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Dedicated to the memory of Jon Borwein

Abstract. Brun’s constant is B =
∑

p∈P2
p−1 + (p + 2)−1, where the

summation is over all twin primes. We improve the unconditional bounds
on Brun’s constant to 1.840503 < B < 2.288490, which are about 13%
tighter.

1 Introduction

Brun [4] showed that the sum of the reciprocals of the twin primes converges.
That is, if P2 denotes the set of primes p such that p+ 2 is also prime, the sum
B :=

∑
p∈P2

1/p+ 1/(p+ 2) is finite.
Various estimates for Brun’s constant have been given based on calculations

of π2(x), where π2(x) denote the number of twin primes not exceeding x — see
Brent [3, pp. 50–53] and Klyve [7, Table 1.2.3] for some historical references.
Brent [3] computed π2(8 ·1010) = 182 855 913, and, conditional on some assump-
tions about the random distribution of twin primes, conjectured that

B = 1.9021604± 5 · 10−7. (1)

Additional computations were performed by Gourdon and Sebah [16] and Nicely3

[11], who showed
π2(2 · 1016) = 19 831 847 025 792. (2)

? Supported by Australian Research Council Discovery Project DP160100932 and EP-
SRC Grant EP/K034383/1.

?? Supported by Australian Research Council Discovery Project DP160100932 and Fu-
ture Fellowship FT160100094.

3 We cannot resist referencing an anecdote from Jon Borwein (and his co-authors).
Nicely’s calculations on Brun’s constant are mentioned in [2, p. 40]. Nicely discovered
a bug in an Intel Pentium chip, which, according to [2] ‘cost Intel about a billion
dollars’ although the actual amount written off was a mere US$475 million. We
believe Jon would have seen this as an excellent application of pure mathematics in
the modern world.
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Additionally, Nicely conjectured that

B = 1.902160583209± 0.000000000781. (3)

As far as we are aware the most comprehensive results on the enumeration of
π2(x) are by Oliveira e Silva [12], who computed π2(k ·10n) for k = 1, . . . , 10 000
and n = 1, . . . , 14 and π2(k · 1015) for k = 1, . . . , 4 000.

Some explanation is required for these conjectured bounds in (1) and (3).
These results are not strict error bounds, but rather, confidence intervals (in the
probabilistic sense). One can obtain a lower bound on B by merely summing
B(N) :=

∑
p∈P2,p≤N 1/p + 1/(p + 2) for large values of N . One can then plot

this as a function of N , make assumptions about the random distribution of twin
primes, and try to ascertain the rate of convergence. This is what has been done
by Brent, Nicely, and others.

It is another matter to ask for a rigorous upper bound for Brun’s constant;
clearly computing the sum B(N) for any N gives a lower bound. The first upper
bound appears to be B < 2.347 as stated by Crandall and Pomerance [5]. A
proof of this is given in a thesis by Klyve [7] who also shows that under the
assumption of the Generalised Riemann Hypothesis we have B < 2.1754.

It is perhaps curious that the method of Crandall and Pomerance produces
an upper bound for B that depends on the lower bound. When one increases N ,
the corresponding increase in B(N) yields a better upper bound for B.

In this paper we do two things: we compute B(N) for a larger N than was
done previously, and using some optimisation improve the upper bound for B.
The result is

Theorem 1. 1.840503 < B < 2.288490.

The previous best lower bound was computed by Nicely [11], who, using his
calculations of (2) showed that B(2 ·1016) > 1.831808. We remark that the lower
bound of B(1016) > 1.83049 by Gourdon and Sebah [16] was used by Klyve.

In §4.1 we give details of using the tables by Oliveira e Silva in [12] to compute
B(4 · 1018). This proves the lower bound in Theorem 1. We remark here that
this computation on its own would give an upper bound of 2.292 in Theorem 1.

In §2 we list two results in the literature, one an explicit bound on a sum
of divisors, and another an improvement on a sieving inequality used by Mont-
gomery and Vaughan [9]. In §3 we introduce Riesel and Vaughan’s bounds for
π2(x). Finally, in §4 we perform our calculations that prove the upper bound in
Theorem 1, and outline some of the difficulties facing future investigations into
this problem.
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2 Preparatory results

We require two results from the literature. The first is an explicit estimate on∑
n≤x d(n)/n, where d(n) is the number of divisors function; the second is a

large-sieve inequality.

2.1 Bounds on the number of divisors

The classical bound on
∑
n≤x d(n) and partial summation show that

∑
n≤x

d(n)

n
∼ 1

2
log2 x. (4)

It is also possible to give an asymptotic expansion of the above relation. First,
for k a non-negative integer, define the Stieltjes constants γk as

γk = lim
N→∞

− (logN)k+1

k + 1
+
∑
n≤N

(log n)k

n

 .

