two usage examples for the respective
API: a correct usage and the misuse. Consequently, ps = 1 and pv = 1 and, therefore,
confidence = 0.5, which is exactly DMMC’s lower bound on confidence for reporting a
misuse. Since MuDetect requires a pattern support of at least 10, it cannot find these
misuses. Another five of these misuses are identified by Jadet or Tikanga or both.
In all these cases, the target method contains multiple equal misuses of the same API.
Jadet and Tikanga report a single finding identifying the misuse, but since we cannot
determine which particular misuse instance it refers to, we conservatively count it as a
hit for all instances. MuDetect, on the other hand, reports its findings at line level,
which is why we only count hits when the reported violation line matches the known
misuse line, resulting in only 1 hit being counted. For the last two of these misuses,
MuDetect misses the pattern due to the greedy extension strategy that we chose to
keep the mining scalable.

While MuDetect has higher recall than the other detectors, its recall is still low
in absolute terms. We find that MuDetect has on average 227.6 usages examples
(median = 105) for APIs whose misuses it identifies, but only 38.6 examples (median =
11) for those it misses. There is a moderate correlation (Pearson’s r = 0.52) between the
number of examples and detecting a misuse. This supports the hypothesis that the target
projects contain too few usage examples for some APIs. Experiment XP investigates
this further.

13.5. Experiment XP: Cross-project Misuse Detection

The 225 misuses that we consider for Experiment R are usages of 59 APIs. For five of
these, we find no projects with respective usages on GitHub and for another thirteen,
we find less than 50 projects (1, 1, 2, 4, 8, 12, 14, 20, 21, 26, 39, 42, and 44). For the
remaining 41 APIs, we find 50 or more projects. Our cross-project sampling strategy
(see Section 12.2.5) collects on average 239.3 usage examples per API (median = 172),
compared to the average of 78.5 examples (median = 25) in the per-project setting.

Table 13.5 shows the precision and recall of MuDetectXP compared to the per-
formance of the other detectors in Experiment P and Experiment R. MuDetectXP
reports 91 violations in the top-20 findings on the 10 projects from Experiment P. Among
these findings, we find 31 true positives, three of which were previously unknown. This
results in a precision of 34.1%, which outranks MuDetect by 12.2%. Moreover, Mu-
DetectXP identifies 95 of the 225 misuses. This results in a recall of 42.2%, which
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Table 13.5.: Results of Experiment XP: Precision and Recall of MuDetectXP in the
Cross-project Setting in Comparison to the Precision and Recall of the De-
tectors in the Per-project Setting.
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Jadet 8 8.8% 0.64 15 6.7% 0.64
GROUMiner 4 2.6% 0.49 7 3.1% 1.00
Tikanga 7 8.2% 0.52 17 7.6% 0.69
DMMC 12 7.5% 0.72 24 10.7% 0.91
MuDetect 32 21.9% 0.90 47 20.9% 1.00
MuDetectXP 31 34.1% 0.88 95 42.2% 0.93

improves on MuDetect more than two fold. This clearly shows that additional usage
examples are crucial to improving the performance of API-misuse detectors.
MuDetectXP identifies 65 misuses that MuDetect misses. For these misuses, Mu-

Detect has on average only 94.6 usage examples (median = 16), while MuDetectXP
has on average 258.4 examples (median = 216). This suggests that detectors should
search for additional usage examples, if the target project itself contains too few. Mu-
Detect, in turn, identifies 17 misuses that MuDetectXP misses. Ten of these are
usages of APIs declared in the respective target project. Interestingly, the problem is not
a lack of examples, as MuDetectXP has on average 239.3 (median = 172). A possible
explanation is that APIs are used differently in the declaring project than in client
projects. This suggests that detectors should consider, but distinguish both sources
of usage examples. Overall, we observe only a weak correlation (Pearson’s r = 0.17)
between the number of examples that MuDetectXP has for pattern mining and the
detection of a respective misuse. This suggests that, while the number of available
examples is an important factor for the performance of a misuse detector, there are
other factors at play as well. We hypothesize that the quality of the examples or their
representativeness of the possible usages of an API might be such factors. Future work
should investigate this.

13.6. Discussion

Our results show that, with MuDetect, we successfully took a next step in static API-
misuse detection. With a precision of 34% and a recall of 42%, we are closer than ever
to practical applicability of a detector. Moreover, our findings suggest that there is still
room for improvement. We subsequently discuss the effects of the mitigation strategies
we implemented for the problems that motivated our work (see Chapter 10) and the
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remaining problems that we identified in our experiments, and sketch ideas for future
work.

The results of Experiment RNK and Experiment P show that our ranking strategy
successfully orders true positives in the top findings (P7 (Poor Ranking)). The results
of Experiment XP show that mining patterns from other projects significantly improves
both precision and recall (P8 (Lack of Usage Examples)). Future work should investigate
techniques for the retrieval of high-quality usage examples to train detectors.

As Experiment RUB shows, we successfully mitigated P1 (Imprecise Representation)
with the design of AUGs. To further reduce the remaining false negatives caused by
FN1 (Imprecise Representation), we plan to investigate the effect of encoding constant
names as data-node labels. We abstract such names to avoid mismatches when variables
and literals are used interchangeably. However, constants are less likely used interchange-
ably with variables or literals. Thus, we might be able to capture such cases, without
introducing many false positives.

While MuDetect identifies significantly more misuses than the other detectors, this
comes at a price. The greedy extension strategy that we chose to keep both our mining
and detection scalable causes false negatives in Experiment RUB (FP4 (Non-optimal
Mapping)) and Experiment R (missing pattern). Future work should investigate alter-
native mining approaches to avoid these problems.

For the cause of another false negative, FN7 (Operator Abstraction), we do not believe
that misuse detectors can mitigate it efficiently. While AUGs could be adapted to
capture concrete operators, this would most likely cause many false positives. Given
this trade-off, we believe our operator abstraction is the better design decision.
MuDetect identifies wrong call order and abstracts over static types to address

P2 (Imprecise Pattern Matching). However, there are still instances of FN3 (Imprecise
Pattern Matching). They are patterns containing only a single method call. A possible
solution could be to identify usages based on the presence of respective data nodes, as
opposed to on the presence of at least one call on the API. However, then we would
compare target usages to patterns with which they do not share even a single call, which
would always result in violations. This would produce many false positives, since the
target is likely to implement an alternative usage pattern that the detector is unaware
of. Given this trade-off, we believe that not matching these cases is the better design
choice.

We failed to mitigate P3 (Uncommon-but-correct Usage), as FP1 (Uncommon-but-
correct Usages) remains the most-prevalent cause for false positives. While our pure-
methods heuristic filters some false positives, it is obviously insufficient to address the
problem. To reduce the impact further, we might choose a lower frequency threshold to
also learn patterns for the alternative usages that are mistaken for violations. However,
this would merely shift the problem to other APIs where one alternative usage occurs
slightly more frequently and another less frequently than the threshold. A solution might
be a probabilistic model of API usage that considers the likelihood of different usages
and reports no violation if one usage is only slightly more likely than another or if an
API’s usages generally vary a lot.

The false negatives caused by FN4 (Inability to Identify Redundant Usage Elements)
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cannot be detected by misuse detectors that search for missing elements. DroidAs-
sist [NPVN16] uses a probabilistic approach that might find superfluous method call,
but the approach has never been evaluated.

