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Abstract

We show how to calculate isotropic Compton profiles from sets of profiles along
so-called “special directions” in the Brillouin zone computed from density-
functional theory calculations, with reference to a recent paper by Bhatt et
al.. We present the correct formula and demonstrate the power of special di-
rections, highlighting the importance of carefully choosing directions and using
the correct weights in obtaining accurate isotropic profiles.

Keywords: Compton scattering, special directions in the Brillouin

zone, isotropic

A recently published paper by Bhatt et al. [I] has applied the technique of
magnetic Compton scattering to probe the spin-density of electrons in momen-
tum space [2]. The sensitivity to the spin-magnetic moment, and the fact that
its origin can be determined (because electrons in different orbitals will have dif-
ferent momentum distributions) make it a powerful tool for probing magnetism
in materials [2]. When Compton scattering is applied to experiments performed
on single crystals, it can provide detailed and often unique information about

the ground state electronic wavefunction [3] and the Fermi surface [4] [ [6].
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However, it is often the case that suitable single crystals are not available, and
indeed magnetic Compton scattering measurements are often made on polycrys-
talline materials. In order to compare the results of these experiments with the
predictions of ab initio density-functional theory calculations, it is essential that
an isotropic momentum distribution can be computed. Recently, we described
how isotropic distributions (and mean values) can be calculated using so-called
“special directions” (SDs) [7]. The purpose of this comment is to show how the
method should be correctly applied, using as an example the recent study by
Bhatt et al. [I].

Many studies up to now are based on the original Houston proposal (Eq. (3)
in Ref. [I]) and equations published (e.g. [8]), where some directions lying on
high symmetry lines are considered together with the high symmetry directions
(HSDs). Meanwhile, the isotropic distribution can be estimated much more
precisely by using SDs, as proposed by Bansil [9]. We have set out this in great
detail in a recent paper [7] in which we looked at cubic, hexagonal, tetragonal
and trigonal structures, showing that HSDs are very inconvenient. The power
of using SDs is beautifully illustrated in a paper by Prasad and Bansil [10], in
which several sets (28, 36, 45, 55, and 66) of special directions for cubic lattices
were proposed and discussed showing their accuracy in density-of-states and
Fermi-energy evaluations in disordered alloys. Fig. 3 in Ref.[I0] demonstrates
the power of using SDs: 28 SD’s are incomparably better than 28 sampling
directions uniformly distributed over the whole Brillouin zone (BZ) or the 25
directions obtained by dividing the irreducible BZ into tetrahedra. Moreover,
their results clearly indicate that even the results from 13 SDs have converged
to a fairly good accuracy.

For the current calculations, we choose N-SDs (with N = 6,10 [II] and
N =15 [12]) to check the correctness of calculating an isotropic magnetic Comp-
ton profile (Jo(p)) for ZrFey; depending on the number of SDs. Such directions
were also considered in our previous paper [7]. We also perform calculations for
the 6 directions used by Bhatt et al. [I] and for 1- and 3-SDs to demonstrate

once more the power of SDs. For all these sets of sampling directions (shown



in Fig theoretical directional magnetic Compton profiles (J(p.)) were calcu-
lated; altogether, 41 such directional magnetic Compton profiles were computed
[13].

In the case of the six directions applied in Ref. [1] (open squares in Fig, we
calculated the isotropic magnetic Compton profile (Jy(p)) using both Eq. 4 of
Ref. [I] (which is incorrect, as it has the wrong weights) and the corresponding

equation with the proper weights [8], which is the following :

Jo(p) = 0.1088 J}190]+0.0708 Jj110)+0.0162 J1111)+0.3527 Ji210)+0.2877 Jj211)+0.1639 Jj201]
(1)

We found that raw profiles along 10-SDs gave almost identical Jo(p) as us-
ing 15-SDs. In fact, even 6-SDs approximate Jo(p) very well, as can be seen
in Fig. b). It may seem surprising that Jy(p) approximated by profiles J(p,)
along only 3-SDs (triangles in Fig. 2[b)) is better than by six profiles (apply-
ing Eq.([I), denoted by full circles in Fig. [2(a)). Is this a special case related
to densities in the investigated material? To answer this question we draw d
coefficients (Fig. 2(c)), which define the deviation of the approximated Jo(p)
from its true value (for more details, see Ref. [7]). As seen, such an effect is not
unexpected. Details of these 3-SDs [I1] and the associated weights for calcu-
lating the isotropic Jy(p) are given in Table |1} where we have (for convenience)
also provided the Miller indices of directions which are very close to the special
directions together with their corresponding weights.

