
	

 

		
THE	DEVELOPMENT	AND	APPLICATION	OF	
COMPUTATIONAL	MULTI-AGENT	MODELS	

FOR	INVESTIGATING	THE	CULTURAL	
TRANSMISSION	AND	CULTURAL	EVOLUTION	

OF	HUMPBACK	WHALE	SONG	
	
BY	
	

MICHAEL	MCLOUGHLIN	
	

A	THESIS	SUBMITTED	TO	THE	UNIVERSITY	OF	PLYMOUTH	
IN	PARTIAL	FULFILMENT	FOR	THE	DEGREE	OF	

DOCTOR	OF	PHILOSOPHY	

	
	

SCHOOL	OF	HUMANITIES	AND	PERFORMING	ARTS	
UNIVERSITY	OF	PLYMOUTH	

	
IN	COLLABORATION	WITH		

UNIVERSITY	OF	ST.	ANDREWS,	SCOTLAND	
AND		

QUEENSLAND	UNIVERSITY,	AUSTRALIA	
	
	
	

SEPTEMBER	2017	
	
	



	

Copyright	Statement		

This	copy	of	the	thesis	has	been	supplied	on	condition	that	anyone	who	consults	it	is	understood	

to	recognise	that	its	copyright	rests	with	its	author	and	that	no	quotation	from	the	thesis	and	no	

information	derived	from	it	may	be	published	without	the	author’s	prior	consent.	

	 	



	

	 	

	

	

	

	

	

	

	

	

	

	

For	my	Mother	and	my	Father.	

Go	raibh	míle	maith	agaibh.



	



	

Authors	Declaration	
At	no	time	during	the	registration	for	the	degree	of	Doctor	of	Philosophy	has	the	
author	been	registered	for	any	other	University	award	without	prior	agreement	
of	the	Doctoral	College	Quality	Sub-Committee.		

Work	submitted	 for	this	research	degree	at	 the	University	of	Plymouth	has	not	
formed	part	of	any	other	degree	either	at	the	University	of	Plymouth	or	at	another	
establishment.		

This	study	was	financed	with	the	aid	of	a	studentship	form	the	Leverhulme	Trust	
and	 carried	 out	 in	 collaboration	with	 University	 of	 St.	 Andrews,	 Scotland,	 and	
Queensland	University,	Australia.		

The	 following	 external	 institutions	 were	 visited	 for	 consultation	 purposes:	
Queensland	University,	Australia.		

Publications:	

Using	agent-based	models	to	understand	the	role	of	 individuals	 in	the	song	
evolution	of	humpback	whales	(Megaptera	novaeangliae)		

Michael	Mcloughlin,	Luca	Lamoni,	Ellen	C.	Garland,	Simon	Ingram,	Alexis	Kirke,	
Michael	J.	Noad,	Luke	Rendell,	and	Eduardo	Miranda	

Music	&	Science		

Presentations	at	conferences:	

Adapting	 a	 Computational	 Multi	 Agent	 Model	 For	 Humpback	 Whale	 Song	
Research	For	Use	As	a	Tool	For	Algorithmic	Composition.	

Mcloughlin,	Michael	&	Lamoni,	Luca	&	Garland,	Ellen	&	Ingram,	Simon	&	Kirke,	
Alexis	&	Noad,	Michael	&	Rendell,	Luke	&	Miranda,	Eduardo.		

Conference:	Conference:	Sound	and	Music	Computing	2016,	At	Hamburg	

Preliminary	Results	From	A	Computational	Multi	Agent	Modelling	Approach	
To	Study	Humpback	Whale	Song	Cultural	Transmission.			

Mcloughlin,	Michael	&	Lamoni,	Luca	&	Garland,	Ellen	&	Ingram,	Simon	&	Kirke,	
Alexis	&	Noad,	Michael	&	Rendell,	Luke	&	Miranda,	Eduardo.		
	
The	 Evolution	 of	 Language:	 Proceedings	 of	 the	 11th	 International	 Conference	
(EVOLANG11),	 At	 New	 Orleans,	 LA,	 USA,	 Volume:	 S.G.	 Roberts,	 C.	 Cuskley,	 L.	
McCrohon,	L.	Barceló-Coblijn,	O.	Feher	&	T.	Verhoef	(eds.)	
	



	

Preliminary	results	from	a	computational	multi	agent	modelling	approach	to	
study	humpback	whale	song	cultural	transmission	

Lamoni,	Luca	&	Mcloughlin,	Michael	&	Kirke,	Alexis	&	Ingram,	Simon	&	Garland,	
Ellen	&	M,	Noad	&	Miranda,	Eduardo	&	L,	Rendell.		
	
Association	for	the	Study	of	Animal	Behaviour	(ASAB)	Winter	Meeting,	At	Zoological	
Society	of	London,	Regents	Park,	2015	

Word	count	of	main	body	of	thesis:	43,058	

	

Signed	……………………………………	

Date					……………………………………	

	

	 	



	

	 	



	

	
Acknowledgements	
This	project	spanned	three	Universities	and	has	given	me	the	chance	to	travel	the	

world	 and	 work	 with	 truly	 amazing	 people.	 These	 people	 have	 shown	 how	 I	

should	conduct	myself	not	only	academically,	but	also	personally.		

	

Professor	Eduardo	Miranda.	Thank	you	for	your	support,	trust	and	advice.	Your	

encouragement	and	confidence	really	helped.	 In	particular,	 thank	you	for	being	

understanding	during	the	more	personally	difficult	times	of	these	few	years.	Your	

understanding	 and	 patience	 really	 helped	 and	 shows	 how	 academics	 should	

conduct	themselves.	In	a	time	when	PhD	students	seem	to	be	more	stressed	than	

ever,	your	support	to	your	students	and	their	well	being	has	been	truly	inspiring.	

Above	all,	I	want	to	thank	you	for	that.		

	

My	 second	 supervisor	 Dr	 Alexis	 Kirke.	 Thank	 you	 for	 passionate	 discussions	

regarding	multi	agent	models,	your	interest	in	the	project,	and	being	there	for	any	

mathematical	problems	I	encountered!	Your	good	humour	at	 lunch	breaks	was	

always	welcome,	as	well	your	policy	not	to	discuss	work	related	matters	during	

break	time!		

	

My	third	supervisor	Dr	Simon	Ingram.	Thank	you	for	providing	an	escape	from	the	

world	 of	 coding	 and	 providing	 a	 high	 level	 of	 understanding	 in	 regard	 to	 all	

matters	relating	to	cetaceans	and	culture	(and	for	showing	me	the	best	pubs	in	St	

Andrews!).		

	

Thank	you	to	my	research	partner,	and	closest	collaborator,	Luca	Lamoni.	I	know	

I	could	be	challenging	to	work	with,	and	I	thank	you	for	your	eternal	patience.	I’m	

looking	forward	to	having	a	beer	(or	several)	with	you	after	you	submit.	It	is	an	

honour	to	cross	the	finishing	line	of	formal	education	with	you.		

	

Dr	Luke	Rendell.	Thank	you	for	everything!!	Working	with	you	has	been	a	 true	

pleasure.	 	 I	would	particularly	 like	to	 thank	you	for	your	hospitality	during	my	

visits	to	St	Andrews.	Your	work	really	gives	me	something	to	aspire	to.			



	

	

Special	thanks	need	to	be	given	to	Dr	Ellen	Garland.	Your	insights	into	humpback	

whale	song	were	illuminating.	I	especially	want	to	say	thank	you	for	the	pep	talk	

you	gave	me	on	a	train	from	St	Andrews	from	Edinburgh.	Confidence	was	at	an	all	

time	low	at	that	point,	and	your	encouragement	helped	me	get	back	into	the	fray.	

Thank	you!!!		

	

Professor	Mike	Noad.	Thank	you	for	your	hospitality	during	the	field	season	and	

my	visit	to	your	lab.	Your	passion	for	cetacean	research	is	rivalled	only	by	your	

good	humour	and	kind	nature.		

	

Thank	 you	 to	 everyone	 at	 the	 ICCMR.	 Federico	 Visi	 (it	 was	 a	 pleasure	 to	

collaborate	with	you),	Rodrigo	Schramm,	Nuria	Bonet,	Dr	Edward	Braund,	Pierre-

Emmanuel	Largeron,	Aurelien	Antoine,	Jared	Drayton,	Ben	Payne,	Dr	Joel	Eaton,	

and	Dr	Duncan	Williams.	Than	 you	 for	 the	 great	 lunches,	 the	 lovely	 pints,	 and	

fantastic	company.	It	was	a	pleasure	to	be	in	the	same	lab.		

	

Special	 thanks	 to	 everyone	 at	 the	 Cetacean	 Ecology	 and	 Acoustics	 Lab	 at	

Queensland	University.	Thank	you	to	Jenny	Allen	for	driving	me	to	Gatton	three	

days	a	week,	giving	me	a	couch	to	crash	on,	and	most	importantly,	the	stimulating	

conversations	that	inspired	Chapter	4	of	this	thesis.	Thanks	to	Dr	Ailbhe	Kavanagh	

for	making	sure	this	clueless	acoustician	was	prepared	for	his	first	day	out	at	sea	

and	hosting	the	outdoor	cinema	club,	to	Aoife	Foley	for	providing	countless	Foley	

facts	and	never	ending	craic,	to	Zeus	for	looking	after	me	while	I	was	at	sea	and	

lifts	 to	Gatton,	Amy	 James	 for	her	hospitality	and	kindness	 (and	making	 sure	 I	

wasn’t	completely	surrounded	by	Irish	people!),	and	Anita	Murray	for	her	advice	

on	acoustics	and	humpback	whale	song.		

	

Deirdre	Hatton.	Thank	you	 for	everything.	 I	 couldn’t	possibly	write	 it	 all	down	

here.	Montreal	doesn’t	know	how	lucky	it	is.	Miss	you	loads.		

	



	

Liam	O’Hare.	I	don’t	think	I	would	have	gotten	through	this	without	your	advice.	

It’s	reassuring	to	have	you	in	my	corner.	Life	can	be	overwhelming	at	times,	but	

with	a	friend	like	you	by	my	side,	I	think	I’ll	be	okay.			

	

Sam	Wright.	You’ve	always	been	a	great	friend.	Life	can	sometimes	put	blinders	

on	you,	and	sometimes	I	felt	like	I	lived	only	in	academia.	Being	able	to	catch	up	

with	 you,	 laugh,	 play	 music,	 and	 enjoy	 each	 other’s	 company	 has	 been	 more	

valuable	than	you	can	imagine.	Thank	you.		

	

Nicky	and	Tony	Colleran.	You	are	two	of	the	brightest	lights	in	my	life.	Thank	you	

for	being	such	great	friends,	and	being	a	constant	reminder	that	no	matter	how	

bleak	things	look,	you	can	always	have	the	craic.	Your	support	and	dedication	to	

your	friends	is	amazing.	Thank	you.		

	

Thanks	to	Kevin	Brennan	and	Laurence	Durkin.	You	are	absolute	stunners!	I’ll	see	

you	in	the	spooky-verse		

	

Thanks	to	Ali	Hesnan,	for	brining	some	much	needed	Galway	cheer	whenever	she	

visited	 Plymouth	 or	 I	 visited	 Exeter.	 Thank	 you	 for	 the	 late	 nights	 listening	 to	

Planxty	and	for	keeping	me	sane!	

	

All	 my	 pals	 in	 Plymouth	 who	 I	 had	 the	 pleasure	 of	 meeting.	 Benjahman	 Hall,	

Francis	Elliot,	Ben	Wilkonson,	Xander	Weeks,	Jack	Jane,	Ryan	Pullin,	Emily	Rolley-

Parnell,	 Ellie	 Hedges,	 Isla	 Brown,	 Christian	 Toulson,	 Alex	 Budgie,	 Amelia	

Greenwood,	Mike	Genner,	Ben	Greene.		

	

Many	 of	my	 best	 friends	 are	 scattered	 around	 the	world,	 and	while	 I	 want	 to	

dedicate	a	paragraph	to	each	of	you,	this	thesis	is	already	too	long.	In	no	particular	

order,	 special	 thanks	 to;	 Mike	 Hyland,	 Mark	 Hatton,	 Alex	 Hannon,	 Alan	

O’Callaghan,	Dylan	Greaney,	Erris	O’Regan,		Vinny	Hyland,	Tara	Nic	Anna,	Tadhg	

Hanrahan,	Tadhg	Kelly,	Cole	Andrews,	Nicky	Graham,	Jessi	Milne,	Martin	Dillon,	

Conor	McCann,	 Sean	McGarrity,	 Shea	Murphy,	Barry	O’Donnel,	Paul	McDonagh,	

Éadaoin	 Doyle,	 Emmanuelle	 Lydon,	 Paddy	 O’Loughlin,	 Aimmee	 Riordan,	 Rob	



	

Joyce,	Katie	Mod,	Shauna	O’Connor,	Claire	Howley,	Chloe	Stafford,	Conor	Barry,	

Sally	 Pelzer,	 Kit	 Grier,	 Dr	 Alejandro	 Cervantes,	 Adriana	 Contreras,	 Camillie	

Longue,	Fabian	Esqueda,	 Juno,	Charlotte	Desvages,	Dr	Brian	Hamilton,	Dr	Craig	

Webb,	 Matt	 Thomson,	 Ciarán	 Macguire,	 Andreas	 Miranda,	 Alex	 Galler,	 Alex	

Paguirigan,	 Sally	 Galler,	 Omer	 Ockuolglu,	 Alain	 Mac	 Pháidín.	 If	 I	 have	 missed	

anyone	I’m	really	sorry!!!	

	

Lots	of	love	to	my	future	sister	in	law	Ciara.	Welcome	to	the	family!		

	

I	would	like	to	take	this	opportunity	to	remember	my	godmother,	Paula	O’Donnell,	

who	 passed	 away	 this	 year.	 Thank	 you	 for	 your	 support	 all	 these	 years	 and	

encouraging	me	to	follow	my	own	path.	I	miss	you	dearly.	Lots	of	love	to	Moya	and	

Harry.		

	

Finally,	I	want	to	thank	the	five	people	in	my	life	who	have	always	supported	me.	

Thanks	to	my	parents,	Michael	and	Anne,	for	supporting	me	throughout	my	life.	It	

is	an	honour	to	dedicate	this	thesis	to	you.	I	love	you	both	so	much.	To	my	brothers	

Rory	and	David,	and	my	sister	Maria.	A	brother	could	not	ask	for	better	siblings.	I	

love	you	all.		

	

	 	



	



	 i	

Abstract	
Three	 different	 multi-agent	 models	 are	 presented	 in	 this	 thesis,	 each	 with	 a	

different	goal.	The	first	model	investigates	the	possible	role	migratory	routes	may	

have	on	song	evolution	and	revolution.	The	second	model	investigates	what	social	

networks	could	theoretically	facilitate	song	sharing	in	a	population	of	whales.	The	

third	model	implements	a	formal	grammar	algorithm	in	order	to	investigate	how	

the	hierarchal	structure	of	the	song	may	affect	song	evolution.	Finally,	the	thesis	

attempts	 to	 reconnect	 the	 models	 with	 their	 origins	 and	 discusses	 how	 these	

models	 could	 potentially	 be	 adapted	 for	 composing	 music.	 Through	 the	

development	of	these	different	models,	a	number	of	findings	are	highlighted.	The	

first	model	 reveals	 that	 feeding	ground	sizes	may	be	key	 locations	where	 song	

learning	from	other	population	may	be	facilitated.	The	second	model	shows	that	

small	world	 social	 networks	 facilitate	 a	 high	 degree	 of	 agents	 converging	 on	 a	

single	song,	similar	to	what	is	observed	in	wild	populations.	The	final	model	shows	

that	 the	 ability	 to	 recognise	 hierarchy	 in	 a	 sequence	 coupled	 with	 simple	

production	errors,	can	lead	to	songs	gradually	changing	over	the	course	of	time,	

while	still	retaining	their	hierarchal	structure.		
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Chapter	1	–	Introduction	
Humpback	whales	produce	one	of	the	most	complex	displays	of	animal	culture	in	

the	animal	kingdom.	They	sing	long	songs	with	a	hierarchical	structure.	Generally,	

these	songs	are	population	specific,	and	are	performed	mainly	during	the	mating	

season.	Over	the	course	of	the	mating	season,	humpback	whales	gradually	change	

their	songs.	It	is	also	possible	for	the	song	of	a	single	population	to	be	replaced	by	

the	song	of	another	population.	These	phenomena	are	difficult	to	study	due	to	the	

long	 migratory	 patterns	 of	 humpback	 whales,	 and	 the	 harsh	 conditions	 the	

animals	live	in.	Due	to	the	challenges	associated	with	studying	the	song,	this	thesis	

presents	a	novel	approach	to	allow	researchers	to	develop	hypotheses	about	how	

humpbacks	may	 learn	 songs	 through	 the	use	of	multi-agent	models.	These	are	

models	where	multiple	artificial	 intelligences	 (agents)	 interact	with	each	other	

and	their	environment.	Multi-agent	models	have	received	a	significant	amount	of	

attention	in	computer	music	research,	with	researchers	utilising	their	emergent	

properties	to	study	the	evolution	of	music.	

	

1.1 Motivation	
Cetaceans	present	some	the	most	striking	demonstrations	of	animal	culture.	This	

includes	unique	dialects	for	clans	of	killer	whales	(Deecke,	Ford,	&	Spong,	2000),	

and	coda	click	patterns	 in	Sperm	whales	 (L.	E.	Rendell	&	Whitehead,	2003).	 In	

species	such	as	the	killer	whale	and	sperm	whale,	we	can	see	direct	relationships	

between	 their	 vocalisations,	 social	 structures,	 and	 genetics	 (Hal	 Whitehead,	

1998).	There	have	also	been	analyses	of	dolphin	signature	whistles	that	highlight	

a	function	for	addressing	specific	individuals	in	their	group	(Janik	&	Slater,	1998).	

One	 species	 that	 stands	 out	 from	 all	 other	 cetaceans	 though	 is	 the	 Humpback	

whale.	It	demonstrates	a	complex,	hierarchal	song	(R	S	Payne	&	McVay,	1971)	that	

changes	gradually	over	time	(song	evolution)	(Payne,	K.,	Tyack,	P.,	&	Payne,	1983),	

but	can	also	undergo	a	sudden	and	dramatic	change	in	the	form	of	song	revolution,	

where	 the	 song	of	 one	 population	 replaces	 the	 song	of	 an	 adjacent	 population	

(Noad,	Michael	J.,	Cato,	Douglas	H.,	Bryden,	M.	M.,	Micheline,	Jenner,	Jenner,	2000).	

Despite	extensive	field	studies,	many	questions	remain	in	regard	to	the	song.	What	



	 2	

is	its	function?	Why	does	it	change	over	time?	And	why	can	a	population’s	song	

suddenly	 be	 replaced	with	 the	 song	 of	 another	 population?	 Field	 studies	 have	

examined	many	of	these	issues,	(Garland	et	al.,	2011;	Garland,	Noad,	et	al.,	2013;	

Smith,	 Goldizen,	 Dunlop,	 &	 Noad,	 2008)	 but	 due	 to	 the	 difficulty	 of	 studying	

humpback	whales	in	the	wild,	many	of	these	questions	remain	unanswered.		

	

These	questions	are	not	unlike	those	associated	with	music.	Why	does	the	music	

of	a	culture	gradually	change	over	time?	How	can	a	new	type	of	music	suddenly	

become	dominant	in	a	culture?	Why	and	how	did	music	emerge?		Why	does	music	

possess	a	hierarchal	structure?	Researchers	 from	many	disciplines	address	 the	

issue	 using	 different	 approaches.	 A	 musicologist	 may	 carry	 out	 Schenkerian	

analysis	(Fuß,	2005)	in	order	to	examine	the	elements	that	make	it	aesthetically	

pleasing	to	a	listener.	A	music	psychologist	may	carry	out	a	series	of	experiments	

on	 different	 individuals	 in	 order	 to	 understand	what	 they	 find	 pleasing	 about	

different	 types	of	music.	 	Or	a	 computer	scientist	may	develop	an	algorithm	 to	

identify	recurring	themes	in	different	pieces	of	music.	Artificial	Life	(ALife)	is	an	

exciting	field	that	that	seeks	to	address	natural	phenomena	in	nature	by	modelling	

it	from	the	bottom	up,	incorporating	aspects	associated	with	the	natural	world.	

One	of	the	methods	used	in	ALife	research	to	achieve	this	is	Agent	Based	Modelling	

(ABM),	where	individual	virtual	entities	(agents)	equipped	with	simple	AI’s	carry	

out	actions	and	interactions	between	each	other	and	their	environment	in	order	

to	recreate	real	world	phenomena.	Examples	of	ABM	include	the	development	of	

algorithms	 that	 explain	how	 a	 school	of	 fish	 or	 flock	of	 birds	manage	 to	move	

together	(Hartman	&	Beneš,	2006),	or	how	to	model	how	language	can	change	

over	time	(Simon	Kirby,	2002a;	Steels,	2015).	ALife	has	been	used	to	great	success	

in	 addressing	 some	 of	 the	 musical	 questions	 mentioned	 earlier.	 For	 example,	

groups	of	artificial	agents	have	been	combined	in	order	to	examine	different	ways	

in	which	music	 in	a	society	of	agents	can	 interact	 in	order	to	produce	different	

unique	 pieces	 of	 music	 (Kirke	 &	 Miranda,	 2009;	 Eduardo	 R.	 Miranda,	 2003;	

Eduardo	Reck	Miranda,	Kirby,	&	Todd,	2003a).	This	makes	it	powerful	not	only	as	

an	analysis	tool,	but	also	as	a	tool	for	musical	composition.		
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In	 this	 thesis,	 agent	 based	methods	 used	 to	model	 the	 evolution	 of	music	 are	

adapted	in	order	to	investigate	the	cultural	transmission	of	humpback	whale	song.	

This	is	achieved	through	the	development	of	three	different	models	that	allow	the	

user	to	investigate	the	mechanisms	that	could	potentially	be	involved	in	driving	

these	systems.	The	first	model	focuses	on	recreating	the	migratory	patterns	of	the	

humpback	 whale,	 and	 their	 interaction,	 to,	 and	 on,	 the	 breeding	 and	 feeding	

grounds.	This	model	is	extended	to	include	a	learning	bias	towards	novel	songs,	

the	incorporation	of	production	errors,	and	the	coupling	of	production	errors	and	

novelty	learning	bias.	The	second	model	uses	the	same	learning	algorithms	as	the	

first	model,	but	examines	agents	 in	social	networks	generated	using	the	Watts-

Strogatz	algorithm	(Watts	&	Strogatz,	1998)	in	order	to	investigate	the	potential	

influence	 of	 social	 structure	 on	 facilitating	 song	 convergence.	 The	 third	model	

implements	 a	 formal	 grammar	 for	 learning	 and	 producing	 songs,	 allowing	 a	

researcher	to	recreate	the	hierarchal	structure	of	humpback	song.	This	model	is	

then	 extended	 to	 include	 errors,	 such	 as	 the	 addition	 of	 new	 ‘sounds’,	 or	 the	

deletion	and	substitution	of	sounds.	This	is	used	in	a	vertical	cultural	transmission	

model	 in	 order	 to	 investigate	 how	 pattern	 recognition	 and	 production	 errors	

could	 influence	 the	 evolution	 of	 humpback	 whale	 song.	 Finally,	 the	 original	

migratory	model	is	adapted	to	investigate	how	it	may	used	to	create	music.	This	

ties	the	project	back	to	its	origins	and	highlights	how	vocal	learning	models	can	

be	used	to	create	music.	It	also	points	the	way	towards	adapting	the	model	for	use	

in	investigating	how	systems	associated	with	vocal	learning	in	animals	can	be	used	

to	investigate	cultural	transmission	in	music.		

1.3	Research	Questions	

This	thesis	addresses	a	number	of	questions	through	the	development	of	different	

types	of	computational	agent	based	models.	They	are:		

	
RQ1:	Can	methods	used	in	computer	music	research	be	applied	to	the	analysis	of	

animal	vocalisations?		

	

There	 is	 a	 rich	 history	 of	 agent	 based	 modelling,	 and	 multi	 agent	 systems	 in	

computer	music	research.	One	of	the	goals	of	this	thesis	is	to	take	inspiration	from	

this	field,	and	apply	some	of	the	methods	that	have	been	discussed	in	the	literature	
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to	questions	regarding	the	cultural	 transmission	of	humpback	whale	song.	This	

will	inform	us	of	the	suitability	of	these	methods	in	animal	vocalisation	research.		

	

RQ2:	Can	the	phenomena	of	song	revolution	and	evolution	be	addressed	through	

a	spatially	explicit	model	that	recreates	humpback	migratory	patterns	and	fine-

scale	 cultural	 transmission	 issues	 that	may	 occur	 in	 individual	 interactions	 in	

humpback	song	transmission?	

	

Song	revolution	is	a	very	dramatic	display,	and	there	is	a	strong	desire	to	assume	

that	its	cause	may	be	the	result	of	some	kind	of	cognitive	bias.	Similarly,	we	may	

wish	to	understand	song	evolution	from	a	similar	perspective,	with	the	changes	

emerging	 from	some	kind	of	 cognitive	preference.	However,	before	we	 rush	 to	

these	conclusions,	it	is	necessary	to	remove	other	factors	that	may	be	responsible	

for	the	changes	observed	in	the	song.	For	this	reason,	the	first	model	discussed	in	

this	thesis	focuses	on	recreating	the	migratory	patterns	of	humpback	whales,	so	

that	we	can	ensure	that	geographical	segregation	and	key	locations	for	interaction	

are	not	responsible	for	these	changes	(Chapter	3).		

	

RQ3:	What	different	types	of	social	networks	could	theoretically	facilitate	cultural	

transmission	phenomena	in	humpback	whales?		

	

While	there	have	been	theories	regarding	the	type	of	social	networks	humpback	

whales	may	possess	in	regards	to	song	learning		(Mauricio	Cantor	&	Whitehead,	

2013),	we	still	do	not	know	 if	 there	 is	 a	social	network	 that	 facilitates	 this.	Do	

whales	 learn	 from	 specific	 whales	 in	 a	 population?	 Or	 do	 they	 simply	 learn	

randomly?	 In	 order	 to	 investigate	 this,	 a	 model	 is	 presented	 where	 a	 social	

network	is	synthesised,	and	agents	learn	from	each	other	using	some	of	the	same	

methods	as	the	model	discussed	for	RQ2.	This	research	question	is	addressed	in	

Chapter	4.	

	

RQ4:	Can	formal	grammar	methods	be	used	 in	the	analysis	of	whale	song,	and	

synthesis	of	song	when	coupled	with	production	and	learning	errors?			
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This	 question	 arose	 from	 trying	 to	 find	 a	 solution	 to	 recreating	 the	 complex	

hierarchy	 observed	 in	 humpback	whale	 song.	 As	we	will	 see	 from	 the	 coming	

chapters	in	this	thesis,	methods	such	as	Markov	chains	are	inappropriate	when	it	

comes	 to	modelling	 the	hierarchy	of	 the	 song.	This	 lead	 to	 the	 investigation	of		

learning	 algorithms	 that	 placed	 an	 emphasis	on	 pattern	 recognition	 in	 strings.	

This	 investigation	 found	 the	 Sequitur	 algorithm	 (Nevill-manning	 &	 Witten,	

1997a).	The	Sequitur	algorithm	relies	on	 formal	grammars,	but	 it	proved	to	be	

highly	successful	in	recognising	patterns	in	humpback	whale	song.	A	method	was	

then	developed	to	sample	from	the	rules	generated	by	the	Seuqitur	algorithm	in	

order	to	reconstruct	humpback	whale	songs.	This	sampler	was	then	extended	to	

include	production	and	 learning	errors	 that	may	be	 involved	 in	song	evolution.	

This	research	question	is	addressed	in	Chapter	5	of	this	thesis.		

	
RQ5:	How	can	the	methods	developed	to	answer	research	questions	2	through	4	

be	used	in	order	to	create	music?			

	

This	 research	 question	 seeks	 to	 bring	 the	 previous	 research	 questions	 back	 to	

their	origins	and	use	them	in	the	creation	of	music.	Music,	animal	vocalisations,	

and	language,	have	many	similarities,	and	there	are	theories	such	as	the	musical	

proto-language	 theory	 speculate	 that	 music	 and	 language	 evolved	 beside	 one	

another	(Darwin,	1871;	Fitch,	2013).		For	this	reason,	there	is	not	only	a	creative	

reasoning	for	revisiting	these	models,	but	also	a	scientific	one.		However,	there	are	

many	technical	 issues	associated	with	this,	and	these	 issues	are	 investigated	 in	

Chapter	6	of	this	thesis.		

	

Chapter	3	and	Chapter	6	are	partially	based	on	papers	submitted	to	the	Evolution	

of	Language	Conference,	and	the	Sound	and	Music	Computing	conference.	Chapter	

3	is	largely	based	on	a	paper	that	is	currently	in	review.	These	papers	are	included	

in	Appendix	4.		
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1.4	Thesis	Structure	

This	thesis	is	divided	into	six	chapters	that	seek	to	address	the	research	questions	

from	 the	 previous	 section.	 Following	 this	 opening	 chapter,	 the	 chapters	

investigate	the	following:	

	

Chapter	2:	This	chapter	carries	out	a	literature	review	on	the	key	concepts	and	

theories	required	 in	order	to	understand	the	models	presented	 in	the	thesis.	 It	

opens	with	a	discussion	on	animal	culture,	defining	it	and	separating	it	from	ideas	

associated	with	human	culture.	Following	this,	the	songs	of	humpback	whales	are	

examined,	as	well	as	 the	theories	 that	believed	to	be	driving	the	phenomena	of	

evolution	and	revolution.	The	differences	between	the	vocalisations	of	humpbacks	

and	other	cetaceans	are	then	examined.	Methods	for	learning,	synthesising,	and	

analysing	 sequences	 of	 vocalisations	 are	 then	 presented	 independent	 from	

cultural	transmission.	Following	this	review	of	methods,	a	number	of	models	and	

their	 application	 for	 researching	 cultural	 transmission	 in	 the	 fields	 of	 music,	

linguistics,	and	biology	are	discussed.	Finally,	the	shortcomings	and	relationship	

between	all	these	different	areas	is	discussed.		

	

Chapter	3:	This	presents	the	first	agent	based	model	developed	for	investigating	

cultural	transmission	in	humpback	whales.	This	is	a	spatially	explicit	model	that	

recreates	a	simplified	version	of	humpback	whale	migratory	patterns,	combined	

with	a	first	order	Markov	model	coupled	with	a	sound	transmission	loss	model	

(Migratory	 Model	 1).	 Three	 extensions	 to	 this	 model	 are	 then	 shown,	 which	

includes	a	bias	 towards	 the	 learning	of	novel	songs	 (Migratory	Model	1.2),	 the	

introduction	 of	 production	 errors	 (Migratory	 Model	 1.3),	 and	 the	 coupling	 of	

novelty	 bias	 and	 production	 errors	 (Migratory	 Model	 1.4).	 A	 parameter	

exploration	of	Migratory	Model	1	is	presented.	A	series	of	experiments	are	then	

presented	 that	 recreate	 observations	 from	 the	 wild.	 The	 results	 of	 these	

experiments	are	then	discussed	and	compared	with	observations	from	the	wild.	

The	 chapter	 then	 proceeds	 to	 a	 discussion	 on	 how	 well	 the	 model	 recreates	

phenomena,	 its	 shortcomings,	 and	 insights	 it	 provides	 on	 the	 phenomena	 of	

evolution	and	revolution.	This	chapter	seeks	to	address	RQ1	and	RQ2.	
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Chapter	4:	This	 chapter	presents	a	method	of	 examining	 larger	populations	of	

agents	and	song	transmission	using	social	networks.	This	chapter	was	inspired	by	

discussions	with	 Jenny	Allen	at	 the	Cetacean	Acoustics	and	Ecology	 laboratory.	

The	model	addresses	issues	surrounding	the	model	from	chapter	2,	by	allowing	

the	 user	 to	 create	 various	 types	 of	 networks	 using	 the	 NetworkX	 package	 for	

Python	(“NetworkX,”	n.d.).	The	same	Markov	model	from	Chapter	3	is	used,	and	

the	 possible	 ways	 in	 which	 social	 network	 structure	 may	 facilitate	 song	

convergence	discussed.	This	chapter	addresses	RQ3.	

	

Chapter	 5:	 This	 chapter	 addresses	 the	 issue	 of	 the	 hierarchal	 structure	 of	

humpback	song	using	the	Sequitur	algorithm	(also	known	as	the	Nevill-Manning	

algorithm)	 (Nevill-manning	 &	Witten,	 1997b).	 The	 use	 of	 the	 algorithm	 as	 an	

analysis	tool	is	discussed,	before	moving	on	to	its	application	as	a	tool	for	song	

synthesis.	This	is	achieved	through	the	development	of	an	algorithm	that	samples	

from	 the	 rules	 generated	 using	 the	 Sequitur	 algorithm.	 Finally,	how	 the	model	

behaves	when	coupled	with	production	and	learning	errors	in	a	simple	vertical	

cultural	transmission	chain	is	examined.	This	chapter	addresses	RQ4.	

	

Chapter	6:	This	chapter	examines	applications	for	the	methods	discussed	in	the	

previous	chapters	for	musical	applications.	First,	a	simple	adaptation	of	the	model	

connected	to	the	model	for	real	time	performance	using	the	Max4Live	and	Open	

Sound	Control	(OSC)	protocols.	The	shortcomings	of	this	model	are	discussed	and	

the	chapter	closes	by	discussing	what	improvements	need	to	be	made	in	order	for	

the	model	to	generate	musical	ideas.	This	chapter	addresses	RQ5.	

	

Chapter	 7:	 This	 chapter	 closes	 the	 thesis	 by	 highlighting	 the	 contributions	

presented	within.		 	
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Chapter	2	-	Background	

2.1	Introduction		

In	 this	 chapter,	we	 review	 the	 literature	 that	 is	 essential	 to	understanding	 the	

design	process	involved	in	building	multi-agent	models	for	the	study	of	humpback	

whale	song	cultural	transmission.		

	

	In	 the	 first	 section,	 all	 the	 biological	 concepts	 necessary	 to	 build	 the	 model	

described	in	subsequent	are	addressed.	It	opens	with	a	definition	of	culture,	and	

discusses	different	aspects	associated	with	it.	This	section	also	discusses	the	songs	

and	behaviours	of	humpback	whales,	the	vocal	abilities	of	other	cetaceans,	and	the	

vocal	abilities	of	birds.		The	second	section	examines	how	to	analyse	and	model	

sequence	learning	and	production	for	animal	vocalisations,	human	language,	and	

music.	These	production	methods	are	examined	outside	of	a	cultural	transmission	

context.	Finally,	models	that	have	a	strong	emphasis	on	cultural	transmission	are	

investigated,	and	models	of	cultural	transmission	for	human	language,	music,	and	

vocal	learning	in	animals	are	compared.	This	allows	for	an	understanding	of	the	

differences	 and	 similarities	 between	 these	 related	 fields.	 The	 final	 section	 is	 a	

discussion	and	reflection	on	the	methods	reviewed	in	this	chapter.		 	
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2.2	Culture		

Culture	 is	 a	 term	 that	 can	 be	misleading,	 especially	within	 an	 interdisciplinary	

context.	For	this	reason,	it	is	very	important	to	be	clear	and	concise	about	what	

the	term	culture	refers	to	in	this	thesis.	It	is	not	unreasonable	to	assume	that	when	

discussing	culture,	the	concepts	that	come	to	mind	are	those	that	we	use	to	define	

human	culture:	food,	music,	religion,	art,	rituals,	and	customs.	Here,	culture	does	

not	 refer	 to	 human	 culture.	 	 It	 is	 instead	 used	 to	 define	 a	 series	 of	 shared	

behaviours	that	transferred	are	from	one	member	of	an	animal	society	to	another.	

For	 this	 thesis,	 we	 will	 use	 the	 definition	 provided	 by	 Luke	 Rendell	 and	 Hal	

Whitehead:		

	

Culture	is	information	or	behaviour	–	shared	within	a	community	–	which	is	acquired	

from	conspecifics	through	some	form	of	social	learning.	(Luke	Rendell	&	Whitehead,	

2001)	

	

Here,	 conspecifics	 refers	 to	 other	members	 of	 the	 same	 species.	 In	 other	

words,	culture	is	the	behaviours	carried	out	by	all	individuals	in	a	community	that	

is	not	a	result	of	genetic	and	or	environmental	causation,	but	rather	emerge	from	

learning	 from	 another	 member	 in	 their	 community.	 To	 fully	 understand	 this	

definition	we	must	discuss	social	learning.	

2.2.1	Social	Learning	and	Cultural	Transmission	

Social	learning	is	the	transmission	of	new	behaviours	from	one	member	of	a	group	

to	another	that	occurs	due	to	one	member	of	that	group	teaching	another	member	

these	behaviours.	This	can	be	achieved	through	a	number	of	ways.	For	example,	it	

may	occur	from	a	chimp	observing	another	member	of	its	social	group	using	a	tool	

(Whiten,	Horner,	&	de	Waal,	2005),	and	copying	this	behaviour.	It	is	also	possible	

for	behaviours	and	information	to	be	transmitted	from	a	parent	to	a	child,	such	as	

a	mother	polar	bear	teaching	her	cubs	to	hunt	(Gilbert,	1999).		

