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Identifying Multiple Optima

in Aerodynamic Design Spaces

D.J. Poole ∗, C.B. Allen †, T.C.S. Rendall‡

Department of Aerospace Engineering, University of Bristol, Bristol, BS8 1TR, U.K.

Parallel niching optimization algorithms are developed and applied to a multimodal
aerodynamic optimization case to identify multiple optima in the design space. Previous
work by the authors has presented niching optimization algorithms that use differential
evolution with feasible selection as a basis that can identify multiple optima in constrained
search spaces, which is necessary for aerodynamic optimization. In this paper, these algo-
rithms are further developed for application to aerodynamic optimization by reformulating
each to provide a parallel decomposition of the objective function evaluation at each itera-
tion of the optimization process. These algorithms are tested on an analytical optimization
problem. The parallel, constrained form of both local nearest-neighbourhood and local
crowding are shown to be the best performing algorithms with a 99% confidence level. A
variation on the AIAA ADODG case 6 multimodal wing optimization case is also studied.
A multi-start gradient-based approach is used to show multimodality of the design space.
The local nearest-neighbourhood-based algorithm is then applied to the aerodynamic opti-
mization case and is able to successfully identify two minima in the design space, with one
being close to the global minimum and one in a different part of the design space, which is
a local minimum.

I. Introduction and Background

Engineering optimization typically involves changing a number of design parameters to improve some form
of metric (also called an objective), which is normally measured by performing a computational analysis.
However, due to the nature of design, constraints on the form that the solution can take often exist and the
final optimum solution must satisfy all of these constraints; a solution is said to be feasible if it satisfies the
constraints. These types of problems are termed constrained numerical optimization problems (CNOPs).
The trend in engineering optimization is towards higher-fidelity simulation methods being integrated into the
process. An example of this is a computational fluid dynamics (CFD) simulation being used to determine
objective and constraint values in aerodynamic shape optimization (ASO) [1–5].

Nature-inspired meta-heuristics have become commonplace when solving traditional unconstrained nu-
merical optimization problems (UNOPs). Typically these approaches use a population of individuals who
cooperate together in search of the optimal solution; evolutionary algorithms (EAs)–such as genetic algo-
rithms (GAs) [6] or differential evolution (DE) [7]–and swarm intelligence algorithms (SIAs)–such as particle
swarm optimization (PSO), artificial bee colony system [8] or firefly algorithm [9]–are popular nature-inspired
approaches. When solving a CNOP, nature-inspired algorithms typically have to be coupled with a constraint
handling method, such that a feasible solution can be found. These methods tend to be ad hoc, but have
led to the successful application of nature-inspired algorithms to solving CNOPS; see [10–17], for example.

Whether solving a UNOP or a CNOP, generally the goal is to locate the overall best (feasible) solution
within the search space, however, it may also be desirable to locate all of the optimal solutions (whether these
are global or local). For example, the so-called “second Toyota paradox”[18] showed that by considering many
different design candidates through the process, rather than converging on one design quickly, can result in
an overall better and more cost-effective product. In the context of optimization, this type of approach can
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be defined as multimodal optimization, where for a given design space of an objective function, the goal is
not to simply locate the best available solution within that space, but the set of individually identifiable
optimal solutions. These may either be all equally optimal (i.e. global optima) or some may be better than
others but each solution is better than another in its vicinity (i.e. local optima). The algorithms developed
and commonly employed for performing such optimizations are called “niching” methods, examples of which
are crowding [19, 20], fitness sharing [6, 20, 21], clearing [22], speciation [23, 24] dynamic archives [25],
probabilistic selection [26] and local neighbourhoods [27, 28]. A full review is presented by Li et al.[29].

Aerodynamic shape optimization (ASO) is the process of finding the shape (an aerofoil in two dimensions
or generally a wing or rotor blade in three dimensions) that optimizes a performance quantity, typically
drag, subject to force, moment and geometric constraints, where the objective and constraints are commonly
evaluated using a numerical method. Much of the work to date has been involved with finding the single best
optimum solution within various design spaces, however, during the design process, identification of other
optimal designs may have positive impacts on cost and performance. The identification of multiple optima
within a design space clearly requires that the space be multimodal, which for aerodynamic optimization
is very problem dependent. For aerofoil optimization, it has been suggested that ASO problems exist that
are unimodal [30] and multimodal[31, 32], while the same is true of wings exhibiting unimodality [33] and
multimodality [30]. Recently, results of the optimization of a rectangular wing in inviscid subcritical flow
(this is case 6 of the AIAA ADODG [34]) have been presented investigating the degree of multimodality in
that case [35–38]. However, while some aerodynamic optimization problems are multimodal, there is little
effort to attempt to identify and characterise these. Chernukhin and Zingg [30] did characterise the optimal
solutions of a number of problems by using a multi-start gradient-based approach. Similar approaches were
performed by Bons at al. [36], and Streuber and Zingg [38]. The current authors performed similar work by
running a heuristic global optimizer multiple times on the same problem to analyse whether it converged to
different solutions each time [37].