By excluding self usages and usages on fields from both mining and detection, we
reduced the impact of P5 (Self- and Cross-method Usages). However, this strategy and
the removal of pure method calls as a means to reduce the impact of P3 (Uncommon-
but-correct Usage) immediately cause false positives as identified by the two root causes
FN2 (Filtering of Self Usages) and FN5 (Filtering of Pure-Method Calls). While Ex-
periment P suggests that these measures are effective, apparently, we trade precision
for recall. By capturing inter-procedural usages, we might make filtering them unneces-
sary and enable us to identify misuses in them. The Chronicler [RGJ07b] detector
mines usages from an inter-procedural call graph, which might mitigate the problem.
However, it is unclear how to adapt this approach from considering only method calls
to all usage elements we encode in AUGs. Furthermore, such an approach duplicates
evidence, if methods are called multiple times, which might bias the mining. Future
work should investigate the possibilities and effects of such an approach. On a related
note, some false negatives and false positives are caused by FN6 (Imprecise Analysis)
and FP2 (Imprecise Analysis), i.e., by imprecisions of our static analysis. We observe
that a large fraction of these cases are inter-procedural usages, where API objects are
passed to or returned from methods. The misuse detector PR-Miner [LZ05] analyzes
transitive calls to check whether missing method calls appear there and filters respective
violations. Such a strategy would reduce the impact of the problem, but we need to also
consider callers to be able to generally capture inter-procedural usages. Although such
cases also appeared in the detector findings we analyzed in Chapter 7, we did not specif-
ically address them with MuDetect. A more sophisticated, possibly inter-procedural,
static analysis might help reduce the impact of these problems.

The root cause FP3 (Dependent Object States) also appeared in Chapter 7, as the
least prevalent cause for false positives. Since it is very difficult, if not impossible, to
capture inter-dependencies of object states using static analysis, we did not address this
problem with MuDetect. However, again, a more sophisticated static analysis might
help reduce the impact of these problems.

13.7. Reviewer Agreement

To mitigate subjectivity in the reviews of detectors’ findings in our experiments, the
author of this thesis and one of his colleagues separately reviewed all findings. We
report Cohen’s Kappa score as a metric for the initial reviewer agreement. For our
experiments, we observe noticeable differences in the Kappa scores between detectors.
We investigate possible causes.

13.7.1. Agreement in Experiment P

Table 13.6 shows the detailed agreement statistics for our reviews in Experiment P, in-
cluding MuDetectXP. We observe that the agreement for our detector is considerably
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Table 13.6.: Reviewer Agreement in Experiment P, Including MuDetectXP. Reviewers
classified each finding as a true positive (TP) or false positive (FP)

Agreements Disagreements Cohen’s Kappa

Detector TP FP Total TP/FP FP/TP Total p0 pTP pFP pe Score

Jadet 5 82 87 3 2 5 0.95 0.01 0.84 0.85 0.64
GROUMiner 2 150 152 2 2 4 0.97 0.00 0.95 0.95 0.49
Tikanga 6 70 76 0 9 9 0.89 0.01 0.77 0.78 0.52
DMMC 10 144 154 2 5 7 0.96 0.01 0.84 0.85 0.72
MuDetect 29 112 141 2 3 5 0.97 0.05 0.62 0.66 0.90
MuDetectXP 30 56 86 0 5 5 0.95 0.13 0.41 0.54 0.88

higher than for the other detectors. The agreement is lowest for GROUMiner and
Tikanga and on a middle ground for Jadet and DMMC.

The relative observed agreement between reviewers (p0) is comparable across all de-
tectors (≈ 0.96), except for Tikanga, where it is a bit lower (0.89). Among the nine
disagreements for Tikanga we find two duplicated findings, one of which Tikanga
reported twice and the other even three times. The reviewers consistently disagreed on
these duplicates. We were no disagreements on duplicated findings for any of the other
detectors. This likely explains the difference in the relative observed agreement.

The expected probability for both reviewers to classify a findings as a true posi-
tive (pTP) is a bit higher for MuDetect than for the other detectors, and another
bit higher for MuDetectXP. The expected probability for both reviewers to classify
a findings as a false positive (pFP), on the other hand, is considerably lower for our
detector, but also varies between the other detectors. We observe that pFP decreases
with the precision of the detectors, except for Tikanga, where it is again lower due
to our consistent disagreements. Consequently, the hypothetical probability of chance
agreement (pe(= pTP + pFP)) also decreases with the precision of the detector, again
with the exception of Tikanga. This phenomenon is to be expected: For a detector
with a very low precision, most decisions are for false positives and, thus, the probability
of chance agreement is high. The closer the precision gets to 50%, the more balanced
become the decisions and the lower is the probability of chance agreement.

Since the relative observed agreement between reviewers (p0) is high for all detectors,
the difference in the hypothetical probability of chance agreement (pe) has a huge impact
on the Kappa score. This explains the high variance in the scores between detectors in
Experiment P.

13.7.2. Agreement in Experiment RUB

Table 13.7 shows the detailed agreement statistics for our reviews in Experiment RUB.
We observe that the agreement is highest for MuDetect and DMMC, and decreasing
a bit for each of the other detectors in the order GROUMiner, Jadet, and Tikanga.
The relative observed agreement between reviewers (p0) decreases slightly between de-
tectors in the same order. We note that the absolute number of decisions is considerably
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Table 13.7.: Reviewer Agreement in Experiment RUB. Reviewers decided for each known
misuse whether a detector identifies it (Hit) or not (Miss).

Agreements Disagreements Cohen’s Kappa

Detector Hit Miss Total Hit/Miss Miss/Hit Total p0 pHit pMiss pe Score

Jadet 26 12 38 3 1 4 0.90 0.44 0.11 0.55 0.79
GROUMiner 84 41 125 3 6 9 0.93 0.44 0.12 0.55 0.85
Tikanga 14 19 33 1 4 5 0.87 0.19 0.32 0.51 0.73
DMMC 28 69 97 4 1 5 0.95 0.09 0.49 0.58 0.88
MuDetect 118 26 144 1 4 5 0.97 0.65 0.04 0.69 0.89

Table 13.8.: Reviewer Agreement in Experiment R, Including MuDetectXP. Review-
ers decided of reach known misuse whether a detector identifies it (Hit) or
not (Miss).

Agreements Disagreements Cohen’s Kappa

Detector Hit Miss Total Hit/Miss Miss/Hit Total p0 pHit pMiss pe Score

Jadet 14 1 15 1 0 1 0.94 0.82 0.01 0.83 0.64
GROUMiner 7 11 18 0 0 0 1.00 0.15 0.37 0.52 1.00
Tikanga 15 3 18 2 0 2 0.90 0.64 0.04 0.68 0.69
DMMC 24 40 64 0 3 3 0.96 0.14 0.38 0.53 0.91
MuDetect 44 26 70 0 0 0 1.00 0.40 0.14 0.53 1.00
MuDetectXP 92 55 147 2 3 5 0.97 0.39 0.14 0.53 0.93

smaller for Jadet and Tikanga than for the other detectors, yet, the absolute number
of disagreements is not. Many of the disagreements on these detectors’ findings are due
to different interpretations of their representation. Conversely, we note that the absolute
number of disagreements is twice as high for GROUMiner than for MuDetect and
DMMC. We analyzed the disagreements for GROUMiner, but could not identify any
systematic reason for them. We speculate that the simplicity of DMMC usage repre-
sentation and the reviewer’s familiarity with the MuDetect’s representation led to a
smaller number of disagreements. We previously discussed the problem of interpreting
detector findings in Section 7.5.