	

When	information	is	shared	between	individuals	in	a	group,	it	is	generally	termed	

cultural	 transmission.	 Broadly	 speaking,	 there	 are	 two	main	 types	 of	 cultural	

transmission:	horizontal	cultural	transmission,	and	vertical	cultural	transmission.	
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Horizontal	 cultural	 transmission	 is	 the	 transmission	 of	 behaviours	 between	

individuals	who	are	not	necessarily	related	(the	chimp	copying	another	member	

of	 his	 group	 using	 a	 tool).	 Vertical	 transmission	 specifically	 relates	 to	 the	

transmission	of	behaviours	from	parents	to	their	offspring	(the	mother	polar	bear	

teaching	her	cubs	to	hunt).		

2.2.2	Social	Network	Theory		

Social	 Network	 Theory	 is	 the	 theoretical	 study	 of	 the	 relationship	 between	

individuals	and	the	social	structures	they	belong	to	through	the	use	of	networks	

and	graphs	(Krause,	Lusseau,	&	James,	2009).	This	allows	researchers	to	show	the	

relationship	between	individuals	in	the	society.	Individuals	are	classified	as	nodes,	

and	may	represent	individual	animals	in	a	wild	population,	a	group	of	agents	in	a	

computer	 simulation,	 or	 other	 entities	 within	 a	 network.	 The	 connections	 are	

termed	ties,	edges,	or	links.	These	show	the	relationships	and	or	interactions	that	

connect	these	individuals	within	the	network.		

	
Figure	1:	An	example	of	a	social	network	generated	using	the	NetworkX	package	for	

Python.	Here,	any	member	may	learn	from	another	node	it	is	connected	to.	For	

example,	node	1	can	potentially	learn	from	nodes	3,	5,	7,	6,	9,	10	and	16.	
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In	order	to	understand	cultural	transmission	and	social	network	theory,	it	is	useful	

to	look	at	an	example	of	social	network	theory	being	applied	to	study	an	instance	

of	cultural	transmission	occurring	in	Cetaceans.	One	of	the	most	important	studies	

done	in	social	learning	and	cultural	transmission	in	humpback	whales	was	Allens'	

application	 of	 network-based	 diffusion	 analysis	 that	 showed	 that	 a	 behaviour,	

known	as	lobtail	feeding	was	culturally	transmitted	(Allen	et	al.,	2013).	In	lobtail	

feeding	 is	 an	 extension	 of	 the	 behaviour	 known	 as	 bubble	 net	 feeding	

(Friedlaender	et	al.,	2011;	Leighton,	T.	G.,	Finfer,	D.,	Grover,	E.,	&	White,	2007).	In	

bubble	net	feeding,	a	group	of	humpback	whales	co-operate	in	order	to	feed	on	a	

large	 school	 of	 fish.	 A	 number	 of	whales	 (usually	 four),	 will	 swim	 around	 the	

school	of	fish	while	expelling	air	from	their	blowholes,	creating	a	vortex	of	bubbles	

around	the	school	known	as	a	bubble	net,	which	the	fish	are	unable	to	move	past.	

While	the	fish	are	trapped,	another	humpback	whale	swims	underneath	the	school	

and	up	towards	it,	 releasing	a	 loud	vocalisation	as	 they	do	so.	This	vocalisation	

causes	the	fish	to	rush	to	the	surface.	Once	they	reach	the	surface	the	humpbacks	

swim	up	to	the	surface	and	feed	on	the	fish.	It	was	the	observed	that	this	feeding	

behaviour	 had	 another	 step	 added	 to	 it,	 where,	 after	 eating	 their	 prey,	 the	

humpbacks	would	 raise	 their	 tails	out	of	 the	water	and	 slap	 the	 surface	of	 the	

water.	The	occurrence	of	this	behaviour	was	initially	infrequent	and	was	recorded	

by	Mason	Weinreich	whenever	it	was	carried	out.	Weinrich	also	kept	photographs	

of	the	underside	of	the	tails	that	enabled	each	whale	to	be	individually	identified	

by	the	unique	marks	on	the	underside	of	its	fluke,	and	also	the	shape	of	its	tail.	

This	 was	 also	 coupled	 with	 geographic	 and	 time	 and	 date	 information.	 These	

behaviours	were	recorded	over	several	years	and	stored	carefully.	

	

Allen	was	provided	the	data	in	order	to	carry	out	a	social	network	analysis.	She	

applied	a	method	known	as	Network	Based	Diffusion	Analysis	(NBDA).	NBDA	is	a	

method	 that	 takes	 into	 account	 the	 order,	 and	 timing,	 in	 which	 an	 individual	

within	a	group	acquires	a	behavioural	trait.	This	data	is	compared	with	a	social	

network	that	contains	information	about	potential	social	learning	opportunities.	

These	 opportunities	 may	 be	 grooming	 situations,	 or	 in	 the	 case	 of	 humpback	

whales	feeding	opportunities.	It	may	also	be	that	the	animals	simply	spend	a	large	

amount	of	time	in	close	proximity.	This	allows	an	emphasis	to	be	placed	on	socially	
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learned	 traits	 that	 would	 spread	 quickly	 in	 animal	 groups	 that	 have	 strong	

connections	in	a	social	network.	After	applying	NBDA	to	Weinrich’s	data,	it	was	

found	that	the	lobtail	feeding	behaviour	was	a	culturally	transmitted	trait.		

	

Allen’s	study	is	interesting	as	it	gives	us	some	insight	into	the	social	structures	of	

humpback	 whales.	 Unfortunately,	 we	 do	 not	 possess	 the	 same	 amount	 of	

information	when	it	comes	to	song	transmission	data	set	used	in	this	thesis.	As	a	

result,	the	resources	are	not	at	hand	to	apply	NBDA	to	the	recordings	used	in	this	

thesis.	Even	 if	a	whale	 is	being	tracked	using	methods	such	as	passive	acoustic	

monitoring	 (Cato	&	McCauley,	 2006),	 it	 can	 be	 difficult	 to	 verify	 that	 the	 song	

recorded	 belonged	 to	 a	 specific	 whale	 that	 rose	 to	 the	 surface.	 While	 this	

unfortunate,	 it	 further	 highlights	 the	 importance	 of	 developing	 multi	 agent-

models	for	researching	humpback	whale	song.	Later	in	this	thesis,	we	will	examine	

methods	 for	 developing	 multi	 agent	 models	 where	 specific	 types	 of	 social	

networks	are	used	to	investigate	if	they	have	a	potential	role	in	song	transmission.	

The	transmission	of	songs	in	these	simulated	social	networks	may	give	us	insight	

into	the	social	network	of	humpback	whales	during	the	breeding	season.		

	

As	we	see	from	Allen’s	study,	cultural	transmission	has	a	significant	impact	on	the	

behaviour	 of	 animals.	 One	 of	 the	 most	 interesting	 hypotheses	 is	 that	 cultural	

transmission	does	not	only	have	an	influence	on	the	behaviour	of	animals,	but	also	

the	genetic	diversity	of	species.	Whitehead	investigated	how	cultural	transmission	

affects	 four	 different	 species	 of	 whales	 with	 matrilineal	 social	 structures(Hal	

Whitehead,	 1998).	 The	 term	matrilineal	 refers	 to	 the	 fact	 that	 in	 this	 species,	

members	tend	to	spend	their	entire	lives	with	close	female	relatives.	Members	of	

these	species	also	have	a	low	diversity	of	mitochondrial	DNA	(mtDNA),	a	type	of	

DNA	that	species	inherit	solely	from	their	mother.	In	these	species,	it	was	found	

that	 culturally	 transmitted	 traits	 including	 vocal	 learning	 behaviours	 are	

transmitted	matrilineal.	Whitehead	discusses	how	these	cultural	traits	‘hitchhike’	

on	these	mtDNA	alleles	and	thus	decrease	genetic	diversity.	Whitehead	reinforced	

his	 argument	by	 running	multi	 agent	 simulations	 that	 found	 that	 rates	of	non-

matrlineal	transmission	of	dialect	must	not	occur	faster	than	the	genetic	mutation	

rate.	 Whitehead	 demonstrates	 an	 important	 point	 that	 is	 discussed	 in	 other	
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writing	 (Simon	 Kirby,	 2002b;	 H	 Whitehead,	 Richerson,	 &	 Boyd,	 2002):	 That	

culture	can	have	a	direct	impact	on	the	genetics	of	a	species.	These	agent-based	

models	 are	 discussed	 in	 more	 detail	 in	 the	 Cultural	 Transmission	 Modelling	

section	of	this	chapter.	An	excellent	overview	of	social	networks	in	cetaceans	can	

be	found	in	(Mauricio	Cantor	&	Whitehead,	2013).		

2.3	Vocal	Learning		

Vocal	 learning,	 in	 broad	 terms,	 is	 an	 animals’	 ability	 to	 learn,	 imitate,	 and	

reproduce	sounds	it	hears.	Usually,	these	sounds	are	produced	by	other	members	

of	its	species,	but	experiments	have	been	carried	out	that	demonstrate	that	certain	

animals	are	capable	of	learning	synthesised	sounds	(Reiss	&	McCowan,	1993),	and	

parrots,	arguably	the	most	famous	vocal	learners,	are	capable	of	reproducing	the	

speech	 patterns	 of	 humans.	 Vocal	 learning	 is	 generally	 viewed	 as	 one	 of	 the	

stepping-stones	 towards	 the	 evolution	 of	 human	 language	 (Berwick,	 Beckers,	

Okanoya,	&	Bolhuis,	2012;	Jarvis,	2007),	and	its	study	is	considered	important	in	

evolutionary	 linguistics	 and	 biology.	 This	 is	 due	 to	 the	 fact	 that	 it	 is	 a	 useful	

comparative	 study	 to	 human	 language.	 Through	 the	 study	 of	 vocal	 learning	

researchers	 hope	 to	 identify	 whether	 this	 trait	 evolved	 independently	 in	 the	

animals	 that	display	 it	 via	 convergent	 evolution,	 or	 if	 it	 originates	 from	 a	 trait	

inherited	 from	some	distant	 common	ancestor	and	was	 lost	over	 time	 in	other	

animals	via	evolution.	It	is	important	to	note	that	vocal	learning	is	a	type	of	social	

learning.		

	
One	of	the	most	interesting	aspects	of	vocal	learning	is	that	it	is	a	trait	displayed	

by	 very	 few	 animals.	 The	 main	 animals	 that	 display	 vocal	 learning	 include	

songbirds	(Berwick,	Okanoya,	Beckers,	&	Bolhuis,	2011;	Lachlan,	van	Heijningen,	

ter	Haar,	&	ten	Cate,	2016),	cetaceans	(Janik	&	Slater,	1998;	King	et	al.,	2013;	R	S	

Payne	&	McVay,	1971),	bats,	humans,	and	pinnipeds	(Schusterman,	2008).	There	

are	different	types	of	vocal	learning.	(Arriaga	&	Jarvis,	2013)	divide	these	types	of	

learning	 into	 three	 different	 categories	 They	 are	 auditory	 comprehension	

learning,	 vocal	usage	 learning,	 and	vocal	production	 learning	 (Arriaga	&	 Jarvis,	

2013).	Auditory	comprehension	learning	is	where	an	animal	associates	a	sound	

with	 a	 specific	 behavioural	 response	 to	 it	 but	 does	 not	 develop	 the	 ability	 to	

reproduce	the	sound	it	has	learned.	A	common	example	of	this	is	the	ability	of	a	
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dog	to	learn	the	word	sit	and	respond	with	the	action	of	sitting.	However,	the	dog	

does	not	learn	how	to	produce	this	vocalisation.	Vocal	usage	learning	is	the	ability	

of	an	animal	to	associate	and	produce	a	particular	vocalisation	with	a	change	in	its	

environment.	The	example	given	by	Arriaga	and	Jarvis	is	that	of	vervet	monkeys	

learning	to	associate,	 learn,	and	produce	specific	vocalisations	 in	response	to	a	

particular	threat,	i.e,	different	warning	calls	for	different	predators.	The	final	type,	

vocal	 production	 learning,	 is	 more	 complex	 than	 the	 previous	 two	 types	 of	

learning.	Specifically,	vocal	production	learning	is	where	an	animal	must	rely	on	

adjusting	its	vocalisations	depending	on	its	experiences.	A	songbird	learning	the	

song	 of	 another	 bird	would	 be	 an	 example	 of	 this,	 as	 it	 requires	 the	 animal	 to	

adjust	 its	 vocalisations	 depending	 on	 the	 auditory	 input.	 However,	 there	 are	

various	types	of	vocal	production	learning,	and	the	songbird	model	should	not	be	

seen	as	the	be	all	and	end	all	model	of	vocal	learning.	Humpback	whale	song	is	a	

type	 of	 vocal	 production	 learning,	 and	 for	 this	 reason,	 the	 discussion	 on	 vocal	

learning	will	focus	on	animals	that	carry	out	this	type	of	learning.		

	

Song	is	a	common	term	used	to	define	a	sequence	of	sounds	an	animal	produces	

in	 vocal	 production	 learning	 (Kershenbaum	 &	 Blumstein,	 2014).	 Individual	

sounds	in	a	song	are	sometimes	referred	to	as	units,	and	this	terminology	will	be	

used	 throughout	 the	 text.	 Songs	 may	 be	 highly	 structured	 like	 those	 of	 the	

humpback	whale,	 or	 less	 structured,	 like	 the	 zebra	 chaffinch.	 The	 entire	 set	 of	

units	an	animal	produces	will	be	referred	to	as	the	animals’	repertoire.		

	

In	the	following	section,	the	behaviours	and	vocal	abilities	of	humpback	whales	

are	 given	 special	 treatment	with	 an	 in-depth	 discussion.	 It	 begins	with	 a	 brief	

description	of	the	migratory	patterns	that	humpback	whales	follow,	as	humpback	

whales	have	been	observed	 singing	primarily	on	 the	breeding	grounds	 (Smith,	

Joshua	N,	Goldizen,	Anne	W.,	Dunlop,	Rebecca	A.,	Noad,	2008).	However,	in	recent	

years	 there	have	been	observations	of	song	on	the	breeding	grounds	(Vu	et	al.,	

2012),	and	this	is	hypothesised	to	have	an	impact	on	the	cultural	transmission	of	

the	song	(Garland,	Gedamke,	et	al.,	2013b).	Following	this	 the	vocal	displays	of	

other	baleen	whales,	and	mysticetae	(toothed)	whales,	are	reviewed.	Songbirds	

are	 also	 discussed,	 as	 they	 exhibit	 similar	 traits	 to	 humpback	 whale	 song,	
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including	a	song	that	 is	believed	to	be	 involved	 in	sexual	 interactions,	and	also	

possessing	a	hierarchal	structure.			

2.4	Humpback	Whales		

2.4.1	Migratory	Behaviour	

Humpback	 whales	 undertake	 one	 of	 the	 longest	 migrations	 to	 their	 breeding	

grounds	exhibited	by	any	animal	(Dawbin,	1966).	Humpback	whales	are	highly	

consistent	 in	 their	 mating	 and	 feeding	 ground	 locations	 (Baker	 et	 al.,	 1986).	

Humpback	whales	learn	their	migration	pattern	from	their	mothers	(Rosenbaum	

et	al.,	2009).	There	are	many	different	populations	of	Humpback	whales	across	the	

world,	but	we	will	focus	only	on	the	migratory	route	of	the	populations	relevant	

to	 the	Eastern	Australia	population.	Humpbacks	 in	 this	population	 spend	 their	

time	on	feeding	grounds	in	the	Antarctic	during	the	summer	and	migrate	towards	

their	respective	breeding	grounds	in	the	winter.			

	

Schmitt	et	al	carried	out	a	mixed-stock	analysis	of	humpback	whales	on	the	

Antarctic	feeding	grounds	(Schmitt	et	al.,	2014).	The	populations	that	shared	these	

feeding	grounds	were	from	Western	Australia,	Eastern	Australia,	Oceania	and	

Columbia.		They	identified	areas	where	the	populations	mixed	in	the	Antarctic	

feeding	grounds	(see		

Figure	 2).	 	 Although	 there	 has	 been	 no	 singing	 recorded	 while	 on	 the	 shared	

summer	 feeding	 grounds	 for	 the	 south	 pacific	 population,	 singing	 has	 been	

recorded	on	other	feeding	grounds	(Vu	et	al.,	2012).	If	singing	is	present	on	the	

Antarctic	feeding	grounds	where	the	western	and	eastern	Australian	populations,	

it	would	have	strong	implications	for	cultural	transmission	(Garland,	Gedamke,	et	

al.,	2013b).		

	

Figure	removed	due	to	Copyright	Restrictions	
	

Figure	2:	This	figure	shows	the	breeding/migratory	populations	of	the	Antarctic	and	

their	respective	feeding	grounds	(Areas	IV,	V,	VI,	and	I).	They	are	divided	into	pure	

and	mixed	stocks.	As	we	can	see,	the	populations	on	Western	Australia	and	Eastern	
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Australia	mix	in	Area	IV.	As	we	will	see	in	the	song	section,	this	has	implications	in	

regard	to	cultural	transmission.	Taken	from	(Schmitt	et	al.,	2014).		

2.4.2	Song	

The	structure	of	Humpback	whale	song	was	first	described	by	Roger	Payne	and	

Scott	McVay	in	1971	(R	S	Payne	&	McVay,	1971).	In	this	paper,	Payne	and	McVay	

identified	 the	hierarchal	 structure	of	humpback	whale	 song	using	 spectrogram	

analysis.	 They	 showed	 that	 songs	 consisted	 of	 individual	 sounds	 called	 units.	

These	units	are	then	combined	to	create	phrases.	Phrases	are	then	combined	to	

create	themes,	and	themes	are	sung	in	a	specific	order	to	create	a	song.	Songs	last	

between	ten	and	twenty	minutes	and	may	be	repeated	multiple	times	to	create	

what	is	known	as	a	song	session.	Song	sessions	may	continue	for	several	hours,	

with	longest	song	sessions	observed	being	22	hours	long	(Winn	&	Winn,	1978).	

The	 hierarchal	 structure	 of	 humpback	 whale	 song	 was	 confirmed	 by	 a	 study	

(Suzuki,	Buck,	&	Tyack,	2006)	that	used	information	theory	(Shannon,	2001)	to	

highlight	the	hierarchal	structure	of	humpback	whale	song.	Songs	are	performed	

on	both	the	breeding	and	feeding	grounds,	but	humpbacks	sing	more	frequently	

on	the	breeding	grounds	than	on	the	feeding	grounds	(Garland,	Gedamke,	et	al.,	

2013a;	Vu	et	al.,	2012).	It	should	also	be	noted	that	certain	whales	in	populations	

have	been	observed	 to	perform	songs	 that	do	not	have	a	 structure	and	do	not	

adhere	 to	 the	 song	 being	 performed	 by	 the	 rest	 of	 the	 population.	 These	 are	

termed	aberrant	songs	(Frumhoff,	1983)	and	appear	to	be	very	rare.	

	

Humpback	 whale	 song	 gradually	 changes	 over	 time,	 in	 a	 form	 of	 cultural	

evolution.	(Payne,	K.,	Tyack,	P.,	&	Payne,	1983;	K.	Payne	&	Payne,	1985;	Roger	S	

Payne	 &	Mc,	 1971)	 This	gradual	 change	 is	 known	 as	 song	 evolution	 and	what	

drives	 this	 is	 still	 unknown.	 	 Another	more	 dramatic	 change	 in	 song	was	 first	

observed	 in	2000,	(Noad,	Michael	 J.,	Cato,	Douglas	H.,	Bryden,	M.	M.,	Micheline,	

Jenner,	 Jenner,	 2000),	where	 the	 song	 of	 the	western	Australian	 population	 of	

humpback	 whales	 completely	 replaced	 the	 song	 of	 the	 eastern	 Australian	

population	over	the	course	of	two	years.	This	dramatic	change	was	termed	song	

revolution.	It	is	unique	due	to	the	fact	that	it	was	not	caused	by	a	mass	influx	of	

immigrant	 whales	 from	 the	 western	 Australian	 population	 to	 the	 eastern	

Australian	population,	and	the	reasons	for	its	arrival	is	unclear.	Garland	noted	that	
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since	 song	 has	 been	 observed	 on	 feeding	 grounds	 in	 other	 populations,	 the	

presence	of	song	in	the	feeding	grounds	of	the	Eastern	Australian	population	and	

its	adjacent	populations	may	have	a	strong	influence	on	the	cultural	transmission	

of	humpback	song	(Garland,	Gedamke,	et	al.,	2013a).	This	revolutionary	behaviour	

was	not	an	 isolated	 incident	and	 studies	 confirmed	 that	 the	 song	continued	 to	

travel	eastward,	taking	over	the	songs	of	the	populations	in	New	Caledonia,	Tonga,	

American	 Samoa,	 Cook	 Islands,	 and	 French	 Polynesia.	 Despite	 occurring	

throughout	these	populations,	this	behaviour	has	not	been	observed	outside	of	the	

populations	 in	 the	pacific.	Cantor	 (Mauricio	Cantor	&	Whitehead,	2013)	briefly	

discussed	 humpback	 whale	 social	 structure	 in	 regards	 to	 song	 evolution	 and	

revolution,	 describing	 the	 different	 populations	 in	 the	 pacific	 as	 nodes.	 He	

highlighted	that	the	reason	for	a	uni-direction	flow	in	regard	to	song	revolution	

from	west	 to	 east	 (eastern	 Australia	 to	 French	 Polynesia)	 was	 uncertain,	 but	

suggested	that	geographical	constriction	of	the	North	Pacific	migration	route	may	

connect	humpbacks	that	use	separate	breeding	grounds.	This	suggests	that	some	

type	of	geographical	contraint	may	be	responsible	for	song	revolution.	That	this	

behaviour	may	not	have	been	observed	in	populations	outside	the	pacific	bay	be	

due	to	these	constrictions	not	being	present.		

	

The	exact	function	of	humpback	whale	song	is	a	matter	of	debate.	However,	it	has	

been	observed	that	only	male	humpback	whales	perform	songs	(Glockner,	1983).	

This	 suggests	 that	 it	 serves	 some	 type	 of	 sexual	 function.	 Whether	 this	 is	 to	

mediate	interaction	between	males	(Smith,	Joshua	N,	Goldizen,	Anne	W.,	Dunlop,	

Rebecca	A.,	Noad,	2008)(Darling,	Jones,	&	Nicklin,	2006),	or	to	serve	as	a	sexual	

display	 to	 attract	 females	 (Tyack	 &	Whitehead,	 1983)	 is	 not	 clear.	 	 It	may	 be	

possible	that	it	fulfils	both	these	roles,	and	research	presented	by	Anita	Murray	

suggests	that	the	content	of	the	phrases	may	distinguish	between	two	different	

phrase	 types,	 simple	and	complex.	A	number	of	 acoustic	 features	were	used	 to	

distinguish	 between	 simple	 and	 complex	 phrases,	 with	 simple	 phrases	

characterised	as	phrases	sung	by	multiple	individuals,	with	a	smaller	number	of	

units	 and	 unit	 types,	 and	 longer	 average	 intervals	 between	 units,	 a	 lower	 and	

narrow	 range	 of	 frequencies,	 and	 shorter	 or	 longer	 durations	 than	 complex	

phrases.	Complex	phrases	were	more	variable,	and	contained	phrases	that	were	
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unique	to	the	individual.		By	distinguishing	complex	and	simple	phrases,	Murray	

suggests	 that	 simple	 phrases	 may	 be	 used	 for	 male-to-male	 interaction	 and	

attracting	 mates,	 while	 the	 complex	 phrases	 would	 be	 a	 courtship	 song	 only	

performed	by	males	for	females	(Murray,	Antunes,	Dunlop,	&	Noad,	2015).	This	

theory	 is	particularly	 compelling	when	we	consider	 that	 low	 frequency	 sounds	

that	 make	 up	 simple	 phrases	 travel	 easily	 through	 water,	 as	 sound	 loss	

transmission	 is	 a	 function	 of	 intensity	 and	 frequency	 (Fundamentals	 of	

Underwater	Sound,	2008),	with	high	frequency	sounds	generally	not	travelling	as	

far	as	low	frequency	sounds.	In	the	section	Other	Baleen	Whales,	we	will	see	that	

researchers	 have	 suggested	 a	 similar	 dual	 function	 for	 bowhead	 whales,	 who	

generate	a	complex	song,	with	a	similar	wide	frequency	range	(O.	M.	Tervo	et	al.,	

2012).	

	

The	sound	production	mechanisms	at	work	in	humpback	whale	song	are	unclear.	

It	was	thought	that	humpback	whales	and	baleen	whales	in	general	had	no	sound	

production	mechanism	that	could	be	compared	to	the	human	vocal	folds,	and	the	

method	used	to	produce	sound	was	not	understood.	However,	autopsies	of	several	

baleen	 whales	 have	 identified	 a	 structure	 known	 as	 the	 U-shaped	 folds	

(Reidenberg	&	Laitman,	2007).	Reidenberg	&	Laitman	put	forward	a	theory	of	how	

these	U-shaped	folds	may	vibrate.	This	theory	is	currently	being	reviewed	through	

the	 creation	 of	 computational	 physical	 models	 (Adam	 et	 al.,	 2013)	 and	 bio-

mechanical	models	(Cazau,	Adam,	Aubin,	Laitman,	&	Reidenberg,	2016).	In	their	

2016	paper,	Cazau	et	al.	suggested	that	the	non-linearities	of	the	song	produced	

by	 a	whale	 could	 be	 an	 indication	of	 the	 singing	males	 body	 size	 and	 physical	

fitness.	This	would	make	these	non-linearities	an	 important	aspect	of	 the	song,	

and	connect	it	to	the	theory	that	song	is	involved	in	inter-sexual	interactions.	It	

also	has	 interesting	 implications	when	we	consider	the	complex/simple	phrase	

types	theory	put	forward	by	Murray.		

2.4.3	Social	Sounds	

Humpback	whales	have	been	observed	to	make	sounds	that	do	not	appear	to	be	

related	to	songs.	These	sounds	have	been	referred	to	as	social	sounds	(Rebecca	A	

Dunlop,	Noad,	Cato,	&	Stokes,	2007).	In	this	2007	study,	Dunlop	et	al.	identified	34	
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types	of	sounds	used	in	its	social	repertoire.	Of	these	34	sounds,	21	appeared	in	

the	song	from	that	year,	but	there	were	13	different	sounds	that	were	not	found	

in	the	song	and	remained	consistent	over	a	period	of	three	years.		

	

A	behaviour	that	appears	to	have	a	counter-intuitive	purpose	is	that	of	breaching.		

Breaching	is	where	a	humpback	whale	rises	to	the	surface	of	the	water	and	leaps	

out	of	it.	It	is	scientifically	termed	surface-active	behaviour.	Research	suggests	that	

it	actually	functions	as	a	social	sound	(Kavanagh	et	al.,	2016).	Kavanagh	suggests	

that	 it	 allows	 humpbacks	 to	 communicated	 between	 distant	 groups,	 since	 the	

probability	of	observing	breaching	decreased	when	the	nearest	whale	group	was	

as	far	as	4’000	meters.	The	breaching	effectively	working	as	an	impulse	being	sent	

through	the	water.		

2.5	Other	Baleen	(Mysticeti)	Whales		

Many	Baleen	whales	produce	songs.	Here,	we	review	the	characteristics	of	these	

songs,	and	what	differentiates	these	songs	from	those	of	the	humpback	whale.	Not	

all	baleen	whales	sing,	and	only	whales	that	sing	are	reviewed	here.	Their	social	

sounds	are	not	discussed.		

2.5.1	Bowhead	Whales	
Bowhead	whales	produce	songs	that	share	similarities	to	humpback	whale	song.	

Bowhead	whales	are	much	more	difficult	to	study	than	humpbacks,	due	to	the	fact	

they	remain	in	arctic	waters	during	the	winter.	Firstly,	they	are	believed	to	be	

involved	in	sexual	selection,	although,	like	humpback	whale	song,	it	is	unclear	if	

this	is	mediating	interactions	between	males	or	females.	They	also	have	a	wide	

frequency	range.	(O.	M.	Tervo	et	al.,	2012)	suggested	that	the	reason	for	this	wide	

frequency	range	is	due	to	the	role	of	the	vocalisations	in	mating.	This	broad	

frequency	range	is	shown	in		

Figure	 3.	 Tervo	 also	 proposes	 a	 hypothesis	 that	 the	 wide	 vocal	 range	 of	 the	

bowhead	whale	is	due	to	low	frequency	and	high	frequency	vocalisations	playing	

a	dual	role	in	interactions,	with	low	frequencies	being	responsible	for	signalling	

the	whales	location	to	other	listening	whales,	and	higher	frequencies	containing	

information	 about	 the	 identity	 of	 the	 singer.	 This	 hypothesis	 is	 similar	 to	 that	
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proposed	 by	 Murray	 discussed	 in	 the	 Section	 2.4.2,	 of	 this	 chapter,	 who	 also	

suggests	a	dual	function	for	the	vocalisations.		

	
Figure	removed	due	to	Copyright	Restrictions	

	

Figure	3:	The	frequency	range	of	different	whales	(X	axis)	versus	their	weight	(Y	axis).	

Taken	from	(O.	M.	Tervo	et	al.,	2012).			

Another	 similarity	 between	 the	 songs	 of	 bowheads	 and	 humpbacks	 is	 the	

structure	 of	 the	 song.	 Like	 humpbacks,	 bowheads	 produce	 songs	 that	 have	 a	

hierarchal	structure.	This	means	that	units	are	used	to	created	phrases	and	are	

repeated	 in	 sequence	 (Clark,	 1990).	 However,	 bowhead	 songs	 last	 for	 a	much	

shorter	time,	and	cycles	last	up	to	a	minute.		Another	unusual	aspect	of	the	songs	

is	that	different	songs	have	been	recorded	on	single	breeding	grounds.	Research	

suggests	 that	 female	 bowheads	 have	 been	 observed	 singings	 songs	 (O.	 Tervo,	

2011).		This	is	very	different	to	humpbacks,	where	only	males	have	been	observed	

singing.	 Another	 unusual	 feature	 of	 bowhead	 whale	 songs	 is	 their	 ability	 to	

produce	 two	 sounds	 simultaneously.	 (O.	 M.	 Tervo,	 Christoffersen,	 Parks,	

Kristensen,	&	Madsen,	2011).	Bowhead	whales	also	demonstrate	changes	in	their	

song	over	the	breeding	season	(O.	M.	Tervo,	Parks,	&	Miller,	2009)	and	from	year	

to	 year	 (O.	M.	 Tervo,	 Parks,	 Christoffersen,	Miller,	&	Kristensen,	 2011).	 This	 is	

similar	to	the	evolution	observed	in	humpback	whale	song.	Like	humpbacks,	what	

drives	these	changes	is	still	a	matter	of	debate.		

2.5.2	Blue	Whales	

Blue	whales	also	sing.	Only	males	have	been	observed	singing,	and	their	singing	

patterns	are	very	simple,	using	low-frequency	pulsed	calls	(call	types	A),	or	tonal	

calls	 (call	 types	B)	 (Oleson	 et	 al.,	 2007).	 These	 calls	 are	 repeated	 in	 rhythmic,	

repetitive	 sequences,	 or	 are	 called	 out	 individually	 intermittently.	 Researchers	

have	identified	different	song	types	in	different	ocean	basins,	which	suggests	that	

there	may	 be	 different	 songs	 for	 different	 populations	 (McDonald,	Mesnick,	 &	

Hildebrand,	2006).	Due	to	the	simplistic	structure	of	blue	whale	song,	their	songs	

do	not	exhibit	any	dramatic	evolution	over	time	 in	terms	of	song	structure	and	

units	performed	like	bowheads	and	humpbacks.	The	main	change	observed	over	



	 21	

the	past	several	years,	has	been	a	decrease	in	the	frequency	of	the	vocalisations	

(McDonald,	Hildebrand,	&	Mesnick,	2009).	While	it	is	possible	that	this	is	caused	

by	cultural	changes,	no	solid	evidence	has	been	put	forward	to	prove	this.		

2.5.3	Dwarf	Minke	Whales	

Dwarf	 minke	 whales	 also	 produce	 songs.	 They	 produce	 an	 unusual	 metallic	

sounding	 vocalisation	 that	 researchers	 have	 dubbed	 the	 Star	 Wars	 sound	

(Gedamke,	Costa,	&	Dunstan,	2001)	due	to	its	resemblance	to	the	laser	sound	from	

the	film	of	the	same	name.	These	vocalisations	have	a	simple	song	like	structure,	

and	do	not	appear	to	change	much	from	year	to	year.	They	seem	to	consist	of	three	

units	(A-B-C)	and	are	repeated	in	sequences	such	as	(AAABC,	AAABC,	AAABC).		At	

the	time	of	writing,	there	is	no	information	on	the	function	of	the	song	or	which	

sex	produces	them.		

2.5.4	Fin	Whales	

Fin	whales	also	exhibit	a	type	of	vocalisation	that	can	be	classed	as	song.	These	are	

the	simplest	of	any	vocalisation	created	by	a	baleen	whale.	They	are	downwards	

sweeping	 tonal	 calls.	Their	 exact	 function	 is	unknown,	but	 they	are	 thought	 to	

serve	a	purpose	 in	mating,	due	to	the	 fact	 that	only	male	 fin	whales	have	been	

observed	creating	these	calls	(Croll	et	al.,	2002).	The	presence	of	different	songs	

at	different	ocean	basins	(Delarue,	Todd,	Van	Parijs,	&	Di	Iorio,	2009)	suggests	that	

culture	may	be	involved	in	explaining	these	differences	between	populations.		

2.6	Toothed	(Odontoceti)	Whales	

Toothed	whales	display	vocal	learning,	but	do	not	produce	songs	in	the	way	that	

baleen	whales	do.	Reviewing	the	vocal	behaviour	of	toothed	whales	is	important,	

as	much	of	the	research	into	cetacean	culture	has	revolved	around	toothed	whales.	

It	 is	 important	 to	note	 that	dolphins	are	part	of	 this	 sub-order	and	 their	vocal	

learning	abilities	will	also	be	briefly	discussed	here.	There	are	other	aspects	of	

these	 vocalisations	 that	 we	 must	 acknowledge	 before	 we	 can	 create	 any	 ties	

between	 them	 and	 humpback	 whale	 vocalisations.	 Firstly,	 it	 is	 important	 to	

remember	that	humpback	whales	do	not	use	their	vocalisations	for	interaction	in	

matrilineal	groups	such	as	those	that	will	described	for	the	killer	and	sperm	whale,	

and	generally	live	relatively	isolated	lives.	Secondly,	there	are	distinct	anatomical	
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differences	in	the	animals,	with	baleen	whales	using	the	U-shaped	folds	to	produce	

their	 vocalisations.	 The	 vocal	 system	 of	 most	 toothed	 whales	 is	 used	 for	

echolocation	 (Au,	 2004).	 Despite	 these	 differences,	 it	 is	 important	 to	 discuss	

toothed	whales	as	agent	based	models	have	been	used	to	study	their	evolution	in	

respect	to	cultural	transmission	(Maurício	Cantor	et	al.,	2015;	H	Whitehead	et	al.,	

2002).	There	are	many	different	members	in	the	sub-order	of	odontoceti,	so	for	

this	 reason	we	 only	 examine	 the	 three	 members	 that	 have	 received	 the	 most	

attention	in	regard	to	their	vocal	learning	abilities.	These	are	the	killer	whale,	the	

sperm	whale,	and	the	bottlenose	dolphin.		

2.6.1	Killer	Whales	

Killer	Whales	are	perhaps	the	most	well	known	of	all	cetaceans,	famous	for	their	

black	and	white	bodies.	Research	has	shown	that	there	are	different	sub-species	

within	killer	whales	(Morin	et	al.,	2008).	Interestingly,	culture	is	thought	to	play	a	

key	part	in	these	species	and	their	evolution.	Whitehead	noted	that	low	diversity	

levels	of	mitochondrial	DNA	(mtDNA)	could	not	be	explained	by	factors	such	as	

low	mutation	 rate	 (Hal	 Whitehead,	 1998).	 	 He	 also	 noted	 that	 in	 order	 for	 a	

population	 to	 obtain	 this	 reduced	 level	 of	mtDNA	 variance,	 it	would	 require	 a	

population	bottleneck	of	about	100	animals	for	100	generations,	or	1000	animals	

for	 1000	 generations.	 These	 scenarios	 seemed	 unlikely	 to	 occur	 given	 how	

widespread	 and	 long-lived	 the	 animals	 were.	 Whitehead	 demonstrated	 using	

agents	based	models	that	cultural	transmission	was	likely	the	cause	for	this	low	

level	 of	 genetic	 diversity	 due	 to	 cultural	 hitchhiking.	 A	 recent	 study	 analysed	

population	genomic	data	from	these	different	killer	whale	ecotypes,	and	estimated	

that	 the	genetic	diversity	emerged	within	 less	than	250’000	years	(Foote	et	al.,	

2016).	The	study	reconstructed	ancestral	demographics	and	revealed	that	there	

were	 bottlenecks	 for	 founding	 events.	 This	 genetic	 analysis	 showed	 that	 there	

were	 small	 founder	 groups	 who	 went	 into	 novel	 niches	 through	 plastic	

behavioural	response,	and	that	cultural	transmission	of	these	behaviours	resulted	

in	the	emergence	of	different	species	of	killer	whales.	These	studies	highlight	the	

complex	cultural	lives	of	killer	whales.	Killer	whales	are	well	known	vocal	learners	

(Deecke	et	 al.,	2000;	 Janik,	2014).	Their	vocalisations	can	be	broken	down	into	

three	categories,	1)	sonar	clicks,	2)	pure	tone	whistles	and	3)	pulsed	call.	A	pulsed	
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call	 consists	of	 individual	 clicks	 going	 at	high	 rates.	 Pulsed	 calls	 can	 consist	of	

many	different	elements	and	be	extremely	complex,	with	different	patters	being	

created.	 In	 1991,	 the	 vocalisations	 of	 16	 different	 pods	 of	 killer	whales	 in	 the	

Canadian	 waters	 of	 British	 Columbia	 were	 recorded.	 Members	 of	 these	 pods	

created	7-17	types	of	discrete	calls	and	individuals	appeared	to	be	learning	from	

each	other.	It	was	noted	that	the	16	pods	formed	four	different	types	of	acoustic	

associations,	 known	 as	 clans,	with	 each	 clan	 having	 its	 own	unique	 repertoire	

(Ford,	1991).		