The application of conventional nature-inspired methods to aerodynamic optimization has been significant
(see, for example [4, 39–44] ), however the use of niching methods is much less despite the clear motivation to
locate multiple optima in aerodynamic problems. The main application of such approaches to date is from
Obayashi et al. [45] who used niching techniques to locate the pareto front of a multi-objective wing design
problem. Probably the main reason for the lack of use is the lack of fundamental development of niching
methods for performing constrained optimization; aerodynamic optimization problems are almost invariably
constrained. In a recent study on niching methods [29], it was stated that:
“there lacks a systematic study on how existing niching methods, largely designed for unconstrained opti-
mization, should cope with constraints”.

As such, the authors have recently developed state-of-the-art algorithms for locating multiple optima
within constrained design spaces where DE-based niching methods that use feasible selection of individuals
were developed. The work in this paper is concerned with the application of those sophisticated approaches to
the problem of aerodynamic optimization. The primary issue regarding the application of such approaches to
aerodynamic optimization is the cost associated with evaluating the objective function, which is large. Hence,
parallelisation of objective function evaluations is necessary to permit reasonable run times of population-
based algorithms. This paper will first consider parallel decomposition of the algorithms previously developed
by the authors. This work will also consider the AIAA ADODG case 6 as an aerodynamic optimization
example.

II. Multimodal Optimization Definition

A general definition of a CNOP and multimodal optimization problem is presented in this section. A
CNOP is described by equation 1.

min
x∈S∈<D

f(x)

subject to gj(x) ≤ 0 , j = 1, . . . , p

hj(x) = 0 , j = 1 + p, . . . ,m

(1)

In equation 1, x is the solution vector [x1, x2, . . . , xD]T where each element of the vector is a design
variable in a problem containing D design variables; f(x) is the value of the objective function for the given
solution vector; gj(x) represents the j-th inequality constraint of a total of p inequality constraints; hj(x)
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represents the (j − p)-th equality constraint of a total of m − p inequality constraints where m is the total
number of constraints; S is the bounded region of <D where the solution exists, which is a D-orthotope
defined by an upper bound in the k-th dimension, Uk, and a lower bound, Lk, where k = {1, 2, . . . , D}. The
feasible region, F , defines the set of all feasible solutions. In this work, it is only the location of all global
(or close to global) optima that are considered. The multimodal solution of a CNOP is therefore the set
containing Ng global optima, X = {x∗1, . . . ,x∗Ng} that minimise f in F , hence:

f(x∗1) = · · · = f(x∗Ng ) < f(x) , ∀x | x ∈ F ,x /∈ X

III. Constrained Niching Algorithms

To investigate multimodal optimization of constrained functions, a number of conventional niching al-
gorithms that use DE and have been shown to perform well at unconstrained multimodal optimization,
are combined with a common constraint handling method also often applied to DE to produce constrained
niching techniques. In this section, these are fully outlined and further developed via a parallel decomposi-
tion to permit the use of expensive objective function evaluations. First, the canonical differential evolution
algorithm is presented, on which the constrained niching methods are built.

III.A. Canonical Differential Evolution

The idea of DE was first presented by Storn and Price [7, 46] and has since been developed into a widely-used
global search algorithm. A full review on the development and applications of DE is outside the scope of
this paper, however, in-depth reviews have been presented by Das and Suganthan [47], Neri and Tirronen
[48] and more recently by Das et al. [49].

DE uses a number of individuals who evolve through the iterations of the optimization. The total
population is composed of N individuals, where the n-th individual is represented by a target vector that
details an individual’s position in the design space. The nomenclature used in this paper to represent the
target vector of the n-th individual at the t-th iteration of the optimization, is given by:

xn(t) = [x1n(t), x2n(t), . . . , xDn (t)]T (2)

DE follows five steps to advance the optimization algorithm, which are given as:

1. Initialisation:

Within the design space S, the initial target vectors of the N individuals are generated. This is
commonly done randomly such that the target vector at the 0-th iteration (i.e. the initial location of
the individual) in the d-th dimension (d ∈ (1, D)) is given as:

xdn(0) = Ld + rand(0, 1)(Ud − Ld) (3)

where rand(0, 1) is a uniformly distributed random number on the interval 0 to 1.