13.7.3. Agreement in Experiment R

Table 13.8 shows the detailed agreement statistics for our review in Experiment R,
including MuDetectXP. We observe that the agreement is high for GROUMiner,
DMMC, MuDetect, and MuDetectXP, but considerably lower for Jadet and Ti-
kanga. For the latter detectors, the absolute number of disagreements is low, as is the
absolute number of decisions the reviewers had to make. Due to this small number of
decisions, the hypothetical probability of chance agreement (pe) is very sensitive to single
disagreements, as the comparison to the scores for GROUMiner shows. Otherwise,
the relative observed agreement between reviewers (p0) is high across detectors. The
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hypothetical probability of chance agreement (pe) for GROUMiner, DMMC, Mu-
DetectXP, and MuDetectXP is almost equal. This is reflected by the high Kappa
scores for these detectors.
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Overfitting We designed and fine-tuned MuDetect based on observations from run-
ning detectors on MuBench (see Chapter 7). We evaluated MuDetect on the same
benchmark, which bears the danger of overfitting. To mitigate this threat, we extend the
benchmark to more than twice its original size and evaluate all detectors on this extended
benchmark. We publish this extension and our implementation of MuDetect.1

Internal Validity We did not fine-tune the other detectors, but used the best config-
urations reported in the respective publications. Therefore, it is possible that they do
not show their optimal performance in our experiments.

We reviewed the detectors’ findings ourselves. The detector producing a finding was
known, because each detector has a distinct representation of API usages and violations
that we could not blind.

We evaluated only our own detector, MuDetectXP, in the cross-project setting. We
did not try other detectors in this setting, because they cannot use separate datasets for
pattern mining and violation detection. Hence, evaluating them in the same cross-project
setting as MuDetectXP, would have required us to modify their implementations,
which might hamper with their capabilities. We published the list of example projects
we used to train MuDetect in the cross-project experiment2 and encourage others to
assess the performance of their approach in this setting.

Providing MuDetectXP with only example usages for the APIs with known misuses
in MuBench potentially biases the results with respect to precision, because it reduces
the overall number of patterns and, consequently, might reduce the number of reported
violations.

External Validity The study is subject to the limitations of MuBench, as discussed
in Section 5.6 (limitations of the benchmarking dataset) and Section 6.4 (limitations of
the benchmarking pipeline). We extended the MuBench dataset to more than twice its
original size, to reduce the impact of these limitations.

1Artifact Page: MuDetect: The Next Step in Static API-Misuse Detection (http://www.st.
informatik.tu-darmstadt.de/artifacts/mudetect/)

2Artifact Page: MuDetect: The Next Step in Static API-Misuse Detection (http://www.st.
informatik.tu-darmstadt.de/artifacts/mudetect/)
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15. Related Work

API-Misuse Detectors Helping developers identify API misuses has received much
attention. Chapter 4 presents a detailed survey of existing approaches in this field. In
this part of this thesis, we presented a comparison of our detector, MuDetect (and Mu-
DetectXP), to the other detectors that target Java. We exclude the misuse detectors
that target other programming languages [LZ05, RGJ07b, Lin07, RGJ07a, AX09] here.

The closest work to ours is Nguyen et al.’s [NNP+09b], which proposed a graph-based
representation of API usages (GROUMs) for their misuse detector GROUMiner. The
good conceptual coverage of detectors using graph-based usage representations in Chap-
ter 4 and the relatively high recall of GROUMiner in our experiments from Chapter 7
led us design our graph presentation, AUG. AUGs, in contrast to GROUMs, are di-
rected acyclic multigraphs that capture method calls, field accesses, null checks, and
data entities as nodes and control/data dependence among them as labeled edges. Con-
trol structures are encoded by control edges between the nodes representing the condi-
tions and the nodes representing the controlled actions. This allows to give more precise
information about misuses. For example, while GROUMiner can detect a missing
if, MuDetect can also tell what should be checked in the if condition. Addition-
ally, AUGs encode exceptional, synchronized, and iterative control flow, and distinguish
receivers from parameters, to better differentiate between correct usages and misuses.
Encoding more information in edges also makes our pattern mining more scalable.

MuDetect is the only approach that handles all API-usage elements targeted by all
of the detectors we identified in our survey in Chapter 4 combined and, thereby, more
usage elements than any one of them individually. It conceptually covers all violations
covered by any of the detectors, with the exceptions of redundant method calls, which
PJAG12 [PJAG12], PG12 [PG12], and DroidAssist [NPVN15] may find. In all three
cases, this ability comes from patterns modeling object states, using method calls to
signal state transitions. It is unclear whether and how these models can be extended
to cover further usage elements, such as conditions, exception handling, and iteration.
Future work should investigate this, to further increase the coverage of misuse detectors.

We directly motivate the work in this part of the thesis from the problems of the
four detectors Jadet [WZL07], GROUMiner [NNP+09b], DMMC [MBM10], and
Tikanga [WZ11] as identified in our empirical study in Chapter 7. Our direct em-
pirical comparison to these detectors in Chapter 13 shows that MuDetect success-
fully mitigates many of the root causes of the respective problems. We cannot em-
pirically compare MuDetect to the static misuse detectors Alattin [TX09b] and
CAR-Miner [TX09a], because their implementations are unavailable (see Section 5.1),
and DroidAssist [NPVN15], because it is implemented for Dalvik Bytecode, while
MuBench contains general Java projects. We also cannot empirically compare Mu-
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Detect to the dynamic detectors, because MuBench does not support their execution.
However, in our experiments we included 77 misuses identified by a dynamic specifica-
tion verifier (see Section 12.1). Our results show that MuDetect can detect many of
these misuses statically.

Mining Patterns from Project-external Usage Examples Gruska et al. [GWZ10] eval-
uated Jadet in a multi-project setting, where it simultaneously mined patterns and
detected violations in a combined set of all usage from 6,000 projects. This setting is
different from the cross-project setting of Experiment XP, where MuDetectXP mines
patterns in examples from a large number of projects to detect misuses in another project.
While MuDetectXP mines patterns with cross-project support, i.e., patterns that re-
occur in a certain number of projects, Jadet mines any pattern with high support,
even with in a single project. Furthermore, while [GWZ10] measures the precision of
Jadet in the multi-project setting, we measure both the precision and recall of Mu-
DetectXP in the cross-project setting. This allows us to show—in direct comparison
to the per-project setting we use in Experiment P and Experiment R—that learning
from cross-project data significantly improves both precision and recall of our detector.
To the best of our knowledge, such a comparison has not been presented before.
CAR-Miner [TX09b] and Alattin [TX09a] mine target-specific patterns from exam-

ples retrieved via a code-search engine. This presents an alternative to the cross-project
mining we do for MuDetectXP. Future work should compare the performance of both
approaches.
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16. Conclusion

In this chapter, we present a brief overview over the findings from this thesis. We start
with a review of the results and contributions of this thesis and follow with a closing
discussion.

16.1. Summary of Results

This thesis contributes to the area of API-misuse detection. We provide a holistic view
on the problem space of API misuse and the state of the art in misuse detection. We
provide a conceptual framework, MuC, which we use to qualitatively compare existing
misuse detectors, and an automated benchmark, MuBench, which we use to empirically
compare them. Based on insights from this empirical comparison, we systematically
design a new detector, MuDetect, which advances the state of the art. Finally, we
present evidence for possible directions towards further improvement, as a stepping stone
for future work.

Prevalence of API Misuse In-the-wild From the findings of multiple studies on API-
usage directives we learn (1) that up to two thirds of all API-usage elements come
with usage directives that, if violated, lead to API misuse, (2) that developer are often
unaware of these directives, and (3) that more than half of these directives are incorrectly
documented. This shows the immense potential for API misuse in today’s software
products. Through analyzing bug reports we show that indeed almost 10% of all bugs
are misuses and that misuses often have severe consequences, such as application crashes
or data loss. Through a developer survey and a study on StackOverflow we gain
initial evidence that misuses may considerably slow down the development process. And
through an analysis of API usages in Open Source projects, we confirm the prevalence
of API misuses that cause security vulnerabilities.