Here γ0 = γ, which is Euler’s constant. In what follows we only need the follow-
ing bounds: more precision is possible, but the estimates in (5) are more than
sufficient.

0.5772156 < γ0 < 0.5772157, −0.0728159 < γ1 < −0.0728158. (5)

Riesel and Vaughan give a more refined estimation of (4), namely, if

E(x) =
∑
n≤x

d(n)

n
− 1

2
log2 x− 2γ0 log x− γ20 + 2γ1, (6)

then by Lemma 1 [14]

|E(x)| < 1.641x−1/3, (x > 0). (7)

We note that an improvement is claimed in Corollary 2.2 in [1], which gives

|E(x)| < 1.16x−1/3, (x > 0).

This, however, appears to be in error, since, as shown in [14, p. 50] the error
|E(x)|x1/3 has a maximum of −1.6408 . . . around 7.345 ·10−4. We also note that
one only need prove a result like (7) for x ≥ 1 to follow the proof of Lemma 2
in [14]. (We thank Richard Brent and the anonymous referee for pointing this
out.) Finally, it is possible to improve (7) by choosing an exponent smaller than
−1/3. We will use −2/5 so we require a lemma.
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Lemma 1. Let E(x) be as in (6). Then, for all x ≥ 1 we have |E(x)| ≤
0.6877x−2/5.

Proof. We proceed as in the proof of Lemma 1 in [14]. There, the authors consider
three ranges, x ≥ 2, 1 ≤ x < 2 and 0 < x < 1. The idea with such a proof is by
considering sufficiently many ranges, one can show that the global maximum of
|E(x)|xα occurs in 0 < x < 1. By reducing α we reduce this maximum value. We
find that writing (1,∞) as the union of [n, n+ 1) for 1 ≤ n ≤ 7 and [8,∞] keeps
the other contributions sufficiently small. The maximum value is at x = 6−,
which establishes the lemma.

We remark that the proof is easily adaptable to finding, for a given α, the optimal
constant c = c(α) such that |E(x)|xα ≤ c for all x ≥ 1. However, as we show in
§4.3, the effects of further improvements are minimal.

2.2 A large sieve inequality

Riesel and Vaughan make use of the following, which is Corollary 1 in [9].

Theorem 2 (Montgomery and Vaughan). Let N be a set of Z integers
contained in [M + 1,M +N ]. Let ω(p) denote the number of residue classes mod
p that contain no element of N . Then Z ≤ L−1, where

L =
∑
q≤z

(
N +

3

2
qz

)−1
µ2(q)

∏
p|q

ω(p)

p− ω(p)
, (8)

where z is any positive number.

Actually, Theorem 2 is derived from the investigations of Montgomery and
Vaughan into Hilbert’s inequality4. Specifically, Theorem 2 follows from The-
orem 1 in [10]. That result was improved by Preissmann [13]. The upshot of all

this is that Preissmann’s work allows one to take ρ =
√

1 + 2/3
√

6/5 ≈ 1.315 . . .

in place5 of 3/2 in (8).
Riesel and Vaughan choose z = (2x/3)1/2 in (8). With Preissman’s improve-

ment we set z = (x/ρ)1/2; it is trivial to trace the concomitant improvements.

4 We were reminded by the referee that Jon Borwein had worked on Hilbert’s inequal-
ity, although we do not believe his results to be applicable here.

5 We remark that Selberg conjectured that (8) holds with 1 in place of 3/2. It seems
difficult to improve further on Preissmann’s work.
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3 Riesel and Vaughan’s bounds on π2(x)

Riesel and Vaughan give a method to bound π2(x). Actually, their method is
much more general and can bound the number of primes p ≤ x such that ap+b is
also prime. We present below their method for the case of interest to us, namely,
that of a = 1, b = 2. One may also consult [17] — we thank Olivier Ramaré for
making us aware of this.

We first let C denote the twin prime constant

C = 2
∏
p>2

p(p− 2)

(p− 1)2
. (9)

Note that in some sources the leading factor of 2 may be absent. Wrench [18]
computed C to 45 decimal places. For our purposes the bound given by Riesel
and Vaughan below is sufficient

1.320323 < C < 1.320324.

Lemma 2. For any s > −1/2 we define H(s) by

H(s) =

∞∑
n=1

|g(n)|
ns

,

where g(n) is a multiplicative function defined by

g(pk) = 0 for k > 3, g(2) = 0, g(4) = −3/4, g(8) = 1/4,

g(p) =
4

p(p− 2)
, g(p2) =

−3p− 2

p2(p− 2)
, g(p3) =

2

p2(p− 2)
, (when p > 2).