2. Mutation:

For each individual within the population, a donor vector is generated using scaled differences between
other individuals within the population. A number of mutation strategies have been proposed but the
DE/rand/1 strategy is used throughout this paper unless otherwise specified. The n-th donor vector,
vn, using a DE/rand/1 mutation strategy, is given by:

vn = xr1(t) + F (xr2(t)− xr3(t)) (4)

where F is the difference-vector scaling factor, and r1, r2 and r3 are uniformly distributed random
integers on the interval (1, N) such that r1 6= r2 6= r3 6= n.
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3. Crossover :

To enhance diversity, crossover of the individual elements of the target vector and the donor vector is
employed to produce a trial vector. Binomial crossover is used throughout this paper which produces
the n-th trial vector in the d-th dimension, udn, by the following equation:

udn =

{
vdn if rand(0, 1) ≤ CR or rn = d

xdn(t) otherwise
(5)

where rn is a uniformly distributed random integer on the interval (1, D) and CR is the crossover
probability. Hence, elements of the trial vector are accepted from the donor vector at a probability of
CR, and at least one component of the donor vector is accepted.

4. Selection:

The trial vector is tested and the n-th target vector at the next iteration is generated by the following
relationship:

xn(t+ 1) =

{
un if f(un) ≤ f(xn(t))

xn(t) otherwise
(6)

Hence, the trial vector is selected if it is in a ‘better’ location in the design space, otherwise the target
vector is conserved.

5. Stopping conditions:

Once all N target vectors have been updated, if the stopping conditions have been reached (which
throughout this paper is whether the maximum allowed number of function evaluations have been
performed), the algorithm exits. If not, then the processes of steps 2-5 are repeated.

The canonical DE algorithm used here uses rand/1 mutation and binomial crossover, so keeping with the
standard DE nomenclature, this is the DE/rand/1/bin algorithm. Figure 1 demonstrates, first, the mutation
mechanism within DE, which is illustrated in red, where a scaled difference vector between two randomly
sampled individuals is applied to a further random individual. The binomial crossover mechanism is then
illustrated in blue where elements of vn are selected to produce a trial vector. In this example, ûn and ũn

are the two possible trial vectors that could be generated.

F (xr2 − xr3 )xr1

vn

(xr2 − xr3 )

xr2

xr3

xn

ûn

ũn

Figure 1: Illustration of mutation (red) and crossover (blue) in differential evolution

From the algorithm above, it is clear that there is no direct way to handle constraints within DE so ad
hoc methods have to be employed (see the book of Datta and Deb for full discussions on these [50]). One
common approach is to employ so-called feasibility rules [15], where selection is performed based on the
feasibility of individuals. For example, given two feasible individuals, the one with the best fitness wins.
On the other hand, if one is feasible and one infeasible, the feasible one always wins. While, if both are
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infeasible, then the one that has the smallest violation of constraints is the winner. This can be written as
a domination operator, where, given two locations xa and xb, xb dominates xa based on the following:

xa ≺ xb ⇔


f(xb) < f(xa) and φ(xa), φ(xb) = 0

φ(xb) = 0 and φ(xa) > 0

φ(xb) < φ(xa) and φ(xa), φ(xb) > 0

(7)

where φ is the constraint violation given by:

φ(x) =

p∑
j=1

max[0, gj(x)] +

m∑
j=1+p

|hj(x)|

In DE, these feasibility rules are commonly used in the selection step to determine whether the trial
vector should replace the target vector. Hence, rewriting equation 6 for constrained optimization leads to:

xn(t+ 1) =

{
un if xn(t) ≺ un

xn(t) otherwise
(8)

The constraint handling for DE has now been introduced. Recent work by the authors has considered
performing multimodal optimization in constrained spaces and a number of algorithms have been developed
at the University of Bristol. A number are developed further here for performing multimodal aerodynamic
optimization. These are:

• fDE: feasible DE a

• fNRAND1: feasible DE using nrand1 [27] mutation

• fINRAND1: feasible DE using inrand1/r [28] (nearest neighbour with ring network) mutation

• fCDE: feasible form of crowding DE [20]

• fNCDE: feasible form of neighbourhood-based CDE [52]

When performing aerodynamic optimization, one of the characteristics is an expensive objective function
evaluation, which is a CFD evaluation. In a population-based optimization algorithm, O(102) objective func-
tion evaluations may be required each iteration so clearly a parallel decomposition of the search population
becomes necessary. However, the original form of DE, as presented by Storn and Price [7], formulates DE in
a sequential manner, where a single loop (over each individual) contains the mutation, crossover, evaluation
and selection stage. This form of DE is shown schematically in figure 2. On the other hand, a parallel
decomposition requires that the objective evaluation be in its own loop, such that this can be assigned to
each processor. This is shown in figure 3. In the following sections, the various constrained niching methods
are introduced and developed using parallel decomposition in the format seen in figure 3.