Classification of API Misuses From the examples of API misuse we identified, we
create the API Misuse Classification (MuC), as both a taxonomy of API misuses
and a framework to assess the conceptual capabilities of API-misuse detectors. As a first
result, MuC shows that certain types of API misuses—namely missing value or state
conditions, missing null checks, and missing method calls—are much more prevalent
than others.

Survey of State-of-the-art Misuse Detection We present a systematic literature re-
view of existing work on API-misuse detection and a qualitative comparison of the re-
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spective detectors according to MuC. Both static and dynamic detectors focus on only
a small subset of all API misuses, mostly neglecting usage elements other than method
calls. Empirical evaluations focus on the precision of detectors. Since evaluations gen-
erally use different datasets and review different samples of detector findings, a direct
comparison of evaluation results is very unreliable. It seems that detectors focusing on
specific types of API misuses are more precise, but this has never been investigated.
Studies that directly compare multiple detectors are practically non-existent.

Automated Benchmark for API-Misuse Detectors Using the examples of API misuse
we identified, we build MuBench, the first-ever automated empirical benchmark for
API-misuse detectors. MuBench enables systematic, comparable, and reproducible
experiments, measuring both a detectors’ precision and recall. It automates large parts
of the evaluation process, including the retrieval of project source code and Bytecode,
the execution of detectors, and the preparation of their findings for manual review. And
it drastically reduces the remaining effort of the necessary manual reviews through pre-
filtering of relevant detector findings. Furthermore, MuBench is easily extensible by
new misuse examples and additional detectors for further experiments.

Performance of State-of-the-Art Misuse Detectors We use MuBench for a system-
atic evaluation and comparison of four state-of-the-art misuse detectors. We find that
all these detectors may successfully identify many misuses (up to 48%), but suffer from
extremely low precision (below 12%) and recall (below 21%) in a practical setting. Our
root-cause analysis of the detectors’ false positives and false negatives reveals 13 rea-
sons for their bad performance. From them, we derive possible directions towards more
powerful misuse detectors.

Improved Detection of API Misuses Based on the results of the previous empirical
study, we develop MuDetect, a new API-misuse detector that mitigates many of the
problems of existing detectors. MuDetect uses API Usage Graphs (AUGs), a new
graph-based representation of API usages. We specifically design AUGs to simultane-
ously capture many properties of API usages that can distinguish misuses from correct
usages. MuDetect employs a pattern-mining and a violation-detection algorithm that
efficiently and effectively identify usage patterns and misuses based on AUGs. Our em-
pirical evaluation shows that MuDetect outranks existing detectors by factor 2.5 in
terms of precision and by factor 2 in terms of recall, in the typical per-project setting. In
a cross-project setting, MuDetect achieves a precision of 34.1% and a recall of 42.2%,
thereby outranking the other detectors by factor 3.9 with respect to both metrics.

Possible Directions Towards Further Improvement An analysis of MuDetect’s find-
ings shows that we need to consider usage examples from both within target projects and
across different projects, to mine the necessary patterns for effective misuse detection.
Furthermore, we find that future work should explore the use of inter-procedural pro-
gram analyses and the possibilities of probabilistic usage models. A detailed discussion
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of these research opportunities follows below.

16.2. Closing Discussion

Reuse of existing software components is an integral ingredient to efficient software
development. Software developers use such components through their APIs. Thereby,
they must consider the usage constraints that come with these APIs. The work presented
in this thesis shows that failing to do so, i.e., misusing the API, is a prevalent cause of
severe software defects and that struggling with misuses may considerably slow down
the development process.

Researchers have dedicated much work to the automated detection of API misuses.
This thesis consolidates over a decade of research for a qualitative and quantitative
assessment of the state of the art. We find that existing detectors conceptually cover
only a small subset of all types of API misuses. Moreover, we find that while detectors
may potentially detect many misuses, their actual precision and recall are extremely
low (below 10%). We analyze their false positives and false negatives to determine the
respective root causes. Based on our findings, we systematically design a new static
API-misuse detector, MuDetect, that improves on the state of the art. MuDetect
achieves a precision of 34.1% at a recall of 42.2%.

Nevertheless, it is clear that misuse detection is not yet mature enough for practical
applicability. Existing detectors either focus on very specific types of misuses (see Chap-
ter 4) or have false-positive rates way above the 20% that practitioners report as the
highest acceptable rate [BBC+10]. However, the work presented in this thesis shows that
through systematic analysis of the problems of state-of-the-art misuse detectors and a
strategic design of new approaches, we can improve on both precision and recall at the
same time. Our results also show that there is further potential for improvement, which
is why we are convinced that misuse detection can reach a practical level. We present
several challenges that future work should address, in order to reach this goal.

First, current detectors employ rather simple code analyses, such as intra-procedural
analysis assuming static single assignment or analysis of simple method-call traces. Im-
precisions of these analyses cause many of the detectors’ false positives. More advanced
analysis techniques, such as inter-procedural analyses, points-to analyses, or abstract
interpretation, might deliver much more precise information, which may help to improve
overall detection quality.

Second, many current detectors employ frequency-based approaches to mine API spec-
ifications, i.e., they assume that frequent usages are correct and infrequent usages, con-
sequently, incorrect. Our empirical results show that this assumption is the main reason
for false positives across all detectors. We should search for alternative metrics for
usage correctness to replace pure frequency and develop techniques to prune specifica-
tions, e.g., considering the implementation code of APIs, to avoid reporting violations
of meaningless specifications. We should also advance probabilistic API-usage mod-
els [NPVN15, MCJ17], as a means to avoid binary decisions about correctness entirely.

Third, our results show that the recall of current detectors is severely limited by the
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number of available usage examples to learn specifications from. To mitigate this, we
should investigate techniques that scale to larger training datasets and approaches for
targeted retrieval of usage examples, e.g., through code-search engines [TX09a, TX09b]
or from answers on StackOverflow [GZW+15]. We should also investigate approaches
ensure the quality of the training examples we use. Moreover, we should combine exam-
ples from different sources, to maximize the available training data.
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In this chapter, we present our ideas for future work, with respect to benchmarking
API-misuse detectors, as well as advancing the state of the art in API-misuse detection.
For some of these ideas we present preliminary results. Others we identify as interesting
challenges.

17.1. Benchmarking API-Misuse Detectors

Mining Misuse Examples from Project History Despite the huge manual effort that
we invested to create our benchmarking dataset, the number of misuse examples in the
current dataset is still relatively small, especially because we had to exclude examples
where we could not compile the respective project version that contain them. This bears
the danger that the dataset is not representative for API misuses as they appear in-the-
wild. To mitigate this threat, future work should explore ways to obtain large numbers of
misuse examples with less manual effort. For example, Dallmeier et al. [DZ07] present an
approach to automatically classify bugs by the changes applied in their fixes. It may be
possible to leverage such an approach to automatically identify examples of API misuses
in the version-control history of software projects. This would enable us to obtain misuse
examples for our benchmarking dataset on a much larger scale.

Defining a Minimal Benchmark The MuBench dataset contains all examples of API
misuses that we identified in compilable project versions throughout the work presented
in this thesis. Thereby, we included multiple instances of some misuses, i.e., multiple
usages that violate the same API-usage constraint. While this reflects the distribution
of violations as they appear in the wild, we argue that it would be interesting to also
define a minimal benchmark dataset with only unique misuses. In order to achieve this,
future work should develop a notion of misuse equivalence. Note that misuse equivalence
cannot simply be defined via the equality of usages, since two misuses might contain
different additional elements that do not contribute to the misuse. Furthermore, our
experiments for measuring the recall upper bound of detectors have shown that the
context in which a misuse appears may impact detectors. The code surrounding a usage
may introduce noise, which leads to a detector identifying one instance of a particular
misuse, while missing another. We need to consider such factors in the creation of a
minimal benchmark that enables a fair comparison of misuse detectors.