2.6.2	Sperm	Whales	

Sperm	whales,	another	large	toothed	whale,	also	display	interesting	vocal	displays	

that	 are	 believed	 to	 be	 cultural.	 They	 produce	 specific	 click	 patterns	 that	 are	

termed	 codas	 (Watkins,	 1977)	 that	 consist	 of	 three	 or	 more	 broadband	 click	

noises	 that	 are	 carried	 out	 in	 a	 specific	 timed	 order.	 Like	 killer	whales,	 sperm	

whales	live	in	matrilineal	societies.	Males	live	fairly	solitary	lives,	while	there	are	

several	different	layers	to	female	social	structures	and	they	form	groups	that	are	

referred	 to	 as	units	 that	 possess	 a	 stable	 female	membership	 (Hal	Whitehead,	

Waters,	&	Lyrholm,	1991).	The	purpose	of	sperm	whale	codas	is	believed	to	be	

used	 in	 the	 identification	 of	 individuals,	 units	 and	 clans	 (Gero,	 Whitehead,	 &	

Rendell,	 2016;	 Oliveira	 et	 al.,	 2016).	 Recent	 studies	 suggest	 that	 these	 social	

structures	can	emerge	as	a	result	of	cultural	transmission	(Maurício	Cantor	et	al.,	

2015).	

2.6.3	Bottlenose	Dolphins	

Bottlenose	dolphins	produce	a	vocal	display	known	as	the	signature	whistle	(King,	

Harley,	&	Janik,	2014).	The	signature	whistle	is	a	stereotyped	vocalisation	that	is	

unique	 to	 the	 individual	 dolphin.	 One	 study	 investigated	 the	 hypothesis	 that	

signature	 whistles	 are	 used	 to	 maintain	 group	 cohesion.	 It	 achieved	 this	 by	

studying	a	group	of	four	captive	dolphins	in	two	scenarios.	First,	individual	were	

recorded	 separate	 from	 the	 group	 while	 they	 all	 swam	 in	 the	 same	 pool.	

Separations	would	occur	when	one	member	of	the	group	swam	into	another	pool.	

Each	dolphin	produced	one	specific	stereotyped	whistle	when	 it	was	separated	

from	 the	 group,	 but	 non-signature	 whistles	 were	 used	 whenever	 they	 swam	
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together,	 suggesting	 that	 the	 signature	 whistle	 served	 a	 purpose	 to	 maintain	

group	cohesion	(Janik	&	Slater,	1998).		

2.7	Birds	

Many	different	species	of	birds	produce	songs.	The	reason	for	producing	songs	

differs	from	species	to	species	and	can	also	serve	dual	functions.	In	some	species	

it	 is	 used	 to	 mark	 out	 territory,	 while	 in	 others	 it	 is	 used	 to	 attract	 a	 mate	

(Brenowitz,	Margoliash,	&	Nordeen,	1997).	Due	to	the	large	number	of	species,	a	

full	comprehensive	review	of	bird	song	is	not	possible,	so	special	attention	is	paid	

to	 species	whose	 songs	 have	 similarities	 to	 those	 of	 the	 humpback.	 These	 are	

zebra	finches,	Bengalese	finches,	and	chaffinches.	

2.7.1	Zebra	Finches	

Zebra	finches	are	an	important	comparative	study	for	vocal	learning	due	to	the	

ease	with	which	 the	 animals	 can	 be	 raised	 in	 a	 laboratory	 environment.	Wild	

populations	are	also	relatively	easy	to	study	compared	to	other	species.	There	are	

similarities	between	the	songs	of	the	zebra	finch	and	humpback	whale.	The	songs	

of	zebra	finches,	like	the	songs	of	humpback	whales,	are	highly	organised.	Zebra	

finches	perform	what	are	known	as	motifs	that	consist	of	up	to	six	different	units	

of	its	repertoires,	always	performed	in	the	exact	same	order,	up	to	four	times.	The	

repeated	motifs	 are	 preceded	 by	 a	 set	 of	 introduction	 units	 and	 followed	 by	 a	

sequence	of	ending	units	(Lachlan	et	al.,	2016).	Another	similarity	in	zebra	finches	

and	humpbacks	is	that	females	do	not	sing	(Wade	&	Arnold,	2004).	However,	it	

has	been	shown	that	the	injection	of	hormones	to	enforce	masculinity	will	cause	

females	to	sing	(Gurney	&	Konishi,	1980).	It	appears	that	male	song	is	one	of	the	

cues	 used	 for	 mate	 choice	 by	 females	 (Hauber,	 Campbell,	 &	 Woolley,	 2010;	

Ritschard,	Riebel,	&	Brumm,	2010).	A	major	difference	in	zebra	finch	song	is	that	

males	 learn	 from	 tutors	 during	 a	 developmental	 period,	 and	 this	 serves	 as	 a	

template	for	their	songs	in	the	future.	After	this	developmental	period,	the	song	

enters	what	is	termed	“plastic	song”.		These	plastic	songs	can	contain	entire	songs	

from	multiple	tutors,	but	eventually	form	into	a	single	song,	in	a	process	that	is	

known	as	 “song	crystallization”	 (Brainard	&	Doupe,	2002).	 In	 the	absence	of	 a	

tutor	they	will	develop	a	rudimentary	version	of	the	song,	with	abnormally	high	

frequencies,	 referred	 to	 as	 the	 “isolate	 song”	 (Williams,	 Kilander,	 &	 Sotanski,	
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1993).	Interestingly	however,	after	establishing	untutored	singers	as	the	tutors	of	

a	new	generation,	it	was	found	that	the	song	stabilised	after	passing	through	four	

generations	(Fehér,	Wang,	Saar,	Mitra,	&	Tchernichovski,	2009).	This	is	different	

to	humpback	whales,	where	the	song	is	constantly	updated,	and	it	is	not	known	to	

undergo	a	specific	developmental	period.	The	only	opportunity	where	this	may	

potentially	occur	is	when	humpback	calves	and	their	mothers	are	briefly	escorted	

by	a	male	escort	during	the	mating	season	(Tyack	&	Whitehead,	1983).	It	is	noted	

that	Zebra	finches	are	songs	are	prone	to	errors,	and	that	these	errors	may	prevent	

cultural	 traditions	 being	 established	 that	 would	 lead	 to	 populations	 diverging	

(Lachlan	et	al.,	2016).		

2.7.2	Bengalese	Finches	

Bengalese	finches	also	produce	songs.	The	songs	have	been	described	using	finite-

state	grammar,	using	 transition	probabilities	 such	as	Markov	chains	 (Okanoya,	

2004).	Bengalese	finches	produce	2	to	5	notes	to	form	a	unit.	Each	unit	is	produced	

at	 a	 specific	 state	 transition.	 Transition	 patterns	 are	 not	 fixed	 as	 several	 other	

possible	notes	can	follow	a	single	note.	Certain	sequential	notes	form	a	chunk	and	

chunks	 can	also	be	arranged	using	Markov	processes	 (Suge	&	Okanoya,	2010).	

This	 is	 quite	 different	 to	 the	 humpback	 song,	 which	 has	 a	 specific	 hierarchal	

structure.	Only	male	Bengalese	finches	sing,	and	the	songs	appear	to	be	involved	

in	female	mate	choice.	Female	Bengalese	finches	appear	to	show	a	preference	to	

songs	they	are	familiar	with	(Kato,	Hasegawa,	&	Okanoya,	2010).		

2.7.3	Chaffinches	

Chaffinches	have	received	attention	in	regard	to	cultural	evolution.	Chaffinch	song	

typically	 consists	 of	 a	 trill	 of	 a	 series	 of	 phrases	 in	 two,	 followed	 by	 a	 single	

broadband	signal	 that	 is	performed	only	once.	They	exhibit	 vocal	 learning	and	

examples	of	animal	culture.	Chaffinch	repertoires	are	small,	with	the	number	of	

songs	they	are	able	to	learn	ranging	from	1	to	6,	and	will	sing	a	succession	of	songs	

(Riebel,	Lachlan,	&	Slater,	2015).		Thorpe	demonstrated	that	chaffinches	raised	in	

the	lab	away	from	adult	males	produced	aberrant	songs.	However,	if	these	birds	

were	 exposed	 to	 tape	 recordings	 of	 a	 wild	 chaffinch,	 they	 would	 eventually	

produce	 normal	 songs	 matching	 those	 found	 in	 the	 recording	 (Thorpe,	 1958,	

1961).	
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2.8	Sequence	Learning,	Synthesis,	and	Analysis	

Now	that	the	vocal	learning	abilities	of	different	species	have	been	reviewed,	we	

can	move	 on	 to	 discuss	methods	 used	 in	 learning,	 synthesising,	 and	 analysing	

animal	vocal	sequences	using	computational	methods.	There	are	several	methods	

to	achieve	this,	and	what	method	is	used	is	usually	determined	by	the	format	of	

the	data.	For	this	reason,	this	section	begins	with	a	discussion	on	the	collection	

and	representation	of	 the	database	used	 in	this	project.	For	this	project,	 it	was	

decided	that	a	symbolic	method	would	be	used	for	representing	individual	units	

of	humpback	whale	song.	This	means	that	in	our	data,	a	Unicode	character	is	used	

to	represent	a	single	unit	of	song.	This	limits	the	number	of	methods	that	we	are	

able	to	apply	to	our	database.	As	a	result,	only	methods	that	are	applicable	to	our	

database	are	reviewed	here.		

	

There	 are	 a	 number	 of	 methods	 in	 the	 modelling	 of	 sequence	 learning	 and	

production	in	the	fields	of	biology,	linguistics,	and	music.	Many	of	these	methods	

overlap	with	each	other	but	have	trade-offs	 that	make	them	more	suitable	 to	a	

particular	 field.	 Biological	 models	 are	 more	 concerned	 with	 the	 accurate	

reproduction	of	sequences	close	to	real	world	systems.	Linguistic	systems	seek	to	

explain	phenomena	specific	to	language	such	as	recursion,	hierarchal	structure,	

and	 the	mapping	 of	 semantics.	Musical	 systems	 tend	 to	 take	 an	 approach	 that	

emphasises	musical	aesthetics	and	creative	results	over	accuracy.	Due	to	the	high	

amount	of	overlap,	each	method	is	approached	independently,	and	its	context	in	

each	 of	 these	 fields	 highlighted.	 It	 should	 be	 noted	 that	 this	 section	 examines	

sequence	learning	and	production	independently	of	cultural	transmission.	In	each	

of	the	examples	given	here,	we	introduce	each	model	and	give	an	example	of	it	in	

use.	 The	 applications	 of	 the	 models	 are	 also	 discussed	 in	 relation	 to	 biology,	

linguistics,	and	music.			

2.8.2	Automata	Theory	

Methods	 used	 in	 sequence	 learning	 and	 production,	 are	 tied	 very	 closely	 to	

theories	associated	with	Automata	Theory,	and	a	models	capabilities	is	often	used	

to	 determine	 the	 type	 of	 automaton	 that	 it	 may	 be	 classed	 into	 (Hopcroft,	

Motwani,	&	Ullman,	2001).	For	this	reason,	we	begin	this	following	section	with	a	
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brief	introduction	to	Automata	Theory.	This	section	is	dedicated	to	defining	what	

automata	are	and	classifying	the	different	types	of	automata.		

	

Automata	 theory,	 broadly	 speaking,	 deals	 with	 automated	 processes	 and	 the	

application	 of	 computation	 and	 logic	 to	 simple,	 defined	 machines	 known	 as	

automata.	These	machines	may	be	simulated	on	a	computer,	theoretical,	or	even	

mechanical.	Automata	theory	allows	computer	scientists	to	address	issues	such	as	

what	machines	are	capable	of	computing,	and	how	it	may	be	computed.	Automata	

theory	also	allows	scientists	 to	 theorise	and	create	models	of	 the	behaviour	of	

discrete	systems.		

	

Generally	speaking,	an	automaton	consists	of	inputs,	output,	and	states.	Inputs	are	

generally	sequences	of	symbols	from	a	finite	set	(E.g.	An	alphabet).	Outputs	are	

sequences	of	symbols	from	another	finite.	States	are	from	a	different	finite	set,	Q,	

and	the	definition	of	a	state	depends	on	the	type	of	automaton.		

	

There	are	four	major	families	they	are	as	follows:	

	

• Combinational	logic	

• Pushdown	automaton	

• Finite-state	automaton	

• Turing	Machine	

	

This	 following	section	gives	a	description	of	 the	Turning	Machine,	and	 its	most	

important	properties.	Following	this,	a	brief	definition	of	the	other	major	families	

is	also	given.	Later,	when	discussing	the	different	methods	of	sequence	learning	

and	production,	each	of	the	methods	discussed	will	be	classified	into	one	of	these	

major	families.		

	

	Combinational	logic	is	a	method	where	the	output	of	the	automatons	is	dependent	

only	on	 the	 inputs	 of	 the	 system.	An	 example	of	 combinational	 logic	would	 be	

Boolean	algebra,	which	is	the	basis	of	digital	computation.	Here,	the	output	of	the	
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automaton	is	only	based	on	the	present	input,	and	it	has	not	memory	in	regard	to	

the	previous	history	of	the	input.		

	

A	Finite-state	Automaton	is	a	machine	that	can	be	in	a	number	of	finite	states.	It	

can	only	be	in	one	state	at	a	time	and	it	may	transition	from	one	state	to	another	

given	a	certain	triggering	condition.	This	is	known	as	a	transition.	Depending	of	

their	current	state,	they	may	output	a	symbol.	This	is	known	as	an	emission.	Unlike	

combinational	logic,	a	finite-state	automaton	can	have	memory,	but	it	is	limited	by	

the	number	of	states	it	has.		

	

A	 Pushdown	 automaton	 differ	 only	 from	 finite-state	 automatons	 in	 that	 they	

employ	a	stack,	that	they	are	able	to	manipulate	in	order	to	control	their	actions.	

A	stack	is	a	memory	type	with	just	two	type	types	of	operations,	push	and	pop.	

When	you	push	a	stack,	you	are	simply	adding	an	element	to	its	memory.	When	

you	 pop	 a	 stack,	 you	 remove	 the	 most	 recently	 added	 item	 from	 the	 stack.	

However,	a	pushdown	automaton	is	limited	in	that	it	may	only	reference	what	is	

at	the	top	of	the	stack,	giving	it	a	limited	memory.		

	

The	Turing	Machine	 is	a	concept	 introduced	by	British	computer	scientist	Alan	

Turing	 in	 1936	 (Turing,	 1936).	 The	 simplest	 Turing	 Machine	 is	 described	 by	

Turing	as	a	machine	that	is	equipped	with	an	infinite	piece	of	tape	that	serves	as	

its	memory.	This	tape	is	divided	into	cells	(or	“squares”)	where	a	symbol	may	be	

written	 or	 read	 using	 a	 tape	 head.	 A	 state	 register	 that	 stores	what	 state	 the	

machine	 is	currently	 in.	There	 is	also	a	 finite	 table	of	 instructions	that	 tells	 the	

machine	what	 to	 do,	 given	 the	 current	 state	 the	machine	 is	 in	 and	 the	 current	

symbol	being	read.	For	example,	it	may	tell	the	machine	to	erase	or	write	a	symbol,	

then	move	the	head	either	left	or	right.	It	then	assumes	the	same	state	or	a	new	

state.	They	are	capable	of	solving	problems	that	the	previous	automata	cannot	if	

they	have	access	to	an	unlimited	amount	of	memory.			

	

Turing	 showed	 that	 given	 any	 algorithm,	 it	 is	 possible	 to	 construct	 a	 Turing	

Machine	that	 is	capable	of	simulating	that	algorithm	if	 the	machine	has	 infinite	

memory.	Due	to	this	fact,	it	is	important	as	a	theory	for	computation,	in	which	a	
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machine	is	said	to	be	Turing	Complete	if	it	is	capable	of	solving	any	algorithm	just	

as	a	Turing	Machine	would.	It	is	important	to	distinguish	Turing	Machines	from	

the	Church-Turing	thesis	that	states	that	any	algorithm	is	computable	by	a	human	

with	 unlimited	 resources	 following	 an	 algorithm,	 only	 if	 it	 is	 computable	 by	 a	

Turing	Machine.		

2.8.3	Markov	Models	

In	biology,	the	application	of	Markov	processes	to	model	song	production	has	been	

prevalent.	 Markov	 models	 are	 a	 class	 of	 methods	 that	 rely	 on	 probability	 to	

analyse	and	produce	a	sequence.	They	achieve	this	by	calculating	the	likelihood	

an	 observation	 occurs	 and	 using	 these	 likelihood	 calculations	 in	 order	 to	

synthesise	new	sequences.	Markov	models	were	considered	a	plausible	model	for	

human	language	(Shannon,	2001)	until	it	was	demonstrated	that	no	finite	state	

Markov	 process	 was	 capable	 of	 modelling	 human	 language	 (Chomsky,	 1956).	

Although	 they	were	 proven	 unsuitable	 for	 the	modelling	 of	 language,	 they	 did	

continue	 to	 gain	 considerable	 support	 as	 a	 theory	 for	 modelling	 the	 vocal	

sequence	production	in	animals	(Okanoya,	2004).		Markov	models	are	considered	

to	be	a	type	of	Finite-state	Automata	(FSA)	where	the	output	triggering	condition	

is	controlled	by	probability.		

	

While	the	application	of	Markov	chains	is	beneficial	for	the	analysis	of	sequence	

production	 in	animals,	 it	should	be	noted	that	they	have	many	shortcomings.	A	

variety	 of	 Markov	 Models	 and	 their	 capability	 of	 reproducing	 animal	 vocal	

sequence	 were	 examined	 in	 (Kershenbaum	 et	 al.,	 2014)	 using	 Levenshtein	

distance	analysis	(Garland	et	al.,	2012).	In	order	to	achieve	this,	Kershenbaum	et	

al.	 trained	 Markov	 models	 using	 a	 variety	 of	 different	 animal	 sequences,	 and	

synthesised	 new	 vocalisations	 based	 on	 them	 using	 a	 variety	 of	 sequence	

synthesis	methods.	These	new	sequences	were	then	analysed	using	Levenshtein	

distance.	 His	 results	 found	 that	 the	 non-Markovian	 models	 returned	 a	 lower	

Levenshtein	distance	than	Markovian	models.		

	

Another	major	problem	with	Markov	models	is	that	they	require	a	large	amount	

of	data	in	order	to	accurately	synthesise	complex	sequences.	In	order	to	capture	
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the	 hierarchal	 structure	 of	 something	 as	 complex	 as	 humpback	 whale	 song	

requires	a	high	order	Markov	chain.	These	two	matters	are	connected,	as	the	order	

of	the	Markov	chain	increases	more	data	is	required	in	order	to	train	the	model.	

Suzuki	 et	 al	 addressed	 these	 issues	 (Suzuki	 et	al.,	 2006),	 and	calculated	 that	 in	

order	to	accurately	train	a	first-order	Markov	model	would	require	400-800	units	

of	song.	A	second	order	model	requires	8000	–	160,000	units.	The	amount	of	data	

required	in	accurately	training	these	models	suggests	that	Markov	models	are	not	

an	appropriate	approach	to	modelling	the	hierarchal	nature	of	songs.	Given	that	

humpbacks	do	not	require	this	large	amount	of	data	in	order	to	accurately	learn	a	

song	also	points	towards	it	being	an	unsuitable	method	at	the	unit	level.		

	

Despite	 these	 shortcomings,	 we	 will	 find	 that	 Markov	 models	 do	 have	 many	

benefits,	especially	in	the	domain	multi-agent	modelling.	They	are	simple	models,	

and	computational	inexpensive.	While	they	are	inappropriate	for	modelling	songs	

at	the	unit	level,	we	will	see	in	Chapter	3	that	they	are	adequate	for	modelling	the	

sequence	of	themes	in	a	song.	Furthermore,	they	serve	as	a	useful	placeholder	for	

more	complex	models	that	may	be	introduced	later	on.		

2.8.4	Hidden	Markov	Models	

Hidden	Markov	models	 are	 a	 form	of	Markov	model	 in	which	 it	 is	 possible	 to	

observe	the	output	of	the	system	(the	emissions),	but	not	the	state	the	system	is	

currently	in.	This	is	best	understood	by	looking	at	an	example	of	a	Hidden	Markov	

Model.		

	

In	a	hidden	Markov	model,	the	system	is	assumed	to	have	a	number	of	states	that	

cannot	 be	 observed	 (Mukherjee	 &	 Mitra,	 2005;	 Rabiner,	 1989).	 These	 states	

generally	have	an	effect	on	what	the	model	outputs.		
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Figure	4:	A	hidden	Markov	model,	with	three	hidden	states,	and	probability	

distributions	attached	that	affect	the	output	of	the	model.	As	the	model	moves	

through	different	states,	the	probability	vector,	P,	that	determines	what	unit	is	output,	

changes.		

In	the	example	shown	in	Figure	4,	we	have	three	states,	which	cannot	be	seen	by	

the	observer.	Attached	to	each	of	these	states	is	a	probability	distribution	that	may	

be	sampled	from.	The	model	begins	in	state	1,	and	samples	from	this	probability	

distribution	to	determine	what	symbol	it	should	output.	After	doing	this,	it	does	a	

weighted	 coin	 toss	 to	 determine	 if	 it	 stays	 in	 the	 same	 state	 (90%	 chance	 of	

occurring),	or	move	to	the	next	state	(10%	chance	of	occurring).	As	we	can	see,	

each	state	has	a	different	probability	distribution	attached	to	it,	so	depending	on	

the	state	of	the	system	it	will	return	very	different	outputs.	A	uniform	distribution	

for	state	1,	only	the	first	symbol	for	state	two,	and	an	equal	probability	of	returning	

symbol	 1	 and	 2	 if	 it	 is	 in	 state	 3.	 By	 analysing	 the	 frequency	 distribution	 of	 a	

sequence	the	model	produces	in	chunks,	we	would	be	able	to	determine	the	state	

of	the	system.		

	

Hidden	Markov	models	have	been	used	in	biology	for	gene	finding	(Eddy,	2004),	

and	also	for	speech	recognition	(Rabiner,	1989).	They	have	also	been	used	to	for	

unit	identification	in	humpback	whale	song	(Pace,	White,	&	Adam,	2012)	and	bird	

song	 identification	 (Kogan,	1998).	Research	has	been	presented	at	 conferences	

that	suggest	that	humpback	whales	may	have	complex,	and	simple	phrases,	and	a	
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hidden	Markov	model	may	be	used	to	differentiate	between	these	two	different	

types	of	phrases.	(Murray	et	al.,	2015).	Hidden	Markov	models	are	probabilistic	

finite	state	automatons.		

2.8.5	Artificial	Neural	Networks	

Artificial	neural	networks	may	be	used	to	learn	and	produce	vocalisations.	These	

methods	 are	 complex,	 and	 while	 they	 may	 produce	 desirable	 results,	

understanding	the	mechanisms	at	work	in	a	neural	network	can	be	difficult.	While	

a	 neurological	 understanding	 of	 animal	 vocalisations	 is	 desirable,	 it	 should	 be	

noted	that	this	field	is	complicated	in	itself	and	understanding	the	roles	of	a	neural	

network	in	vocal	learning	independent	of	factors	such	as	cultural	transmission	is	

a	difficult	 task,	and	 it	can	be	unclear	 if	 the	complexity	 that	 is	arising	 is	a	direct	

result	of	the	processes	associated	with	the	black	box	nature	of	a	neural	network	

or	is	the	result	of	cultural	transmission.	This	relates	to	the	concept	of	a	‘horse’	in	

machine	 learning.	 The	 term	horse	 refers	 to	 a	machine-learning	 algorithm	 that	

appears	to	be	achieving	a	required	task,	but	relies	on	irregular	characteristics	in	

order	to	achieve	its	goal	(Sturm,	2014).	In	this	regard,	it	is	important	to	remember	

that	 it	 is	 theoretically	 possible	 to	 recreate	 other	 learning	models	 using	 neural	

networks.	For	this	reason,	it	is	often	more	useful	to	design	a	model	that	follows	a	

strict	 algorithm,	where	 each	 step	 in	 the	 learning	 process	 and	 its	 effect	 can	 be	

examined	individually.		Following	this,	the	method	may	be	adapted	to	work	in	the	

context	of	a	neural	network	so	that	issues	such	as	plasticity	of	learning	may	be	

investigated.	 There	 are	 several	 different	 types	 of	 neural	 networks	 and	 for	 this	

reason	we	will	only	focus	on	the	most	the	basic	types.		An	exhaustive	description	

of	all	types	of	neural	networks	is	beyond	the	scope	of	this	thesis.		

	

	Artificial	 neural	 networks	 are	 a	method	 of	 learning	 inspired	 by	 the	 biological	

processes	underlying	neuroscience.	The	building	block	of	the	neural	network	is	

the	artificial	neuron,	which	is	inspired	by	neurons	found	in	the	nervous	system	of	

humans.	Figure	5	shows	how	an	artificial	neuron	works.		
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Figure	5:	An	artificial	neuron.	The	inputs	are	multiplied	by	their	individual	weightings	

(w1	to	w3),	and	then	summed	and	multiplied	by	the	transfer	function	f(x).	If	the	

resulting	value	is	greater	than	T,	the	neuron	will	output	a	value.	

An	artificial	neuron	has	any	number	of	inputs.	These	inputs	are	multiplied	by	their	

individual	 weightings,	 and	 summed.	 Following	 this,	 the	 summed	 value	 is	

multiplied	by	a	transfer	function	and	if	that	value	exceeds	a	threshold	value,	T,	the	

neuron	will	output	a	 signal.	This	 could	be	 the	 summed	value	 itself	or	 simply	a	

binary	value	of	zero	or	one.		

Individual	 artificial	 neurons	 are	 then	 combined	 into	 network	 configurations	 to	

create	 the	 artificial	 neural	 networks.	 Figure	 6	 shows	 a	 simple	 artificial	 neural	

network,	a	feed	forward	artificial	neural	network.		

	
	Figure	6:	A	feed	forward	artificial	neural	network.	

In	order	to	use	a	feed-forward	artificial	neural	network,	it	must	first	go	through	a	

training	stage.	In	this	training	stage,	the	weightings	of	each	artificial	neuron	are	
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adjusted	using	a	form	of	supervised	learning	such	as	back	propagation.	In	simplest	

terms,	this	is	where	data	is	input	into	the	network,	and	the	output	of	the	neural	

network	 is	compared	to	a	 target	set	of	 training	data,	 and	the	weightings	of	 the	

neurons	 are	 adjusted	 in	 order	 to	 move	 the	 output	 of	 the	 network	 towards	

accurately	classifying	the	data.	It	is	important	to	note	that	there	are	other	methods	

of	training	an	artificial	neural	network,	and	any	decent	textbook	will	explain	these	

methods	 in	 detail.	 Feed	 forward	 neural	 networks	 have	 been	 used	 for	 several	

different	 tasks	 in	engineering,	 such	as	 recognising	hand	written	 characters	 (Le	

Cun	Jackel,	B.	Boser,	J.	S.	Denker,	D.	Henderson,	R.	E.	Howard,	W.	Hubbard,	Cun,	

Denker,	 &	 Henderson,	 1990).	 Neurons	 can	 be	 adjusted	 and	 transformed	 to	 be	

more	complex	and	create	spiking	neural	networks,	where	the	time	of	arrival	of	the	

data	to	the	input	is	an	important	factor	in	the	classification	task.	These	are	known	

as	 Spiking	 neural	 networks	 and	 have	 been	 used	 in	 order	 to	 classify	 different	

musical	instruments	(Newton	&	Smith,	2011).	

	

Self	Organising	Maps	(SOM)	(Kohonen,	1997),	are	a	type	of	neural	network	that	

has	received	the	most	attention	in	regard	to	Humpback	whale	song.	In	the	simplest	

SOM,	input	nodes	are	represented	as	points	on	a	Cartesian	plane.		The	input	data	

is	also	distributed	across	a	Cartesian	plane.	At	each	step	of	training,	the	algorithm	

calculates	which	 input	 node	 is	 closest	 to	 the	 training	 data	 and	moves	 it	 closer	

towards	the	training	data.	All	other	nodes	are	moved	towards	the	training	data	as	

well,	only	less	so.	After	a	certain	number	of	iterations,	the	input	nodes	have	been	

organised	around	the	training	data.	Now,	whenever	new	data	is	fed	in,	it	is	mapped	

to	the	input	node	that	it	is	closest	to.	These	input	nodes	may	then	be	mapped	to	

an	output	matrix	to	visualise	the	classification	task.	Ashley	Walker	developed	the	

first	neural	networks	to	analyse	humpback	whale	song	that	were	used	by	Suzuki	

in	order	to	classify	input	units	into	discrete	symbols	(Suzuki	et	al.,	2006),	and	a	

dictionary	 of	 humpback	 whale	 song	 units	 classified	 using	 neural	 networks	 is	

currently	being	developed	(Allen,	Garland,	Noad,	&	Dunlop,	2015).		

	

Because	 of	 the	 wide	 variety	 of	 applications	 artificial	 neural	 networks	 may	 be	

applied	 to,	 their	 position	 in	 the	 automata	 theory	 hierarchy	 depends	 on	 what	

system	they	are	currently	modelling.		
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2.8.6	Formal	Grammars	

Formal	grammars	are	a	method	that	describes	a	set	of	production	rules	that	allow	

a	string	to	be	generated	for	a	formal	language.	They	are	part	of	the	field	of	Formal	

Language	 Theory	 that	 was	 largely	 developed	 by	 the	 work	 of	 Marcel-Paul	

Schützenberger,	 although	much	 of	 the	work	 discussed	 here	was	 invented	 and	

introduced	 by	Noam	Chomsky	 in	 his	 paper	Three	Models	 for	 the	Description	 of	

Language	 (Chomsky,	 1956).	 To	 begin	 our	 introduction	 to	 grammars,	we	 begin	

with	by	defining	the	following	characteristics	for	formal	grammars:	

	

• N	 the	 finite	set	of	non-terminal	symbols.	They	do	not	appear	 in	 the	 final	

string	generated	by	a	grammar.		

	

• Σthe	finite	set	of	terminal	symbols.	The	output	of	the	grammar.	This	could	

be	an	alphabet	or	a	series	of	words.		

	

• P	the	finite	set	of	production	rules	of	the	form	α → β where α is a string of 

terminals and non-terminals containing at least one nonterminal, and β is a 

string of terminals and nonterminals. 	

	

• S	the	start	symbol.		

	

First,	we	will	look	at	an	implementation	of	a	formal	grammar,	specifically	a	context	

free	grammar.	This	will	allow	us	to	understand	some	of	the	terminology	discussed	

above.		

	

Consider	 the	 following	example	 from	(Rohrmeier,	Zuidema,	Wiggins,	&	Scharff,	

2015)	that	generates	a	formal	grammar	known	as	a	context	free	grammar.	First	

we	take	the	following	sentence:	

	

“Either	language	came	first	or	music	came	first”	

	

We	can	derive	a	context	free	grammar	from	this	sentence	in	order	to	generate	the	

following	production	rules	as	shown	in	Table	1.	
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Context-free	grammar	Production	rules	

(1a)	 S		è either	S	or	S	

(1b)	 S		è NP	VP	

(2a)	 NP	è		language	

(2b)	 NP	è		music	

(3)	 VP	è		V	ADV	

(4)	 V	è		came	

(5)	 ADV	è		first	

Table	1:	Formal	grammar	generated	from	the	sentence	'either	language	came	first	of	

music	came	first’.		

By	following	the	rules	in	Table	1	we	are	able	to	recreate	the	original	sentence	by	

applying	the	rules	in	the	order	of	1a,	1b,	2a,	3,	4,	5,	1b,	2b,	3.	The	structure	of	the	

language	can	be	represented	using	a	tree	diagram	as	shown	below	in	Figure	7.	

	

	
Figure	7:	Syntax	tree	for	the	sentence	‘either	language	came	first	or	music	came	first’.		

There	are	different	 types	of	 formal	grammar,	and	 it	 is	 important	 to	distinguish	

between	them.	Furthermore,	by	going	through	a	description	of	formal	grammars	

in	language,	we	can	distinguish	them	from	methods	used	to	produce	sequences	of	

animal	 vocalisations.	 The	 Chomsky	 Hierarchy,	 also	 known	 as	 the	 Chomsky-

Schützenberger	 Hierarchy,	 is	 a	 structure	 that	 divides	 formal	 grammars	 into	 a	

nested	 hierarchy	 of	 four	 parts.	 	 It	 should	 be	 noted	 that	 since	 the	 Chomsky	

Hierarchy	has	been	established,	 researchers	have	had	 issues	with	 its	 structure	

(Ojima	 &	 Okanoya,	 2014)	 and	 the	 field	 itself	 has	 progressed.	 In	 order	 to	 fully	
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understand	 the	 Formal	 Grammars	 and	 the	 methods	 that	 surround	 it,	 it	 is	

necessary	to	examine	the	hierarchy	as	it	was	first	introduced.		

	

Chomsky	divides	the	grammars	into	Regular	Grammars	(type-1	grammars),	

Context	Free	Grammars	(type-2	grammars),	Context	Sensitive	Grammars	(type-3	

grammars),	Recursively	Enumerable	Grammars	(type	4	grammars).	The	nesting	

of	this	hierarchy	and	its	relationship	to	different	types	of	automatons	is	shown	in		

Figure	8.		

	

Figure	removed	due	to	Copyright	Restrictions	
	

Figure	8:	The	traditional	Chomsky	hierarchy	and	its	associated	automatons.	Automata	

that	are	capable	of	reproducing	the	language	are	on	the	right	hand	side.	Taken	from	

(Fitch	&	Friederici,	2012).	

The	easiest	way	to	understand	the	Chomsky	hierarchy	is	examine	each	aspect	of	

it	and	define	it,	so	that	we	can	differentiate	between	each	layer	of	the	hierarchy	

and	the	relationship	between	each	layer.	We	do	this	by	examining	the	production	

rules	(grammar)	that	allow	these	families	of	languages	to	be	created.		

2.8.6.1	Regular	Grammars	–	Type-1	Grammars	

A	language	is	defined	to	be	regular	if	there	is	a	finite	acceptance	to	it.	This	means	

that	 it	 is	 compatible	 with	 any	 type	 of	 Finite-state	 machine,	 whether	 it	 is	

deterministic,	or	non-deterministic.	All	regular	 languages	are	context	–free,	but	

not	all	context-free	languages	are	regular.		In	Regular	grammars,	the	left	hand	side	

is	always	a	nonterminal	symbol,	and	the	right	hand	side	is	restricted	to	being	a	

single	terminal	symbol,	a	single	terminal	followed	by	a	nonterminal	symbol,	or	an	

empty	string.	An	example	grammar	G	is	shown	below.	N	=	{S,	V},	Σ	=	{β, α}, and 

P is the following production rules;	

	

• S → βV 

• V → α 

• βα 
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Regular	 grammars	 have	 a	 close	 connection	 to	 regular	 expressions,	 but	 their	

connection	is	not	addressed	here.		

2.8.6.2	Context	Free	Grammars	–	Type-2	Grammars	

Context	 Free	 Grammars	 are	 grammars	 where	 the	 left	 hand	 side	 of	 every	

production	 rule	 consists	only	of	 a	 nonterminal	 symbol.	 This	may	 seem	 like	 an	

unimportant	fact,	but	as	we	will	see	later,	not	all	languages	can	be	created	using	

context	free	grammars.	Furthermore,	another	important	distinguishing	factor	of	

context	free	grammars	is	that	every	regular	grammar	is	context	free,	but	not	every	

context-free	grammar	is	regular.	

2.8.6.3	Context	Sensitive	Grammars	–	Type-3	Grammars	

In	a	context	sensitive	grammar,	the	set	of	production	rules	for	both	the	left	and	

right	 hand	may	 be	 surrounded	 on	 by	 terminal	 and	 non-terminal	 symbols.	 For	

example,	a	context	sensitive	grammar	allows	for	production	rules	of	the	form;	

	

• αAβ → αΥβ 

• Y → αα 

• Y → βA 

• A → αβ 

	

2.8.6.4	Unrestricted	Grammars	–	Type-4	Grammars		

Unrestricted	grammars,	as	the	name	applies,	have	none	of	the	restrictions	that	the	

other	grammars	previously	discussed	have.	They	are	Turing	complete	and	capable	

of	generating	anything	the	other	grammars	are	capable	of.	This	means	that	there	

are	unrestricted	grammars	 that	 are	not	 context-sensitive,	not	 context-free,	 and	

not	regular.		