aFirst presented by Mezura-Montes et al. [51]
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Crossover

& Mutation
Evaluation Selectionx(t)

f1

f2

x(t+ 1)

Figure 2: Sequential form of DE (example using two individuals)

Crossover

& Mutation
Evaluation Selection

x(t)
f1

f2

x(t+ 1)

Figure 3: Parallel form of DE (example using two individuals)

III.B. fDE

fDE uses the canonical DE algorithm with equation 8 used for the selection stage. The rand/1/bin strategy
is used. The development of a parallel form of the algorithm requires that the objective and constraint
evaluation be evaluated for one individual on its own process. This information is then sent back to the
master process which then performs the update of the locations of each individual. The overall algorithm in
serial and parallel is outlined as algorithm 1.

Algorithm 1 fDE algorithm in serial (left) and parallel (right)

Randomly initialise individuals, calculate objective
while FEs<FEsmax do

for n = 1→ N do
Perform rand/1 mutation: equation 4
Perform binomial crossover: equation 5
Objective of trial vector
Update n-th target vector: equation 8

end for

end while

Randomly initialise individuals, calculate objective
while FEs<FEsmax do

for n = 1→ N do
Perform rand/1 mutation: equation 4
Perform binomial crossover: equation 5

end for
for n = 1→ N do

if n = procid then
Objective of n-th trial vector

end if
end for
for n = 1→ N do

Update n-th target vector: equation 8
end for

end while
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III.C. fNRAND1

The fNRAND1 algorithm uses the target vector of the n-th individual’s nearest neighbour, xNNn
, as the

base vector against which to provide the difference vector in the mutation stage. The mutation is given as:

vn = xNNn(t) + F (xr1(t)− xr2(t)) (9)

where:

NNn = arg min
i∈(1,N),i6=n

‖xn − xi‖2

The selection stage uses equation 8 for feasibility. The overall algorithm is outlined in algorithm 2, again
in serial and parallel.

Algorithm 2 fNRAND1 algorithm in serial (left) and parallel (right)

Randomly initialise individuals, calculate objective
while FEs<FEsmax do

for n = 1→ N do
Find the nearest neighbour to xn

Perform nrand/1 mutation: equation 9
Perform binomial crossover: equation 5
Objective of trial vector
Update n-th target vector: equation 8

end for

end while

Randomly initialise individuals, calculate objective
while FEs<FEsmax do

for n = 1→ N do
Find the nearest neighbour to xn

Perform nrand/1 mutation: equation 9
Perform binomial crossover: equation 5

end for
for n = 1→ N do

if n = procid then
Objective of n-th trial vector

end if
end for
for n = 1→ N do

Update n-th target vector: equation 8
end for

end while

III.D. fINRAND1

The fINRAND1 algorithm uses the target vector of n-th individual’s nearest neighbour within its local
neighbourhood, xINNn , as the base vector against which to provide the difference vector in the mutation
stage. In this work, an index-based ring neighbourhood is used hence this reduces computational complexity
against fNRAND1. The mutation is given as:

vn = xINNn
(t) + F (xr1(t)− xr2(t)) (10)

where:

INNn =


arg min
i∈{N,2}

‖xn − xi‖2 if n = 1

arg min
i∈{N−1,1}

‖xn − xi‖2 if n = N

arg min
i∈{n−1,n+1}

‖xn − xi‖2 otherwise

The selection stage uses equation 8 for feasibility. The overall algorithm is outlined in algorithm 3.
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Algorithm 3 fINRAND1 algorithm in serial (left) and parallel (right)

Randomly initialise individuals, calculate objective
while FEs<FEsmax do

for n = 1→ N do
Find the nearest neighbour to xn in ring
Perform inrand/1 mutation: equation 10
Perform binomial crossover: equation 5
Objective of trial vector
Update n-th target vector: equation 8

end for

end while

Randomly initialise individuals, calculate objective
while FEs<FEsmax do

for n = 1→ N do
Find the nearest neighbour to xn in ring
Perform inrand/1 mutation: equation 10
Perform binomial crossover: equation 5

end for
for n = 1→ N do

if n = procid then
Objective of n-th trial vector

end if
end for
for n = 1→ N do

Update n-th target vector: equation 8
end for

end while

III.E. fCDE

The fCDE algorithm uses the normal CDE algorithm but with the feasible selection method. This requires
creating a trial vector using the rand/1/bin strategy, and once this is found, the closest individual to the
trial vector, xun

, needs to be found. Once this is found, this closest individual is replaced by the trial vector
if the trial vector is better, determined using the feasibility rules:

xun
(t+ 1) =

{
un if xun

(t) ≺ un

xun(t) otherwise
(11)

The fCDE algorithm is outlined in algorithm 4.