Studying the Impact of API Misuse Throughout the Development Process We found
initial evidence that developers struggle with API misuses already at development time

161



17. Future Work

and that these misuses might be different from the misuse examples we identify in issue
trackers and version-control systems (see Section 2.3). However, we know little about
the actual impact of API misuse at different stages of the development process and the
potentially distinctive properties of misuses at any particular stage. To find out more,
future work could mine Q&A sites or conduct surveys and field studies to learn more
about which problems developers face at different stages. This would enable a systematic
comparison to reveal whether there are indeed differences and how these impact research
on API-misuse detection.

Reducing Review Effort for Measuring Recall MuBench significantly reduces the
effort of measuring the recall of misuse detectors. For example, we had to review only
0.3% (62) of all findings of the four detectors in Experiment R (see Section 5.5) due to
pre-filtering for potential hits by their code location. However, the overall effort of the
necessary manual reviews across all experiments is still high.

It is likely impossible to reduce the number of reviews in Experiment P, where we
review the top-20 findings per detector and project, because we lack a-priori knowledge
about the findings. Instead, future work could develop techniques that speed up individ-
ual reviews. One possibility might be to automatically group similar findings, to allow
bulk reviews. Another orthogonal approach might be to automatically provide reviewers
with additional information for the reviews, such as documentation for the API(s) in
question.

On the other hand, we believe that is possible to further reduce the number of nec-
essary reviews in the experiments that measure recall. Currently, MuBenchPipe pre-
filters the detectors’ findings in these experiments based on their file and method location.
Since we are checking for known misuses, we could, for example, additionally consider
the name of the misused API to further reduce the number of potential hits to review.
Such filtering, however, needs to be carefully designed, in order to guarantee that all
true positives are retained.

Benchmarking Further API-Misuse Detectors Our empirical assessment of the state
of the art in API-misuse detection is limited to four static misuse detectors that we could
obtain implementations of (see Chapter 7). Our survey in Chapter 4 identifies many
more detectors, some of which realize quite distinctive ideas, such as obtaining usage
examples for specification mining via a code-search engine [TX09a, TX09b] or learning
correct usage in probabilistic models [NPVN15, MCJ17]. We believe it is important
to incorporate such approaches into the benchmark, in order to get a more complete
picture of the state of the art and identify the strength and weaknesses of the different
approaches. As the work presented in this thesis shows, such systematic assessment can
reveal opportunities for significant improvements.

For some detectors, where previous implementations are unavailable, non-functional,
or target different programming languages, we need to reimplement the respective con-
cepts. For other detectors, we need to advance MuBench. For example, to integrate
dynamic detectors, we must ensure that the target project versions are executable, in
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addition to being compilable, and that respective test harnesses are available to execute
them. For yet other detectors, we might approach integration from either direction. For
example, to integrate detectors that work on Dalvik Bytecode, we might either migrate
them to read general Java Bytecode or provide the project versions in MuBench also
as Dalvik Bytecode, which is generally feasibly, because we can compile Java Bytecode
to Dalvik Bytecode.

17.2. Advancing API-Misuse Detection

Leveraging Advanced Static-Analysis Techniques Static misuse detectors analyze
program code to extract their usage representations. Our experiments show that im-
precisions and limitations in these static analyses can introduce noise that causes false
positives and false negatives (see Section 7.1, Section 7.2, Section 13.2, and Section 13.3).
Nevertheless, current static detectors employ only simple intra-procedural analyses.
Future work should investigate whether advanced analysis techniques, such as inter-
procedural analyses or abstract interpretation, can deliver more precise information that
helps to improve overall detection quality. We obtained some preliminary insights by
using the static-analysis framework OPAL [EH14] to extract AUGs from Java Bytecode:

For example, using a basic inter-procedural data-flow analysis allows us to detect
for fluent APIs, such as StringBuilder, that all its methods return the receiver ob-
ject. This allows us to represent the receiver and the return value by the same data
node, such that we generate the same AUG regardless of whether a usage is written as
sb.append().toString() or as sb.append();sb.toString(). Such unification over
semantically equivalent usages effectively eliminates false positives.

Another promising idea is to inline code from private helper methods into their callers,
replacing the calls to the private methods themselves. This follows two observations:

1. Private methods are themselves not part of an API. Calls to them should, therefore,
not be considered when learning API-usage patterns or detecting misuses. Since
our algorithms to not distinguish calls based on method visibility, removing calls
to private methods from AUGs effectively removes noise.

2. Private methods often encapsulate parts of usages on their parameters. Conse-
quently, these usages are distributed across these private methods and their callers.
Inlining the private methods into the callers joins the partial usages together, in-
creasing the chance that we capture the complete usage, which may eliminate false
positives.

A particularly interesting phenomenon that inlining causes is the duplication of evidence.
When we inline a private method into multiple callers, the AUG that we previously
generated for the private method itself now appears as a subgraph in each of the AUGs
we generate for the callers. We note that this is similar to how call traces analyzed by
dynamic misuse detectors contain the subtrace generated by the execution of a private
method once for every call to that method. We observed several partially opposing
effects of such duplication:
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• From the perspective of our pattern mining algorithm, the support of the inlined
subgraph increases, which may lead to additional or larger patterns. This may
reduce false positives, if we mine more alternative patterns. It may also cause false
negatives, if the private method contains a violation, which now becomes frequent
enough to be mined into a pattern.

• From the perspective of our detection algorithm there are now fewer, larger target
AUGs to check. This may reduce false positives, if what previously appeared
as two usages with missing elements in two AUGs now appears as one pattern
instance in a single AUG. It may also duplicate both true positives and false
positives, if a usage with missing elements from the private method now appears
in all AUGs we generate its callers.

These examples show that leveraging advanced static-analysis techniques may benefit
misuse detection. However, future work needs to systematically investigate the effects
and counter-effects of individual techniques, to see whether we can balance them out in
favor of the overall detector performance.

Extending Usage Models of Dynamic Detectors Current dynamic detectors work
solely on method-call traces. While this allows a precise analysis of which methods are
invoked on an API and in which order, it neglects data flow between calls and control
dependencies among calls. Consequently, respective detectors cannot detect violations
involving usage elements such as conditions or exception handling. Future work should
investigate whether and how the concept of dynamic detection can be extended in this
regard.

Calculating the Support of Specifications The most common way to determine the
support of a specification is to count the number of usages that adhere to the specifi-
cation, either in the code (statically) or in the execution traces (dynamically). We call
this the occurrence support of a specification. It follows the intuition that a specification
that holds more frequently is more likely to generalize.

A possible alternative is the method support, which counts the number of methods
that contain at least one usage following the specification. If we interpret methods as
code units implementing a particular task, the method support can be interpreted as
the number of tasks using a certain API according to the specification. The method
support is smaller than or equal to the occurrence support, as it ignores additional
usages following the same specification within the implementation of the same task. We
hypothesize that this might reduce evidence for violations, as multiple usages within the
same task are likely written under the same (mis)conception of the APIs constraints.

Another alternative is the project support, which counts the number of projects that
contain at least one usage following the specification. We used this definition for Mu-
DetectXP in Experiment XP (see Section 12.2.5). If we interpret projects as the work
of different development teams, the project support can be interpreted as a measure of
how many teams believe this specification to be correct. We hypothesize that this might
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be a better indicator for correctness than occurrence or method support, as different
teams are more unlikely to share the same misconceptions.