2.8.6.5	Formal	Grammars	in	Biology		

Formal	grammars	in	biology	are	a	controversial	topic,	and	generally	each	animal	

should	be	approached	individually.	However,	in	regards	to	the	literature	there	has	

been	debate	over	whether	or	not	certain	song	birds	are	capable	of	context	 free	

grammars	(Beckers,	Bolhuis,	Okanoya,	&	Berwick,	2012).		Formal	grammars	have	
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also	 been	 used	 to	 recreate	 the	 structure	 of	 blue	whale	 song	 (Kershenbaum	&	

Blumstein,	2014).	An	example	of	 this	 is	shown	in	Figure	9.	Kershenbaum	notes	

that	many	researchers	argue	that	these	song	sequences	may	be	recreated	using	

simpler	mechanisms.	They	were	capable	of	reproducing	sequences	of	blue	whale	

song,	 these	 songs	 are	 much	 simpler	 than	 humpback	 whale	 song,	 as	 noted	 in	

section	 2.5.2.	 At	 the	 time	 of	writing,	 no	methods	 utilising	 formal	 grammars	 to	

generate	humpback	whale	song	have	been	found.			

	

Figure	removed	due	to	Copyright	Restrictions	
	
Figure	9:	Recreating	blue	whale	song	using	a	formal	grammar.	This	figure	shows	the	

production	rules	in	the	top	left,	the	grammar	tree	in	the	centre,	and	application	of	the	

rules	at	the	bottom.	Taken	from	(Kershenbaum	&	Blumstein,	2014).	

Lindenmeyer	 Systems	 (L-systems)	 are	 a	method	 of	 formal	 grammar	 that	 have	

been	used	to	explain	the	growth	patterns	observed	in	plants	and	fractals.	 	They	

are	a	type	of	formal	grammar	that	simulates	the	structure	of	plants	by	following	a	

set	of	rules	that	guides	how	to	draw	the	plant.	For	example,	imagine	a	pen,	that	

has	a	triplet	of	variables	(x,y,a),	where	x	and	y	are	Cartesian	co-ordinates	and	a	

represented	the	angle	the	pen	is	travelling	in.	Every	time	the	pen	moves,	it	will	

move	forward	a	distance	of	d,	and	the	angle	may	be	incremented	by	the	value	of	b.	

We	then	have	the	following	symbols	that	represent	our	alphabet:	

	

• F	=	Move	the	pen	forward	a	length	of	d.	Update	the	x	value	so	that	x’	=	x	+	

d(cos(a)	and	y’	=	y	+	d*sin(a).	We	now	have	a	line	between	the	points	(x,y)	

and	(x’,y’).		

	

• f	=	move	forward	a	 length	of	d,	but	do	not	draw	a	 line	between	the	two	

points.		

	

• +	=	turn	right	by	the	angle	of	b.	The	pens	state	is	now	(x,y,a+b).	

	

• -	=	turn	left	by	the	amount	of	b.	The	pens	state	is	now	(x,y,a-b)	
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This	alphabet	is	then	combined	with	the	following	set	of	production	rules;	

	

• w	=	F	+	F	+F	+	F	

• F	=	F	+	F	–	F	–	FF	+	F	+F	–	F	

	

These	steps	should	be	carried	out	n	number	of	times.	They	generate	the	following	

patterns	in	Figure	10,	for	values	of	n	=	0,1,2,3.		
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Figure	removed	due	to	Copyright	Restrictions	
	

Figure	10:	Generating	fractals	using	L	systems.	Taken	from	(P	Prusinkiewicz	&	

Lindenmayer,	1997).		

L-systems	can	then	be	extended	to	generate	even	more	complex	models	of	plants	

by	 generating	 a	more	 complex	 alphabet	 rule	 set	 and	 adjusting	 the	 production	

rules.	Figure	11	shows	an	example	of	modelling	plants	using	L-systems.		

	

Figure	removed	due	to	Copyright	Restrictions	
	

Figure	11:	Taken	from	(P	Prusinkiewicz	&	Lindenmayer,	1997),	this	shows	three	

computed	models	of	plants	generated	using	L-systems.		

	

2.8.6.7	Application	of	Formal	Grammars	in	Music	

As	 noted	 in	 (Rohrmeier	 et	 al.,	 2015),	 Context	 Free	 Grammars	 bear	 a	 strong	

similarity	to	the	method	known	as	Schenkarian	analysis	found	in	musicology	as	

shown	 in	 Figure	 12.	 However,	 Rohrmeier	 notes	 that	 the	 informal	 nature	 of	

Schenkarian	analysis	means	that	the	complexity	it	captures	may	not	necessarily	

be	achieved	using	Context	Free	Grammars.		

	

Figure	removed	due	to	Copyright	Restrictions	
	

Figure	12:	An	example	of	Schenkarian	analysis	example	from	(Rohrmeier	et	al.,	2015).		

The	application	of	 Schenkarian	analysis	 and	music	has	 started	 to	 receive	more	

attention,	 and	 a	 particularly	 interesting	 application	 and	 crossover	 of	 the	 two	

methods	was	 introduced	 in	 (Hamanaka,	 Hirata,	 &	 Tojo,	 2015),	 who	 combined	

Context	 Free	 Grammars	 for	music	 generated	 from	 a	 computational	method	 of	

Schenkarian	analysis	known	as	Generative	Theory	of	Tonal	Music	(GTTM).	This	

context	 free	 grammar	 was	 then	 combined	 with	 a	 probabilistic	 model,	 that	

determined	the	likelihood	of	a	production	rule	being	carried	out.	PCFG’s	have	also	
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been	used	to	compose	jazz	music	(Gillick,	Tang,	&	Keller,	2009).	Figure	13	shows	

an	example	of	a	PCFG	for	use	in	music.		

	

Figure	removed	due	to	Copyright	Restrictions	
	

Figure	13:	Taken	from	(Hamanaka	et	al.,	2015),	this	figure	shows	a	PCFG	

(Probabilistic	Context	Free	Grammar)	where	the	possibility	of	enacting	a	production	

rule	is	controlled	by	probability.		

Formal	 grammars	 have	 been	 applied	 to	 music	 in	 the	 form	 of	 L-systems.	 This	

includes	using	L-systems	to	generate	scores	(Przemyslaw	Prusinkiewicz,	1986).	

2.8.6.8	Computational	Methods	for	Inferring	Formal	Grammars	

It	 is	 clear	 that	 formal	 grammars	 and	 languages	 are	 one	 of	 the	most	 powerful	

methods	 for	 analysing	 and	 producing	 sequences.	 The	 process	 of	 generating	 a	

formal	grammar	from	a	sequence	is	usually	carried	out	by	a	human	being,	who	are	

capable	of	recognising	the	complex	patterns	that	may	emerge	in	a	sequence	due	

to	 human’s	 natural	 ability	 to	 easily	 recognises	 hierarchy	 is	 sequences.	 This	

process	can	be	arduous	however,	and	 it	 is	desirable	 to	automate	 it.	Not	only	to	

save	time,	but	also	to	quickly	implement	formal	grammars	for	various	sequences	

and	apply	computational	processes	to	the	production	rules.		

	

There	are	several	methods	for	inferring	formal	grammars.	Some	of	these	methods	

are	 reviewed	 in	 the	 following	 section.	 Certain	 methods	 rely	 on	 supervised	

learning,	or	search	algorithms	like	genetic	algorithms.	These	methods	are	difficult	

to	 incorporate	 into	a	multi	agent	system	and	may	produce	variable	results	and	

omitted	from	the	following	section	for	this	reason.			

2.8.6.9	Sequitur		
The	final	method	in	this	section	is	only	discussed	briefly,	as	it	is	used	in	a	multi-

agent	model	 that	 is	 the	 focus	of	Chapter	5.	 Sequitur	 (Nevill-manning	&	Witten,	

1997b)	 is	 a	method	 for	 inferring	 hierarchies	 from	 a	 sequence	 of	 symbols	 and	

turning	them	into	a	set	of	production	rules	similar	to	a	formal	grammar.	Sequitur	

is	unique	in	that	it	does	not	produce	a	set	of	production	rules	directly	related	to	

semantics,	rather	its	design	allows	the	creation	of	production	rules	to	capture	the	
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hierarchy	 of	 a	 string,	 allowing	 the	 identification	 of	 the	 hierarchical	 structure	

easily.	It	achieves	this	by	calculating	the	most	frequently	used	pairs	of	characters	

in	 an	 input	 sequence,	 and	 replacing	 them	with	 a	 non-terminal	 symbol.	 It	 then	

reiterates	the	process,	looking	for	frequently	repeated	non-terminal	symbols	that	

can	be	replaced	by	another	character.	It	repeats	this	process	iteratively	in	order	

to	generate	rules	that	capture	the	hierarchy	of	a	sequence.	It	is	discussed	in	more	

detail	in	Chapter	5.			

2.8.7	Levenshtein	Distance	Analysis	

Levenshtein	distance	analysis	is	not	capable	of	producing	sequences.	It	is	however	

a	useful	tool	for	the	analysis	of	sequences,	and	was	important	for	identifying	the	

cultural	 revolution	 that	 transmitted	 the	 song	 from	 eastern	 Australia	 towards	

French	 Polynesia	 (Garland	 et	 al.,	 2011).	 Furthermore,	 it	 is	 useful	 as	 a	 tool	 to	

determine	 how	 accurate	 a	 sequence	 synthesis	 model	 is,	 as	 shown	 in	

(Kershenbaum	 et	 al.,	 2014).	 Levenshtein	 distance	 analysis	 is	 a	 method	 that	

determines	the	similarity	of	two	strings	by	calculating	the	minimum	number	of	

insertions,	 deletions,	 and	 substitutions	 are	 required	 to	 transform	 the	 second	

string,	into	the	first.	There	are	a	number	of	ways	of	computing	the	Levenshtein	

distance	of	two	strings.	The	main	method	used	in	this	thesis	is	the	Wagner-Fischer	

algorithm.		

2.8.8	What	About	Culture?		

From	this	section	we	can	see	that	there	are	several	methods	to	learn,	generate,	

and	analyse	sequences.	Many	of	them	are	complex,	and	it	is	difficult	to	see	how	

cultural	 transmission	may	 affect	 them.	 If	we	used	 the	 learning	 and	 production	

models	in	multiple	simple	artificial	intelligences	and	had	them	interact	with	each	

other,	what	effect	would	they	have	on	the	sequences	they	were	initially	trained	

with?	How	could	rules	that	force	agents	to	interact	in	a	particular	way	change	the	

songs	they	produce?	In	order	to	understand	the	effect	of	culture	better,	we	now	

turn	 our	 attention	 to	 multi	 agent	 models	 with	 an	 emphasis	 on	 cultural	

transmission.		
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2.9	Multi-Agent	models	and	Cultural	Transmission		

Here	we	examine	cultural	transmission	models	for	music,	biology,	and	linguistics.	

We	 begin	 the	 discussion	 by	 clearing	 up	 some	 terminology.	 These	 models	 are	

created	using	Agent	Based	Modelling	and	Multi	Agent	Systems.	It	is	necessary	to	

be	 clear	about	 the	 terms	used	 in	 this	 thesis.	An	Agent	Based	Model	 (ABM)	 is	 a	

model	 that	 attempts	 to	 recreate	 observations	 from	 the	 real	world	 by	 creating	

agents	that	interact	with	each	other	and	their	environment	in	order	to	provide	an	

explanation	of	how	a	system	may	work.	Multi	Agent	Systems	(MAS)	 implement	

agents	interacting	with	each	other	and	their	environment	in	order	to	develop	a	

solution	a	problem.	This	means	that	generally	the	term	Multi	Agent	System	is	used	

in	engineering,	while	the	term	Agent	Based	Model	is	more	common	in	science.	In	

music	technology,	the	term	MAS	has	been	used	widely	as	it	seeks	to	address	issues	

surrounding	music	 composition	 from	an	engineering	perspective.	However,	we	

can	also	view	music	as	being	a	natural	system,	and	argue	that	 the	term	ABM	is	

more	appropriate.	There	are	specific	scenarios	though	where	a	certain	MAS	may	

not	classify	as	an	ABM,	although	these	instances	are	not	discussed	here.	The	title	

of	this	thesis	uses	the	term	“Multi	Agent	Models”.	This	term	was	chosen	as	it	kept	

it	was	the	most	consistent	with	the	titles	and	keywords	used	in	papers	relating	to	

the	original	model	that	inspired	this	project	(Kirke,	Freeman,	Miranda,	&	Ingram,	

2011b;	Kirke,	Miranda,	Rendell,	&	Ingram,	2015).		

	

This	section	opens	with	a	discussion	on	cultural	transmission	models	inspired	by	

music,	 as	 these	models	 served	 as	 the	 genesis	 for	 this	 project.	 As	many	 of	 the	

experiments	for	cultural	transmission	in	music	arose	from	methods	in	language	

evolution,	 we	 briefly	 discuss	 the	 Talking	 Heads	 experiments	 by	 Steels	 (Steels,	

2015),	as	these	served	as	inspiration	for	many	agent	based	models	in	music	and	

biology.	 Finally,	 models	 used	 for	 studying	 cultural	 transmission	 in	 birds	 and	

toothed	cetaceans	are	discussed.	These	models	have	different	goals,	and	as	a	result	

can	differ	greatly.	Models	in	music	are	often	concerned	with	a	creative	output,	or	

a	specific	question	related	to	musicology.	Models	in	biology	can	be	concerned	with	

how	genetics	and	culture	interact.	
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2.9.1	Music	

There	are	numerous	multi-agent	models	that	examine	various	issues	surrounding	

music.	Much	of	this	research	has	focused	on	Evolutionary	Computation	and	A-life	

methods,	and	has	been	collected	 in	work	such	as	(Eduardo	R.	Miranda	&	Biles,	

2007;	Eduardo	R	Miranda	&	Todd,	1999;	Eduardo	Reck	Miranda,	2011).	 	While	

many	of	 the	methods	we	use	are	 inspired	by	work	carried	out	 in	Evolutionary	

Computer	Music,	 the	 literature	 surveyed	 here	 has	 been	 chosen	 because	 of	 its	

relevance	to	the	thesis	project.	Many	models	discussed	in	the	works	mentioned	

focus	on	the	application	of	ALife	and	evolutionary	computing	to	systems	such	as	

sound	 synthesis,	 sound	 design,	 work	 within	 strictly	 defined	 systems	 such	 as	

western	 music	 theory,	 or	 seek	 to	 address	 a	 specific	 task	 in	 music	 such	 as	

improvisation.	Furthermore,	evolutionary	models	do	not	need	to	rely	on	theories	

found	in	cultural	transmission.	For	example,	systems	such	as	genetic	algorithms	

may	 be	 combined	 with	 cultural	 transmission	models,	 but	 they	 do	 not	 rely	 on	

cultural	 transmission	 in	 order	 to	 function.	 For	 this	 reason,	 this	 section	 of	 the	

literature	 review	 focuses	 on	 models	 that	 place	 an	 emphasis	 on	 cultural	

transmission	for	the	evolution	of	music.		

	

Peter	Todd	made	a	significant	contribution	to	the	field	of	Multi-agent	modelling	

for	the	purpose	of	music	with	his	paper	Frankensteinian	Methods	for	Evolutionary	

Music	Composition	(Todd	&	Werner,	1999).	In	this	paper,	Todd	&	Werner	gave	a	

survey	of	the	field	for	evolutionary	computer	music	and	examined	how	many	of	

the	efforts	that	sought	to	create	an	artificial	intelligence	that	could	create	music	

and	 algorithmic	 methods	 by	 composers	 used	 to	 create	 music	 has	 many	

shortcomings.	Todd	suggested	an	alternative	model	that	sought	to	evolve	music	

using	a	society	of	artificial	female	music	critics	and	male	music	composers.		

	

	Todd	&	Werner	developed	a	number	of	models,	including	a	model	that	utilised	

neural	networks,	but	found	that	the	analysing	the	results	of	these	models	proved	

too	complex.	A	simplified	model	was	developed,	where	male	composers	consisted	

of	a	song	of	32	notes	long,	with	initial	male	agents	initialised	with	a	random	song.	

Females	were	equipped	with	a	transition	matrix,	which	is	used	to	score	the	songs	

of	the	male	composers	it	encounters.	Todd	&	Werner	developed	three	different	
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methods	 through	which	 females	 could	evaluate	and	 score	 the	songs	a	group	of	

males	(termed	a	courting	choir)	presented	to	them	using	these	transition	matrices.	

The	female	critics	would	then	choose	a	single	male	from	the	courting	choir	based	

on	 this	score.	This	would	 then	produce	a	new	agent	 from	each	 female	 into	 the	

population,	who	would	share	a	mixture	of	the	musical	traits	of	both	the	mother	

and	father.	Following	this,	a	certain	portion	of	the	population	would	be	killed	off,	

in	order	to	prevent	overpopulation	and	generating	a	surplus	of	data.	The	process	

is	repeated	for	any	desired	number	of	generations.	

	

The	first	method	females	used	to	score	songs,	called	the	local	transition	preference	

scoring	method,	meant	that	female	agents	judged	songs	produced	by	males	based	

on	how	closely	they	mated	their	transition	matrices.	That	is	to	say,	a	male	agent,	

whose	 song	 transition	 probabilities	most	 closely	matched	 those	observed	 by	 a	

female	agent,	would	be	chosen	as	a	mate.	The	second	method	used	by	females	to	

score	 songs,	 called	 the	 global	 transition	 preference	 scoring	method,	 meant	 that	

females	scored	songs	based	on	the	highest	 transition	probability	 found	 in	their	

transition	matrices.	For	example,	if	a	female	has	a	transition	value	from	C-G	of	.75,	

she	will	select	songs	that	have	a	C-G	transition	exactly	three-fourths	of	the	time.	

The	 third	 and	 final	 scoring	method	used,	 called	 the	 surprise	 preference	 scoring	

method,	 in	 which	 females	 score	 a	 males	 song	 based	 on	 how	 unexpected	 the	

transitions	it	hears	are.	Female	critics	achieve	this	by	analysing	the	sequence	they	

hear,	looking	up	the	likelihood	of	that	transition	occurring	in	its	transition	matrix,	

and	subtracting	this	value	from	the	most	likely	transition	it	expects.	For	example,	

if	a	female	has	a	transition	value	of	C-G	at	0.75,	and	a	transition	value	of	C-A	at	

0.25,	every	time	it	hears	the	transition	C-A,	it	will	score	that	value	as	0.75	–	0.25,	

giving	 a	 value	 of	 0.5	 for	 that	 particular	 transition.	 It	 carries	 this	 out	 for	 every	

transition	it	hears	and	sums	the	results.	

	

Firstly,	 it	 was	 found	 that	 using	 the	 local	 transition	 preference	 scoring	 method	

resulted	in	male	agents	converging	on	identical	songs	that	generally	consisted	of	

a	repeating	note,	or	a	song	of	constantly	alternating	notes.	The	global	transition	

preference	scoring	method	produced	ambiguous	results	and	was	not	investigated	

further	in	this	paper.	Finally,	the	surprise	transition	preference	scoring	resulted	in	
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songs	 that	 changed	 rapidly	 over	 time,	 producing	 evolving	 songs.	 Despite	 the	

significant	result	of	the	surprise-based	scoring	method,	the	authors	commented	

that	the	resulting	songs	produced	were	indeed	diverse	and	novel,	but	sacrificed	

musical	structure.	A	quote	from	the	Todd	&	Werner	paper	sums	up	the	musical	

results	nicely:		

	

“Each	 individual	male	 song	 sounds	 crappy—but	 each	 sounds	 crappy	 in	 a	 unique	

way”	

	

The	unimpressive	musical	 achievement	aside,	Todd	&	Werner	 showed	a	 result	

that	is	significant	outside	the	realm	of	music.	Using	a	biologically	inspired	model	

based	 on	 inter-sexual	 interactions,	 it	 is	 possible	 to	 create	 an	 evolving	 sound	

system.	This	is	a	significant	result	and	the	Todd	&	Werner	model	will	be	revisited	

again	later	in	this	document.			

	

The	work	of	Todd	is	significant	and	addresses	how	a	series	of	tunes	may	evolve	in	

a	 community	of	 agents,	but	 it	 is	 a	 system	 that	 relies	heavily	on	western	music	

theory.	Eduardo	Miranda	sought	to	address	this	issue	by	create	a	model	in	which	

a	community	of	agents	equipped	with	appropriate	motor	and	cognitive	skills	may	

evolve	an	 intonation	system	and	repertoire	of	melodies	 from	scratch.	 (Eduardo	

Reck	Miranda,	2002)		

	

In	 Miranda’s	 model,	 agents	 have	 a	 voice	 synthesizer,	 a	 hearing	 apparatus,	

memory,	and	an	enacting	script.	The	voice	synthesizer	is	a	physical	model	of	the	

human	vocal	system,	and	agents	operate	it	using	three	vectors	in	order	to	produce	

sound;	 lung_pressure(n)	 interarytenoid(n)	 and	 cricothyroid(n).	 The	 hearing	

apparatuses	works	 using	 short-term	 autocorrelation,	which	 allows	 an	 agent	 to	

extract	 a	 pitch	 contour	 from	 a	 sound,	 it	 hears.	 The	 algorithm	 can	 adjust	 the	

resolution	of	this	hearing	apparatus,	allowing	the	sensitivity	of	an	agents'	auditory	

perception	to	be	adjusted.		

	

In	 order	 to	 escape	 the	 restrictions	 enforced	 using	 a	 western	 music	 system,	

Miranda	 sought	 to	 escape	 these	 restrictions	 using	 what	 he	 called	 a	 Common	
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Abstract	Representation	of	Melodic	Contour	(CARMEC).	CARMEC	does	not	utilise	

western	music	theory	in	the	sense	of	tones	and	semi	tones.	Agents	create	a	Melodic	

Unit	(MU)	by	following	a	series	of	changes	in	frequency.	Agents	initialise	this	at	

what	is	called	p-ini,	which	tells	the	agent	whether	to	start	the	MU	at	the	middle	

register	(SM),	the	lower	register(SL)	or	the	highest	register	(SH),	after	this,	as	the	

agent	progresses	through	each	time	step,	they	will	carry	out	a	decision	on	which	

direction	to	move	the	melody	in.	Table	1	shows	the	changes	in	pitch	an	agent	may	

carry	out	as	it	moves	through	its	MU.	Figure	14	shows	a	visual	representation	of	a	

melodic	unit.		

	

VLSU	 Very	large	step	up	

LSU	 Large	step	up	

MSU	 Medium	step	up	

SSU	 Small	step	up	

RSB	 Remain	on	same	band	

SSD	 Small	step	down	

MSD	 Medium	step	down	

LSD	 Large	step	down	

VLSD	 Very	large	step	down	

	
Table	2:	The	steps	in	intonation	an	agent	may	move	through	as	they	progress	through	

an	MU.	From	(Eduardo	Reck	Miranda,	2002).	

	

	
Figure	14:	Representation	of	a	melodic	unit.	From	(Eduardo	Reck	Miranda,	2002).	
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In	the	enacting	script,	agents	form	pairs	and	take	one	of	two	roles,	the	agent-player	

or	the	agent-Imitator.	The	agent	player	starts	interaction	by	producing	a	tune,	p1,	

which	is	chosen	at	random	from	its	repertoire,	following	this,	the	agent-imitator	

searches	for	a	similar	tune	in	its	repertoire	and	produces	it.	The	agent	player	then	

analyses	this	tune	p2	and	checks	to	see	if	there	is	no	other	tune,	pn,	that	is	more	

perceptibly	similar	to	p2	than	p1	is.	If	another	tune,	pn,	that	is	more	perceptibly	

similar	is	found,	the	imitation	is	deemed	unsatisfactory.	Otherwise,	it	is	deemed	

satisfactory.	If	the	tune	is	satisfactory,	the	agent-player	will	send	positive	feedback	

to	 the	 agent	 imitator.	 The	 agent	 player	 will	 then	 reinforce	 p2	 in	 its	 memory.	

Otherwise,	 it	 will	 send	 negative	 feedback	 to	 the	 agent-imitator.	 If	 the	 agent	

imitator	receives	negative	feedback,	it	will	check	to	see	if	the	song	it	produced	had	

a	high	success	rate	from	previous	interactions.	If	it	has	had	a	high	success	rate,	

then	 it	 will	 not	 modify	 the	 tune	 it	 produce,	 but	 rather	 add	 a	 new	 tune	 to	 its	

repertoire	that	is	similar	to	p1.		

	

Miranda’s	 model	 produces	 a	 number	 of	 interesting	 results.	 As	 the	 model	

progresses	 through	 time,	 the	 number	 of	melodies	 in	 the	 population	 increases.	

Agents	also	develop	similar	perceptual	repertoires.	The	interesting	aspect	of	the	

model	however	is	that	there	is	not	a	one-to-one	mapping	between	perception	and	

production	 memory.	 Even	 though	 agents	 develop	 near	 identical	 perceptual	

memory,	they	do	not	have	to	develop	identical	motor-memory	in	order	to	enact	

these	tunes.		

	

Miranda	 and	 Todd’s	 models	 were	 further	 discussed	 in	 an	 article	 where	 they	

collaborated	 with	 linguist	 Simon	 Kirby	 in	 order	 to	 contribute	 to	 theories	

surrounding	 the	 development	 of	hierarchical	 structure	 in	music	 by	 addressing	

issues	such	as	emotion	and	semantics.	They	achieved	this	by	adapting	a	vertical	

cultural	 transmission	 model	 known	 as	 the	 Iterated	 Learning	 Model	

(ILM)(Eduardo	Reck	Miranda,	Kirby,	&	Todd,	2003b).	The	 ILM	 is	 an	 important	

model	in	evolutionary	linguistics,	and	its	importance	will	be	discussed	later.	For	

now,	we	will	focus	on	its	importance	in	relation	to	music.		
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In	the	ILM,	there	are	four	components,	a	signal	space,	a	meaning	(semantic)	space,	

agent-teachers	(adults),	and	agent-learners	(children).	The	signal	space	consists	

musical	sections	made	up	of	sequences	of	short	musical	passages	called	riffs.	The	

meaning	space	is	made	up	of	emotions	and	moods,	which	are	combined	to	create	

a	 more	 complicated	 hierarchical	 structure.	 Agent-teachers	 use	 grammars	 to	

convey	emotions	and	moods	with	the	music	they	produce.	The	agent-learners	on	

the	other	hand	induce	these	grammars	by	observing	the	agent-teachers	musical	

behaviour.	Figure	15	shows	the	structure	of	the	basic	iterated	learning	model.	We	

begin	with	an	agent-teacher	and	an	agent-learner.	The	agent-teacher	performs	for	

the	agent-learner	for	an	unspecified	amount	of	time.	After	this	specified	amount	

of	 time,	 the	agent-teacher	 is	 removed,	 and	 the	agent-learner	becomes	 the	new	

agent-teacher.	A	new	agent-learner	is	then	initialised	to	learn	from	the	new	agent-

teacher.	Agent-learners	are	created	with	absolutely	no	knowledge	of	the	musical	

culture	they	are	born	into.		This	process	is	repeated	for	as	many	times	as	specified.		

	
Figure	15:	The	structure	of	the	iterated	learning	model.	After	learning	from	a	teacher	

for	a	specified	amount	of	time,	the	learner	agent	becomes	the	teacher	agent	for	the	

next	generation.	A	new	learner	agent	is	initialised	with	a	randomly	weighted	learning	

model.	This	process	is	repeated	for	as	many	generations	as	specified.		
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In	the	ILM	for	music,	agents	are	equipped	with	a	physical	model	of	a	flute,	chosen	

as	it	is	one	of	the	oldest	musical	instruments	in	existence.	The	flute	has	seven	holes	

and	each	note	corresponds	to	the	notes	A5,	B5,	C6,	D6,	E6,	F#6	and	A6.	A	single	

component	of	a	signal	that	an	agent	produces	consists	of	a	note	and	note	duration.	

Altogether	there	are	six	note	duration	values,	very	short	(vs),	short	(s),	medium	

(m),	long	(l),	and	very	long	(l).	Altogether,	there	are	thirty-five	different	musical	

symbols,	 which	 consist	 of	 combinations	 of	 pitches	 symbols	 and	 note	 duration	

symbols	as	follows:	A5vs,	A5s,	A5M,	.	.	.,	B5l,	B5vl,	and	so	on.		

	

In	the	ILM,	meaning	is	represented	through	the	combination	of	riffs	and	emotions.	

In	total	there	are	24	emotions	that	are	divided	into	8	different	groups.	It	should	be	

noted	that	these	emotions	were	not	chosen	arbitrarily	but	were	picked	due	to	the	

work	 of	 a	 psychologist.	 	 The	 ILM	 is	 significant,	 in	 that	 despite	 the	 fact	 it	 was	

originally	intended	for	linguistics,	its	design	is	easily	adapted	so	that	it	is	possible	

to	 investigate	 specific	 forms	 of	 cultural	 transmission.	 In	 the	 end	 of	 the	 it	 can	

converge	on	formal	grammars	with	a	hierarchal	structure.	This	occurs	simply	due	

to	the	process	of	cultural	transmission.		

	

While	all	of	 these	models	are	remarkable	 for	what	 they	demonstrate	about	 the	

evolution	of	music,	and	the	methods	they	employ	inspire	much	of	the	work	in	this	

thesis,	there	is	a	caveat	that	must	be	considered	in	that	these	models	rely	on	ideas	

that	are	unique	to	theories	of	music.	This	includes	the	use	strict	physical	models	

of	the	vocal	system	and	flute	in	Miranda	and	Kirby’s	models,	the	assumption	of	

either	an	 implicit	or	emergent	 tuning/musical	 system,	or	 the	 reliance	on	 some	

type	 of	 cognitive	 behaviour	 associated	 with	 human	 beings.	 While	 we	 will	 use	

features	of	 these	models	 in	order	to	move	towards	models	of	humpback	whale	

vocalisations,	 it	is	necessary	to	strive	to	 impose	a	minimum	of	 ideas	associated	

with	music	theory	or	human	cognition.	To	do	otherwise	would	be	detrimental	to	

the	model.		

2.9.2	Linguistics	

Kirby’s	iterated	learning	model	was	originally	intended	for	linguistics	and	serves	

as	 a	 useful	 point	 to	 segway	 into	 discussions	on	 the	 application	 of	 agent	 based	
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models	for	linguistics.	Agent	based	models	in	linguistics	were	highly	influential	in	

developing	 theories	 regarding	 cultural	 transmission	 and	 social	 learning	 in	

language.	The	Talking	Heads	experiment	 (Steels,	2015)	 is	widely	 credited	with	

starting	this	trend.		

	

In	the	Talking	Heads	experiment,	there	are	two	robots,	equipped	with	moveable	

cameras,	audio	input	and	output,	and	a	computer	for	cognitive	processing.	There	

is	 also	 a	 magnetic	 whiteboard	 on	 which	 different	 types	 of	 coloured	 shapes	

(triangles,	 squares,	 circles)	 are	 pasted.	 This	 environment	 is	 altered	 between	

games,	and	different	types	of	shapes	that	have	not	been	seen	by	agents	are	added	

to	the	games	as	the	experiment	progresses.	An	important	point	must	not	be	made:	

this	 setup	 was	 created	 in	 multiple	 locations,	 in	 Brussels,	 Tokyo,	 Paris,	 and	

Antwerp.	 The	 agents	 involved	 in	 these	 experiments	 technically	 existed	 on	 a	

server.	The	agents	would	be	‘teleported	to	different	locations	across	the	globe	in	

order	to	play	the	language	games	designed	by	Steels.	Teleportation	here	simply	

meaning	that	the	agents’	state	at	the	last	game	they	played	at	was	uploaded	on	the	

physical	 machinery	 at	 each	 location.	 For	 this	 reason,	 there	 needs	 to	 be	 an	

important	distinguishment	made	here;	 agents	are	 the	entities	 that	 exist	on	 the	

server	 and	 can	 control	 the	 cameras,	 computers,	 and	 audio	 devices	 around	 the	

world.	These	devices	that	consist	of	the	cameras	and	audio	input/output	will	be	

referred	as	the	‘bodies’,	as	in	Steels	description.	Two	agents	can	only	interact	if	

they	are	in	the	same	location.		

	

The	 agents	 can	 be	 broken	 down	 into	 having	 different	 layers	 that	 carry	 out	

different	 cognitive	 capabilities;	 a	 perceptual	 layer	 that	 collects	 data	 about	 the	

images	the	agent	sees,	a	conceptual	layer	that	categorises	the	processed	image,	a	

lexical	layer	that	is	a	changing	repertoire	between	images,	meanings	and	words,	a	

syntactic	 layer	 that	uses	a	grammar	 schemata	 for	 combining	words	 into	 larger	

structures,	and	a	pragmatic	layer,	that	is	responsible	for	the	scripts	that	carry	out	

the	 language	 playing	 games,	 such	 as	 the	 guessing	 game.	 In	 the	 guessing	 game	

agents	choose	an	image	on	the	board	and	communicate	it	to	the	listening	agent	

(hearer).	The	hearer	then	needs	to	decipher	what	image	was	chosen.	If	the	hearer	

fails,	 the	 speakers	 and	 hearer	 adjust	 their	 conceptual	 and	 lexical	 layers.	 This	
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process	is	repeated	and	the	agents	take	turns	acting	as	speaker	and	hearer,	and	

the	 images	 on	 the	 white	 board	 change.	 This	 recreates	 situations	 in	 language,	

where,	for	example,	a	hearer	may	not	for	example	speak	the	same	language	as	the	

speaker.	If	a	successful	communication	system	emerges,	it	shows	that	the	agents	

have	 developed	 some	 kind	 of	 comprehension	 between	 their	 cognitive	 layers,	

despite	 not	 having	 direct	 access	 to	 these	 layers.	 	 Steels	 experiments	 were	

important,	as	they	showed	that	cultural	transmission	has	a	direct	influence	on	the	

learning	of	vocalisations,	and	that	interaction	between	conspecific	was	necessary	

for	these	systems	to	change	and	evolve	over	time.		

	

Other	agent	based	models	in	linguistics	have	examined	theories	associated	with	

language.	These	include	Kirby’s	original	ILM	to	investigate	how	the	how	structure	

can	emerge	in	language	(S.	Kirby,	2001).	Others	have	examined	the	evolution	of	

vowel	 systems	 in	 a	 population	 of	 agents	 (de	 Boer,	 2002).	 Because	 of	 their	

specificity	to	language	they	will	not	be	reviewed	here.		

2.9.3	Biology	

Individual	 based	 models	 of	 cultural	 transmission	 in	 song	 birds	 were	 first	

demonstrated	 by	 Goodfellow	 and	 Slater	 in	 1986	 (Goodfellow	 &	 Slater,	 1986;	

Slater,	1986).	These	models	used	agents	in	a	grid	environment,	with	each	agent	

occupying	a	single	cell	on	the	grid.	Agents	are	able	to	learn	songs	from	other	agents	

in	the	cells	below,	above,	and	beside	them.	Over	time,	agents	on	this	grid	die,	and	

new	 agents	 are	 introduced	 to	 replace	 them.	 Cultural	 evolution	 would	 occur	

through	the	introduction	of	a	new	agent	with	a	new	song	type,	or	through	errors	

in	copying	the	song	of	another	agent.	The	accumulation	of	these	errors	led	to	the	

development	 of	 local	 dialects,	without	 the	 presence	 of	 any	 specific	 convergent	

learning	bias.	Copying	errors	are	a	process	under	which	cultural	evolution	may	

occur.	 In	 this	 process	 through	 a	 mistake	 made	 when	 learning	 (Slater,	 1986).	

Rendell	highlighted	that	errors	in	learning	can	lead	to	new	innovations	in	a	social	

learning	strategies	 tournament	(L	Rendell	et	al.,	2010).	Research	has	also	been	

carried	out	into	how	copying	errors	can	lead	to	variation	in	objects	left	behind	by	

various	cultures	(Eerkens	&	Lipo,	2005).		
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Grid	 based	models	 have	 since	 become	more	 sophisticated	 and	 can	 be	 used	 to	

answer	specific	questions	following	adaption.	Ellers	and	Slaberkoorn	investigated	

how	the	dispersal	of	offspring	and	the	learning	method	used	by	agents	affects	the	

genetic	flow	of	a	population	(Ellers	&	Slabbekoorn,	2003).	It	was	found	that	song	

was	 important	 in	 creating	 an	 incompatibility	 of	 genetic	 divergence	 and	 song	

divergence	between	populations.		

	

A	more	recent	paper	by	Rowell	and	Servedio	(Rowell	&	M.R.,	2012)	examined	how	

population	movement	and	contact	between	populations	with	specific	songs	affect	

cultural	evolution.	Specifically,	they	wished	to	know	if	population	specific	songs	

can	be	maintained	in	a	contact	zone	or	be	replaced	by	a	shared	song.	They	also	

sought	to	identify	the	spatial	patterns	in	the	distribution	of	songs	that	may	result	

from	contact.	To	do	this	 they	 investigated	a	number	of	 influences,	such	as	song	

based	mating	preferences	and	movement	probabilities,	vertical	song	transmission	

(paternal)	versus	horizontal	song	transmission	(non-paternal),	and	genetic	and	

cultural	 transmission.	 They	 found	 that	 population	 specific	 songs	 may	 be	

maintained	given	a	number	of	conditions.	The	largest	of	these	influences	appeared	

to	be	when	females	had	a	preference	for	songs	from	their	own	population.		