Algorithm 4 fCDE algorithm in serial (left) and parallel (right)

Randomly initialise individuals, calculate objective
while FEs<FEsmax do

for n = 1→ N do
Perform rand/1 mutation: equation 4
Perform binomial crossover: equation 5
Objective of trial vector
Find the closest individual to un

Update closest individual: equation 11
end for

end while

Randomly initialise individuals, calculate objective
while FEs<FEsmax do

for n = 1→ N do
Perform rand/1 mutation: equation 4
Perform binomial crossover: equation 5

end for
for n = 1→ N do

if n = procid then
Objective of n-th trial vector

end if
end for
for n = 1→ N do

Find the closest individual to un

Update closest individual: equation 11
end for

end while

III.F. fNCDE

The feasible neighbourhood algorithm of crowding DE, fNCDE, generates a trial vector from a neighbourhood
that is made up from the m nearest individuals to the n-th individual. Hence, when performing rand/1
mutation (equation 4), r1, r2 and r3 are uniformly distributed random integers that come from the set of
integers that represent the m nearest neighbours. Once a trial vector is found, updating occurs on the whole
population according to normal crowding DE, where the nearest neighbour to the trial vector is used for
comparison. The algorithm is given in algorithm 5.
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Algorithm 5 fNCDE algorithm in serial (left) and parallel (right)

Randomly initialise individuals, calculate objective
while FEs<FEsmax do

for n = 1→ N do
Find the nearest m individuals to xn

Perform rand/1 mutation using the nearest m
Perform binomial crossover: equation 5
Objective of trial vector
Find the closest individual to un

Update closest individual: equation 11
end for

end while

Randomly initialise individuals, calculate objective
while FEs<FEsmax do

for n = 1→ N do
Find the nearest m individuals to xn

Perform rand/1 mutation using the nearest m
Perform binomial crossover: equation 5

end for
for n = 1→ N do

if n = procid then
Objective of n-th trial vector

end if
end for
for n = 1→ N do

Find the closest individual to un

Update closest individual: equation 11
end for

end while

IV. Analytical Optimization Example

To demonstrate the effectiveness of the state-of-the-art parallel niching methods, optimizations using the
algorithms above on an analytical test problem are considered in this section.

The test problem has two design variables, x1 and x2, and uses the Himmelblau function as the objective
function with the addition of four constraints. The objective function to be minimised is:

f(x) = (x21 + x2 − 11)2 + (x1 + x22 − 7)2 + 1

subject to:

g1(x) = ζ1x1 + ζ2x1 − ζ1ζ2 + η1x2 + η2x2 − η1η2 − x21 − x22 ≤ 0

g2(x) = ζ2x1 + ζ3x1 − ζ2ζ3 + η2x2 + η3x2 − η2η3 − x21 − x22 ≤ 0

g3(x) = ζ3x1 + ζ4x1 − ζ3ζ4 + η3x2 + η4x2 − η3η4 − x21 − x22 ≤ 0

g4(x) = ζ4x1 + ζ1x1 − ζ4ζ1 + η4x2 + η1x2 − η4η1 − x21 − x22 ≤ 0

where ζ = [3.0,−2.805,−3.779, 3.584] and η = [2.0, 3.131,−3.283,−1.848]. The design space bounds are
−6 ≤ xd ≤ 6 (d = 1, 2). The problem has four global optima:

x∗1 = [3, 2]T

x∗2 = [−2.805118, 3.131312]T

x∗3 = [−3.779310,−3.283186]T

x∗4 = [3.584428,−1.848126]T

which each have an optimal objective value of 1.0. At any one optima, two constraints are active. Figure 4
shows the design space of the problem, where the lines show the active constraint boundaries (the solution
is feasible outside of these boundaries) and the symbols show the four optima.

IV.A. Run Details

The number of runs on each function, NR, is 50 for each of the algorithms to ensure sufficient sampling on
which statistical analysis can be performed. The remainder of the optimization parameters are given in table
1. The population size was chosen to give a good balance between cost and performance. The initial location
for each was random within the design space bounds, while bound constraints were handled by randomly
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Figure 4: Analytical test problem design space and active constraint lines (symbols show optima)

reinitialising an individual if it exited the design space bounds. When performing the runs, no knowledge of
the functions is assumed by the algorithms, so they are seen as entirely black-box.