In Fig. |3 we show Jy(p) described by profiles along 15-SDs and its approx-
imation by HSD (triangles) and only one SD (squares). As we emphasised in
Ref. [7], the impact of experimental resolution needs to be carefully considered.
While the resolution (full-width-half-maximum) of a typical charge Compton
experiment is ~ 0.1 a.u. [I4], magnetic Compton typically has a resolution
~ 0.4 a.u.[ll 2]. The inset to Fig. [3| shows the impact of convolution with the
experimental resolution reported by Bhatt et al. [I]. It shows that even a

single direction, but one chosen very carefully, can be better than three HSDs



[15]. HSDs are highly unprofitable and the traditional manner of calculating the
isotropic average (also for such 6- or 9-sampling directions as proposed by Betts
[3]) yields incomparably worse results than the use of SDs. Unfortunately, to
the best of our knowledge, SDs were utilized in theoretical calculations in only
a few papers.

Although we are presenting results for a small number of SDs, this does not
mean that we are proposing that so few should be used to extract isotropic
components from theoretical calculations. Modern computing power is such
that there is little difficulty in performing calculations for e.g. 15-SDs (or even
21-SDs, if it is necessary). The coordinates and corresponding weights for these
sets of SDs are given in Table 5 in [12]. However, in the case of experimental
investigations the situation is quite different and here we should address the
following question: In a fixed measuring time, is it more reasonable to measure
a higher number of profiles with a lower statistical precision, or fewer profiles
with a higher statistical precision?

The answer depends what we want to get because by measuring single crys-
tals we could reproduce as faithfully as possible both the isotropic component
Jo(p) and the anisotropy of the system. It is clear that the isotropic Jo(p)
should be better determined by a greater number of projections and to get that
the best solution is to measure a polycrystalline sample. However, in the case
of anisotropic components the situation could be quite the opposite. Adding
a projection at the cost of poorer statistical precision of other projections can
lead to worse results, particularly for directions lying so close to each other
that it is impossible to observe differences between spectra (in the limit of both
low experimental statistics and resolution). Owing to this, we suggest measure-
ments of 15-SDs (but a smaller number, e.g. 10- or even 7-SDs (see Fig. 2 in
Ref. [16]) can be ok). This applies in particular to those materials where the
isotropic core has an incomparably higher contribution than the valence elec-
trons, and the statistical precision of the anisotropic valence contribution needs

to be carefully considered.



i (04, di) w; Miller (04, ;) w;

1| (79.011 , 11.299) | 0.28379 [511] (78.904 , 11.310) | 0.28419
2 | (64.494 , 35.344 | 0.25037 | [17 12 10] | (64.333 , 35.218) | 0.23913
3| (80.997 , 33.679) | 0.46584 | [15 10 3] | (80.552, 33.690) | 0.47668

Table 1: Spherical coordinates (0;, ¢;) of 3-SDs displayed in Fig. [1] with the corresponding

weights to describe the isotropic function.

The three last columns show coordinates and

weights if the 3-SDs were described using Cartesian vectors which are the Miller indices of the

directions.
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Figure 1: Stereogram of nonequivalent directions in the BZ for cubic structures. Left part: 6-

and 10-SDs; right part: 1- and 3-SDs and 6 directions (marked by open squares) proposed by
Betts et al. [8] and used in [IJ.
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Figure 2: Differences between isotropic Jo(p) estimated from magnetic Compton profiles J(p.)
along 15-SDs and along five sets of sampling directions displayed in Fig. m The area under
Jo(p) should be normalised to the spin magnetic moment, but that has not been done here.
For the 6 directions marked by the open squares in Fig. [1} we used weights from Eq.(4) in
Ref. [I] and a correct set of weights (Eq. in this paper). Jo(p) is given in a %-ages of Jo(0).
Part (c) presents values of d coefficients, which define the deviation of the approximated Jo(p)
from its true value for successive harmonics i (see Eq.(4) in Ref. [7]), shown for 3-SDs and six

sampling directions (Eq. [1]in this paper).
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Figure 3: Isotropic Jo(p) magnetic Compton profile calculated from 15-SDs (solid line), 3

HSDs (triangles) and a single special direction (1SD, squares). After convolution with the

experimental resolution, 1-SD describes Jo(p) very well.
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