	

A	more	novel	model	recently	developed	by	Stowell	et	Al.	(Stowell,	Gill,	&	Clayton,	

2016)	used	a	method	of	recreating	temporal	patterns	of	animal	call	timing	using	

models	 originally	 developed	 for	 networks	 of	 firing	 neurons.	 This	 model	 was	

trained	using	recordings	of	groups	of	domesticated	zebra	finch,	and	found	that	the	

groups	of	animals	have	a	stable	communication	network	that	persists	from	one	

day	to	the	next.	The	model	is	particularly	useful	as	it	includes	information	about	

temporal	interaction,	and	how	these	may	affect	the	time	and	sequencing	of	calls.	

It	also	can	be	used	as	a	generative	model	in	order	to	synthesise	call	patterns	and	

has	information	about	the	relationship	and	influences	between	individuals	in	the	

network.		

	

In	regards	to	cetacean	research,	Agent	Based	Models	of	cultural	transmission	have	

been	developed	for	investigating	cultural	transmission	in	matrilineal	whales	such	

as	 the	killer	whale	 (Hal	Whitehead,	1998)	discussed	 in	the	section	 titled	Social	
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Network	Theory	 in	 this	 chapter,	 	 and	 in	 sperm	whales	 (Maurício	 Cantor	 et	 al.,	

2015).	Since	the	work	of	Whitehead	has	been	discussed	previously,	this	section	

will	focus	on	the	work	of	Cantor.	Cantor	first	carried	out	an	empirical	analysis	of	

the	 vocal	 dialects	 and	 group	 composition	 of	 Sperm	 whale	 in	 the	 Galapagos,	

identifying	their	different	clans	and	vocal	codas.		

2.10	Discussion	

From	this	chapter,	we	have	seen	that	there	are	many	different	things	to	consider	

when	 designing	 a	 multi-agent	 model	 for	 investigating	 humpback	 whale	 song.	

While	 there	have	been	models	designed	 to	 investigate	 cultural	 transmission	 in	

toothed	 whales,	 there	 are	 many	 differences	 at	 play	 in	 terms	 of	 biology.	 This	

includes	differences	in	anatomy	(lack	of	U-shaped	folds	in	toothed	whales),	social	

structure	 (matrilineal	 social	 structures	 found	 in	 toothed	 whales	 are	 absent	 in	

humpbacks,	 as	are	 the	pod	structures	 found	 in	bottlenose	dolphins),	 and	vocal	

function;	dialects	in	killer	whales,	and	codas	in	sperm	whales	codas	are	used	for	

clan	and	unit	identification,	and	signature	whistles	in	bottlenose	dolphins	are	used	

to	 maintain	 group	 cohesion.	 This	 is	 very	 different	 to	 the	 vocalisations	 of	

humpbacks	that	are	involved	in	sexual	interactions.		

	

From	a	modelling	perspective	separate	from	cultural	transmission,	we	have	seen	

that	 there	 are	many	 different	 types	 of	methods	 that	 can	 be	 used	 for	 learning,	

synthesising	 and	 analysing	 symbolic	 sequences	 of	 animal	 vocalisations.	 These	

methods	are	powerful,	but	when	viewed	through	the	lens	of	cultural	transmission,	

we	begin	to	see	that	methods	such	as	artificial	neural	networks	are	inappropriate	

due	 to	 their	 black	 box	 nature.	 For	 this	 reason,	 methods	 used	 for	 sequence	

production	and	learning	in	this	thesis	focus	on	algorithms	that	follow	a	specific	

process	that	can	be	easily	broken	down,	and	their	independent	effects	separated	

from	the	effects	of	cultural	transmission.			

	

Moving	on	to	the	discussion	on	formal	grammars	in	regards	to	humpback	whale	

song,	 James	 Hurford,	 a	 computational	 linguist	 at	 the	 University	 of	 Edinburgh,	

wrote	the	following	in	regards	to	humpback	whale	song	and	birdsong:	
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On	a	narrow	approach	ignoring	numerical	information,	the	overt	patterns	of	natural	

bird	–	and	whale	song	can	mostly	be	adequately	described	by	First	order	Markov	

transition	 tables.	 Some	 unusual	 exceptions	 require	 State	 Chain	 descriptions.	 But	

Phrase	Structure	grammar	is	never	required,	in	terms	of	weak	generative	capacity,	

to	capture	the	overt	patterns.	(Hurford,	2011,	pp.	97)	

	

Hurford	 strongly	 criticised	 the	work	of	 Ryuji	 Suzuki	 (Suzuki	 et	 al.,	 2006),	who	

demonstrated	that	Markov	chains	required	an	unrealistic	amount	of	information	

in	order	to	accurately	capture	the	structure	at	 the	unit	 level.	Hurford	dedicates	

nine	pages	of	his	book	to	arguing	against	Suzuki’s	paper	(Hurford,	2011,	pp.	63–

72),	and	that	only	state	chain	descriptions	are	required.	When	we	examine	the	

application	of	Markov	chains	in	a	cultural	transmission	context	in	Chapter	3,	we	

will	 see	 the	 same	 problems	 emerge	 in	 regard	 to	 the	 amount	 of	 numerical	

information	 required.	 A	 large	 amount	 of	 information	 is	 required	 in	 order	 to	

accurately	capture	the	hierarchy	displayed,	and	in	an	agent-based	model,	agents	

would	 be	 required	 to	 generate	 very	 long	 songs	 in	 order	 to	 accurately	 recreate	

their	 internal	 transition	 matrices.	 We	 will	 also	 see	 that	 at	 a	 unit	 level,	 this	

transmission	results	in	very	short	songs	that	are	not	representative	of	humpback	

song.	 However,	 at	 a	 theme	 level,	 Markov	 chains	 are	 capable	 of	 capturing	 the	

sequential	 structure.	They	are	also	useful	 as	place	holders,	 serving	as	a	 simple	

method	 of	 sequence	 production	 and	 learning,	 and	 can	 be	 thought	 of	 as	 being	

modular	when	used	 in	an	agent	based	model,	being	replaced	by	more	complex	

sequence	production	and	learning	methods	later	on.	The	shortcomings	of	Markov	

models	should	be	taken	into	account	however,	and,	as	Suzuki	suggests,	methods	

found	in	formal	grammars	may	prove	useful	in	addressing	these	shortcomings.		In	

regards	to	Hurford’s	comment	on	the	numerical	problem,	it	is	worth	considering	

that	formal	grammars	have	been	used	in	computer	science	as	a	method	of	data	

compression	 (Cleary	&	Witten,	 1984;	Nevill-Manning	&	Nevill-Manning,	 1996),	

and	 could	 be	 seen	 as	 a	 useful	 method	 to	 reduce	 the	 amount	 of	 incoming	

information	 for	modelling	 purposes.	We	 have	 also	 seen	 that	 formal	 grammars	

have	been	used	to	generate	complex	pieces	of	music	and	generate	complex	fractal	

and	plant	 like	structures.	These	sequences	are	 free	 from	any	 type	of	mappings	

related	specifically	to	language.	These	musical	sequences	and	pattern	generation	
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abilities	 highlight	ways	 in	which	we	 can	 harness	 formal	 grammars	 in	 order	 to	

synthesise	animal	vocal	sequences.	This	issue	is	addressed	further	in	Chapter	5	

where	we	 examine	 the	 applications	 of	 a	 formal	 grammar	method	 in	 regard	 to	

humpback	whale	song	analysis,	but	also	to	cultural	transmission	of	the	song.		

	

A	stronger	argument	has	been	made	against	 the	syntax	of	birdsong.	A	study	 in	

2011	suggested	that	it	was	possible	for	song	birds	to	learn	a	context	free	grammar	

(Abe	 &	Watanabe,	 2011).	 This	 study	 has	 proven	 to	 be	 controversial,	 and	 was	

challenged	 in	 (Beckers	et	 al.,	 2012).	 It	 is	worth	noting	 that	 the	 issue	of	 formal	

grammar	and	birdsong	has	received	a	lot	more	attention	than	humpback	whale	

song.	This	is	mainly	to	do	with	the	fact	that	songbirds	may	be	kept	in	captivity	for	

study,	 and	 while	 experiments	 have	 been	 carried	 out	 in	 song	 playback	 to	

humpbacks	(Tyack,	1983),	experiments	to	teach	songs	such	as	those	carried	out	

by	Abe	and	Watanabe	would	not	be	possible	with	any		baleen	whale.	Humpback	

songs	are	also	significantly	different	to	birds,	and	there	are	many	aspects	of	song	

learning	 that	 can	be	 investigated	 in	a	 laboratory	 setting,	while	humpback	 song	

research	can	only	be	carried	out	in	the	field.		

	

Despite	the	certain	structural	differences	between	bird	and	whale	song,	we	have	

also	seen	that	there	are	many	other	similarities	between	birdsong	and	humpback	

whale	song,	such	as	the	sexual	function	that	it	serves.	This	would	appear	to	make	

agent	 based	 modelling	 of	 birdsong	 the	 ideal	 point	 to	 begin	 our	 investigation.	

However,	the	general	approach	to	modelling	birdsong	has	been	inspired	by	mainly	

grid-based	 models.	 Further	 complicating	 this	 matter	 are	 the	 differences	 in	

migration	and	movement	patterns.	Birds	tend	to	migrate	in	order	to	find	food	in	

winter.	They’re	generally	not	migrating	for	the	very	specific	purpose	of	breeding	

like	humpback	whales	are.	Birds	also	create	a	nest	for	when	they	are	giving	birth,	

and	this	affects	their	spatial	positioning.	Furthermore,	birds	do	not	produce	songs	

for	 a	 sexual	 function	 during	 their	migration	 period.	 This	 complex	 behaviour	 is	

something	 that	 needs	 to	 be	 considered	when	creating	 a	model	 for	 the	 cultural	

transmission	of	humpback	whale	song.	For	this	reason,	the	first	model	developed	

and	discussed	for	this	thesis	implements	movement	algorithms	to	recreate	some	

of	the	phenomena	that	may	influence	cultural	transmission	in	humpback	whale	
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song.	 The	modelling	 approach	 to	 investigating	 social	 networks	 of	 Stowell	 and	

Cantor	 are	 very	 inspiring.	 However,	 Stowell’s	 model	 requires	 data	 that	 is	

unavailable	 to	us,	and	Cantors	 is	specifically	related	to	the	emergence	of	multi-

level	 animal	 societies,	 rather	 than	 how	 they	 influence	 song	 transmission.	

However,	in	Chapter	4,	a	model	that	makes	use	of	social	networks	for	the	cultural	

transmission	of	humpback	whale	song	is	put	forward.		

	

The	 cultural	 transmission	 experiments	 in	 linguistics	 also	 create	 a	 number	 of	

issues,	but	also	point	to	interesting	areas	to	investigate.	The	main	problem	with	

the	models	developed	for	linguistics	is	that	they	generally	rely	on	theories	found	

in	language.	For	example,	the	mapping	between	meanings	in	the	Talking	Heads	of	

Steels,	and	the	emergence	of	structure	in	the	Iterated	Leaning	model	of	Kirby.	We	

cannot	assume	 that	humpback	whale	vocalisations	have	 strict	meaning-symbol	

mappings	 like	 the	 communication	 systems	 that	 arise	 from	 these	 experiments.	

When	 viewed	 through	 the	 lens	 of	 evolutionary	 linguistics,	 there	 is	 very	 strong	

argument	for	vocal	learning	being	a	precursor	to	language,	but	we	cannot	attach	

language	like	properties	onto	the	vocalisations	of	animals.	These	experiments	are	

useful	in	designing	structures	for	experiments	in	cultural	transmission,	and	these	

systems	 are	 useful	 for	 determining	 how	 cultural	 transmission	 will	 affect	 a	

communication	 system	 equipped	 with	 a	 variety	 of	 sequence	 production	 and	

learning	 rules.	 They	 also	 provide	 good	 insight	 in	 how	 to	 create	 experiments	

cognitively.	The	notion	that	agents	cannot	read	minds	like	in	the	guessing	game	is	

one	of	the	key	aspects	of	cultural	transmission,	and	an	approach	that	should	be	

followed	 whenever	 designing	 cultural	 transmission	 experiments.	 Music	

encounters	 similar	 problems	 as	 the	 language	 models,	 but	 it	 does	 present	 an	

interesting	perspective	in	that	we	do	not	need	to	rely	on	the	mapping	of	semantics	

like	in	the	language	systems.		

	

These	are	all	things	that	need	to	be	considered	when	developing	the	models.	Also,	

this	 research	was	 carried	out	 in	 a	 true	 interdisciplinary	 spirit.	 There	 has	 been	

significant	effort	in	order	to	apply	the	methods	from	in	computer	music	research	

to	inform	the	design	of	these	models.	Likewise,	as	we	will	see	in	Chapter	6	there	is	

also	an	effort	made	to	link	these	models	back	to	music.		
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Chapter	3	–	Migratory	Models	and	Cultural	

Transmission		

3.1	Introduction	

This	chapter	focuses	on	the	design	of	the	first	model	used	to	investigate	cultural	

transmission	 in	 humpback	whale	 song.	 The	model	 is	 built	 in	 Python	 using	 the	

SciPy	packages	(Jones,	Eric	and	Oliphant,	T.	and	Peterson,	2001).		

	

This	model	is	part	of	a	collaboration	between	colleagues	in	St	Andrews,	

University	of	Queensland,	and	Plymouth	University.	Specifically,	we	sought	to	

create	an	interdisciplinary	model,	one	that	would	adapt	the	techniques	used	for	

modelling	cultural	transmission	in	music,	so	that	a	broad	range	of	questions	

relating	to	cultural	transmission	in	humpback	whale	song	may	be	addressed.	

Through	the	creation	of	this	model,	we	are	able	to	recreate	specific	scenarios	

that	may	have	a	significant	impact	on	the	cultural	transmission	of	humpback	

whale	song.		

	

The	model	presented	in	this	chapter	is	referred	to	as	the	Migratory	Model.	First,	

we	introduce	the	most	basic	migratory	model,	which	is	referred	to	as	Migratory	

Model	1	(MM1).		MM1	is	the	most	basic	multi-agent	model	in	this	chapter.	It	

assumes	that	sound	transmission	loss,	coupled	with	a	first	order	Markov	model,	

may	be	responsible	for	the	phenomena	of	song	evolution	and	revolution.	The	

model	also	simulates	the	migration	patterns	of	humpback	whales,	and	their	

interactions	on	the	breeding	and	feeding	grounds.		

	

As	we	will	see	in	this	chapter,	this	is	not	the	case,	but	this	serves	as	the	foundation	

for	 our	models,	 and	 allows	 us	 to	 add	 extensions.	 The	migratory	model	 is	 then	

extended	 to	 include	 bias	 towards	 the	 learning	 of	 novel	 songs	 (MM	 1.2),	 the	

introduction	of	production	errors	without	a	novel	song	learning	bias	(MM1.3),	and	

the	coupling	of	production	errors	and	novelty	learning	bias	(MM.	4).		

	

After	 the	 technical	description	of	 the	migratory	model,	we	 investigate	how	the	

movement	 of	 the	 agents	 affects	 their	 songs	 and	 transition	 matrices.	 We	 also	
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discuss	 how	 the	model	 highlights	 the	 importance	 of	 feeding	 grounds	 as	 a	 key	

location	for	cultural	transmission	between	populations.	These	opportunities	for	

cultural	transmission	on	the	feeding	grounds	may	facilitate	song	revolution.		

3.2	Migratory	Model	1	Architecture		

MM1	 has	 a	 cyclic	 structure.	 After	 inputting	 the	 model	 parameters,	 the	 model	

begins	looping	through	a	series	of	rules	that	determine	how	the	agents	behave.		

These	 instructions	can	be	broken	down	into	three	broad	categories;	Movement	

rules,	song	production	rules,	and	song	learning	rules.	Here,	we	will	examine	these	

three	categories	 in	detail.	The	parameters	of	 the	model	and	how	they	affect	 its	

behaviour	are	discussed	later	in	the	chapter.		

	
Figure	16:	The	basic	structure	of	the	model,	and	the	order	in	which	the	rules	are	

carried	out.	

3.2.1	Movement	Rules	

In	all	the	Migratory	Models	presented	in	this	chapter,	agents	exist	on	a	Cartesian	

plane.	When	the	model	is	initialised,	the	user	specifies	the	size	of	the	area	that	the	

agents	 are	 spawned	 in.	 This	 area	 is	 referred	 to	 as	 the	 spawning	 area.	 The	 co-

ordinates	of	the	spawning	area	also	correspond	to	the	co-ordinates	of	the	feeding	
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grounds.	It	is	important	to	note	that	agents	are	initialised	in	a	square	area,	but	the	

breeding	zone	and	feeding	zone	are	circular.	This	was	done	so	that	the	agents	may	

be	initialised	in	specific	patterns	that	do	not	necessarily	correspond	with	the	size	

of	the	feeding	grounds.	When	the	model	is	initialised,	agents	are	assigned	random	

co-ordinates	within	this	spawning	area.	After	agents	are	spawned,	they	follow	a	

series	of	movement	rules	that	controls	their	movement	behaviour.		

	

The	 movement	 rules	 for	 agents	 in	 Model	 1	 are	 based	 on	 animal	 movement	

research	 carried	 out	 by	 Ian	 Couzin	 (Couzin,	 Krause,	 James,	 Ruxton,	 &	 Franks,	

2002).	 Couzin’s	 research	 itself	 is	 inspired	 by	 the	 animal	 flocking	 algorithms	

originally	developed	by	Craig	Reynolds	 (Reynolds,	1995).	 In	Reynolds’	original	

algorithm,	 an	 agent	 behaves	 differently	 depending	 on	 the	 proximity	 of	 other	

agents.	Agents	follow	three	basic	rules;	collision	avoidance,	velocity	matching,	and	

flock	centering.	These	rules	are	explained	by	Couzin	through	the	use	of	different	

types	of	zones	surrounding	an	agent.	These	are	the	Zone	Of	Repulsion	(ZOR),	the	

Zone	Of	Orientation	(ZOO),	and	the	Zone	Of	Attraction	(ZOA)	and	are	shown	in	

Figure	17.	In	Couzin’s	model,	whenever	an	agent	has	another	agent	within	its	ZOR,	

it	will	calculate	a	new	trajectory	in	order	to	avoid	the	other	agents	within	its	ZOR.	

If	 there	 are	 no	 agents	 within	 an	 agents'	 ZOR,	 then	 the	 agent	 will	 attempt	 to	

orientate	itself	with	agents	within	its	ZOO.	Agents	will	also	seek	to	move	towards	

other	agents	within	its	ZOA.		
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	Figure	removed	due	to	Copyright	Restrictions	
	

Figure	17:	Taken	from	(Couzin	et	al.,	2002),	this	figure	shows	the	Zone	Of	Repulsion	

(ZOR),	,	Zone	Of	Orientation	(ZOO),	and	the	Zone	Of	Attraction	(ZOA)	surrounding	an	

agent	in	a	three	dimension	Cartesian	environment.		

MM1	uses	a	 series	of	 rules	 inspired	by	Couzin’s	work	 in	order	 to	 simulate	 the	

migration	patterns	of	humpback	whales	to	the	breeding	grounds,	and	back	to	their	

feeding	grounds.	Couzin’s	work	is	most	relevant	to	flocking	animals,	and	focuses	

on	group	sorting,	and	the	role	of	individuals	within	that	group.	Couzin’s	work	also	

highlights	a	 form	a	 collective	memory	 in	a	group	of	 flocking	algorithms.	While	

humpback	whales	undertake	their	migrations	at	roughly	the	same	time,	they	do	

not	 migrate	 in	 flocks.	 Furthermore,	 it	 is	 unlikely	 that	 there	 is	 some	 type	 of	

collective	memory	in	the	group	in	regard	to	their	movement.		For	this	reason,	the	

rules	were	adapted	to	deal	with	the	fact	that,	with	the	exception	of	mother	calf	

pairs	and	their	escorts,	humpback	whales	do	not	migrate	in	groups.	Due	to	this	

fact	there	is	no	ZOO	associated	with	the	agents	in	MM1.	The	lack	of	ZOO	also	helps	

in	reducing	the	parameter	space	that	needs	to	be	analysed	later	on.	The	ZOA	rule	

has	been	adapted	so	that	the	humpback	agents	will	seek	out	the	nearest	agent	in	

its	ZOA	that	is	singing,	but	only	if	they	are	on	the	breeding	grounds.	This	behaviour	

is	based	on	the	observation	that	male	humpbacks	will	approach	and	interact	with	

other	 singing	 males	 (Smith,	 Joshua	 N,	 Goldizen,	 Anne	W.,	 Dunlop,	 Rebecca	 A.,	

Noad,	2008).	The	ZOR	rule	remains	unchanged,	but	the	method	for	calculating	the	

new	trajectory	an	agent	takes	is	based	on	the	algorithms	described	by	Shiffman	

(Shiffman,	2012).	
	

The	movement	behaviours	of	agents	is	also	determined	by	input	parameters	that	

specify	how	long	the	‘feeding’	and	‘breeding’	season	should	last.	These	control	a	

Boolean	 migration	 state	 within	 each	 agent.	 After	 all	 agents	 carry	 out	 their	

movement	 rules,	 their	 singing	 rules,	 and	 their	 song	 learning	 rules,	 a	 single	

iteration	of	the	model	is	said	to	be	complete.	After	a	specified	number	of	iterations	

have	been	carried	out,	 the	agents	will	have	their	migration	state	activated.	The	

agents	 will	 begin	 to	 move	 towards	 the	 breeding	 grounds,	 with	 the	 size	 and	

location	specified	by	 the	model	parameters.	Once	 they	are	within	 the	breeding	
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grounds,	 the	ZOA	rule	will	be	 carried	out,	 and	 they	will	seek	 the	nearest	 agent	

within	 their	 ZOA,	 and	 also	 within	 the	 breeding	 grounds.	 	 This	 rule	 was	

incorporated	 as	males	 have	 been	 seen	 to	 approach	 other	 singing	males	on	 the	

breeding	ground	(Smith,	Joshua	N,	Goldizen,	Anne	W.,	Dunlop,	Rebecca	A.,	Noad,	

2008).	If	an	agent	wanders	outside	of	the	breeding	ground,	they	will	automatically	

move	 back	 towards	 the	 centre	 of	 it.	 The	 duration	 of	 the	 breeding	 season	 is	 a	

parameter	value	that	can	be	controlled,	and	once	a	breeding	season	is	over	agents	

will	begin	to	migrate	back	to	the	feeding	grounds.	The	parameters	of	the	model	

associated	 with	 movement	 include	 spawning	 area	 size,	 feeding	 ground	 size,	

breeding	 ground	size,	 ZOA	 size,	 ZOR	 size,	 a	 value	 to	 indicate	what	 iteration	 to	

begin	migrating	to	the	breeding	ground,	a	value	to	indicate	what	iteration	to	begin	

migrating	to	the	feeding	ground,	and	the	number	of	migrations	the	agents	carry	

out.	 	 During	 the	 ‘feeding’	 season,	 agents	 carry	 out	 a	 random	walk	 within	 the	

feeding	grounds.		

3.2.2	Song	Production	and	Learning	Rules	

In	all	 the	models	presented	 in	this	chapter,	all	agents	are	equipped	with	a	 first	

order	Markov	transition	matrix.	The	easiest	way	to	understand	Markov	models	is	

to	look	at	an	example	of	training	one	and	using	it	to	synthesise	a	sequence.	For	

example,	consider	a	process	that	produces	the	following	sequence	of	symbols:	

	

𝑆 = [𝐴, 𝐴, 𝐵, 𝐵, 𝐶, 𝐶, 𝐷,𝐷, 𝐴, 𝐴, 𝐵, 𝐵, 𝐶, 𝐶, 𝐷, 𝐷, . . . ]	

	

We	can	generate	a	probability	distribution	by	counting	the	number	of	times	an	

individual	symbol	occurs	and	dividing	it	by	the	total	number	of	units	in	a	sequence.	

Doing	 this	 to	 the	 sequence	 S	 above	 would	 yield	 the	 following	 probability	

distribution:	

	

𝑃 = [	
4
16	,

4
16	 ,

4
16	,

4
16	]	

	

Where	each	element	of	the	array	corresponds	to	the	individual	symbols	as	they	

appear	 in	 the	 sequence,	 IE.	 P	 [1]	 represents	 the	 likelihood	 of	 symbol	 A	 being	

output	by	the	process,	P	[2]	represents	how	likely	the	process	will	output	B	and	
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so	on.	We	may	sample	 from	 this	probability	distribution	and	produce	our	own	

symbols	using	the	following	formula:	

	

																																																																				𝑥 = 	1𝑐 ≤ 𝑈																																																				(1)	

Equation	1	
Where	x	is	our	output	symbol	represented	as	an	integer	(A	=	0,	B	=	1,	C	=	2,	D	=	3),	

c	 is	 the	 cumulative	 summation	 of	 the	 probability	 distribution	 P,	 and	 U	 is	 a	

uniformly	 distributed	 random	number	 between	 0	 and	1.	 This	 type	of	model	 is	

known	as	a	zero-order	Markov	chain.	If	we	were	to	repeat	this	process	a	number	

of	 times,	 we	 could	 generate	 our	 own	 sequence.	 The	 sequence	 below,	 s2,	 is	 an	

example	of	this:	

	

𝑠2 = [	𝐷, 𝐴	, 𝐷, 𝐶, 𝐴, 𝐵, 𝐶, 𝐷	]	

	

It	 is	 easy	 to	 see	 that	 this	model	 has	 not	 captured	 the	 structure	 in	 the	 original	

sequence.	 The	 frequency	 of	 each	 symbol	 is	 nearly	 correct,	 and	 if	 we	 were	 to	

continue	 sampling	 from	 our	 probability	 distribution	 we	 would	 find	 that	 the	

frequency	of	each	symbol	would	approach	our	original	distribution.	To	improve	

this	model	though,	we	can	extend	it	to	what	is	called	a	first	order	Markov	chain.	In	

a	 first	order	Markov	chain,	rather	than	simply	counting	how	many	times	a	unit	

occurs	and	dividing	it	by	the	total	number	of	units,	we	count	how	many	times	a	

unit	follows	another	unit.	For	example,	how	frequently	B	comes	after	A,	or	how	

many	times	C	comes	after	B.	We	could	create	the	probability	distribution	for	the	

unit	A	and	its	subsequent	units	for	the	sequence	S.	This	would	yield	the	following	

probability	distribution	as	seen	in	Table	3.	

	

	 A	 B	 C	 D	

A	 2/4	 2/4	 0	 0	

Table	3:	This	shows	a	simple	probability	distribution	for	which	units	are	likely	to	

follow	A.	Since	A	occurs	a	total	of	4	times	in	the	sequence,	we	simply	count	how	many	

times	each	unit	follows	A.	Two	times	out	of	four,	A	was	followed	by	another	A,	the	

other	two	times	A	occurred	it	was	followed	by	B.		
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We	may	 calculate	 the	 transition	 probability	 distribution	 for	 every	 unit	 in	 our	

sequence	S.	These	probability	distributions	can	then	be	stored	in	what	is	called	a	

transition	matrix.	 This	 is	 a	 square	matrix	 of	 size	N,	where	N	 is	 the	 number	 of	

symbols	 in	our	sequence.	This	 is	 easily	 seen	 in	 table	2.	Figure	18	also	 shows	a	

method	of	visually	representing	the	information	displayed	in	Table	4.		

	

	 A	 B	 C	 D	

A	 2/4	 2/4	 0	 0	

B	 0	 2/4	 2/4	 0	

C	 0	 0	 2/4	 2/4	

D	 2/4	 0	 0	 2/4	

Table	4:	Transition	matrix	for	sequence	S.					

	

	
Figure	18:	State	transition	diagram	for	a	first	order	Markov	chain	of	sequence	S.	

	

Using	 Equation	 1,	 we	 can	 sample	 from	 each	 row	 of	 this	 transition	 matrix	 to	

generate	a	new	song	by	sampling	from	the	first	row	to	produce	a	new	unit,	storing	

that	unit	in	an	array,	and	using	that	output	unit	to	choose	which	row	to	sample	

from	next.	An	example	sequence	created	using	this	method	is	given	below.		
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𝑠3 = [𝐴, 𝐵, 𝐵, 𝐶, 𝐷, 𝐴, 𝐵, 𝐵, 𝐵, 𝐶, 𝐷, . . . ]	

	

It	is	easy	to	see	that	s3	resembles	our	original	sequence	S	clearly	is	a	closer	match	

s2.	The	order	of	the	units	is	correct,	but	the	number	of	units	is	not.	We	can	solve	

this	problem	by	extending	the	model	to	a	second	order	Markov	chain.	Rather	than	

looking	at	what	follows	a	single	unit	in	our	sequence,	we	look	at	combinations	of	

units.	For	example,	which	unit	 follows	the	combination	AA,	AB,	BB,	etc.	We	can	

generate	yet	another	transition	matrix	for	S	as	displayed	in	Table	5.	

	

	 A	 B	 C	 D	

AA	 0	 1	 0	 0	

AB	 0	 1	 0	 0	

BB	 0	 0	 1	 0	

BC	 0	 0	 1	 0	

CC	 0	 0	 0	 1	

CD	 0	 0	 0	 1	

DD	 1	 0	 0	 0	

DA	 1	 0	 0	 0	

Table	5:	Transition	matrix	for	second	order	Markov	chain	of	sequence	S.		

Using	Equation	1,	we	can	sample	from	the	transition	matrix	in	table	3,	providing	

us	with	the	following	sequence:	

	

𝑠4 = [𝐴, 𝐴, 𝐵, 𝐵, 𝐶, 𝐶, 𝐷, 𝐷, 𝐴, 𝐴, 𝐵, 𝐵, 𝐶, 𝐶, 𝐷,𝐷,… ]	

	

Which	is	equal	to	our	original	training	sequence	S.	Markov	chains	can	be	extended	

to	even	higher	orders,	examining	three	units	at	a	time	and	their	subsequent	units.	

An	important	point	before	moving	away	from	the	technical	discussion	of	Markov	

models	 is	 clear	up	a	problem	 in	terminology	 in	 regards	 to	n-gram	models.	The	

concept	of	 an	n-gram	model	was	 introduced	by	Claude	Shannon,	 and	a	n-gram	

model	 is	 equivalent	 to	 an	 (n-1)th	 order	Markov	model	 over	 the	 same	 alphabet	

(Rohrmeier	et	al.,	2015).	
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This	model	is	not	interested	in	modelling	the	hierarchy	of	the	song,	so	although	

Markov	chains	are	not	adequate	for	modelling	the	song	at	a	unit	level,	they	are	

capable	 of	 representing	 transitions	 from	 theme	 to	 theme.	 For	 this	 reason,	 the	

sequences	 being	 produced	 should	 be	 viewed	 as	 being	 at	 the	 theme	 level.	 The	

method	 used	 to	 produce	 and	 learn	 songs	 are	 almost	 identical	 to	 the	 method	

described	 in	 the	 previous	 section	 using	 transition	 matrices,	 but	 with	 added	

dimensions	that	affect	how	agents	 learn	songs.	With	every	 iteration,	 the	agents	

will	‘listen’	to	the	songs	being	produced	by	every	agent.	This	means	that	an	agent	

receives	 a	 sequence	 of	 symbols	 produced	 by	 another	 agent,	 and	 estimates	 a	

transition	matrix	for	this	sequence.	This	estimated	transition	matrix	is	referred	to	

as	the	Song	Representation	(SR).	The	number	of	symbols	that	agents	are	capable	

of	producing	is	controlled	by	the	size	of	the	transition	matrix	they	are	assigned	at	

the	 beginning	 of	 the	model.	 All	 agents	 have	 the	 same	 size	 transition	matrices.		

Agents	are	also	equipped	with	a	Boolean	 state	 that	determines	whether	or	not	

they	will	 produce	 a	 song.	 This	 is	 called	 the	 singing	 state	 variable.	 There	 are	 a	

number	of	factors	that	affect	whether	or	not	an	agent	is	singing.	The	main	factor	

that	controls	 this	state	 is	called	the	singing	probability	vector.	This	 is	a	variable	

that	 controls	 the	 probability	 of	 an	 agent	 singing	 depending	 on	 how	 many	

iterations	of	the	model	have	passed.	Throughout	the	model	run,	the	probability	of	

an	agent	singing	may	be	adjusted.	The	singing	probability	vector	consists	of	a	two-

column	array.	The	first	column	contains	a	probability	value	between	zero	and	one.	

This	probability	value	is	used	by	each	agent	in	a	weighted	coin	toss	to	determine	

whether	or	not	they	will	sing.	The	second	column	contains	the	iteration	number	

which	informs	the	model	when	to	update	the	probability	value	on	the	left	hand	

side	 to	 the	 next	 row	 down	 in	 the	 vector.	 The	 reasoning	 for	 incorporating	 a	

probability	value	relating	the	likelihood	of	singing	to	time	is	due	to	the	fact	that	

male	humpback	whales	are	primarily	observed	to	sing	during	their	migration	to	

the	breeding	grounds	and	on	 the	breeding	grounds.	However,	 there	have	been	

observations	 of	 song	 being	 performed	 on	 feeding	 grounds	 (Vu	 et	 al.,	 2012).	

Generally,	model	runs	are	adjusted	so	that	agents	have	a	very	low	probability	of	

singing	while	on	the	feeding	grounds,	but	when	the	migration	trigger	is	activated,	

the	 probability	 of	 singing	 also	 increases,	 and	 increases	 even	 further	 once	 the	

agents	have	reached	the	breeding	grounds,	thus	recreating	the	singing	frequency	
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patterns	observed	in	the	wild.	An	agent	learning	a	song	will	not	learn	the	song	of	

a	non-singing	agent.	Agents	will	stop	singing	 if	 another	agent	gets	 too	 close	 to	

them,	 as	 observed	 in	 the	 wild	 (Smith,	 Joshua	 N,	 Goldizen,	 Anne	 W.,	 Dunlop,	

Rebecca	A.,	Noad,	2008).	

	

When	an	agent	begins	to	learn	a	song,	it	estimates	a	transition	matrix	for	the	first	

agent	in	the	population.	It	then	calculates	the	distance	between	itself	and	the	same	

agent	it	calculated	the	transition	matrix	for,	using	the	Cartesian	distance	formula	

shown	in	Equation	2.	

	

																																																					𝑑 = 	<(𝑥= −	𝑥?)= +	(𝑦= −	𝑦?)=																																				(2)	

Equation	2	
Where	d	is	the	distance	between	the	two	agents,	𝒙𝟏	and	𝑦?	are	the	Cartesian	co-

ordinates	for	the	listening	agent,	and	𝑥=	and	𝑦=	are	the	Cartesian	co-ordinates	for	

the	singing	agent	it	is	currently	estimating	the	transition	matrix	for.	The	value	of	

d	 is	 then	 used	 to	 calculate	what	 is	 called	 the	 intensity	 factor,	or	 I,	as	 shown	 in	

Equation	3.		

	

																																																																											𝐼 = 	
1
𝑑= 																																																													 (3)	

Equation	3	
The	intensity	factor	determines	how	large	of	an	impact	the	singing	agent’s	song	

will	have	on	the	listening	agent’s	transition	matrix.	This	intensity	factor	is	based	

on	the	loss	of	sound	transmission	in	water	(Fundamentals	of	Underwater	Sound,	

2008).	 The	 listening	 agent’s	 updated	 transition	 matrix	 is	 calculated	 using	

Equation	4	below.	

	

																																																						𝑇F = 𝐴 ∗ (1 − 𝐼) + (𝐵 ∗ 𝐼)																																															(4)	

Equation	4	
Figure	19	shows	the	full	cycle	of	song	production	by	a	singer,	all	the	way	through	

the	song	being	learned	by	a	listener	agent.	It	is	important	to	note	that	even	though	

a	listener	agent	will	calculate	the	transition	matrices	for	agents	that	are	far	from	

the	 listener,	 the	 use	 of	 the	 intensity	 factor	 means	 that	 these	 songs	 have	 no	
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influence	when	they	‘learn’	them.	Figure	20	shows	the	entire	cycle	the	model	goes	

through	and	summarises	the	processes	described	in	this	section.		

	

		

	
Figure	19:	This	shows	the	complete	cycle	of	a	singer	producing	a	song	using	its	

transition	matrix,	and	the	learner	agent	updating	its	transition	matrix	based	on	the	

distance	between	the	two	agents.	
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Figure	20:	The	flow	of	the	model,	showing	all	steps	the	agents	carry	out	in	a	single	

cycle,	and	how	variables	such	as	breeding	season	and	agent	location	affect	model	

flow.	Note,	that	the	“sing	song”	part	of	the	model	cycles	are	also	controlled	by	a	

specified	probability	vector.	

A	summary	of	the	complete	algorithm	is	given	below.	
	

1. Initialise	parameters.		
2. Spawn	in	spawning	arena.		
3. All	agents	produce	one	song.		
4. Avoid	all	other	agents.		
5. Random	walk.	
6. If	feeding	season:	

a. If	not	on	feeding	ground,	move	towards	it.		
b. Every	agent	decides	whether	or	not	to	sing	based	on	probability	

vector.	
c. Sing	if	probability	vector	returns	a	value	of	1.			
d. Learn	songs	from	other	singing	agents.		
e. Increase	iteration	number.		
f. Return	to	step	4.		

7. If	breeding	season:	
a. If	not	on	breeding	grounds,	move	towards	it.		
b. If	on	breeding	grounds,	move	towards	nearest	agent.		
c. Ever	agent	decides	whether	or	not	to	sing	based	on	probability	

vector.		
d. Sing	if	probability	vector	returns	a	value	of	1.		
e. Learn	songs	from	other	singing	agents.		
f. Increase	iteration	number.		
g. Return	to	Step	4.		