Table 1: Optimization parameters

Parameter Value

N 200

FEsmax 400,000

F 0.9

CR 0.1

m 10

IV.B. Results

To determine the performance of the state-of-the-art constrained niching methods, two primary performance
metrics are considered. These are the peak accuracy, PA, and the peak ratio, PR. Peak accuracy is a
measure to determine how closely each method identifies the peaks within the search space. It is the average
over the total number of peaks of the nearest search agent (in the objective space) to each peak:

PA =
1

Ng

Ng∑
1

min
n∈(1,N)

|f(x∗)− f(xn)| (12)

where Ng is the number of global optima (four in this case). Peak ratio is the number of optima found as a
fraction of the total number of optima:

PR =
Nfound

Ng
(13)

where an error is used to determine how Nfound is calculated.
Table 2 gives the average PA over the 50 runs and the average PR over the 50 runs at five different

tolerance levels. Clearly, the fNCDE and fNRAND1 algorithms converge to the best number of optima, and
both have very low average PA values. Interestingly, fDE converges very far down in the objective space,
however tends to only converge onto one optima. This is something that is also shown in figure 5 (value of
PR through optimization history) and 6 (location of search agents), where fDE starts converging onto all
four global optima, however then loses diversity and results in one overall converged population.
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Table 2: Average peak accuracy and peak ratio (at different error levels) of methods

PR

Algorithm PA 1E-1 1E-2 1E-3 1E-4 1E-5

fCDE 7.67×10−5 1.000 1.000 1.000 0.765 0.100

fDE 1.58×10−20 0.250 0.250 0.250 0.250 0.250

fINRAND1 7.31×10−6 1.000 1.000 1.000 0.995 0.855

fNCDE 5.51×10−14 1.000 1.000 1.000 1.000 1.000

fNRAND1 5.55×10−18 1.000 1.000 1.000 1.000 1.000

FEs

P
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INRAND1
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NRAND1

Figure 5: Convergence of PR at ε = 10−3
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Figure 6: Convergence of individuals on function F11
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To ensure that the comparisons of the five algorithms is statistically significant, Wilcoxon rank-sum
tests[53] are performed. The rank-sum test is used to test the null hypothesis that “the median of the peak
ratios of algorithms A and B are equal” where the sample-set is all of the peak ratios used to produce the data
in table 2. The confidence level of the test is 99%. Both right-tailed and left-tailed p-values are calculated
to test the alternate hypotheses of whether the median of A is greater than the median of B (if this is the
case, then A is said to have won) and whether the median of A is less that the median of B (then B is said
to have won), respectively. If the null hypothesis is accepted then there is no difference at the confidence
level.

Figure 7 gives the results of all the comparisons between all five algorithms. In this figure, if a box is
green, then the algorithm in the row wins against the algorithm in the column, while if it is red then the row
loses against the column and if the box is white then there is no statistical difference. From these results,
it is relatively simple to determine the ranking of the five algorithms, with fNCDE and fNRAND1 being
the best, followed by fINRAND1, fCDE and fDE. Hence, there is no statistical difference in the peak ratio
performance between fNCDE and fNRAND1, however, the PA results do show that fNRAND1 is able to
converge to a lower tolerance than fNCDE.
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Figure 7: Results of rank-sum tests on peak ratios

V. Multimodal Aerodynamic Wing Optimization Problem

It has been shown above that reformulating niching algorithms via parallel decomposition to allow the
use of an expensive objective function evaluation is a suitable approach. The motivation for such develop-
ment is such that these advanced algorithms can be applied to allow the identification of any optimality
in aerodynamic optimization design spaces. In this section, the fNRAND1 niching algorithm is run on an
example aerodynamic wing optimization case that exhibits multimodality, and the performance is compared
to running a gradient-based algorithm from multiple start locations.

V.A. Problem Definition

The problem is based on the AIAA ADODG Case 6, which involves drag minimization of a rectangular wing
subject to aerodynamic constraints on lift, CL, and root bending moment, CMx

, and geometric constraints on
wing area, S, internal volume, V , twist, γ, local chord, c(y), local thickness, t(y), sweep (local x deformation
at the quarter-chord), ∆xqc(y), semi-span, s, dihedral (local z deformation at the quarter chord), ∆zqc(y),
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and angle of attack, AoA. The problem is given by:

minimise
α∈<D

CD

subject to CL = 0.2625

CMx
≤ 0.1069

S = S(initial)

V ≥ V (initial)

−3.12◦ ≤ γ ≤ 3.12◦

0.45 ≤ c(y) ≤ 1.55 ∀y ∈ [0, s]

0.06 ≤ t(y) ≤ 0.18 ∀y ∈ [0, s]