Now define the constants Ai by

A6 = 9.27436− 2 log ρ

A7 = −5.6646 + log2 ρ− 9.2744 log ρ

A8 = 16Cc(α)H(−α)ρα/2

A9 = 24.09391ρ1/2,

where c(α) is such that |E(x)|xα ≤ c(α) for all x > 0.
Now let

F (x) = max

{
0, A6 +

A7

log x
− A8

xα/2 log x
− A9

x1/2 log x

}
. (10)

Then

π2(x) <
8Cx

(log x)(log x+ F (x))
+ 2x1/2. (11)

Proof. See [14], equation (3.20).
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This leads directly to the following lemma.

Lemma 3. Let F (x) be defined in (10). Choose x0 large enough so that F (x0) >
0 and set

B(x0) =
∑
p∈P2
p≤x0

1

p
+

1

p+ 2
.

Then

B ≤ B(x0)− 2
π2(x0)

x0
+

∞∫
x0

16C

t log(t)(log(t) + F (t))
+ 4t−

3
2 dt.

Proof. We start from

B ≤ B(x0) +
∑
p∈P2
p>x0

2

p
= B(x0) + 2

∞∫
x0

dπ2(t)

t
,

integrate by parts and apply Lemma 2.

Riesel and Vaughan calculate H(−1/3) so that they may use (7); we proceed to
give an upper bound for H(−2/5) in order to use Lemma 1.

Lemma 4. Let H be as defined above, then

H

(
−2

5

)
< 950.05.

Proof. Write

g(2, s) = log

(
1 +

3

4
2−2s +

1

4
2−3s

)
and for t > 2

g(t, s) = log

(
1 +

4

t(t− 2)
t−s +

3t+ 2

t2(t− 2)
t−2s +

2

t2(t− 2)
t−3s

)
so that for s > −1/2 we have the Euler product

H(s) = exp

[∑
p

g(p, s)

]
.

Now fix P > 2 and split the sum into

S1(P, s) =
∑
p≤P

g(p, s)

and
S2(P, s) =

∑
p>P

g(p, s).
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Then by direct computation using interval arithmetic we find

S1

(
1010,−2

5

)
= 6.8509190277 . . .

To estimate S2 we write

∑
p>P

g(p, s) =

∞∫
P

g(t, s)dπ(t) ≤
∞∫
P

log
(

1 + k1t
− 6

5

)
dπ(t)

where k1 is chosen so that log
(

1 + k1t
− 6

5

)
≥ g

(
P,− 2

5

)
. For P = 1010 we find

that k1 = 3.000403 will suffice. We then integrate by parts to get

S2

(
P,−2

5

)
≤ − log

(
1 + k1t

− 6
5

)
π(P ) +

6

5

∞∫
P

k1
t11/5 + k1t

π(t)dt.

We compute the first term using π
(
1010

)
= 455 052 511 and for the second

term we note that for x ≥ P we have

π(x) ≤ x

log x

(
1 +

1.2762

logP

)
= k2

x

log x
.

The integral is now

6

5
k1k2

∞∫
P

dt

log t
(
t6/5 + k1

) ≤ 6

5
k1k2

∞∫
P

dt

t6/5 log t
= −6

5
k1k2Ei

(
− logP

5

)

where Ei is the exponential integral

Ei(x) = −
∞∫
−x

exp(−t)
t

dt.

Putting this all together we have

S1

(
1010,−2

5

)
+ S2

(
1010,−2

5

)
< 6.8509191− 0.0013653 + 0.0069531

= 6.8565069

and thus H
(
− 2

5

)
< 950.05.
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4 Calculations

We now have everything we require to prove Theorem 1. We first proceed to the
lower bound.

4.1 Computing B(4 · 1018): the lower bound in Theorem 1

We first note the following.

Lemma 5. We have

π2
(
4 · 1018

)
= 3 023 463 123 235 320.

Proof. See [12], table “2d15.txt”.

Furthermore, typical entries in the tables in [12] (“2d12.txt” for this example)
look like

1000d12 1177209242304 1177208491858.251 . . .

1001d12 1178316017996 1178315253072.811 . . .

where the second column gives the count of prime pairs below the value given in
the first column, interpreting, for example, “1001d12” as 1001 · 1012. From this
we conclude that there are 1 178 316 017 996 − 1 177 209 242 304 = 1 106 775 692
prime pairs between 1000 ·1012 and 1001 ·1012. The contribution these will make
to the constant B is at least

1 106 775 692× 2

1001 · 1012
> 1.0567 · 10−6

and at most

1 106 775 692× 2

1000 · 1012
< 1.0678 · 10−6.