3.2.3	Model	Parameters	and	Interaction	

The	parameter	space	for	the	model	is	large.	This	was	a	deliberate	design	choice,	

as	the	model	was	intended	for	investigating	scenarios	where	a	specific	parameter	

setup	may	have	a	significant	effect	on	the	transmission	of	the	song,	and	allows	a	

researcher	to	recreate	scenarios	that	facilitate	cultural	transmission	(for	example,	

a	bottleneck	caused	by	a	small	feeding	ground).	The	parameter	space	is	split	into	

two	different	categories,	universal	parameters	that	represent	parameters	that	are	

universal	to	all	agents	(e.g:	Breeding	ground	size),	and	agent	specific	parameters,	

which	 are	 assigned	 to	 each	 agent	 individually	using	 a	 spreadsheet	 designed	 in	

Microsoft	Excel.	The	full	list	of	parameters	is	given	in	Table	6,	and	whether	they	

are	specified	in	Python	or	on	the	Spreadsheet.		
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Parameter	Name	 Universal		 Spreadsheet	

Zone	of	Repulsion	 X	 	

Spawning	Zone	Height	 X	 	

Spawning	Zone	Width	 X	 	

Number	of	Iterations	 X	 	

Number	of	Migrations	 X	 	

Feeding	Ground	Location	 X	 	

Migration	Trigger	 X	 	

Return	Trigger	 X	 	

Zone	of	Attraction	 X	 	

Singing	Probability	Vector	 X	 	

Input	File	 	 X	

Transition	Matrix	 	 X	

Breeding	Ground	 	 X	

Table	6:	Model	1	Parameters,	and	whether	they	specified	by	model	input	at	Python	

(Universal)	or	using	a	spreadheet.	

The	input	Excel	file	has	a	specific	structure	that	allows	the	unique	variables	to	be	

assigned	to	each	agent.	It	also	determines	the	total	number	of	agents	in	the	model.	

In	the	Excel	file,	each	row	corresponds	to	an	individual	agent’s	breeding	ground	

location,	and	the	transition	matrix	they	are	initialised	with.	All	subsequent	sheets	

are	specified	transition	matrices	that	may	be	assigned	to	any	agent.		

	

It	is	important	to	note	that	the	model	is	deliberately	designed	to	correspond	with	

distance	 values	 on	 the	 Cartesian	 plane,	 and	 the	 sizes	 of	 the	 feedings	 grounds,	

breeding	grounds,	and	zones	of	influence	are	inspired	by	real-world	ratios	rather	

than	by	distance	metrics	such	as	kilometres.		
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3.3	Migratory	Model	1.2	–	Adding	Novelty		

In	model	1.2,	we	sought	to	address	what	certain	researchers	believe	to	be	a	factor	

that	may	drive	changes	in	the	song	of	humpback	whales	-	novelty	(Noad,	Michael	

J.,	Cato,	Douglas	H.,	Bryden,	M.	M.,	Micheline,	Jenner,	Jenner,	2000).	As	discussed	

in	the	literature	review,	the	prevalence	of	singing	on	the	breeding	grounds,	and	

the	fact	that	only	male	humpbacks	have	been	observed	singing,	suggests	that	the	

song	serves	some	kind	of	sexual	function.	This	suggests	that	humpback	whale	song	

may	 serve	 as	 a	 cognitive	 demonstration	 to	 females,	 and	 that	 factors	 such	 as	

novelty	may	be	what	drives	song	change.	Novelty	can	be	a	confusing	term,	so	we	

define	it	here	as	the	transition	to	an	unexpected	unit	based	on	an	agent’s	internal	

SR.	 In	other	words,	novelty	 is	 the	 inclusion	of	unexpected	transitions	 from	one	

unit	to	another.	For	example,	if	an	agent	expects	to	hear	a	transition	from	1	to	4	

based	 on	 its	 internal	 SR,	 but	 instead	 hears	 a	 transition	 from	 1	 to	 5,	 and	 this	

transition	is	not	accounted	for	in	its	SR,	then	this	transition	is	deemed	to	be	‘novel’.		

	

In	order	to	achieve	this	definition	of	novelty,	it	is	calculated	using	the	agent’s	built-

in	 transition	matrix.	 The	 novelty	 algorithm	 takes	 inspiration	 from	 the	work	 of	

Todd	and	Werner	(Todd	&	Werner,	1999),	where	a	transition	matrix	is	used	to	

calculate	a	novelty	score	that	is	used	by	female	agents	to	decide	whether	or	not	

they	will	mate	with	a	male	agent.	Novelty	is	calculated	as	the	difference	between	

the	 transitions	 an	 agent	 expects	 to	 hear	 based	 on	 its	 own	 SR	matrix,	 and	 the	

transitions	it	actually	hears.	These	differences	are	then	summed,	and	divided	by	

the	total	number	of	transitions	observed,	in	order	to	create	α,	the	novelty	value,	

which	is	then	used	to	update	the	listener’s	SR	matrix	as	follows:	

	

																																														𝑆𝑅JK = 𝑆𝑅J ∗ L1 − (𝐼 ∗ α)M + 𝑆𝑅N ∗ (𝐼 ∗ α)																											(5)	

	

Figure	21	shows	the	differences	between	the	two	learning	strategies,	and	

explains	them	in	more	depth.	
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Figure	21:	Comparison	of	the	learning	processes	of	Models	1	and	1.2	using	a	common	

initial	 spatial	 scenario.	 At	 iteration	 i	 the	 listener	 hears	 two	 equidistant	 singers.	

Depending	which	model	 is	 implemented,	 the	 listener’s	 song	 representation	 (SRl′)	at	

iteration	i+1	will	vary.	Using	Model	1,	the	transition	probabilities	of	both	singer	1	(SRs1)	

and	2	(SRs2)	will	be	equally	represented	in	the	resulting	listener’s	SR.	Using	Model	2,	

the	listener	will	favour	in	its	resulting	SR	the	more	“unexpected”	transitions	of	singer	

1.	

	

3.4	Migratory	Model	1.3	–	Adding	Production	Errors	

As	 discussed	 in	 the	 previous	 chapter,	 production	 errors	 are	 a	 term	 used	 to	

describe	 when	 an	 animal	 introduces	 a	 new	 element	 to	 its	 vocalisation.	 These	

simple	mistakes	could	be	one	of	the	things	that	drive	cultural	evolution,	and	may	

be	an	important	aspect	of	the	song	to	model.	In	order	to	investigate	this	possible	

cultural	 driving	 force,	Migratory	Model	 1	was	 extended	 to	 include	 production	

errors	in	the	absence	of	the	novelty	learning	bias	introduced	in	Migratory	Model	

1.2.		
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In	order	 to	model	production	errors,	 a	weighted	edit	 approach	 inspired	by	 the	

Levenshtein	 distance	 algorithm	 is	 introduced.	 Using	 this	 algorithm,	 we	 may	

control	 the	 probability	 of	 a	 theme	 being	 inserted,	 deleted,	 or	 substituted	 for	

another.	 Personal	 observations	 from	 both	 Noad	 and	 Garland	 noted	 that	 there	

appeared	 to	be	a	higher	rate	of	 insertions	of	 themes	 to	 the	 song.	However,	 the	

probability	 vector	 is	 a	 variable	 that	 can	 be	 controlled.	 The	 likelihood	 of	 a	

production	 error	 being	 carried	 out	 is	 controlled	 by	 a	 weighted	 coin	 toss.	 The	

weighting	of	this	coin	toss	is	a	model	parameter.	The	production	algorithm	works	

in	the	following	manner:	

1. Agent	produces	a	song	using	its	SR	transition	matrix.		

2. A	production	error	occurs	with	the	probability	Pe,	a	parameter	in	the	model	

simulation.	If	that	probability	is	achieved	against	a	random	number	draw,	

then	select	a	position	in	the	sequence	for	editing	at	random.		

3. Insertion,	 substitution,	 or	 deletion	 is	 selected	 based	 on	 the	 probability	

vector,	and	performed	at	the	sequence	position	selected	in	step	2.	In	the	

case	of	insertions	and	substitutions,	the	new	theme	is	chosen	at	random.		

3.5	Migratory	Model	1.4	–	Coupling	Production	Errors	and	Novelty	

The	final	model	is	the	most	complex,	where	production	errors	are	coupled	with	

the	 novelty	 algorithm	 introduced	 in	Model	 2	 and	 the	 distance	 algorithm	 from	

model	 1.	 This	 allows	 for	 the	 investigation	 of	 all	 three	mechanisms	 in	 a	 single	

model,	and	examine	the	cultural	evolution	of	the	system.	

3.6	Model	Analysis	

This	 section	 presents	 a	 series	 of	 experiments	 designed	 to	 investigate	 how	 the	

various	parameters	of	the	model	affect	its	behaviour.	It	begins	by	discussing	the	

analysis	 methods	 used	 to	 determine	 differences	 between	 the	 output	 of	 each	

agent’s	 transition	matrices	 and	 songs.	 Following	 this,	 each	model	 is	 discussed	

independently,	 examining	 how	 distance,	 novelty,	 production	 errors,	 and	 the	

coupling	of	novelty	and	production	errors	affect	the	model’s	output.		

3.6.1	Analysis	Methods		

Here	we	discuss	 the	various	methods	 that	 are	used	 in	analysing	 the	model.	All	

analysis	was	carried	out	in	the	Matlab	environment.		



	 76	

3.6.1.1	Matrix	Dissimilarity	Scoring	

In	 order	 to	 analyse	 the	model,	 a	method	 of	measuring	 an	 overall	 dissimilarity	

between	every	agent’s	transition	matrices	was	developed	(private	communication	

with	partners	as	St	Andrews).	Song	convergence	is	measured	by	calculating	the	

mean	transition	matrix	dissimilarity	between	pairs	of	agents	within	and	between	

breeding	 populations.	 The	 transition	 matrix	 dissimilarity	 between	 two	 agents	

(agent	a	and	agent	b)	is	calculated	using	the	following	formula:	

	

																																																															11|𝑆𝑅Q − 𝑆𝑅R|ST

U

TV?

																																																 (6)
U

SV?

	

Equation	5	

Where	 n	 is	 the	 size	 of	 the	 transition	 matrix,	𝑆𝑅Q 	and	 𝑆𝑅R 	are	 the	 transition	

matrices	 for	 agents	 a	 and	 b	 respectively,	 and	 i	 and	 j	 are	 the	 indices	 for	 these	

transition	matrices.	These	values	are	averages	across	pairs	of	agents	in	the	same	

breeding	populations,	and	pairs	of	agents	in	different	populations.	This	gives	us	

values	for	transition	matrix	dissimilarities	in	every	iteration	of	the	model.		These	

values	 may	 be	 plotted	 over	 time	 to	 give	 us	 a	 chart	 that	 shows	 how	

similar/dissimilar	the	two	populations’	transition	matrices	are.	We	can	also	use	

this	to	determine	how	dissimilar	the	SRs	of	the	agents	in	a	single	population	are.		

	

Matrix	dissimilarity	was	chosen	as	it	provides	a	representation	of	the	differences	

in	internal	song	representation	between	agents.	Levenshtein	distance	is	another	

method	that	could	have	been	used	to	compare	songs	between	agents.	However,	

analysing	the	songs	does	not	provide	any	insight	to	the	probabilities	stored	in	the	

transition	matrices.	For	example,	it	is	possible	for	two	agents	to	produce	the	same	

song	but	have	fairly	different	transition	matrices.		

3.6.2	Parameter	Exploration		

In	order	to	investigate	Model	1,	a	series	of	experiments	were	run	in	which	the	sizes	

of	the	spatial	parameters	were	adjusted.	In	these	experiments,	the	values	of	the	

ZOR,	ZOA,	FGS	and	BGS	were	varied	 so	 that	 an	understanding	 could	be	gained	

about	how	they	affect	 the	model.	Table	7	shows	the	parameters	and	the	values	

they	were	 varied	with.	 All	 these	 values	were	 combined	 so	 that	 a	 total	 of	 625	



	 77	

experiments	were	created,	allowing	for	every	possible	combination	of	ZOR,	ZOA,	

FGS	 and	BGS.	 The	 number	 of	 agents	was	 limited	 to	 20,	 only	 a	 single	 breeding	

ground	 was	 used,	 and	 all	 transition	 matrices	 were	 randomly	 initialised.	 Each	

model	 was	 run	 for	 a	 total	 of	 12,000	 iterations.	 Here,	 1000	 iterations	 roughly	

correspond	to	a	single	month	in	a	year.		

	

ZOR	 ZOA	 FGS	 BGS	

1	 1	 50	 50	

5	 10	 100	 100	

10	 20	 200	 200	

30	 50	 300	 300	

30	 100	 600	 600	

Table	7:	The	values	used	for	the	parameter	exploration	in	MM1.	

	
Figure	22:	The	matrix	dissimilarity	results	for	MM1	parameter	exploration.	Each	

column	corresponds	with	an	increase	in	the	value	of	ZOA.	Within	the	columns,	each	

row	corresponds	to	different	combinations	of	FGS	and	BGS,	with	a	specified	value	of	

ZOR	shown	on	the	Y-axis.		In	each	column,	after	moving	up	25	cells,	the	ZOR	value	

increases.		
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Figure	22	shows	the	summed	transition	matrix	dissimilarity	results	at	the	end	of	

each	 model	 run.	 In	 this	 figure	 each	 cell	 in	 the	 matrix	 contains	 the	 matrix	

dissimilarity	score	 for	 that	experiment.	Each	column	corresponds	to	a	different	

ZOA	 value.	 In	 every	 column,	 after	 moving	 25	 rows	 up,	 the	 value	 for	 the	 ZOR	

increases.	 Those	 25	 cells	 contain	 every	 combination	 of	 FGS	 and	 BGS	 for	 that	

specific	value	of	ZOR	and	ZOA.	This	is	demonstrated	by	the	red	box	at	the	top	right	

hand	corner	of	Figure	22,	which	contains	the	combination	of	all	FGS	and	BGS	sizes,	

combined	with	the	ZOR	value	of	30,	and	the	ZOA	value	of	100.	The	brighter	the	

colour	of	the	cell	the	greater	the	dissimilarity	between	the	transition	matrices	of	

the	agents	within	 that	population.	 If	we	 take	 these	meta-blocks	of	25	 cells	 and	

calculate	the	mean	average,	then	Figure	23	is	obtained.	This	figure	describes	the	

general	behaviour	of	the	model	in	relation	to	specific	ZOR	and	ZOA	values.			

	
Figure	23:	The	mean	of	the	cell	experiment	metablocks.	

Figure	23,	shows	that	the	ZOR	and	ZOA	have	a	major	influence	on	the	SRs	of	our	

agents.	If	our	ZOA	value	is	greater	than	ten,	with	a	ZOR	value	lower	than	10,	our	

agents	converge	completely	on	identical	transition	matrices.	Interestingly,	a	ZOR	

of	 10	 combined	 with	 a	 ZOA	 value	 of	 greater	 than	 20	 returns	 the	 highest	

dissimilarity	score.	This	is	due	to	the	fact	that	once	our	ZOR	reaches	a	high	enough	

value	the	agents	will	never	be	able	to	enter	each	others	ZOA’s,	not	allowing	them	

to	get	close	enough	to	learn	another	agents	song.	From	this	diagram,	we	can	learn	

certain	things	about	the	model:	
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1. A	model	run	with	a	high	ZOA	(of	10	or	greater),	coupled	with	a	ZOR	of	less	

than	10,	results	in	all	agents	in	a	population	converging	on	the	same	song.		

2. A	 high	 ZOR	 (of	 20	 or	 greater)	 returns	 a	 relatively	 consistent	 level	 of	

dissimilarity	across	runs,	no	matter	what	the	size	of	the	ZOA	is.	This	is	likely	

due	to	agents	not	being	able	to	get	close	enough	to	each	other	to	learn	each	

other’s	songs.		

3. A	ZOA	of	20	or	greater,	and	a	ZOR	of	10,	results	in	very	high	dissimilarity	

across	 the	 population.	 This	 is	 due	 to	 the	 agents	 trying	 to	 approach	one	

another,	but	only	being	able	to	learn	a	very	small	portion	of	another	agent’s	

song.	 Since	 the	 matrices	 are	 randomly	 initialised,	 this	 returns	 highly	

dissimilar	matrices.		

	

These	insights,	while	they	may	seem	trivial,	inform	us	about	the	behaviour	of	the	

model.	 With	 the	 exception	 of	 scenario	 1,	 most	 of	 these	 situations	 are	 not	

biologically	plausible,	but	 they	do	 inform	us	about	 the	 limits	of	our	model	 and	

narrow	the	parameter	space	that	needs	to	be	explored	considerably.			

	

In	order	to	explore	the	parameter	space	of	the	Migratory	Model	1	further,	a	series	

of	 96	 experiments	 were	 created	 that	 varied	 the	 BGS,	 FGS,	 ZOR,	 ZOA,	 SR	 size	

(number	of	potential	units),	and	population	size.	 In	every	experiment,	only	one	

breeding	ground	was	used,	and	the	model	was	carried	out	over	12,000	iterations.	

After	running	these	experiments,	the	SR	dissimilarity	was	calculated	for	the	start	

of	the	each	model	(iteration	1),	and	the	end	of	each	model	(iteration	12,000).	The	

difference	between	these	two	values	was	calculated	in	order	to	generate	the	Delta	

Mean	SR	Dissimilarity	(DMSRD).	Due	to	the	large	parameter	space,	a	novel	plotting	

approach	was	required,	as	shown	in	Figure	24.	This	figure	shows	the	delta	mean	

SR	dissimilarity	on	the	Y-axis,	and	the	ZOA	on	the	X-axis	for	each	of	the	four	boxes.	

Each	box	corresponds	with	a	different	sized	population	and	SR.	So,	for	example,	

the	top	left	hand	box	corresponds	with	a	population	size	of	10,	a	matrix	size	of	5.	

To	 distinguish	 each	 model,	 unique	 symbols	 were	 applied	 for	 the	 different	

combinations	of	BGS,	FGS,	and	ZOR,	as	shown	in	the	table	on	the	far	right	of	the	

figure.	 The	DMSRD	 informs	us	 of	how	our	model	 converged	 in	 throughout	 the	
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entire	experiment,	so	a	higher	DMSRD	corresponds	with	models	converging	on	

similar	songs	and	SR’s.		

	

 
Figure	24:	This	figure	shows	the	results	of	the	parameter	exploration	in	the	model.	It	

shows	the	delta-mean	SR	dissimilarity	calculated	for	every	experiment	carried	out	for	

the	parameter	exploration,	a	total	of	32	experiments.		

Figure	24	gives	us	an	idea	of	how	Migratory	Model	1	behaves	in	regard	to	these	

various	influences.	Looking	in	the	top	left	hand	box,	we	can	see	that	a	high	FGS,	

BGS,	and	low	ZOR	and	ZOA	(Symbol	4),	results	in	the	agents	not	converging	on	the	

similar	SR’s.	However,	if	we	increase	the	population	size,	the	agents	will	converge	

on	more	similar	SR’s	since	they	are	in	closer	proximity	to	each	other.	From	this	we	

can	see	that	an	average	distance	between	the	agents	is	influential	in	determining	

whether	they	will	converge	on	similar	songs	or	not.	The	key	point	being	that	as	

the	 concentration	 of	 agents	 within	 a	 certain	 area	 increases,	 the	 DMSRD	 also	

increases.	 This	 is	 again	 reflected	 in	 that	 across	 these	 experiments,	 DMSRD	

increases	as	ZOA	increases,	due	to	the	influence	of	the	attraction	rule	discussed	in	

the	methods	section.		This	is	best	shown	by	the	cluster	of	experiments	in	the	top	

right	hand	box,	with	a	high	ZOA	value.	This	clustering	informs	us	that	the	model	is	

behaving	as	expected,	and	that	parameters	that	have	any	influence	on	the	distance	

between	the	agents	will	affect	the	DMSRD. 
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3.7	Results	

3.7.1	Model	1:	Distance	

All	models	were	 run	with	 the	 same	 set	 of	 initial	 parameters	 in	 order	 to	make	

results	comparable	across	the	different	learning	scenarios.	All	models	were	run	

with	the	three	different	feeding	ground	sizes	(FGS	=	50,	100,	and	500)	and,	unless	

explicitly	stated,	agent	SR	matrices	were	initialised	with	each	element	drawn	from	

a	uniform	random	distribution	in	the	range	[0	1]	and	then	normalised.	For	each	of	

the	 following	 modelling	 scenarios	 50	 model	 experiments	 were	 run	 to	 get	 a	

representative	view	of	the	model’s	behaviour.	Each	model	was	run	with	30	agents,	

with	 agents	 1-15	 being	 assigned	 to	 breeding	 ground	 1,	 and	 agents	 16	 to	 30	

assigned	to	breeding	ground	2.		

	
Figure	25:	Mean	SR	dissimilarity	calculated	every	100th	iteration	(total	number	of	

iterations:	24,000)	across	the	population	of	agents	of	model	1.	The	light	grey	lines	

represent	50	modelling	experiments	carried	out	in	this	scenario	while	the	thick	black	

line	represents	the	median	of	them.	It	should	be	noted	that	because	many	of	

experiments	tend	towards	zero	later	in	the	run,	the	median	appears	distorted	at	

certain	instances	in	these	figures.	Mean	SR	dissimilarity	within	populations	is	

reported	in	the	upper	panel	while	the	one	between	populations	is	plotted	in	the	lower	

panel.	The	dark	and	light	grey	areas	represent	breeding	and	feeding	seasons	

respectively.	In	this	scenario	FGS	=	50.	The	horizontal	dashed	and	dotted	lines	

represent	the	mean	SR	dissimilarity	estimates	calculated	respectively	in	2002	and	

2003,	at	the	end	breeding	grounds	in	eastern	Australia.	
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Figure	26:	Mean	SR	dissimilarity.	FGS	=	100	for	model	1.		

	

	
Figure	27:	Mean	SR	dissimilarity	over	time	for	FGS	=	500	for	model	1.	

In	all	runs	the	mean	within-population	SR	dissimilarity	decreased	rapidly	during	

the	first	breeding	season	(Figure	25,	Figure	26,	and	Figure	27).	When	FGS	was	set	

to	50,	once	mean	SR	dissimilarity	reached	0	it	remained	generally	low	across	the	

remainder	of	 the	experiments	with	the	exception	of	 the	 first	 feeding	season,	 in	

which	a	slight	increase	was	observed	in	smaller	feeding	grounds	due	to	the	mix	of	

agents	 from	the	two	breeding	populations	(with	different	SRs).	Mean	between-

population	SR	dissimilarity	decreased	during	the	 first	 feeding	season	as	agents	

returned	to	a	small	feeding	ground	(Figure	25,	lower	panel).	At	an	intermediate	

feeding	 ground	 size	 (FGS	 =	 100,	 Figure	 26),	 between-population	 dissimilarity	

decreased	 less	 sharply	 during	 the	 first	 feeding	 season	 (compared	 to	 FGS	 =	 50,	
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Figure	25)	but	then	increased	a	bit	more	during	the	second	breeding	season	once	

the	 populations	 separated	 (Figure	 26,	 lower	 panel).	 If	 the	 feeding	 ground	was	

large	enough	that	the	two	breeding	populations	never	met	(FGS	=	500),	the	mean	

SR	dissimilarity	between	them	remained	constant	across	the	two	migration	cycles	

(Figure	27,	lower	panel),	indicating	divergence	between	populations	at	the	same	

time	 as	 convergence	 within	 each	 population	 itself.	 Generally,	 song	 sequences	

produced	in	all	scenarios	using	model	1	were	short.	This	was	due	to	the	agents’	

convergence	on	sparse	SR	matrices	with	transition	probabilities	made	of	0s	and	

1s.	

3.7.2	Model	2:	Distance	+	Novelty	bias	

The	introduction	of	novelty	led	to	a	greater	level	of	SR	dissimilarity	both	within	

and	between	populations.	During	the	breeding	season,	SR	dissimilarity	between	

populations	 increased,	 showing	 that	 the	 separated	 populations’	 SRs	 diverged	

(Figure	 28).	 While	 SR	 dissimilarity	 between	 populations	 increased,	 it	 was	

generally	consistent	during	the	breeding	season	within	populations.	It	would	then	

decrease	within	populations	before	beginning	to	rise	again	during	the	breeding	

season.	 During	 both	 breeding	 seasons,	 the	 within-population	 SR	 dissimilarity	

converged	to	roughly	the	same	levels.	The	behaviour	of	the	novelty	algorithm	was	

unusual,	and	this	is	discussed	further	in	section	6.3.	

	
Figure	28:	Mean	SR	dissimilarity	over	time	for	FGS	=	50	for	model	2.		
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3.7.3	Model	3:	Distance	+	Production	error	

In	this	scenario	the	distance	algorithm	from	model	1	was	coupled	with	weighted-

edit	 production	 errors.	 Although	 these	 models	 were	 run	with	 the	 usual	 three	

feeding	ground	sizes	(FGS	=	50,	100	and	500),	we	present	here	only	the	results	

relative	to	FGS	=	50	in	order	to	simplify	the	presentation	of	results	under	the	three	

different	edit	probabilities.	The	results	of	experiments	with	FGS	=	100	and	500	

can	be	found	in	Appendix	2.	The	introduction	of	song	production	errors	triggered	

more	 abrupt	 fluctuations	 in	 the	 mean	 SR	 dissimilarity	 compared	 to	 previous	

results	(Figure	29,	Figure	30,	and	Figure	31).	Despite	different	error	probabilities,	

during	 each	 feeding	 season	 the	 two	 breeding	 populations	 still	 converged	 on	

similar	SRs	while	diverging	between	populations.	Higher	error	probabilities	(pe	=	

0.01,	 0.1)	 however	 limit	 the	 degree	 of	 conformity	 within	 populations.	 The	

introduction	of	production	errors	also	increased	the	mean	between-population	SR	

dissimilarity	during	the	breeding	seasons.	Furthermore,	higher	error	probabilities	

resulted	in	increased	mean	SR	dissimilarity	both	between	and	within	populations	

across	the	entire	experiment	(Figure	30	and	Figure	31).	Compared	to	model	1,	

feeding	 seasons	 of	 model	 3	 present	 more	 pronounced	 SR	 dissimilarity	

fluctuations,	especially	for	error	probabilities	above	0.001	(Figure	30	and	Figure	

31),	even	though	we	still	see	convergence	between	the	populations	in	this	small	

feeding	ground	scenario	 (FGS=50).	To	 test	whether	 this	model	 scenario	gave	a	

genuinely	different	outcome,	as	opposed	to	simply	slowing	down	the	trends	seen	

in	 model	 1,	 we	 ran	 a	 model	 for	 10	 migration	 cycles	 (FGS=50,	 p=0.001),	 and	

confirmed	that	production	errors	kept	the	populations	from	achieving	complete	

within-population	convergence	over	these	timescales	(Figure	32).	
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Figure	29:	Mean	SR	dissimilarity	over	time	for	FGS	=	50	and	p	=	0.001	for	model	3.		

	
Figure	30:	Mean	SR	dissimilarity	over	time	for	FGS	=	50	and	p	=	0.01	for	model	3.		
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Figure	31:	:	Mean	SR	dissimilarity	over	time	for	FGS	=	50	and	p	=	0.1	for	model	3.		

	

	

	
Figure	32:	Mean	SR	dissimilarity	calculated	for	every	100th	iteration	for	10	migration	

cycles	for	model	3.		

3.7.4	Model	4:	Distance	+	Novelty	bias	+	Production	error	

In	model	4,	the	design	of	model	2	was	coupled	with	the	weighted-edits	algorithm	

to	test	how	song	production	errors	might	alter	the	effect	of	novelty	bias	on	the	

cultural	evolution	of	song.	Similarly	to	model	3,	only	results	from	an	experiment	

with	 a	 small	 feeding	 ground	 (FGS=50)	 are	 presented	 (the	 rest	 are	 available	 in	

Appendix	 2).	 The	 introduction	 of	 song	 production	 error	 did	 not	 qualitatively	

change	the	impact	of	novelty	bias,	as	the	results	obtained	were	similar	to	those	for	
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model	 2	 (Figure	 28)	However,	 high	 song	 production	 error	 (pe	 =	 0.1)	 lead	 to	 a	

steeper	increase	in	mean	SR	dissimilarity	during	the	first	breeding	season	of	the	

simulations	compared	to	lower	production	errors	(pe	=	0.001	and	0.01,	Figure	33	

and	Figure	34	respectively)	and	results	of	model	2	(Figure	8,	9	and	10).	 	 In	all	

cases,	 there	was	a	 lack	of	divergence	between	 the	breeding	populations	as	 the	

meta-population	as	a	whole	converged	to	a	low	SR	dissimilarity	condition.	

	

Even	 with	 a	 very	 low	 edit	 probability	 (pe	 =	 0.001,	 Figure	 33)	 both	 breeding	

populations	 never	 reach	 complete	 convergence,	 i.e.,	 mean	 SR	 dissimilarity	 is	

always	greater	than	zero.	The	mean	SR	dissimilarity	trends	shown	in	Figure	33,	

Figure	34,	Figure	35	are	also	consistent	over	a	larger	number	of	migration	cycles.	

There	 is	 a	 pronounced	 cyclical	 pattern	 of	 increasing	 variation	 (i.e.,	 increasing	

dissimilarity)	during	breeding	seasons	when	populations	are	segregated,	which	is	

then	 erased	 by	 the	 rapid	 learning	 of	 any	 new	 variations	 by	 the	 wider	 meta-

population	once	they	are	reunited	on	the	feeding	grounds	(Figure	36).	

	

	
Figure	33:	:	Mean	SR	dissimilarity	over	time	for	FGS	=	50	and	p	=	0.001	for	model	4.		
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Figure	34:	:	Mean	SR	dissimilarity	over	time	for	FGS	=	50	and	p	=	0.01	for	model	4.		

	

	
Figure	35:	Mean	SR	dissimilarity	over	time	for	FGS	=	50	and	p	=	0.1	for	model	4.		

.		
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Figure	36:	Mean	SR	dissimilarity	every	100th	iteration	for	model	4	carried	out	over	

10	migration	cycles.	

3.8	Discussion		

This	study	was	inspired	by	a	broad	spectrum	of	examples	of	vocal	convergence	

across	taxa;	these	have	been	highlighted	by	different	disciplines	such	as	biology,	

linguistics	and	music.	Moreover,	the	study	of	animal	vocal	convergence	is	relevant	

in	 unveiling	 the	 characteristics	 of	 animal	 social	 structures	 (Tyack,	 2008).	 We	

aimed	to	shed	light	on	the	kinds	of	learning	mechanisms	that	could	underlie	one	

of	the	most	striking	examples	of	non-human	vocal	convergence,	humpback	song.	

To	do	this	we	developed	a	spatially	explicit	multi-agent	model	to	study	the	cultural	

evolution	 of	 humpback	whale	 song.	 Different	 learning	 biases	were	 tested,	 and	

their	 respective	 results	were	 compared	 to	 real	 song	 references.	 Our	modelling	

used	realistic	assumptions	about	the	spatial	structure	of	migrating	populations	to	

arrive	 at	 a	 number	 of	 new	 insights	 about	 how	 these	 processes	 affect	 song	

behaviour	in	humpback	whales.	

	

First,	our	model	in	which	the	only	factor	controlling	song	learning	was	distance	

from	 the	 singer,	 based	 on	 empirically	 realistic	 transmission	 loss,	 produced	

extreme	 convergence	 within	 breeding	 populations.	 These	 are	 unrealistically	

extreme	when	compared	to	empirical	measures	of	convergence	from	the	eastern	

Australian	humpback	population.	Varying	the	feeding	ground	size,	and	thus	the	

extent	 to	which	members	of	 the	two	populations	were	exposed	to	each	other’s	

song	 during	 the	 feeding	 season,	 dramatically	 altered	 the	 extent	 of	 between-
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population	divergence	–	small	 feeding	grounds,	on	which	the	populations	were	

forced	 to	mix,	 prevented	 divergence	 between	 populations,	 while	 large	 feeding	

grounds,	 where	 mixing	 was	 much	 rarer,	 showed	 strong	 between-population	

divergence.	Thus	this	simplest	of	our	models	showed	how	the	spatial	arrangement	

of	 feeding	and	breeding	grounds	can	produce	quite	different	cultural	evolution	

outcomes	 even	 when	 the	 underlying	 learning	 mechanisms	 are	 the	 same.	 This	

confirms	the	predictions	of	feeding	grounds	and	migratory	routes	as	key	locations	

for	 song	 transmission	 (Garland	 et	 al.,	 2011;	 Garland	 et	 al.,	 2013).	 Contrary	 to	

observations	 in	 the	wild,	however,	 the	 length	of	 songs	produced	by	 this	model	

decreased	drastically	across	the	model	experiment,	and	by	the	end	of	the	model	

runs	 agents	 showed	 a	 high	 degree	 of	 song	 conformity	 on	 very	 short	 songs.	 In	

cultural	transmission,	signals	may	decrease	in	length.	For	example,	the	range	of	

movement	in	an	invented	sign	language	decreased	over	multiple	generations	of	

an	iterated	learning	model.	In	Kirby’s	iterated	learning	models	(Kirby,	2002),	the	

number	 of	 rules	 in	 a	 language	may	 decrease	 over	multiple	 generations	 of	 the	

model	and	the	system	approaches	an	optimal	level	where	the	minimum	number	

of	rules	required	in	order	for	a	language	to	be	expressive	is	reached.	However,	it	

seems	more	likely	that	the	decrease	in	length	in	our	model	is	a	by-product	of	the	

learning	algorithm	used	here.	Songs	do	not	evolve	within	this	scenario,	because	

when	 complete	 song	 convergence	 is	 reached,	 the	 population’s	 song	 system	

stagnates,	 fixed	 on	 purely	 1/0	 SR	 transition	 matrices,	 unless	 a	 new	 song	 is	

introduced	 (which	 can	 happen	 when	 two	 breeding	 populations	 with	 different	

songs	mix	on	the	feeding	ground).	

	

Second,	 given	 that	 a	 simple	 distance	 parameter	 did	 not	 lead	 to	 song	 evolution	

through	time	 in	a	population,	 it	was	necessary	to	add	a	new	component	to	 the	

model	 to	 try	 and	 understand	 how	 a	 population	 of	 agents	 could	 show	 song	

evolution	 by	 the	 simplest	 mechanisms	 possible.	 Song	 revolutions	 recorded	 in	

eastern	Australia	(Noad	et	al.,	2000)	indicate	that	males	might	be	preferentially	

attracted	to	novel	or	different	songs	introduced	by	immigrant	conspecifics	from	

western	Australia,	so	we	introduced	a	novelty	bias	in	song	learning.	The	novelty	

model	did	not	 result	 in	 the	dramatic	 convergence	observed	 in	Model	1.	Rather	

agents	maintained	a	 relatively	 constant	 level	of	 SR	dissimilarity	within	 in	 their	
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populations.	 It	 also	 resulted	 in	 a	 larger	 degree	 of	 SR	 dissimilarity	 between	

populations.	This	dramatic	difference	shows	that	while	novelty	does	not	lead	to	a	

gradually	 changing	song,	 it	does	result	 in	populations	diverging	 their	songs,	 as	

observed	in	the	wild.	This	shows	that	when	a	cognitive	bias	is	included	in	song	

learning,	the	SRs	of	the	populations	will	diverge.	These	results	matched	well	with	

the	 observed	 situation	 in	 the	 South	 Pacific,	 where	 there	 is	 clear	 divergence	

between	 breeding	 populations	 (Garland	 et	 al.,	 2011).	 Issues	 surrounding	 the	

novelty	algorithm	are	discussed	in	more	detail	in	Chapter	6	in	the	section	titled	

Developing	a	New	Novelty	Algorithm.		

	

Neither	 model	 1	 (distance)	 nor	 model	 2	 (distance	 +	 novelty	 bias)	 produced	

gradually	 evolving	 songs,	 so	 were	 not	 sufficient	 to	 explain	 observed	 song	

variation.	To	produce	continual	evolutionary	song	change,	some	mechanism	was	

required	to	prevent	populations	‘fixing’	on	purely	1/0	SR	matrices	from	which	no	

variation	could	occur.	In	order	to	address	this	we	introduced	the	assumption	of	

song	 production	 errors,	 based	 on	 a	 weighted-edits	 algorithm.	 Informed	 by	

humpback	 whale	 song	 literature	 describing	 within-population	 song	 variation	

(Payne	et	al.,	1983;	Cerchio	et	al.,	2001)	we	assigned	a	high	probability	of	theme	

addition,	with	 theme	substitution	and	deletion	being	possible,	but	 significantly	

less	 likely.	 The	 addition	 of	 production	 errors	 significantly	 changed	 the	 song	

evolution	 dynamics	 in	 the	 model.	 Rather	 than	 agents	 converging	 on	 identical	

transition	matrices,	they	instead	maintained	a	level	of	dissimilarity	that	oscillated	

to	varying	degrees	depending	on	the	probability	of	production	errors.	Model	4	

appeared	 to	 show	 that	 novelty	 mitigated	 the	 induced	 production	 errors,	

producing	results	very	similar	to	model	2.		