Future work should investigate and compare the impact of these (and possible other)
ways to calculate the support of specifications on the quality of misuse detectors. More-
over, future work may investigate ways to combine different support metrics.

Determining Thresholds on the Support of Specifications The detectors in our exper-
iments all use absolute minimum-support thresholds to mine specifications. This follows
the intuition that a specification that holds at least a certain number of times, is likely to
be correct. However, with an increasing number of training examples, e.g., when mining
from larger projects, it becomes more likely that misuses also appear more frequently
than a given absolute threshold.

A possible alternative are relative minimum-support thresholds. For example, we may
determine a global threshold relative to the total number of training examples. This
follows the intuition that a correct specification should hold more often in a larger
training dataset. We may also determine individual thresholds relative to the total
number of training examples for the API(s) involved in a specification, as proposed by
Ramanathan et al. [RGJ07a, RGJ07b], Thummalapenta et al. [TX09a, TX09b], and
Acharya et al. [AX09]. Intuitively, this leads to mining specifications that are more
likely to capture general usage constraints of the respective APIs, but is less likely to
mine specifications for alternative usage patterns.

Finally, we may consider several different thresholds at once. For example, Thum-
malapenta et al. [TX09a] first mine specifications with a high absolute threshold. Then
they collect the training examples that do not conform to any mined specification and
repeat mining on them, using a lower absolute support threshold. They report that
considering such lower-support specifications may reduce false positives by up to 28%.
Similarly, Saied et al. [SBAS15] first mine specifications with a high absolute threshold
and then successively mine extensions to these specifications using ever lower thresholds.
This follows the observation that there is often a strict core specification that all usages
of an API must adhere to, and several alternative extensions to it.

To the best of our knowledge, no previous work systematically compared alternative
ways to determine support thresholds. Future work should investigate how they impact
the quality of API-misuse detection.

Replacing Support as a Metric for Correct Usage Most current detectors mine API
specifications based on the support for that specification in a given training dataset.
Our empirical results show that support is not a good indicator for correctness and
low support is an even worse indicator for incorrectness. Future work could develop
techniques to prune specifications, e.g., considering the implementation code of APIs,
to avoid reporting violations of meaningless specifications. Future work should also
investigate ways to avoid frequency thresholds entirely by using probabilistic API-usage
models, e.g., based on the ideas of Nguyen et al. [NPVN15] or Murali et al. [MCJ17], or
usage models capturing typestates, e.g., similar to Pradel et al. [PJAG12, PG12].
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Mining Usage Examples from Further Sources Our results show that the recall of
current detectors is severely limited by the number of available usage examples to learn
specifications from (see Section 13.5). To mitigate this, future work should investigate
techniques that scale to larger training datasets and approaches for targeted retrieval of
usage examples, e.g., through code-search engines, as proposed by Thummalapenta et
al. [TX09a, TX09b], or from answers on StackOverflow, as proposed by Gao et
al. [GZW+15]. Future work might also leverage changesets of fixes, to learn about both
correct and incorrect usage. And future work should develop approaches that combine
data from multiple sources, because we find that different sources may provide mutual
exclusive information (see Section 13.5) and because it is likely that for new APIs there
is insufficient information available through any single source.

Mining High-Quality Usage Examples In our work, we show that simply providing
larger quantities of usage examples for the APIs under analysis serves to significantly
improve misuse detection. We hypothesize that we might be able to further improve the
detection, by ensuring that the provided examples have high quality. While measuring
code quality remains generally an open question, using simple indicators like project
maturity, code churn, or number of tests might already improve detection results. Future
work should investigate respective possibilities.

Presenting Detector Findings to Developers We conducted a preliminary user study
[Wei16] in which we showed developers different mockups of how a misuse detector
might present its findings in an IDE. This study revealed a major challenge for the
practical applicability of misuse detectors, namely the need to explain and justify the
detector’s findings. For example, when shown a misuse of an API that the participants
were unfamiliar with, they mostly replied that they could not ultimately judge the
detector’s finding—even if it appeared to be sensible—without studying the respective
API’s documentation. And when shown a misuse and a corresponding fix, participants
often argued that the fix might be unnecessary, depending on the context of the usage
(which we did not provide in the study). Future work should develop techniques to
generate explanations and justifications of misuse detectors’ findings to gain the trust
of developers in using this kind of tool. Furthermore, future work should investigate
techniques to present misuse-detector findings in a way that is intuitive to developers.
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Contributed Implementations and Data

In the course of the projects presented in this thesis, research prototypes have been
implemented and data has been sourced or collected. We provide these implementations
and datasets to enable other researchers to validate our work and to build new research
upon them. We believe this to be good scientific practice and encourage other researchers
to do the same.

MuBench

The dataset of API-misuse examples that we collected throughout this thesis is publicly
available as part of our automated benchmark. The dataset can be accessed from:

https://github.com/stg-tud/MUBench/tree/master/data

It is presented in a folder structure that follows the data scheme presented in Sec-
tion 6.1. The metadata about projects, project versions, and misuses is stored in YML
files, following the Yaml 1.2 format (3rd Edition).1 In the root folder resides a file named
dataset.yml, which specifies several sub-datasets for each of the different sources that
we obtained misuse examples from and for each of the experiments presented throughout
this thesis.

MuBenchPipe

The benchmarking pipeline presented in Part II consists of a command-line application
for conducting experiments, written in Python 3.5, and a review website, written in
PHP 7. We provide the entire source code here:

https://github.com/stg-tud/MUBench

We provide a Docker container that allows running the pipeline independent of the
host platform. We use Composer for the dependency configuration of the review site.
The README files of the GitHub repository present detailed instructions on how to setup
and use both components of MuBenchPipe.

MuDetect

We provide the implementation of MuDetect presented in Chapter 11 here:

1 http://www.yaml.org/spec/1.2/spec.html (checked on Dec 14, 2017)
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https://github.com/stg-tud/MUDetect

The detector is fully integrated into MuBench to allow execution in the context of the
respective experiments. The MuDetect project uses Apache Maven for its build con-
figuration, to allow system- and IDE-independent builds. The detector can be built using
the mvn package command, which creates standalone bundles called MuDetect.jar and
MuDetectXP.jar for the respective variants of our detector in the target folder. The
README files of the GitHub repository present further details on the organization of the
project and its code.

Study Artifacts

We provide the questionnaire and all responses to our developer survey on API misuse
and the full list of StackOverflow threads we reviewed in our study on the preva-
lence of problems leading to a ConcurrentModificationException (see Section 2.3) on
respective artifact pages:

http://www.st.informatik.tu-darmstadt.de/artifacts/api-misuse-survey/

http://www.st.informatik.tu-darmstadt.de/artifacts/stackoverflow-cme/

We provide the review results and additional data artifacts for both the study presented
in Chapter 7 and the evaluation presented in Chapter 12 on the respective artifact pages:

http://www.st.informatik.tu-darmstadt.de/artifacts/mustudy/

http://www.st.informatik.tu-darmstadt.de/artifacts/mudetect/

The full experiment data may be downloaded from the review sites in CSV format or
viewed online.
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[NKMB16] Sarah Nadi, Stefan Krüger, Mira Mezini, and Eric Bodden. ”Jumping
through hoops”: Why do developers struggle with cryptography APIs? In
Proceedings of the 38th International Conference on Software Engineering,
ICSE’16. ACM Press, 2016.

[NNP+09a] Hoan Anh Nguyen, Tung Thanh Nguyen, Nam H. Pham, Jafar M. Al-
Kofahi, and Tien N. Nguyen. Accurate and efficient structural characteris-
tic feature extraction for clone detection. In Proceedings of the 12th Inter-
national Conference on Fundamental Approaches to Software Engineering,
FASE ’09, pages 440–455. Springer-Verlag, 2009.