We take the value of B(1012) ∈ [1.8065924, 1.8065925] from [11] and add
on the contributions from the entries in the tables from [12] to conclude the
following.

Lemma 6.

B
(
4 · 1018

)
∈ [1.840503, 1.840518].

We note that the lower bound in Theorem 1 follows from Lemma 6. We note
further that we are ‘off’ by at most 1.5 · 10−5, which shows that there is limited
applicability for a finer search of values of π2(x) for x ≤ 4 · 1018.
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4.2 The upper bound in Theorem 1

We shall use Lemma 3 to bound B. Using s = −2/5 to get H(−2/5) < 950.05
(Lemma 4) and c(2/5) < 1.0503 (Lemma 1) we get

A6 > 8.72606, A7 > −8.13199, A8 < 14580.01753, A9 < 27.63359.

We chose x0 = 4 · 1018 so that π2(x0) = 3 023 463 123 235 320 (Lemma 5) and
B(x0) < 1.840518 (Lemma 6). This leaves the evaluation of

∞∫
x0

dt

t log t(F (t) + log t)
.

We proceed using rigorous quadrature via the techniques of Molin [8] imple-
mented using the Arb package [6] to compute

exp(20 000)∫
x0

dt

t log t(F (t) + log t)

and then we bound the remainder by

∞∫
exp(20 000)

dt

t log t(F (t) + log t)
≤

∞∫
exp(20 000)

dt

t log2 t
=

1

20 000
.

This establishes Theorem 1.

4.3 Potential Improvements

We close this section by considering potential improvements whilst still relying
on Riesel and Vaughan’s method. One approach is to attempt to improve the
constants Ai. A second would be to compute B(x0) for larger values of x0 than
the 4 · 1018 used above.

Improving the constants Ai In the following, all calculations were done with
x0 = 4 · 1018, cutting off at exp(20 000), and using Preissmann’s value for ρ in
§2.2.

1. The ‘2’ that appears in (11) is a result of the term 2π(z) + 1 appearing on
[14, p. 54]. With the choice of z = (x/ρ)1/2, and using the bound π(x) <
1.25506x/ log x from Rosser and Schoenfeld [15, (3.6)], we could replace the
2 by

x
−1/2
0 +

5.03

ρ1/2 log x0

ρ

= 0.10305 . . .
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2. We can replace the constant A9 by 19.638ρ1/2 < 22.523 by a careful exami-
nation of the final part of the proof of Lemma 3 in [14].

3. We could investigate other versions of Lemma 1. This would have the effect
of reducing A8. It should be noted that for larger values of α one can obtain
smaller constants c(α) at the expense of a larger, and more slowly converging,
H(−α). We did not pursue the optimal value of α.

However, we observe that setting A6 = 9.27436 (that is, assuming Selberg’s
conjecture, in the footnote on page 4, that ρ = 1), setting A7 = A8 = A9 = 0
and deleting the x1/2 term from (11) altogether only reduces the upper bound
for B to 2.28545 . . ..

Increasing x0 Knowledge of B(x0) and π2(x0) for larger x0 would allow us
to further improve on our bounds for B. To quantify such improvements, recall
that results such as (1) and (3) are obtained by assuming the Hardy–Littlewood
conjecture, namely

π2(x) ∼ C
∫ x

2

dx

log2 x
, (12)

(where C is the twin prime constant in (9)), and assuming properties on the
distribution of twin primes. This leads to the hypothesis that

B(n) ≈ B − 2C

log n
. (13)

Using (12) and (13), one can ‘predict’ the value of π2(10k) and B(10k) for higher
values of k. Of course one can object at this point: we are assuming a value of B
in order to obtain an upper bound on B! A valid point, to be sure. The purpose of
this commentary is instead to show that without new ideas, this current method
is unlikely to yield ‘decent’ bounds on B even using infeasible computational
resources.

We ran the analysis from §4 (not optimised for each k) to obtain the following.

Table 1. Projected upper bounds on B

k B(10k) π2(10k) Upper bound for B

19 1.84181 7.2376 · 1015 2.2813
20 1.84482 6.5155 · 1016 2.2641
80 1.8878 3.9341 · 1075 1.9998

Therefore, proving even that B < 2 is a good candidate for the 13th Labour
of Hercules, a man referenced frequently in puzzles by the late Jon Borwein.
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8. Molin, P.: Intégration numérique et calculs de fonctions L. PhD Thesis, Institut
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