	

All	models	are	thought	experiments	that	force	scientists	to	abstract	out	many	real-

world	details,	but	the	model	we	have	presented	here,	while	no	different,	has	been	

closely	 informed	 where	 possible	 by	 empirical	 observations	 to	 produce	 an	

informed	model	 of	 how	 the	 cultural	 evolution	 of	 humpback	whale	 song	might	

emerge	from	spatial	structure	and	simple	learning	and	production	rules.	This	type	

of	 complex	 modelling	 is	 necessary	 when	 we	 consider	 the	 cost	 and	 difficulty	

associated	with	studying	these	behaviours	in	the	field.	Modelling	for	the	purpose	
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of	studying	vocal	convergence	is	not	a	new	idea.	It	has	been	used	in	several	fields	

such	as	biology,	linguistics	and	music	(Todd	and	Werner,	1999;	Kirby,	2001;	de	

Boer,	2002;	Miranda	et	al.,	2010).	While	these	models	study	vocal	convergence,	

they	do	so	in	strictly	defined	systems.	The	specificity	of	these	systems	is	one	of	the	

factors	 that	 led	 to	 the	 choice	 of	 first	 order	 Markov	 models	 as	 a	 song	

learning/production	substrate	in	our	model.	It	presents	a	simple	song	production	

and	 learning	 system	 that	 makes	 the	 least	 assumptions	 about	 the	 cognitive	

capabilities	 of	 humpback	 whales	 whilst	 also	 allowing	 us	 to	 incorporate	 other	

influential	 factors	 that	 may	 impact	 song	 learning.	 Our	 models	 suggest	 that	

migratory	 movements	 and	 spatial	 factors	 play	 an	 important	 role	 in	 the	

transmission	of	song,	but	when	combined	with	a	simple	learning	system	like	a	first	

order	Markov	model,	these	factors	do	not	sufficiently	explain	the	patterns	of	both	

evolution	 and	 revolution.	This	 is	 not	unexpected,	 given	 the	 concerns	 raised	 by	

other	 researchers	 in	 regards	 to	 animal	 vocalisations	 and	 Markov	

models(Kershenbaum	 et	 al.,	 2014;	 Suzuki	 et	 al.,	 2006).	 However,	 we	 consider	

these	Markov	models	as	placeholders	that	should	ultimately	be	replaced	by	a	way	

of	modelling	 song	 production	 that	 is	more	 closely	 informed	 by	 data	 from	 real	

humpback	songs,	once	they	become	available.		

	

Humpback	 whale	 social	 learning	 is,	 of	 course,	 a	 biological	 system	 and	 will	 be	

subject	 to	 variance	 in	many	ways	 that	 have	 not	 been	 captured	 in	 the	 current	

model.	 For	 instance,	 variance	 among	 listeners	 in	 the	 rate	 of	 song	 learning	 in	

general,	and	uptake	of	novelties	in	particular,	are	likely	to	generate	asymmetries	

that	 may	 be	 important	 in	 preventing	 convergence	 among	 populations.	

Nonetheless,	 our	 model	 produces	 a	 number	 of	 interesting	 suggestions	 by	

modelling	 the	 interaction	 between	 humpback	 whales	 on	 the	 breeding	 ground,	

how	 migratory	 movements	 influence	 song	 learning,	 how	 the	 size	 of	 feeding	

grounds	may	impact	transmission,	and	how	the	acoustic	loss	in	transmission	of	

song	 over	 distance,	 among	 other	 factors,	might	 influence	 song	 learning.	 It	 also	

highlights	that	even	when	song	occurrence	on	the	feeding	grounds	is	low,	it	can	

have	a	strong	influence	on	the	songs	of	geographically	separated	populations	as	

long	as	they	meet	on	the	feeding	grounds,	resulting	in	between-population	song	

convergence.	 However,	 these	 behaviours	 are	 not	 necessarily	 the	 same	 as	 the	
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revolutionary	behaviour	observed	in	the	wild.	For	example	it	may	more	closely	

resemble	the	behaviour	of	song	mixing	of	two	populations.		

		

By	using	methods	inspired	by	computational	research	into	the	origin	of	music	and	

music	 composition,	we	have	developed	a	multi-agent	model	 that	 simulates	 the	

migratory	movements,	interactions	and	singing	behaviour	of	humpback	whales.	

Incorporating	 a	 sound	 transmission	 loss	 factor	 into	 our	 model	 allowed	 the	

simulation	 of	 song	 convergence	 within	 separate	 breeding	 populations	 and	

simultaneous	 divergence	 between	 populations.	 Song	 convergence	 between	

populations	 also	 occurred	 when	 feeding	 ground	 sizes	 were	 small	 enough,	

highlighting	the	importance	of	the	feeding	grounds	of	humpback	whales	as	being	

a	key	location	for	song	cultural	transmission,	as	hypothesised	by	Garland	(Garland	

et	 al.,	 2011;	Garland	et	 al.,	 2013).	A	novelty	bias	was	 found	 to	 result	 in	 strong	

divergence	in	geographically	separated	populations,	suggesting	that	some	form	of	

cognitive	 bias	 is	 responsible	 for	 these	 populations’	 diverging	 songs.	 Induced	

production	 errors	mitigated	 the	 rapid	 song	 convergence	 observed	 in	 distance-

only	model	(MM1),	increasing	the	level	of	song	dissimilarity	within	a	population.	

Finally	the	coupling	of	novelty	and	production	errors	resulted	in	similar	results	to	

the	novelty-only	model	(MM2),	with	separated	populations	diverging	to	different	

songs.	These	results	are	similar	to	those	observed	in	the	wild	and	point	towards	

scenarios	where	cultural	revolution	may	take	place.			
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Chapter	4	-	Social	Network	Model	
4.1	Introduction	

This	chapter	discusses	the	development	of	an	agent-based	model	 to	 investigate	

the	cultural	transmission	of	humpback	whale	song	in	different	social	networks.	It	

is	 inspired	 by	 conversations	 with	 Jenny	 Allen	 at	 the	 Cetacean	 Ecology	 and	

Acoustics	Laboratory,	at	Queensland	University.	During	our	conversations,	Allen	

and	 I	discussed	potential	networks	 that	would	 facilitate	 song	convergence	 in	a	

population	of	whales,	discussing	in	particular	small	world	networks.	This	model	

investigates	lattice,	small	world,	and	random	networks	in	order	to	see	how	well	

they	facilitate	convergence	in	a	population.	Grid	based	models	are	not	discussed	

since	there	have	been	previous	models	that	investigate	bird	song	transmission	in	

grids	in	order	to	determine	which	agents	will	learn	from	each	other	(Goodfellow	

&	Slater,	1986;	Slater,	1986).		

	

Models	 used	 to	 investigate	 cultural	 transmission	 in	 sperm	 whales	 leads	 to	

complex	hierarchies	emerging	due	to	cultural	transmission	(Maurício	Cantor	et	

al.,	2015).	These	models	however	focus	on	the	emergence	of	specific,	hierarchical	

social	networks	emerging,	rather	than	being	imposed	from	the	very	beginning.	In	

a	single	population	of	humpback	whales,	all	whales	will	sing	the	same	song	at	a	

given	time,	with	the	main	differences	likely	being	caused	by	copying	errors.	Since	

a	 grid	 social	 network	would	 lead	 to	 the	 emergence	 of	multiple	 dialects,	 it	was	

determined	 that	 this	 type	 of	 social	 network	 inappropriate	 for	 facilitating	 song	

conformity	 across	 the	 population.	 Models	 that	 utilise	 vertical	 cultural	

transmission	are	useful	for	identifying	changes	that	can	occur	from	one	individual	

to	another	(S.	Kirby,	2001;	Eduardo	Reck	Miranda	et	al.,	2003a),	but	these	systems	

deal	with	changes	 from	one	generation	to	another.	The	research	of	Cantor	also	

shows	that	complex	social	structures	can	emerge	from	cultural	transmission.	This	

type	of	model	allows	us	to	generate	theories	on	what	type	of	social	structures	male	

humpback	whales	may	have	once	they	are	in	place.		

	

Since	there	is	no	real	world	data	to	compare	it	to,	here	two	questions	are	asked	in	

regards	to	social	networks	and	song	transmission	in	humpbacks.	1)	What	is	the	
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minimum	number	of	conspecifics	whales	need	to	learn	from	in	order	for	a	high	

degree	of	 song	convergence?	2)	Which	social	network	structure	best	 facilitates	

song	convergence?	

4.2	Generating	The	Network	

In	this	model,	the	small	world	network	is	generated	using	the	algorithm	known	as	

the	 Watts-Strogattz	 algorithm	 (Watts	 &	 Strogatz,	 1998).	 The	 Watts-Strogatz	

model	 generates	 a	 random	network	 graph	with	 small	world	 properties.	 These	

properties	focus	on	short	average	path	lengths	and	high	clustering	in	the	social	

network.	A	short	average	path	length	means	that	we	can	get	from	one	node	in	the	

network	 to	 another	 in	 very	 few	 steps	 (less	 than	 five),	 and	 a	 high	 clustering	

coefficient	means	that	agents	are	connected	to	in	neighbourhoods	(IE,	an	agent	is	

connected	to	a	certain	number	of	its	neighbours).		The	Watts-Strogatz	algorithm	

was	chosen	as	it	is	the	most	common	way	to	model	small-world	networks,	and	is	

readily	available	in	most	packages	offering	graph	generation.		

	

Given	N	nodes,	 the	mean	 degree	 (number	 of	 connections	 a	 node	 has	 to	 other	

nodes)	K,	the	special	parameter	β,	and	the	conditions	that	0≤	β	≤	1	and	N	>>	K	>>	

ln(N)	 >>	 1,	 the	Watts-Strogattz	 algorithm	 creates	 an	 undirected	 graph	 with	N	

nodes	and	WX
=
	edges	using	the	following	steps:		

1. Generate	 a	 regular	 ring	 lattice	 with	 N	 nodes	 each	 connected	 to	 k	

neighbours.	

2. For	every	node,	given	the	probability	parameter,	p,	there	is	a	possibility	of	

removing	a	connection	between	that	node	and	another	random	node,	and	

connecting	it	to	another	random	node	in	the	network.	 
 

In the Watts-Strogatz algorithm, as the value p increases, the network becomes more 

random, with a network of p = 1 generating the most random networks for that value 

of k.  

 

Figure	removed	due	to	Copyright	Restrictions	
 

Figure	37:	How	varying	the	value	p	affects	the	structure	of	a	social	network	generated	

with	the	Watts-Strogatz	algorithm.	Taken	from	(Watts	&	Strogatz,	1998)	
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Relating	the	networks	generated	using	the	Watts-Strogatz	algorithm	to	humpback	

whale	social	structure,	we	can	think	of	the	parameter	k	as	referring	to	the	number	

of	conspecifics	a	whale	may	learn	a	song	from.	In	doing	this,	we	can	begin	to	gain	

a	rough	estimate	of	how	many	conspecifics	a	whale	needs	to	learn	from	in	order	

for	 a	 song	 to	 converge	 in	 a	 population.	 The	 parameter	 p	 can	 be	 thought	 of	

increasing	the	randomness	of	what	whale	learns	from	each	other.	In	reality,	it	is	

unlikely	that	every	whale	in	a	population	learns	from	a	few	conspecifics	in	their	

proximity.	The	whales	move	about	and	are	able	 to	 interact	with	others	 in	 their	

population.	 However,	 the	 sizes	 of	 the	 eastern	 Australian	 population	 are	much	

larger	than	the	population	sizes	investigated	in	this	chapter.	For	this	reason,	the	

investigation	 of	 song	 convergence	 in	 this	 chapter	 should	 be	 considered	 a	 sub-

sample	 of	 a	 single	 population	 at	 a	 single	 point	 along	 their	migratory	 route,	 as	

opposed	to	a	large	population	over	the	course	of	their	migration.		

4.3	The	Model	

Agents	in	the	model	are	equipped	with	a	first	order	Markov	model,	enabled	using	

a	transition	matrix.	 	These	Transition	Matrices	are	termed	Song	Representation	

(SR),	using	the	same	terminology	as	that	used	for	the	Migratory	model	presented	

in	Chapter	3.	SR’s	are	randomly	synthesised	for	each	agent.	In	order	for	an	agent	

to	learn	a	song,	the	following	equation	is	used:	

	

																																																									𝑆𝑅JK = 𝑆𝑅J ∗ (1 − 𝑙) + (𝑆𝑅N ∗ 𝑙𝑟)																																(7)	
Equation	6:	
Where	𝑆𝑅J′is	the	updated	SR	for	the	agent	learning	the	song,	𝑆𝑅J 	is	the	learning	

agents	SR,	and	lr	is	the	learning	rate	where	lr	≤		1.		

	

In	 this	 model,	 the	 small	 world	 network	 represents	 the	 relationship	 between	

agents,	and	which	agents	may	learn	 from	each	other.	Every	node	represents	an	

agent,	and	every	edge	(connection)	represents	which	agent	that	agent	may	learn	

from	and	teach	to.	This	small	world	network	is	used	to	generate	chains	of	cultural	

transmission,	inspired	by	the	work	in	cultural	transmission	models	of	Simon	Kirby	

(Simon	Kirby,	2002a,	2002b).	Here	a	chain	is	defined	as	the	process	through	which	

a	song	spreads	from	agent	to	agent.	As	an	example,	consider	the	following	social	

network	in	Figure	38.		
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Figure	38:	A	small	world	network	generated	using	the	Watts-Strogatz	algorithm.	

Using	 this	 social	 network,	we	 can	generate	 a	 chain	 of	 cultural	 transmission	 by	

selecting	two	agents	at	random	and	calculating	the	shortest	possible	path	between	

them.	As	an	example,	consider	agent	6	and	16.	The	shortest	path	between	these	

two	agents	is	6	->	14	->	15	->	16.	This	path	represents	our	cultural	transmission	

chain.	Here,	agent	6	will	produce	a	song,	which	will	be	learned	by	agent	14.	Agent	

6	produces	a	song	that	is	learned	by	agent	14.	Agent	14	then	produces	a	song	that	

will	 be	 learned	 by	 agent	 15,	 who	 will	 finally	 teach	 the	 song	 to	 agent	 16.	 A	

parameter	called	the	Exposure	Time	parameter	determines	the	amount	of	 time	

agents	spend	learning	a	song.	The	reason	for	designing	the	model	this	way	is	to	

remove	some	of	the	random	processes	that	may	occur.	In	theory,	there	is	nothing	

wrong	with	the	idea	of	a	humpback	whale	learning	a	song	from	a	conspecific	and	

teaching	 it	 another	one,	 even	 if	 the	 conspecific	 it	 learned	 the	 song	 from	never	

interacts	with	 the	 conspecific	 it	 teaches	 the	 song	 to.	This	model	 is	deliberately	

designed	in	such	a	way	to	model	this	type	of	potential	cultural	transmission.			
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4.4	Model	Parameter	Exploration	

K	 P	
Shortest	Average	

Path	(estimated)	

Clustering	

Coefficient	

(estimated)	

3	

0.1	 19.08	 0.0004	

0.4	 12.44	 0.0013	

0.7	 10.86	 0.0015	

1	 10.48	 0.1231	

4	

	

0.1	 4.97	 0.3671	

0.4	 3.63	 0.1352	

0.7	 3.43	 0.0449	

1	 3.40	 0.0324	

5	

0.1	 4.97	 0.2682	

0.4	 3.64	 0.1317	

0.7	 3.44	 0.0464	

1	 3.41	 0.0322	

6	

0.1	 3.63	 0.4471	

0.4	 2.83	 0.1645	

0.7	 2.71	 0.0628	

1	 2.70	 0.0520	

Table	8:	This	table	shows	the	results	from	parameter	exploration.	

While	 the	 Watts-Strogatz	 algorithm	 can	 generate	 small	 world	 algorithms,	 not	

every	 combination	of	k	and	p	will	 produce	 a	 small	world	 network.	 In	 order	 to	

identify	 networks	 that	 displayed	 small	 world	 network	 properties,	 multiple	

networks	(100	for	each	parameter	combination)	with	100	nodes	were	generated	

using	varying	values	of	k	(3	to	6),	and	p	(0.1	to	1,	step	size	equal	to	0.3).	For	each	

combination	of	k	and	p,	100	networks	are	generated,	and	their	shortest	average	

path	 values	 and	 clustering	 coefficients	 summed	 and	 averaged.	 The	 result	 are	

summarised	 in	Table	 8.	 This	 range	of	 values	was	 chosen	 to	help	 identify	what	

parameters	are	necessary	for	small	networks	to	emerge.	Specifically,	it	was	to	help	

show	what	synthesised	networks	allow	for	a	high	average	clustering	coefficient,	

and	low	average	shortest	path	length.	From	this	table,	we	can	see	that	not	every	
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combination	of	k	and	p	will	return	a	combination	of	 low	shortest	average	path	

lengths	and	high	clustering	coefficient.	The	network	that	performed	the	best	was	

the	 combination	 of	 k	 =	 6	 and	 p	 =	 0.1,	 making	 this	 parameter	 combination	

particularly	noteworthy.	

	
After	calculating	these	averages,	 the	model	was	run	using	the	values	of	k	and	p		

shown	in		Table	8.	The	models	were	run	with	parameters	shown	in	Table	9.	Each	

model	was	run	20	times	so	that	the	results	could	be	averaged.	This	gives	us	a	total	

of	320	experiments.	Agents	were	initialised	with	random	SR’s.		

	

Number	of	Agents	 100	

Model	Iterations	 10’000	

Exposure	Time	 1	

Lr		 1	

maxSongLength	 30	

minSongLength	 10	

Number	of	Units	 17	

Table	9:	List	of	parameters	for	Social-Network	Model	

After	running	the	experiments,	the	song	that	was	most	popular	in	the	population	

was	calculated,	as	well	as	 the	number	of	agents	singing	the	most	popular	song.	

These	results	were	plotted	in	Figure	39.	In	figure	four,	each	experiment	run	was	

plotted	using	scatter	plots,	with	the	percentage	of	agents	singing	the	most	popular	

song	 on	 the	 Y-axis,	 increase	 in	 the	 value	 of	 p	at	 the	 bottom	of	 the	 X-axis,	 and	

increase	in	the	value	of	k	shown	on	the	top	of	the	X-axis.	The	bars	are	the	summed	

and	averaged	results	of	each	experiment	with	that	particular	value	of	k	and	p.		
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Figure	39:	Results	for	various	p	values	(0.1	to	1),	and	increasing	values	of	k	(3	to	6).			

As	we	can	 see	 from	Figure	39,	 it	 is	difficult	 to	 see	a	 clear	pattern	between	 the	

different	combination	of	k	and	p.	The	only	exception	to	this	is	k	=	3,	where	we	can	

see	a	general	decrease	in	the	number	of	agents	singing	a	single	song	as	p	increased,	

and	the	results	of	 individual	models	show	some	degree	of	clustering.	However,	

these	other	results	do	not	show	any	direct	correlation	between	varying	the	values	

of	k	and	p.	This	is	not	unexpected,	and	as	stated	earlier	in	this	section,	what	is	more	

important	are	the	properties	that	define	a	small	world	network	(a	 low	average	

shortest	path	length,	and	a	high	clustering	coefficient).	 	As	mentioned	earlier	in	

this	section,	the	parameter	combination	of	k	=	6	and	p	=	0.1	was	noteworthy,	as	

this	combination	displayed	the	best	tradeoff	between	low	average	shortest	path	

length	and	high	clustering	coefficient.	We	can	see	that	this	experiment	returned	

multiple	results	where	all	agents	in	the	population	converged	on	the	same	song	

and	the	bar	plot	shows	it	outperforms	the	majority	of	other	models	in	this	series	

of	 experiments.	 This	 parameter	 exploration	 suggests	 that	 small	 world	models	

outperform	non-small	world	 social	networks	 the	majority	of	 times,	 even	when	

these	 social	 networks	 have	 low	 average	 shortest	 path	 length.	 The	 parameter	

exploration	also	shows	that	increasing	values	of	p	tends	to	lower	the	clustering	

coefficient.		

	



	 101	

After	 analysing	 the	 results	 from	parameter	 exploration,	 it	 became	 clear	 that	 it	

would	be	necessary	to	identify	a	social	network	with	a	higher	clustering	coefficient	

and	 low	 average	 shortest	 path.	 Since	 increasing	 p	 would	 lead	 the	 networks	

becoming	more	random,	it	was	decided	to	increase	the	value	of	k.	An	initial	value	

of	k	=	8	was	chosen	as	the	starting	point	for	this	study,	as	it	was	the	lowest	value	

of	k	resulted	in	consistent	small	world	network	properties.	Other	values	for	k	that	

were	tested	include	are	10,	20,	and	30.	These	parameter	combinations	and	their	

estimated	average	shortest	path	length	and	clustering	coefficients	are	shown	in	

Table	10.		

	

K	
Average	 Shortest	 Path	

Length	
Clustering	Coefficient	

8	 4.92	 0.6204	

10	 4.12	 0.6436	

20	 2.44	 0.6853	

30	 1.98	 0.6998	

Table	10:	Clustering	and	average	shortest	path	length	estimates	for	social	networks	of	

varying	k	and	p	=	0.1.		

After	validating	that	all	these	networks	had	low	average	shortest	path	length	and	

high	clustering	coefficients,	the	model	was	run	with	these	parameters,	a	p	value	of	

0.1	and	the	parameter	combinations	shown	in	Table	9.	The	results	showed	that	

85%	 (68	 of	 the	 80	 experiments	 run)	 of	 the	 experiments	 resulted	 in	 the	 entire	

population	 converging	on	 the	 same	song	 (68	of	 the	80	experiments	 run).	 	The	

results	are	plotted	in	a	bar	chart	shown	in	Figure	40.	
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Figure	40:	Results	for	small	world	experiments.	

The	experiments	and	their	respective	k	values	were	averaged	in	order	to	produce	

the	bar	graph	shown	in	Figure	41.		

	

	
Figure	41:	Averaged	results.	The	experiments	and	their	respective	k	value	were	

summed	and	divided	by	20	in	order	to	give	an	average	result.	
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Interestingly	we	see	that	 the	average	 level	of	song	convergence	 increased	from	

when	k	=	10,	before	beginning	to	decrease	as	k	increased.	The	experiments	with	

the	 paramateres	 k	 =	 30	having	 the	 lowest	 average	 levels	 of	 song	 convergence	

across	the	population.				

	

4.5	Statistical	Analysis	

Three	 experiments	were	 designed	 in	 order	 to	 verify	 that	 the	 shape	 of	 a	 social	

network	will	influence	song	convergence	in	a	population	of	agents.	Three	social	

networks	were	chosen:	a	lattice	network,	a	small	world	network,	and	a	random	

network.	These	networks	we	synthesised	using	the	Watts-Stogratz	algorithm.	The	

parameters	used	to	synthesis	each	social	network	are	shown	in	Table	11.			

	

Parameter	 Lattice	 Small	World	 Random	

Average	

Clustering	Co-

efficient	

0.66	 0.64	 0.09	

Average	

Shortest	Path	

Length	

5.45	 4.02	 2.2	

P	 0	 0.01	 1	

Connected	

nodes	

10	

Table	11:	The	parameters	used	to	synthesis	each	social	network	structure.	

Each	experiment	was	run	40	times,	giving	a	 total	of	120	experiments.	For	each	

experiment,	 the	 highest	 number	 of	 agents	 converged	 on	 a	 single	 song	 was	

calculated.	In	other	words	it	is	a	measure	of	how	many	agents	in	population	are	

singing	the	most	popular	song.		

	

4.5.1	Results	

The	results	for	these	experiments	are	shown	in	Figure	42.		
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	Figure	42:	The	results	of	each	experiment.	The	dots	represent	the	results	of	instance	

of	experiment	run,	and	the	bars	represent	the	mean	of	each	experiments	collected	

results.			

From	these	results,	we	can	see	that	it	is	possible	for	Lattice	models	to	facilitate	

high	levels	of	song	convergence	in	a	population	of	agents.	However,	this	result	is	

not	 consistent.	Random	models	 in	general	 tended	 to	 return	high	 levels	of	song	

convergence	 in	 a	 population.	 Small	 world	 networks	 outperformed	 all	 other	

models,	with	 a	mean	 of	 95%,	 and	 only	 5	 experiments	 not	 returning	 total	 song	

convergence.			

4.5.2	Analysis		

In	order	to	verify	that	there	is	a	significant	difference	between	all	three	models,	an	

Analysis	of	Variance	(ANOVA)	was	calculated.	The	result	of	each	experiment	was	

grouped	according	to	their	respective	models,	and	the	p-value	that	the	mean	of	all	

the	groups	are	equal	was	calculated.	The	results	are	shown	in	Table	12.		
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Source	 Sum	of	

Squares	

Degrees	of	

Freedom	

Mean	

Squared	

Error	

F-Statistic	 Prob>F	

(P-value)	

Between	

Groups	

Variation	

6886.6	 2	 3443.28	 10.38	 0.000071	

Within-

groups	

variation	

38491.2	 116	 331.81	 	

Total	 45376.8	 118	 	

Table	12:	ANOVA	results	for	the	three	models.	

In	order	to	investigate	the	difference	between	each	the	results	of	each	model,	an	

independent	 two	 sample	 Student’s	 t-test	 was	 carried	 out.	 The	 results	 of	 this	

analysis	are	shown	in	Table	13.	Our	t-test	here	is	examining	the	null	hypothesis	

that	the	pairwise	difference	between	the	data	vectors	has	a	mean	equal	to	zero.		

	

t-test	name	 p-value	 tstat	 Degrees	of	

Freedom	

Standard	

Deviation	

Lattice	 0.0016	 3.26	 78	 18.91	

Small	World	 0.33	 -0.978	 78	 17.87	

Table	13:	t-test	results	comparing	the	random	model	with	the	lattice	and	small	world	

networks.	

From	the	results	seen	in	Table	13,	the	t-test	rejects	the	null	hypothesis	that	the	

mean	difference	between	the	data	for	the	lattice	and	random	networks	is	equal	to	

zero.	 However,	 the	 small	 world	 and	 random	 networks	 do	 have	 a	 pairwise	

difference	between	the	data	with	a	mean	equal	to	zero.	This	suggests	that	there	is	

a	significant	difference	between	the	results	of	the	lattice	and	random	networks,	

but	not	between	the	results	of	the	random	and	small	world	networks.		
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4.6	Discussion		

The	ANOVA	test	highlights	that	the	type	of	network	you	run	this	model	with	will	

have	an	effect	on	the	degree	of	song	convergence	in	a	population.	Further	analysis	

using	 t-test	 shows	 that	 there	 is	 a	 significant	 difference	 in	 mean	 level	 of	

convergence	between	lattice	networks	and	random	networks.	However,	a	t-test	

comparing	small	world	networks	and	random	networks	showed	that	there	is	no	

significant	difference	 in	 the	mean	 level	 of	 convergence	 in	 the	 population.	 Both	

networks	showed	a	high	mean	of	song	convergence	(90%	for	random	networks	

and	95%	for	small	world	networks).	Statistical	analysis	suggests	that	there	is	no	

difference	 between	 these	 networks.	 In	 regard	 to	 network	 structure,	 both	

networks	have	lower	average	shortest	path	lengths	when	compared	to	the	lattice	

network.	The	small	world	network	has	a	much	higher	level	of	average	clustering.	

This	suggests	that	short	average	path	length	may	be	what	is	most	important	for	

facilitating	 song	 convergence	 in	 a	 population,	 but	 further	 statistical	 tests	 are	

necessary	to	determine	if	this	is	true.		

	

It	is	necessary	to	be	wary	when	analysing	tests	of	statistical	significance	in	regards	

to	 simulation	data	 (White,	Rassweiler,	 Samhouri,	 Stier,	&	White,	2014).	This	 is	

because	that	very	large	sample	sizes	can	lead	to	incredibly	low	p-values	since	they	

are	determined	by	replication,	which	can	be	very	high	in	a	simulation	context.	For	

this	reason,	choosing	a	sample	size	for	the	conditions	presented	here	was	difficult.	

Increasing	the	sample	size	may	have	resulted	in	changing	the	p-value,	and	White	

et	 al.	 have	 shown	 that	 by	 increasing	 sample	 size	 it	 is	 possible	 to	 achieve	 any	

desired	p-value.	They	argue	that	it	is	more	appropriate	to	focus	on	evaluating	the	

magnitude	of	differences	between	simulations.	This	made	it	difficult	to	determine	

what	is	an	appropriate	sample	size	when	carrying	out	the	statistical	tests	in	this	

chapter.	It	has	been	shown	that	as	the	number	of	samples	collected	increases,	the	

distribution	of	the	collected	data	will	approach	normality	(central	limit	theorem).	

The	samples	used	in	each	experimental	setting	when	analysed	were	technically	

not	normally	distributed	but	 increasing	sample	size	would	have	resulted	 in	 the	

datasets	 approaching	 normality.	 However,	 this	 could	 have	 also	 lead	 to	 a	

decreasing	p-value	for	our	analysis.	Furthermore,	there	is	a	common	belief	that	

the	t-test	 is	only	valid	 for	normally	distributed	outcomes,	but	researchers	have	
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shown	that	the	results	of	a	t-test	are	still	valid	even	when	used	in	extremely	non-

Normal	data(Lumley,	Diehr,	Emerson,	&	Chen,	2002).	Our	statistical	significance	

tests	point	 to	 there	being	no	significant	difference	between	the	results	random	

and	small	world	experiments.	It	should	be	noted	though	that	even	if	we	take	the	

approach	suggested	by	White	et	al	and	examine	only	the	magnitude	of	difference	

between	 the	 small	 world	 model	 and	 random	 model,	 we	 do	 not	 obtain	 what	

appears	to	be	a	significant	result	(mean	difference	of	5).		

	

In	order	 to	resolve	 this,	 it	 is	useful	 to	 consider	what	happens	 in	 regard	 to	 real	

world	humpback	whales.	The	results	show	that	small	world	networks	and	random	

networks	 achieve	 one	 of	 the	most	 important	aspects	 of	 humpback	whale	 song	

through	the	convergence	of	a	population	that	is	in	acoustic	contact	with	each	other	

onto	the	same	song	(R	S	Payne	&	McVay,	1971).	Interaction	between	singing	males	

appears	 to	 be	 involved	 in	 intrasexual	 interactions,	 with	 males	 observed	

approaching	other	 singing	males	 (Smith,	 Joshua	N,	 Goldizen,	 Anne	W.,	 Dunlop,	

Rebecca	A.,	Noad,	2008).	This	type	of	behaviour	could	be	completely	random,	with	

the	conspecific	they	approach	being	determined	entirely	random.	This	means	that	

random	 networks	 seem	 more	 likely,	 as	 they	 facilitate	 high	 levels	 of	 song	

convergence,	and	do	not	enforce	a	strict	social	structure	on	the	animals.			

	

In	regards	to	agent	based	models	in	other	cetacean	research,	the	most	relevant	

research	 focussed	 on	 how	 cultural	 transmission	may	 lead	 to	 the	 low	 levels	 of	

mtDNA	diversity	among	matrilineal	whales	(Hal	Whitehead,	2005),	and	the	how	

social	learning	may	be	responsible	 for	 the	clan	social	structure	 found	 in	Sperm	

whales	(Maurício	Cantor	et	al.,	2015).	Matrilineal	social	networks	focus	on	distinct	

family	units	where	females	remain	in	the	same	group,	while	the	males	leave	to	join	

other	groups.	In	this	regard,	it	is	tempting	to	equate	a	clan	in	sperm	whales	with	a	

cluster	of	nodes	in	a	social	network	(our	k	variable),	and	male	interactions	with	

other	clans	could	be	viewed	as	the	low	re-wiring	probability	that	connects	these	

different	social	units.	However,	(Maurício	Cantor	et	al.,	2015;	Mauricio	Cantor	&	

Whitehead,	2013)	never	explicitly	refer	 to	 these	networks	as	such,	 and	 further	

analysis	would	be	required	to	determine	if	these	are	small	world	networks.		
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This	model	does	not	allow	for	the	modelling	of	the	other	most	important	aspect	of	

humpback	whale	song	discussed	in	this	thesis;	revolution	(Garland,	Noad,	et	al.,	

2013;	Noad,	Michael	J.,	Cato,	Douglas	H.,	Bryden,	M.	M.,	Micheline,	Jenner,	Jenner,	

2000).	 In	order	to	achieve	this,	 it	may	be	possible	 to	generate	two	small	world	

networks	 and	 have	 a	 few	 connections	 in	 order	 to	 determine	 how	 many	

connections	are	required	to	facilitate	revolution.	In	regards	the	slow	evolution	of	

songs	 that	 are	 observed	 in	 the	wild	 (Payne,	 K.,	 Tyack,	 P.,	 &	 Payne,	 1983),	 this	

model	 suffers	 the	 same	 problem	 as	 the	 Migratory	 Model,	 in	 that	 once	 the	

population	has	converged	on	a	song,	the	population	is	unable	to	change	their	song	

as	the	SR’s	have	become	fixed	on	100%	probability	transitions	in	each	row	of	the	

SR.	 The	 complete	 convergence	 observed	 in	 these	 models	 is	 also	 slightly	

unrealistic,	as	while	the	songs	are	highly	similar,	there	are	still	differences	in	the	

song.	 This	 is	 likely	 due	 to	 production	 errors.	 How	 production	 errors	 may	

accumulate	in	this	type	model	is	unknown,	and	an	area	of	further	research.		

	

In	conclusion,	while	small	world	social	networks	returns	return	the	highest	levels	

of	song	convergence	when	compared	to	the	other	social	networks	studied	in	this	

chapter,	the	mean	difference	between	the	level	of	convergence	when	compared	to	

random	 social	 networks	 is	 not	 significant.	 It	 may	 also	 require	 interactions	

between	singing	males	more	complex	than	approaching	another	conspecific.	This	

suggests	that	out	of	the	three	social	networks	examined	in	this	chapter,	random	

social	 networks	 best	 facilitate	 song	 convergence	 in	 a	 population	 of	 humpback	

whales.		
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Chapter	5	–	Formal	Grammars	and	Humpback	Song	

5.1	Introduction	

This	chapter	discusses	adapting	the	Sequitur	algorithm	for	analysing	sequences	of	

humpback	whale	song,	and	the	development	of	a	sampler	that	utilises	the	tools	

generated	 using	 Sequitur	 in	 order	 to	 recreate	 humpback	 whale	 song.	 These	

algorithms	are	used	to	analyse	song	from	the	years	2002	and	2003.	These	years	

were	chosen	as	2003	was	a	revolutionary	year,	and	using	Sequitur	allows	us	to	

compare	 the	differences	between	 these	 two	years.	Following	 this,	 the	Sequitur	

algorithm	and	sampler	are	coupled	with	production	errors,	and	implemented	in	a	

vertical	 cultural	 transmission	model.	 A	 number	 of	 experiments	 are	 presented,	

each	investigating	a	single	type	of	production	error.	For	the	final	experiment,	all	

production	 errors	 are	 coupled	 in	 a	 vertical	 cultural	 transmission	 model.	 The	

results	from	these	experiments	are	then	discussed,	as	well	as	their	implications	

for	cultural	transmission	in	humpback	whale	song.			

5.2	Song	Collection	and	Representation		

The	data	used	in	this	research	project	was	provided	courtesy	of	Dr	Michael	Noad.	

This	 data	 comes	 from	 Eastern	 Australia	 songs	 that	were	 recorded	 at	 Peregian	

Beach,	Queensland,	using	moored,	 radio	 linked	hydrophone	buoys.	These	were	

equipped	with	High	Tech	HTI	96	MIN	hydrophones	with	a	built-in	_40	dB	gain	pre-

amplified,	 and	 additional	 external	 custom	 built	 preamplifier.	 The	 signals	were	

then	transmitted	using	AN/SSQ-47A	sonobuoy	transmitters	and	received	at	the	

base	 station	onshore	using	a	 type	8101-sonobuoy	 receiver.	These	 signals	were	

then	 recorded	 directly	 on	 to	 a	 computer	 in	 the	wav	 file	 format	 (16	 bit,	 22kHz	

sampling	rate).		

	

The	data	provided	by	Noad	consisted	of	1773	hours	recordings.	Given	the	large	

number	 of	 recordings,	 it	 was	 necessary	 to	 be	 selective	 in	 our	 choices	 when	

building	our	database.	In	order	to	capture	the	changes	that	may	occur	in	the	song	

over	the	course	of	a	mating	season,	three	recordings	from	the	start,	middle	and	

end	of	the	mating	season	were	chosen.	The	naming	convention	for	the	units	here	

was	developed	in	collaboration	with	Luca	Lamoni	and	Jenny	Allen.	It	was	designed	
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in	order	to	highlight	the	hierarchical	structure	of	the	song,	and	be	consistent	with	

the	descriptive	naming	convention	developed	by	Dr	Ellen	Garland	 for	her	PhD	

thesis.	 Although	 automated	 classification	 methods	 were	 investigated,	 it	 was	

discovered	that	these	relied	on	a	high	signal	to	noise	ratio.	The	recordings	from	

the	 Noad	 database	 vary	 greatly	 in	 quality,	 with	 many	 being	 affected	 by	 radio	

interference	 and	 anthropogenic	 noise.	 Due	 to	 this	 fact,	 recordings	 had	 to	 be	

analysed	by	hand.		