[NNP+09b] Tung Thanh Nguyen, Hoan Anh Nguyen, Nam H. Pham, Jafar M. Al-
Kofahi, and Tien N. Nguyen. Graph-based mining of multiple object usage
patterns. In Proceedings of the 7th ACM Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium on
The Foundations of Software Engineering, ESEC/FSE ’09, pages 383–392.
ACM Press, 2009.

[NNP+12] Hoan Anh Nguyen, Tung Thanh Nguyen, Nam H. Pham, Jafar Al-Kofahi,
and Tien N. Nguyen. Clone management for evolving software. IEEE
Transactions on Software Engineering, 38(5):1008–1026, 2012.

[NNW+10] Hoan Anh Nguyen, Tung Thanh Nguyen, Gary Wilson, Jr., Anh Tuan
Nguyen, Miryung Kim, and Tien N. Nguyen. A graph-based approach
to API usage adaptation. In Proceedings of the International Conference
on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA’10, pages 302–321. ACM Press, 2010.

[NPVN15] T. T. Nguyen, H. V. Pham, P. M. Vu, and T. T. Nguyen. Recommending
API usages for mobile apps with Hidden Markov Model. In Proceedings

175



Bibliography

of the 30th ACM/IEEE International Conference on Automated Software
Engineering, ASE ’15, pages 795–800. IEEE Computer Society Press, 2015.

[NPVN16] Tam The Nguyen, Hung Viet Pham, Phong Minh Vu, and Tung Thanh
Nguyen. Learning API usages from bytecode : A statistical approach. In
Proceedings of the 38th International Conference on Software Engineering,
ICSE ’16. ACM Press, 2016.

[PADP+12] Sebastiano Panichella, Jairo Aponte, Massimiliano Di Penta, Andrian Mar-
cus, and Gerardo Canfora. Mining source code descriptions from developer
communications. In Proceedings of the 20th IEEE International Confer-
ence on Program Comprehension, ICPC ’12, pages 63–72. IEEE Computer
Society Press, 2012.

[PBDP+14] Luca Ponzanelli, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto,
and Michele Lanza. Mining StackOverflow to turn the IDE into a self-
confident programming prompter. In Proceedings of the 11th Working Con-
ference on Mining Software Repositories, MSR ’14, pages 102–111. ACM
Press, 2014.

[PBG10] Michael Pradel, Philipp Bichsel, and Thomas R. Gross. A framework for the
evaluation of specification miners based on finite state machines. In Proceed-
ings of the 28th IEEE International Conference on Software Maintenance,
ICSM ’10, pages 1–10. IEEE Computer Society Press, 2010.

[PG09] Michael Pradel and Thomas R. Gross. Automatic generation of object
usage specifications from large method traces. In Proceedings of the 24th

IEEE/ACM International Conference on Automated Software Engineering,
ASE ’09, pages 371–382. IEEE Computer Society Press, 2009.

[PG12] Michael Pradel and Thomas R. Gross. Leveraging test generation and spec-
ification mining for automated bug detection without false positives. In
Proceedings of the 34th International Conference on Software Engineering,
ICSE ’12, pages 288–298. IEEE Computer Society Press, 2012.

[PJAG12] Michael Pradel, Ciera Jaspan, Jonathan Aldrich, and Thomas R. Gross.
Statically checking API protocol conformance with mined multi-object spec-
ifications. In Proceedings of the 34th International Conference on Software
Engineering, ICSE ’12, pages 925–935. IEEE Computer Society Press, 2012.

[PLEB07] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball.
Feedback-directed random test generation. In Proceedings of the 29th Inter-
national Conference on Software Engineering, ICSE ’07, pages 75–84. IEEE
Computer Society Press, 2007.

[PLM15] Sebastian Proksch, Johannes Lerch, and Mira Mezini. Intelligent code com-
pletion with Bayesian networks. ACM Transactions on Software Engineer-
ing and Methodology (TOSEM), 25(1):1–31, 2015.

176



Bibliography

[RBK+13] Martin P. Robillard, Eric Bodden, David Kawrykow, Mira Mezini, and Tris-
tan Ratchford. Automated API property inference techniques. IEEE Trans-
actions on Software Engineering, 39(5):613–637, 2013.

[REHM17] Michael Reif, Michael Eichberg, Ben Hermann, and Mira Mezini. Hermes:
Assessment and creation of effective test corpora. In Proceedings of the 6th

ACM SIGPLAN International Workshop on State Of the Art in Program
Analysis, SOAP 2017, pages 43–48. ACM Press, 2017.

[RGJ07a] Murali Krishna Ramanathan, Ananth Grama, and Suresh Jagannathan.
Path-sensitive inference of function precedence protocols. In Proceedings of
the 29th International Conference on Software Engineering, ICSE ’07, pages
240–250. IEEE Computer Society Press, 2007.

[RGJ07b] Murali Krishna Ramanathan, Ananth Grama, and Suresh Jagannathan.
Static specification inference using predicate mining. In Proceedings of the
28th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’07, pages 123–134. ACM Press, 2007.

[RJ86] L. R. Rabiner and B. H. Juang. An introduction to Hidden Markov Models.
IEEE ASSp Magazine, 3(1):4–16, 1986.

[RMWZ14] Martin P. Robillard, Walid Maalej, Robert J. Walker, and Thomas Zimmer-
mann, editors. Recommendation Systems in Software Engineering. Springer-
Verlag GmbH, 2014.

[RP15] T Ramraj and R Prabhakar. Frequent subgraph mining algorithms – a
survey. Procedia Computer Science, 47:197–204, 2015.

[RWZ10] Martin P Robillard, Robert J Walker, and Thomas Zimmermann. Recom-
mendation systems for software engineering. IEEE Software, 27(4):80–86,
2010.

[SBAS15] M. A. Saied, O. Benomar, H. Abdeen, and H. Sahraoui. Mining multi-
level API usage patterns. In Proceedings of the 22nd IEEE International
Conference on Software Analysis, Evolution, and Reengineering, SANER
’15, pages 23–32. IEEE Computer Society Press, 2015.

[SDG+16] Tony Savor, Mitchell Douglas, Michael Gentili, Laurie Williams, Kent Beck,
and Michael Stumm. Continuous deployment at Facebook and OANDA. In
Proceedings of the 38th International Conference on Software Engineering
Companion, ICSE ’16, pages 21–30. ACM Press, 2016.

[SE13] Widura Schwittek and Stefan Eicker. A study on third party component
reuse in Java enterprise open source software. In Proceedings of the 16th

International ACM SIGSOFT Symposium on Component-based Software
Engineering, pages 75–80. ACM Press, 2013.

177



Bibliography

[SHA15] Joshua Sushine, James D. Herbsleb, and Jonathan Aldrich. Searching the
state space: A qualitative study of API protocol usability. In Proceedings of
the 23rd IEEE International Conference on Program Comprehension, ICPC
’15, pages 82–93. IEEE Computer Society Press, 2015.

[TAD+10] Ewan Tempero, Craig Anslow, Jens Dietrich, Ted Han, Jing Li, Markus
Lumpe, Hayden Melton, and James Noble. The Qualitas Corpus: A curated
collection of Java code for empirical studies. In Proceedings of the Asia
Pacific Software Engineering Conference, APSEC ’10, pages 336–345. IEEE
Computer Society Press, 2010.

[TR16] Christoph Treude and Martin P. Robillard. Augmenting API documentation
with insights from Stack Overflow. In Proceedings of the 38th International
Conference on Software Engineering, ICSE ’16, pages 392–403. ACM Press,
2016.