−1 ≤ ∆xqc(y) ≤ 1 ∀y ∈ [0, s]

2.46 ≤ s ≤ 3.67

−0.45 ≤ ∆zqc(y) ≤ 0.45 ∀y ∈ [0, s]

−3.0◦ ≤ AoA ≤ 6.0◦

(14)

As previously covered in Poole et al. [37], the root bending moment constraint of this problem inhibits
the conventional optimal elliptic loading result. Instead, the optimal loading of this result is given by the
solution of Jones [54] (which is a specific solution of a result later proved by Klein and Viswanathan [55]):

Γ(η) = Γ0

[
(3− 2ε)

√
1− η2 + 6(ε− 1)η2 cosh−1

(
1

|η|

)]
(15)

where:

ε =
3π

2

CMx

CL

Γ0 is a scaling factor and η = y/s is the non-dimensional spanwise location. The theoretical minimum
induced drag can be calculated as:

CDi
=

C2
L

πAR
(1 + δ)

where δ = 8(ε − 1)2, hence this varies with aspect ratio. Poole et al. [37] showed that the theoretical
minimum for this problem occurs at the maximum allowable span, and is 24.7 counts.

However, while Case 6 is interesting, it permits a substantial degree of geometric flexibility, hence it is
useful to consider a slightly simpler problem. The problem considered here is the drag minimization of the
Case 6 wing subject to variations in chord, local sweep and span only. The half-wing (shown in figure 8) is
composed of a rectangular NACA0012 section of span 3.0 and a rounded wing-cap of width 0.06, resulting
in the overall semi-span of 3.06. The problem specifies that the wing is in compressible, inviscid flow at
M∞ = 0.5, however, for this problem, a vortex-lattice solver is used to determine the aerodynamic forces
and moments. Hence, the flow is incompressible and inviscid with no compressibility scaling performed. The
wing is trimmed to an incompressible target CL = 0.2625.

A vortex lattice solver (based on that defined in Katz and Plotkin [56]) is used to determine the aerody-
namic forces and moments. The NACA0012 half-wing is approximated as a flat surface on the chord plane
of the wing, and this is discretised into a grid of 10 chordwise panels by 70 spanwise panels (see figure 8).
This half mesh is then mirrored in the x-z plane for the VLM solver.

Deformation of the aerodynamic surface and mesh is achieved via a lattice of control points that use
radial basis function (RBF) interpolation to link changes in control point positions to changes in the surface
and mesh. The control point set-up used is shown in figure 9. Hence, control point deformations act of
design variables. Local (sectional-based) changes in chord and sweep occur at five evenly-spaced spanwise
stations. A global variations in pitch results in an eleven design variable problem. A global span variable
also exists, however this is calculated to maintain a fixed planform area after planform deformations have
occurred.
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(a) Surface (b) VLM mesh

Figure 8: Rectangular NACA0012 wing and VLM discretisation

Figure 9: Wing embedded in control point cage

The design variable specification is as follows:

• x1 - angle of attack

• x2 to x6 - chord changes at spanwise stations

• x7 to x11 - sweep changes at spanwise stations

The optimization problem being solved by the optimizer is:

minimise
x∈<D

CD

subject to 0.2625− CL ≤ 0

CMx
− 0.1069 ≤ 0

2.46− s ≤ 0

s− 3.67 ≤ 0

3.0 ≤ x1 ≤ 6.0

0.45 ≤ xi ≤ 1.55 ∀i ∈ [2, 6]

−1 ≤ xi ≤ 1 ∀i ∈ [7, 11]

(16)
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noting that the wing area remains fixed throughout the optimization and that a flat plate is used for a VLM
so the internal volume constraint is void.

V.B. Multi-Start Gradient-Based Results

To demonstrate multimodality of this problem, a number of independent runs of a local optimizer are
performed where each run represents a different starting location in the design space. The gradient-based
optimization algorithm is the feasible sequential quadratic programming (FSQP) algorithm as implemented
in version 3.7 [57]. FSQP is based on the sequential quadratic programming (SQP) approach, but modified
to improve convergence by combining a search along an arc [58] with a non-monotone procedure for that
search [59]. The FSQP algorithm is fully described and analysed in [60, 61]. Gradients are evaluated using a
second-order central difference scheme, so two objective evaluations are required per design variable gradient.
30 independent runs of the optimizer are performed where a randomised Latin hypercube sampling procedure
is used to determine the starting location of each of the 30 runs. A further ‘datum’ run is also performed
where the starting location is the baseline wing shape without any initial deformations applied to it.

Table 3 gives the initial results and the average of all of the optimum results. All optima converged to
24.7 counts (this is very close to the theoretically obtainable minimum from theory) and were within 0.01
counts of each other. Figure 10 shows an example convergence of the feasibility and optimality from one of
the 30 runs (this is a typical example), showing that the solution begins infeasible so a feasible point has to
first be found. Once this occurs, the optimizer can work on improving the objective function.

Table 3: Gradient-based wing optimization results (CD in counts)

CL CD CMx s S/2 AoA ∆J(%)

Baseline 0.263 36.8 0.118 3.00 3.00 3.47◦ -

Mean result 0.263 24.7 0.107 3.67 3.00 3.10◦ -32.9%
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from one run of gradient-based algorithm
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gradient-based algorithm

While the optimum results of all runs are near identical, looking at the final design variable values (given
in figure 12) it can be seen that the optimum results all have differing design variable values. There is clear
multimodality present but this appears to come from the sweep, rather than the chord. The final spanwise
loadings are given in figure 11 while the wing shapes are given in figure 13. All results are almost identical
in terms of loading, and are very close to the theoretical result. However, the surfaces appear to group into
three different shapes, with two results showing large forward sweep, the majority of results (including the
datum result) showing moderate forward sweep, then another group with less forward sweep.
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Figure 12: Star maps showing initial and optimum values of design variables from gradient-based algorithm
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V.C. Niching Results

The results of running gradient-based optimization from different starting locations demonstrates that this
problem is multimodal. However, the shapes of the different optima are remarkably similar, and it appears
that the optimum is something akin to a valley, containing lots of very small, local minima. Despite this,
it is interesting to consider the performance of niching algorithms on this problem. The niching algorithm
tested here is fNRAND1, which is run with 96 individuals in the population.

The location of the agents in three of the design variables at different points during the niching opti-
mization process are shown in figure 14. It is clear that the population is converging onto two individually
identifiable optima. The design variable values of these two optima are shown in the star map in figure 15
and these are compared to the optima found in the gradient-based results. Interestingly, one of the optima
has similar trends to the results found in the gradient-based optimizations, however, the other optima is
substantially different. From table 4 the optimum that is similar to the gradient-based results has similar
performance, however the second optimum is a local optimum that is slightly worse than the first. The lift,
root bending moment and upper span constraints are active in both, however from figure 16, there are very
stark differences in the shapes of the two optima. It is positive that from these initial investigations, niching
finds minima that were not found from an initial study of multi-start gradient-based optimization.
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Figure 14: Population state of three example design variables through niching process
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Figure 15: Star map showing optimum values of design variables from niching algorithm

Table 4: Niching using fNRAND1 wing optimization results (CD in counts)

CL CD CMx s S/2 AoA ∆J(%)

Baseline 0.263 36.8 0.118 3.00 3.00 3.47◦ -

Gradient result 0.263 24.7 0.107 3.67 3.00 3.10◦ -32.9%

Optimum 1 0.263 24.7 0.107 3.67 3.00 3.11◦ -32.9%

Optimum 2 0.263 25.1 0.107 3.67 3.00 3.16◦ -31.8%
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VI. Conclusions and Ongoing Work

The work in this paper has considered locating multiple optima in aerodynamic optimization design
spaces. To perform this, state-of-the-art constrained niching methods that have previously been shown to
perform well when locating multiple optima in analytical problems have been employed. These method use
a population of search agents who cluster together at different locations within the search space to converge
onto multiple optima. However, the use of such techniques for locating multiple optima in aerodynamic
optimization spaces becomes problematic due to the high cost of the objective function evaluation. As
such, a parallel decomposition of each of the methods has been developed to allow each individual to be
evaluated in parallel, limiting the cost of each optimizer iteration to a single objective function evaluation.
The fNRAND1 and fNCDE niching algorithms were shown to perform similarly on an example analytical
problem, and these were better (at 99% confidence) than the other algorithms tested.

A wing planform optimization case has been tested with a vortex lattice solver used for the aerodynamic
performance evaluation. Multi-start gradient-based optimization was used to determine multimodality of
the case, but that this multimodality followed similar trends in design variables with small variations in
sweep providing the multimodality. The fNRAND1 niching algorithm was then employed on this case and
two individual minima were found; one which follows similar trends to the gradient-based and one which is
substantially different. The first optimum found had better performance than the second optima, indicating
that this problem has a degree of local multimodality. It is positive to note that the niching algorithm
was able to locate multiple optima on an aerodynamic optimization case, indicating the potential of these
algorithms for examples beyond simply analytical problems.

Future and ongoing work includes considering reducing the cost associated with niching algorithms as
well as applying these methods to further aerodynamic optimization problems.
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