[TX09a] Suresh Thummalapenta and Tao Xie. Alattin: Mining alternative patterns
for detecting neglected conditions. In Proceedings of the 24th IEEE/ACM
International Conference on Automated Software Engineering, ASE ’09,
pages 283–294. IEEE Computer Society Press, 2009.

[TX09b] Suresh Thummalapenta and Tao Xie. Mining exception-handling rules as
sequence association rules. In Proceedings of the 31st International Confer-
ence on Software Engineering, ICSE ’09, pages 496–506. IEEE Computer
Society Press, 2009.

[UR15] Gias Uddin and Martin P Robillard. How API documentation fails. IEEE
Software, 32(4):68–75, 2015.

[Wei16] Simon Weiler. Integrating an API-misuse detector into Eclipse. Master’s
thesis, Technische Universität Darmstadt, 2016.

[WLW+11] Qian Wu, Guangtai Liang, Qianxiang Wang, Tao Xie, and Hong Mei. Iter-
ative mining of resource-releasing specifications. In Proceedings of the 26th

IEEE/ACM International Conference on Automated Software Engineering,
ASE ’11, pages 233–242. IEEE Computer Society Press, 2011.

[WPVS17] Xiaoran Wang, Lori Pollock, and K Vijay-Shanker. Automatically generat-
ing natural language descriptions for object-related statement sequences. In
Proceedings of the 24th IEEE International Conference on Software Analy-
sis, Evolution and Reengineering, SANER ’17, pages 205–216. IEEE Com-
puter Society Press, 2017.

[WZ11] Andrzej Wasylkowski and Andreas Zeller. Mining temporal specifications
from object usage. Automated Software Engineering, 18(3-4):263–292, 2011.

178



Bibliography

[WZL07] Andrzej Wasylkowski, Andreas Zeller, and Christian Lindig. Detecting ob-
ject usage anomalies. In Proceedings of the 6th ACM Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT Sym-
posium on The Foundations of Software Engineering, ESEC/FSE ’07, pages
35–44. ACM Press, 2007.

[ZGC+17] Yu Zhou, Ruihang Gu, Taolue Chen, Zhiqiu Huang, Sebastiano Panichella,
and Harald Gall. Analyzing APIs documentation and code to detect direc-
tive defects. In Proceedings of the 39th IEEE/ACM International Conference
on Software Engineering, ICSE ’17, pages 27–37. IEEE Computer Society
Press, 2017.

[ZPZ07] Thomas Zimmermann, Rahul Premraj, and Andreas Zeller. Predicting de-
fects for Eclipse. In Proceedings of the International Workshop on Predictor
Models in Software Engineering, PROMISE ’07. IEEE Computer Society
Press, 2007.

[ZS13] Hao Zhong and Zhendong Su. Detecting API documentation errors. In Pro-
ceedings of the International Conference on Object-oriented Programming,
Systems, Languages & Applications, volume 48, pages 803–816. ACM Press,
2013.

[ZS15] Hao Zhong and Zhendong Su. An empirical study on real bug fixes. In
Proceedings of the 37th International Conference on Software Engineering -
Volume 1, ICSE ’15, pages 913–923. IEEE Computer Society Press, 2015.

179





Appendix

181





A. Six Basic Rules for Safe Usage of the
Java Cryptographic Architecture APIs

Egele et al. [EBFK13] report that 88% (10,327 of 11,748) Android apps on the Google
Play marketplace violate at least one of six basic rules for safe usage of the Java Cryp-
tographic Architecture (JCA) APIs. These six basic rules are:

R1 Do not use ECB mode for encryption – the Electronic Codebook (ECB) mode
is considered insecure, since with it identical plaintext is converted into identical
cipher text, thus, preserving data patterns.1

R2 Do not use a non-random initialization vector (IV) for CBC encryption – using a
non-random IV, i.e., hard coding the IV in the program, nullifies the random noise
that the IV is intended to introduce and allows attackers to remove the remaining
constant noise by using the IV that can be extracted from the code.23

R3 Do not use constant encryption keys – using a constant, i.e., hard-coded, key allows
attackers to extract that key from the code and undo any encryption.

R4 Do not use constant salts for PBE – using contant salts for password-based encryp-
tion, i.e., using the same salt for every password, effectively nullifies the random
noise that the salt is intended to introduce, making it easier for attackers to guess
passwords [AW05, BRT12].

R5 Do not use fewer than 1,000 iterations for PBE – using fewer iterations effec-
tively makes cryptographic keys generated in password-based encryption less ran-
dom [AW05, BRT12].

R6 Do not use static seeds to seed SecureRandom – using static seeds leads to pseudo
random, i.e., reproducible, random number sequences, which nullifies the effect of
the randomness.

1 http://cseweb.ucsd.edu/~mihir/cse207/classnotes.html (checked on Dec 26, 2017)
2 http://www.openssl.org/~bodo/tls-cbc.txt (checked on Feb 16, 2018)
3See footnote 1.
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B. BOA API Usage

We used the following script to search for GitHub projects using a particular API via
the BOA repository-mining infrastructure [DNRN13] in Section 12.2.5. Before send-
ing the query, we replaced TARGET TYPE by the API’s fully qualified type name, e.g.,
java.util.List, PACKAGE STAR NAME by the respective type’s package name with a
wildcard import, e.g., java.util.*, and SIMPLE TYPE by the type’s simple type name,
e.g., List.

1 p: Project = input;

2 out: output set of string;

3

4 files: set of string;

5 revision: Revision;

6 file: ChangedFile;

7 imports_package: bool;

8

9 visit(p, visitor {

10 before r: Revision -> revision = r;

11 before f: ChangedFile -> {

12 if (contains(files, f.name) || match("test", lowercase(f.name))) stop;

13 file = f;

14 }

15 after f: ChangedFile -> add(files, f.name);

16 before astRoot: ASTRoot -> {

17 imports := astRoot.imports;

18 imports_package = false;

19 foreach (i: int; def(imports[i])) {

20 if (imports[i] == "TARGET_TYPE") {

21 out << p.name;

22 stop;

23 } else if (imports[i] == "PACKAGE_STAR_TYPE") {

24 imports_package = true;

25 break;

26 }

27 }

28 }

29 before variable: Variable -> {

30 if ((imports_package && (variable.variable_type.name == "SIMPLE_TYPE_NAME")) ||

31 (variable.variable_type.name == "TARGET_TYPE")) {

32 out << p.name;

33 stop;

34 }

35 }

36 });
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C. BOA Cipher Usages

We used the following script to search for GitHub projects using the Cipher API via the
BOA repository-mining infrastructure [DNRN13] in Section 2.4. The script ignores any
files that have the keyword test somewhere in their path or filename, since we consider
vulnerabilities in test code as non-critical. The script misses Cipher usages that use
fully qualified type references, instead of imports. However, this is not common practice
in Java, thus, considering this is unlikely to increase the number of projects we identify
significantly.

1 p: Project = input;

2 out: output set[string] of string;

3

4 files: set of string;

5 revision: Revision;

6 file: ChangedFile;

7

8 visit(p, visitor {

9 before r: Revision -> revision = r;

10 before f: ChangedFile -> {

11 if (contains(files, f.name) || match("test", lowercase(f.name))) stop;

12 file = f;

13 }

14 after f: ChangedFile -> add(files, f.name);

15 before astRoot: ASTRoot -> {

16 imports: = astRoot.imports;

17 foreach (i: int; def(imports[i])) {

18 if (imports[i] == "javax.crypto.Cipher" || imports[i] == "javax.crypto.*") {

19 out[p.name] << p.project_url + "/blob/" + revision.id + "/" + file.name;

20 stop;

21 }

22 }

23 }

24 });
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