	

Recordings	were	analysed	using	the	Adobe	Audition	software	(Adobe,	2017).	Each	

unit	was	 segmented	 using	 the	marker	 tool	 in	 the	 software.	 The	 unit	was	 then	

compared	to	the	dictionary	of	units	created	by	Garland	(Appendix	1).	This	process	

is	known	as	song	transcription.	After	identifying	the	unit,	it	would	then	be	named	

using	the	following	convention:		

	

1. The	first	letter,	always	in	capitals,	corresponds	to	the	name	of	the	theme.	

Theme	names	are	based	on	their	position	in	the	earliest	recording	of	the	

song.	IE,	the	first	theme,	heard	in	the	first	recording	of	that	particular	year,	

will	always	be	called	theme	A	for	that	year.		

2. The	second	letter	is	always	a	number,	and	corresponds	with	the	number	of	

that	phrase.	Once	again,	phrases	are	named	based	on	their	in	the	earliest	

recording.		

3. The	final	letter,	always	in	lower	case,	corresponds	to	the	location	of	that	

unit	with	that	particular	theme.		

4. After	applying	the	hierarchal	naming,	an	underscore	is	placed	at	the	end	of	

the	name.	The	descriptive	unit	name	is	then	applied.		

	

Figure	43	is	an	example	of	the	above	method	being	used	to	name	the	individual	

units	 in	 a	 phrase.	 The	 names	 applied	 to	 each	unit	 come	 from	 the	 unit	 naming	

convention	developed	by	Garland	included	in	Appendix	1.		
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Figure	43:	Spectrogram	of	a	phrase	from	a	song	recorded	in	2002.	This	shows	the	

application	of	the	naming	convention	developed	for	this	thesis.	If	we	take	the	unit	

on	the	far	left,	the	capital	A	refers	to	theme	A,	the	1	to	the	phrase	number	and	the	

lower	case	a	refers	to	the	unit	position	in	the	phrase,	the	capital	AM	means	that	

this	unit	is	an	ascending	moan,	as	based	on	Garlands	stereotyped	sequences	found	

in	Appendix	1.				

5.3	Sequitur	

There	 are	 several	 methods	 for	 inferring	 formal	 grammars.	 These	 methods	

however	are	generally	associated	with	Linguistics.	The	Sequitur	algorithm	(Nevill-

manning	 &	Witten,	 1997a)	was	 developed	 to	 deal	with	 sequences	 that	 have	 a	

hierarchal	structure	independent	of	any	type	of	semantic	mapping	associated	with	

language.	 Sequitur	 was	 designed	 to	 specifically	 identify	 recurring	 patterns	 in	

strings.	It	also	accepts	as	input	a	single	long	sequence	in	order	to	infer	hierarchy.	

Due	to	this	lack	of	semantic	mapping,	Sequitur	has	been	used	to	identify	hierarchal	

structures	in	a	passage	of	music	(Figure	44),	connecting	it	to	the	theme	of	applying	

computer	music	research	to	animal	vocalisation	research.		

5.3.1	Sequitur	Algorithm	

The	Sequitur	algorithm	generates	a	formal	grammar	from	a	single	input	string.	In	

order	to	generate	this	grammar,	the	algorithm	relies	on	two	constraints:	digram	

uniqueness,	and	rule	utility.		

	

Sequitur	works	by	replacing	repeating	phrases	in	the	given	sequence	with	a	new	

rule	based	on	digrams.	Here,	a	digram	refers	 to	 two	adjacent	characters.	When	

Nine Months Report       Luca Ubaldo Lamoni 

5 
 

Through an agreement with Claire Garrigue (Opération Cétacés, Appendix I) we 

gained access also to the New Caledonia (NC) song database. It is less extensive than the EA 

but spans 17 years, overlapping with the recordings from EA. The NC recordings appear to 

be of higher quality than the EA recordings due to the recording configuration; in NC the 

recordings were boat based, usually in the vicinity of the singers, resulting in a higher signal 

to noise ratio. A thorough exploration of this dataset has not been completed yet.  

Transcription process and results 
The �manual �transcription �of �humpback �whale’s �songs is the process that took most of 

the time of the four months period in Australia. The transcription was carried out at the unit 

and sub-unit level. Each unit of the song has been labelled using the program Adobe 

Audition (© 2007 Adobe Systems Incorporated). Unit labelling is an important step of the 

transcription process as the name itself encode different information. We included the 

position of the unit at the theme/phrase level and information relative to the acoustic 

characteristics of it (Figure 2), following the nomenclature outlined by (Garland, 2011). 

 

Figure 2. Spectrogram of phrase E2 from 2002. AM: ascending moan; VI : violi n. Spectrogram 
computed with a Hann window, window size 2024, 90% overlap and sample frequency 22.05 
KHz. 

Taking as example the first unit of Figure 2: A refers to theme, 1 refers to phrase, a  

refers to the position of the unit in the phrase while AM is referring to the type of the unit, in 

this case, an ascending moan. We did this to keep continuity with the work done previously 

by Garland in the same area. 

For each year of recordings, we transcribed a minimum of 3 songs of the best quality 

(= 3 individuals) covering the beginning, middle and end of fieldwork period. To account for 

song inter-cycle variability, a minimum of three song cycles had to be transcribed for each 

recording. Table 2 reports the number of units for each recording and the number of 

phrases, including transitional ones, following the general guidelines outlined by Cholewiak 

et al. (2013). Appendix II reports an example of a complete song transcription from 2002: 

This process has been undertaken for all songs shown in Table 2. 

. 
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Sequitur	scans	the	input	string,	it	will	look	for	repeating	paired	digram's	to	replace	

with	a	new,	non-terminal	symbol.	Consider	the	string,	S,	printed	below:	

	

S	→	aabbaa 

	

Since	 the	 two	adjacent	 characters	 ‘aa’	occurs	 twice	 in	 the	sequence	S,	Sequitur	

generates	the	following	formal	grammar:	

	

S	→ 1bb1 

1	→	aa	

	

Sequitur	implements	a	digram	uniqueness	constraint.	This	constraint	ensures	that	

no	digram	occurs	more	than	once	in	the	rule	sequence	it	produce.	This	is	shown	

in	the	following	sequence	analysis	of	string	S2.	

	

S2	→	abaaba 

	

This	will	result	in	the	following	formal	grammar	

	

S2		→ 1a1a 

1    → ab 

	

This	occurs	because	when	we	scan	the	first	four	pairs	of	symbols	in	S2,	we	get	the	

following	digrams:	ab,	ba,	aa.	When	sequitur	reads	the	fifth	symbol,	it	identifies	

that	the	digram	ab,	was	generated	earlier.	This	results	in	the	generation	of	rule	1,	

and	 the	process	 continues	 to	 the	end	of	 a	 string	 so	 that	 there	are	no	 repeated	

digram's.		

	

The	rule	utility	constraint	makes	ensures	that	all	rules	are	used	more	than	once	

on	the	right	hand	side	of	the	grammar.	This	means	that	if	a	rule	only	occurs	once,	

it	 is	 removed	 from	 the	 grammar,	 and	 is	 instead	 replaced	 with	 the	 symbols	

originally	 created	 it.	 This	 rule	 utility	 is	 implemented	 in	 order	 to	 decrease	 the	

number	of	rules	in	a	grammar.		
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The	method	of	 implementing	Sequitur	 is	based	on	a	port	by	Eibe	Frank,	 and	 is	

available	on	the	Sequitur	Github1.		

	

Figure	removed	due	to	Copyright	Restrictions	
	

Figure	44:	An	analysis	of	two	chorales	harmonised	by	Bach.	The	sequitur	algorithm	

identifies	hierarchies	within	the	passage	of	music	(the	shaded	squares),	and	also	

identifies	perfect	and	imperfect	cadences	in	the	piece.	Taken	from	(Nevill-manning	&	

Witten,	1997a)	

5.2.2	Sequitur	Sampler	

The	 Sequitur	 sample	 adapts	 the	 formal	 grammar	 generated	 using	 the	 Franks	

Python	port	so	that	it	can	be	used	to	recreate	the	original	sequence,	and	generate	

new	 sequences	 based	 on	 the	 rules	 generated	 by	 Sequitur.	 This	 is	 achieved	 by	

incorporating	edit	operations	 inspired	by	Levenshtein	Distance	Analysis.	These	

operations	edit	the	sequence	S,	which	informs	the	order	the	rules	are	to	be	carried	

out.	This	includes	random	insertion	of	new	characters,	random	insertion	of	rules,	

deletion	of	characters,	deletion	of	rules,	substituting	characters,	substituting	rules,	

replacing	characters,	and	replacing	rules.	These	operations	can	be	viewed	as	being	

equivalent	to	learning	and	production	errors.	For	example,	a	whale	may	insert	a	

new	unit	into	its	sequence	by	accident	or	may	miss	a	theme	when	learning	a	new	

song.			

5.4	Analysing	Humpback	Song	Using	Sequitur		

Here,	Sequitur	was	used	to	analyse	five	different	songs	recorded	off	the	coast	of	

Eastern	Australia	in	2002	and	2003.	Here	we	will	examine	only	a	single	song	from	

2002	and	2003,	as	these	were	‘revolutionary’	years,	when	the	song	of	the	eastern	

Australian	population	was	replaced	by	the	song	(Garland	et	al.,	2011),	thus	making	

it	a	very	interesting	case	study.	Other	songs	analysed	using	Sequitur	from	these	

two	years	are	included	in	the	supplementary	material.		

	

																																																								
1	Available	at	https://github.com/craignm/sequitur	
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Apart	from	the	Sequitur	analysis,	a	frequency	count	was	taken	for	each	unit	in	the	

song,	as	well	as	 the	number	of	rules,	and	the	 frequency	of	each	rule	 in	 the	Seq	

variable.		

5.4.1	2002	Song	

Below	 is	 the	 formal	grammar	generated	by	Sequitur	 for	one	of	 the	 songs	 from	

2002,	recorded	on	the	21/09/2002.	The	songs	shown	here	were	generated	from	

a	single	song	cycle.	Other	songs	from	2002	were	analysed,	and	these	are	included	

in	 digital	 supplementary	 material.	 The	 analysis	 of	 different	 songs	 produced	

roughly	 the	 same	number	of	rules.	Although	 there	were	differences	 in	 the	 rule	

number	 assigned,	 many	 of	 the	 same	 rules	 were	 generated,	 and	 similar	 rule	

structure	identified.		

	

	
	
Figure	45:	Sequitur	analysis	of	2002	song.		

Table	14	shows	the	frequency	count	for	each	unit	in	the	song.		

Page 1 of 1

hs_020921_060311_SingleCycle 17/07/2017 15:40

Original String = 
'cncnoooocncnoooocncnoooocncnoooocncnoooocncnoooocncnoooocncncncncnc
nooookjjkjjkjjkbbbbbkbbbbbkfffkbbbbbbkbbbbbkfffkbbbbbbkbbbbbkfffaffa
ffafahmfagffagffagfahmaklaklakahmaklaklakahmaklaklakahmkddkddkddhmkd
dkddkddhmkdkddkddipcjjcjjcjjipcjjcjjcjjeooooc'

0 ! 1 1 1 2 3 3 2 4 4 4 5 6 6 7 8 8 a 9 10 11 11 g 9 12 13 14 14 15 16 16 
17 18 19 19 e 20 c 

1 ! 2 2                                           cncnoooocncnoooo
2 ! 3 20                                          cncnoooo
3 ! 21 21                                         cncn
4 ! k 22                                          kjj
5 ! k 23 23 b                                     kbbbbb
6 ! 7 5 b                                         kbbbbbkfffkbbbbbb
7 ! 5 k f 24                                      kbbbbbkfff
8 ! a 24                                          aff
9 ! 10 25                                         fahm
10 ! f a                                          fa
11 ! g 24 a                                       gffa
12 ! 26 l                                         akl
13 ! 12 26                                        aklak
14 ! 15 13 l 26                                   ahmaklaklak
15 ! a 25                                         ahm
16 ! 18 17 25                                     kddkddkddhm
17 ! 18 18                                        kddkdd
18 ! k d d                                        kdd
19 ! i p 27 27 27                                 ipcjjcjjcjj
20 ! 28 28                                        oooo
21 ! c n                                          cn
22 ! j j                                          jj
23 ! b b                                          bb
24 ! f f                                          ff
25 ! h m                                          hm
26 ! a k                                          ak
27 ! c 22                                         cjj
28 ! o o                                          oo
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Unit	Name	 Frequency	Count		 Percentage	
c	 27	 10%	
n	 20	 8%	
o	 36	 15%	
k	 30	 12%	
j	 18	 7%	
b	 32	 13%	
f	 20	 8%	
a	 20	 8%	
h	 7	 3%	
m	 7	 3%	
g	 3	 1%	
l	 6	 2%	
d	 17	 7%	
i	 2	 1%	
p	 2	 1%	
e	 1	 1%	
Table	14:	Character	frequency	count	for	2002	song.		

Below	is	the	table	for	the	Rule	frequency	count	from	the	Seq	variable.		

Rule	Name	 Frequency	Count	 Percentage	
1	 3	 8%	
2	 2	 5%	
3	 2	 5%	
4	 3	 8%	
5	 1	 3%	
6	 2	 5%	
7	 1	 3%	
8	 2	 5%	
a	 1	 3%	
9	 2	 5%	
10	 1	 3%	
11	 2	 5%	
g	 1	 3%	
12	 1	 3%	
13	 1	 3%	
14	 2	 5%	
15	 1	 3%	
16	 2	 5%	
17	 1	 3%	
18	 1	 3%	
19	 2	 5%	
e	 1	 3%	
20	 1	 3%	
c	 1	 3%	
Table	15:	Rule	frequency	count	for	2002	song.	
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5.4.2	2003	Song	

Below	is	the	formal	grammar	generated	by	Sequitur	for	the	one	of	the	2003	songs,	

recorded	on	18/09/2003.		

	

	
Figure	46:	Sequitur	analysis	of	2003	song.	

	
	Below	 is	 a	 table	 showing	 the	 frequency	 count	 and	what	 percentage	 each	 unit	

makes	in	the	2003	song.		

Unit	Name	 Frequency		 Percentage	
a	 25	 30%	
c	 19	 23%	
b	 6	 7%	
d	 32	 39%	
Table	16:		Character	Frequency	count	for	2003	song.	

Below	is	a	table	showing	the	frequency	count	and	percentage	quantity	of	each	rule	
for	the	RuleSeq	variable	for	2003.		
	
Rule	Name	 Frequency		 Percentage	
1	 2	 17%	
2	 1	 8%	
3	 1	 8%	
4	 3	 25%	
5	 1	 8%	
6	 3	 25%	
d	 1	 8%	
Table	17:	Rule	frequency	count	for	2003	song.	

5.5	Experiments	

These	experiments	investigate	the	effect	different	production	errors	have	on	the	

song	as	 it	passes	 from	agent	 to	agent	 in	a	vertical	cultural	 transmission	model.	

Finally,	all	the	production	errors	are	combined	in	order	to	investigate	the	effect	

they	have	on	the	song	over	time.		

Page 1 of 1

hs_030918_123033_SingleCycle 17/07/2017 15:51

original string  = 
‘acacacacacacacacacacacababababababacacdddddddacacddddddddacacdddddd
dddacacdddddddd’

0 ! 1 1 2 3 4 4 4 5 6 6 d 6 
1 ! 2 2                                           acacacac
2 ! 3 3                                           acac
3 ! a c                                           ac
4 ! 7 7                                           abab
5 ! 2 8 8 8 d                                     acacddddddd
6 ! 5 d                                           acacdddddddd
7 ! a b                                           ab
8 ! d d                                           dd
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5.5.1	Control	

In	this	control	experiment,	 the	teacher	agent	 is	 trained	using	a	song	cycle	 from			

2002.	 This	 provides	 the	 agents	with	 the	 rules	 for	 recreating	 the	 song	 and	 the	

sequence	in	order	for	them	to	recreate	the	training	song.	This	experiment	simply	

shows	that	over	multiple	generations,	the	song	does	not	change	as	it	is	transmitted	

from	the	teacher	agent	to	the	learner	agent,	even	though	the	learner	agent	only	

receives	a	string	from	its	teacher	agent.	Another	important	point	to	note	is	that	

the	rules	that	each	agent	produces	when	it	learns	a	song	from	its	teacher	agent	are	

identical	to	the	rules	of	its	teacher	agent.	This	ensures	that	any	extensions	to	this	

model	that	may	result	in	cultural	evolution	are	a	result	of	these	extensions,	and	

not	the	model	itself.	The	only	variables	in	this	control	experiment	are	the	number	

of	generations	that	the	model	carries	out,	and	the	initial	starting	song	for	the	initial	

teacher	agent.		

	
Figure	47:	Results	for	Control	Experiment.	

5.5.2	Experiment	1	–	Random	Character	Insertion	to	Sequence	of	Rules		

In	this	experiment,	before	the	teacher	produces	its	song,	there	is	a	probability	that	

its	sequence	of	rules	may	have	an	extra	random	character	added	to	it	at	a	random	

index.		A	new	parameter,	p,	is	introduced	in	this	model.	This	parameter	controls	
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the	 probability	 of	 these	 random	 character	 edits	 being	 carried.	 This	 parameter	

space	was	explored	by	generating	an	array	containing	10	values	ranging	from	0	

(no	edit	being	carried	out),	to	1	(edits	carried	out	for	every	teacher	agent).	Here	

we	will	analyse	some	specific	cases	of	this	parameter	exploration.		

	
Figure	48:	Results	from	insert	character	experiment	

First,	we	 examine	 the	 situation	where	p	 =	 0.9.	This	means	 that	 there	 is	 a	 90%	

probability	that	the	song	will	be	edited	at	every	iteration,	the	most	extreme	case	

in	this	parameter	exploration.	This	has	a	number	of	effects	on	the	song.	Firstly,	the	

song	length	is	constantly	increasing,	as	shown	in	Figure	48.	

	

Secondly,	the	number	of	rules	tends	to	increase	as	these	random	edits	are	carried	

out.	However,	there	are	times	where	the	number	of	rules	decreases.	It	is	necessary	

to	 point	 out	 that	 the	 number	 of	 rules	 in	 sequitur	 is	 determined	 by	 repeating	

patterns	in	the	string,	and	if	they	can	be	replaced	by	a	simpler	rule.		

	
		
	



	 119	

5.5.3	Experiment	2	-	Random	Character	Deletion	From	Sequence	

	
Figure	49:	Results	for	random	character	deletion	in	sequence.	

It	is	important	to	note	here	that	all	these	value	plateau	due	to	the	fact	that	there	

are	not	other	characters	in	the	sequence.	If	there	were	more	characters,	the	trend	

of	linear	decrease	for	song	length,	and	a	linear	increase	for	Levenshtein	distance.		

The	 number	 of	 rules	 is	 less	 clear,	 bus	 is	 likely	 affected	 if	 a	 character	 deletion	

resulted	in	the	merging	of	two	rules,	or	the	creation	of	a	new	rules,	of	if	a	character	

substitution	 in	 the	 rule	 would	 result	 in	 a	 simpler	 representation	 of	 the	 song	

according	to	Sequitur.		
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5.5.4	Experiment	3	–	Random	Character	Substitution	to	Sequence	

	
Figure	50:	Results	from	random	character	substitution	experiment.	

From	the	character	substitution	results,	we	can	see	that	the	song	distance	remains	

the	 same.	 There	 is	 a	 slight	 fluctuation	 in	 the	number	 of	 rules	 and	 Levenshtein	

distance,	but	these	are	not	extreme.		

5.5.5	Experiment	4	–	Random	Rule	Insertion	to	Sequence	

	
Figure	51:	Random	rule	insertion	results.	

Random	 rule	 insertion	 shows	 the	 most	 dramatic	 fluctuation	 in	 the	 results.	

However,	there	appeared	to	be	a	decrease	in	the	song	length.	This	appeared	to	be	
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caused	by	a	glitch	that	occurred	when	songs	reached	a	very	long	length	(over	300	

characters).	The	specific	cause	of	the	glitch	has	not	been	identified	at	the	time	of	

writing.	 The	 number	 of	 rules	 remained	 fairly	 consistent.	 Levenshtein	 distance	

generally	tended	to	increase,	with	some	downwards	fluctuations	occurring.		

5.5.6	Experiment	5	–	Random	Rule	Deletion	to	Sequence	

	
Figure	52:	Results	from	random	rule	deletion	experiments.	

In	 the	 random	 rule	 deletion	 experiments,	 Levenshtein	 distance	 increased	

gradually	 until	 all	 rules	 had	 been	 deleted.	 The	 number	of	 rules	 also	 decreased	

gradually	until	there	were	none	left.	Song	length	also	decreased	but	did	not	reach	

zero	as	characters	still	remained	in	the	agents	Seq	variable.		
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5.5.7	Experiment	6	–	Random	Rule	Substitution		

	
Figure	53:	Results	from	random	rule	substitution	experiments.	

Random	 rule	 substitution	 resulted	 in	 Levenshtein	 distance	 increasing	 over	 the	

course	of	the	model	run.	The	song	length	could	either	increase	or	decrease,	as	the	

rules	were	of	various	lengths.	The	number	of	rules	did	not	fluctuate	dramatically.		

5.5.8	Experiment	7	–	Random	Edits	

In	 this	 experiment,	 all	 of	 the	 editing	 operations	 that	 were	 discussed	 in	 the	

previous	experiments	are	carried	out	randomly.	Once	again,	the	only	variable	is	p,	

that	controls	the	probability	of	one	of	these	edits	being	carried	out.	If	the	coin-flip	

determines	 that	 an	 edit	 should	 be	 carried	 out,	 a	 vector	 containing	 a	 uniform	

distribution	is	sampled	from	in	order	to	determine	which	edit	should	be	carried	

out.		
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Figure	54:	Results	for	song	evolution	when	the	probability	of	each	edit	operation	is	

assigned	uniform	distribution.	Here	p	=	1	and	random	edits	are	carried	out	every	

generation.	

In	order	to	determine	the	influence	of	the	all	the	operations	coupled	together,	the	

model	was	re-run	with	a	p	of	1,	for	4’000	generations.	These	results	are	shown	in	

Figure	55.	

	
Figure	55:	Long	run	with	random	edits.		
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One	 of	 the	 most	 interesting	 results	 from	 this	 experiment	 is	 the	 long	 run	 of	

experiment	7.	The	model	was	trained	with	string	used	for	all	these	models	(taken	

from	2002	song).	The	string	produced	after	4’000	generations	is	printed	below:	

	

Pvjjjjaaooaaooqhnjjjjaaooaaooaaoojjjjaaooaaooaaooaaooibrjjjjjaaoorjjjjjaaoogjjjrjjjcaao

ojjjjjjfhqhngjjjjjjaaooaaooaaooaaoobaaooaaoojjaaoogjjjzfkjjjjjjcfjjcdzdqhngalkjjaaooaaoo

jjjjaaoogjjjnaaoopaaoogjjjjjaaooaaoojjjqhnglrjjjnyhncaaooaoohnqhnd	

	

From	an	initial	qualitative	examination	of	the	string,	we	can	see	that	its	contents	

are	very	different	to	the	sequence	the	model	was	initially	trained	with,	but	retains	

a	structure.	In	order	to	verify	the	difference	in	the	songs	units,	the	frequency	of	

each	 character	was	 calculated	 for	 the	 training	 string,	 and	 final	 string	 at	 4’000	

iterations,	as	shown	in	Tables	11	and	12	respectively.		

Value	 Count	 Percentage	
n					 20	 8%	
c						 26		 10%	
o						 37	 15%	
k						 30	 12%	
j							 18	 7%	
a						 52	 21%	
f							 20	 8%	
h					 7	 3%	
m			 7	 3%	
g					 3	 1%	
l						 6	 2%	
d					 18	 7%	
i						 2	 1%	
b					 2	 1%	
e				 1	 0.5%	
Table	18:	Unit	frequency	count	for	training	song.		
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Value	 Count	 Percentage	
P	 2	 1%	
V	 1	 05%	
J	 73	 30%	
A	 56	 23%	
O	 56	 23%	
Q	 5	 2%	
H	 8	 3%	
H	 9	 3%	
I	 1	 0.4%	
B	 2	 1%	
R	 4	 2%	
G	 7	 3%	
C	 4	 2%	
F	 3	 1%	
Z	 2	 1%	
K	 2	 1%	
D	 3	 1%	
L	 2	 1%	
Y	 1	 0.4%	
Table	19:	Unit	frequency	count	for	final	song	in	model	long	run.	
	
Rule	Number	 Rule	 Rule	Output	
R1	 	 R19	R11		 Jjjjaaoo	
R2	 q	R17		 Qhn	
R3	 R1	R4		 Jjjjaaooaaoo	
R4	 a	R18		 Aaoo	
R5	 r	R19	R16		 Rjjjjjjjjjaaooaaoo	
R6	 g	R10		 Gjjj	
R7	 r	R10		 Rjjj	
R8	 c	R4		 caaoo	
R9	 R10	R10		 Jjjjjj	
R10	 R13	j		 Jjj	
R11	 R4	R4		 Aaooaaoo	
R12	 R13	R4		 Jjaaoo	
R13	 j	j		 Jj	
R14	 R2	g		 Ohng	
R15	 R12	R4	R10		 Jjaaooaaoojjj	
R16	 j	R4		 Jaaoo	
R17	 h	n		 Hn	
R18	 a	o	o		 Aoo	
R19	 R13	R13	 jjjj	
Table	20:	Formal	grammar	for	song	at	the	end	of	a	long	run	experiment.	

	
P,	v,	1,	2,	3,	3,	4,	I,	b,	5,	5,	6,	7,	8,	9,	f,	h,	2,	6,	10,	11,	11,	b,	11,	12,	6,	z,	f,	k,	9,	c,	f,	13,	c,	
d,	z,	d,	14,	a,	l,	k,	15,	16,	6,	n,	4,	p,	4,	6,	15,	14,	l,	7,	n,	y,	17,	8,	18,	17,	2,	d	–	Long	run	
experiment	rule	sequence.		
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Table	 20	shows	a	 grammar	analysis	 of	 the	 song	using	 Sequitur.	As	we	 can	 see	 there	

appears	to	be	a	hierarchal	structure	similar	to	the	grammar	shown	in	Error!	Reference	

source	not	found.. 

	
One	of	the	most	interesting	results	is	that	the	Levenshtein	Distance	in	the	long	run	

appeared	to	plateau	at	around	500	generations.	This	is	likely	due	to	a	maximum	

distance	 being	 reached	 from	 the	 initial	 training	 string.	 Since	 the	 song	 length	

plateaued,	substitutions	would	be	the	only	operation	required	in	order	to	return	

to	the	original	song,	thus	resulting	in	a	fairly	stable	Levenshtein	Distance	score.		

5.6	Discussion	

This	 exploration	 of	 real	 world	 songs	 has	 only	 scratched	 the	 surface	 of	 what	

hierarchical	analysis	using	Sequitur	can	achieve.	This	analysis	focussed	only	on	a	

comparative	analysis	of	the	structure	of	the	song.	A	comparative	analysis	of	the	

contents	of	the	two	songs	would	surely	reveal	a	greater	degree	of	insight	into	the	

differences	of	these	two	songs.	For	example,	rather	than	assigning	unique	units	

when	encoding	a	song,	an	alphabet	based	on	the	naming	convention	developed	by	

Allen	could	be	 implemented	(Allen,	Garland,	Murray,	Noad,	&	Dunlop,	2017)	 in	

order	 to	 assign	 unique	 values	 to	 each	 unit.	 This	 would	 enable	 a	 Levenshtein	

distance	 comparison	 to	 be	 carried	 out	 between	 the	 rules	 of	 the	 two	 separate	

breeding	seasons.		

	
The	 seven	 iterated	 learning	experiments	 reveal	how	 these	different	operations	

can	influence	the	song	of	the	agents.	It	is	important	to	note	that	in	the	generation	

of	these	songs,	the	agents	never	directly	edit	the	rules	themselves.	They	can	repeat	

rules,	 substitute	 them	with	 other	 rules,	 but	 they	 can	 never	 carry	 out	 a	 direct	

operation	on	their	internal	rules.	Despite	having	access	to	only	these	operations,	

we	see	that	the	internal	representation	of	the	song	(the	rules)	can	still	change.		

	

Some	of	the	operations	presented	here	have	a	very	predictable	effect	on	the	song.	

In	 the	 case	 of	 character	 insertions	 and	 deletions,	 the	 Levenshtein	 distance	

increases	and	decreases	linearly	respectively.	How	these	may	affect	the	internal	

rules	of	an	agent	depends	on	where	the	characters	are	inserted	into	the	sequence,	

and	if	it	results	in	Sequitur	deleting	or	adding	a	rule.	Examples	of	how	these	edits	
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may	affect	the	song	are	demonstrated	in		Figure	56	through	to	Figure	61.	The	effect	

each	of	these	operations	has	on	the	song	analysis	is	summarised	in	Table	21.	

	

	
	Figure	56:	This	shows	how	a	character	insertion	can	result	in	the	creation	of	a	new	

rule.	The	sequence	AAX	appears	twice	in	the	new	sequence	on	the	right,	and	can	be	

re-created	using	previous	rules,	so	the	Sequitur	algorithm	adds	another	rule.		

	
Figure	57:	The	effect	deleting	a	character	can	have	on	a	song.	

	
Figure	58:	The	effect	of	substituting	a	character	in	a	song.	

	
Figure	59:	The	effect	character	inserting	a	rule	can	have	on	a	song.		
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Figure	60:	The	effect	of	deleting	a	rule	in	a	song.	

	
Figure	61:	The	effect	of	substituting	a	rule	in	a	song.	

	 Levenshtein	
Distance	

Song	Length	 Number	of	Rules	

Character	
insertion	

+L	 +L	 +	
Character	
Deletion	

+L	 -L	 -	
Character	
Substitution	

+L	 x	 +-	
Rule	Insertion	 +	 +	 +	
Rule	Deletion	 +	 -	 -	
Rule	Substitution	 +	 +-	 +-	
Random	 +-	 +-	 +-	
Table	21:	This	table	shows	the	effect	each	operation	has	on	the	analysis	methods.	A	+	

character	implies	that	it	generally	increases	the	measurement,	a	–	implies	that	it	

generally	decreases	the	measurement.	A	combination	of	the	two	characters	means	it	

can	both	increase	and	decrease	the	measurement.	An	X	means	that	it	has	no	effect	on	

that	measurement.		A	capital	L	indicates	that	it	influences	the	parameter	linearly.		

These	processes	were	chosen	as	they	were	directly	influenced	by	the	concept	of	

using	Levenshtein	distance	in	a	synthesis	form.	These	operations	could	be	viewed	

as	analogies	to	production	and	learning	errors.	For	example,	character	insertion	

could	 be	 seen	 as	 a	 production	 error	 by	 accidentally	 adding	 an	 extra	 unit,	 and	

character	deletion	 could	roughly	be	equated	 to	missing	a	unit	when	 learning	a	

song.	These	are	processes	that	likely	occur	in	wild	humpbacks.	They	key	point	to	
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take	 away	 from	 this	 is	 that	when	 the	 ability	 to	 identify	 hierarchy	 is	 built	 into	

agents,	minor	edits	 carried	out	 from	agent	 to	agent	with	 these	production	and	

learning	errors	can	result	dramatically	different	songs	given	enough	time	in	a	form	

of	 cumulative	 cultural	 transmission.	 This	 occurs	 without	 any	 need	 to	 edit	 the	

agents’	 internal	 rules.	New	 rules	 arise	 because	 of	 how	 the	 agents	 perceive	 the	

hierarchy	in	the	song.		

	

The	syntactical	abilities	of	animals	are	a	matter	of	debate.	An	excellent	discussion	

on	this	matter	is	given	in	(Cate,	Okanoya,	Cate,	&	Okanoya,	2012).	However,	in	Cate	

et	 al.	 study,	 the	 primary	 discussion	 focussed	 on	 primates	 and	 birds,	 and	 their	

ability	 to	 distinguish	 between	 two	 different	 forms	 of	 strings	 with	 hierarchies	

relating	to	grammars	of	the	form	AB	and	AABB.	The	study	focussed	on	birds	and	

primates,	and	cannot	be	directly	compared	to	the	learning	abilities	of	humpback	

whales.	 Furthermore,	 while	 playback	 experiments	 have	 been	 carried	 out	 on	

humpbacks	 (Tyack,	 1983),	 the	 main	 response	 from	 the	 animal	 was	 one	 of	

aggression,	with	the	whale	responding	by	charging	at	the	boat,	making	these	types	

of	 studies	 impossible	 (or	 ill	 advised	 at	 the	 very	 least).	 This	 means	 that	 the	

syntactical	abilities	of	humpback	whales	in	relation	to	what	type	of	grammars	they	

are	capable	of	reproducing	are	unclear	at	best.	Another	point	made	in	the	Cate	et	

al.	 paper	 that	 may	 be	 challenged	 is	 that	 no	 grammar	 more	 complex	 than	 a	

probabilistic	finite	state	grammar	similar	is	required	in	order	to	recreate	the	vocal	

sequences	of	 these	animals.	The	most	 commonly	used	probabilistic	 finite	 state	

grammar	used	is	the	nth-order	Markov	Chain.	Studies	have	shown	that	there	are	

many	 other	 models	 other	 than	 Markov	 chains	 that	 can	 recreate	 animal	 vocal	

sequences	(Kershenbaum	et	al.,	2014).	This	is	further	reinforced	by	studies	that	

showed	 that	Markov	 chains	 required	 an	unfeasible	 amount	of	 data	 in	order	 to	

approach	the	capabilities	of	modelling	humpback	whale	song	(Suzuki	et	al.,	2006),	

and	as	we	have	seen	in	Chapter	3,	these	models	converge	on	short	sequences	and	

are	not	appropriate	for	modelling	the	song	at	the	unit	level.		

	

The	formal	grammar	generated	using	Sequitur	is	used	as	a	placeholder	for	ability	

to	 recognise	 hierarchy	 in	 a	 sequence	 of	 symbols.	 It	 is	 possible	 that	 a	 simpler	

system	could	be	developed.	For	example,	after	analysing	a	song,	the	rules	could	be	
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trimmed,	in	order	to	remove	rules	that	produce	long	strings	such	as	R5	in	Table	

20.	While	 this	seems	 like	a	simple	task	 in	 theory,	 implementing	 it	proves	to	be	

quite	challenging	due	to	the	nature	of	nesting	in	the	Sequitur	algorithm,	and	the	

deletion	 of	 rules	 requires	 reconfiguring	 not	 only	 the	 set	 of	 rules,	 but	 also	 the	

sequence	 itself.	 One	 possible	 avenue	 is	 to	 remove	 any	 rules	 longer	 than	 four	

characters.	 Then	 use	 the	 remaining	 rules	 to	 recreate	 the	 training	 sequence.	

However,	current	time	constraints	do	not	allow	for	this	avenue	to	be	explored	in	

this	 thesis.	 Another	 alternative	 is	 to	 generate	 formal	 grammars	 based	 on	 the	

sequences	analysed	by	human	transcribers.		
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Chapter	6	–	Adapting	the	Models	for	Music			

6.1	Introduction	

Since	the	methods	used	to	develop	the	models	presented	throughout	the	thesis	

orginate	from	analysis	and	synthesis	methods	for	music,	it	is	natural	to	want	to	

revisit	this,	and	investigate	how	these	models	could	be	used	in	music.	This	allows	

us	to	investigate	the	potential	of	the	model	to	investigate	how	it	could	be	applied	

to	 composing	new	music,	but	also	allows	us	 to	 investigate	how	 these	methods	

could	 be	 used	 in	 investigating	 cultural	 transmission	 in	 music.	 Cultural	

transmission	 plays	 an	 important	 role	 in	 how	 music	 changes	 over	 time.	 For	

example,	 in	 traditional	 Irish	music,	 there	 is	a	 large	repertoire	of	songs	that	are	

shared	 amongst	 different	 performers.	 However,	 it	 is	 not	 uncommon	 for	 a	

performer	to	take	a	song	and	change	to	suit	their	needs,	or	to	use	existing	material	

as	the	basis	for	new	compositions.		

	

For	 example,	 the	 famous	 song	 On	 Raglan	 Road,	 owes	 its	 origins	 to	 the	 Irish	

language	song	Fáinne	Geal	an	Lae.	The	melody	for	Fáinne	Geal	an	Lae	became	the	

melody	for	On	Raglan	Road.	Fáinne	Geal	an	Lae	also	experienced	another	form	of	

change,	when	the	melody	was	adapted	into	a	march,	and	is	one	of	the	first	songs	

many	students	of	traditional	Irish	music	will	learn.	While	almost	every	student	of	

Irish	music	will	learn	the	melody	of	Fáinne	Geal	an	Lae,	many	are	unlikely	to	be	

aware	of	its	origins,	and	will	simply	think	of	it	as	On	Raglan	Road.	This	is	a	dramatic	

example,	but	 this	 change	 in	music	 is	 a	 form	of	 cultural	 transmission,	 and	 is	 an	

example	 of	 how	 a	 song	may	 change	 over	 time.	 There	was	 a	 large	 tradition	 of	

itinerant	 musicians	 in	 Ireland,	 such	 as	 the	 famous	 travelling	 harper	 Turlough	

O’Carolan	(Rimmer,	1987),	or	the	travelling	pipers	that	existed	as	recently	as	the	

early	20th	century	(Tuohy	&	Ó	hAodha,	2008).	In	order	to	collect	the	songs	of	these	

travelling	musicians,	Edward	Bunting	who	was	hired	to	transcribe	Irish	tunes	for	

the	Belfast	Harp	Festival.	Buntings	work	displays	an	interesting	aspect	of	cultural	

transmission,	as	he	did	not	receive	royalties	for	his	work	due	to	pirated	editions,	

and	the	setting	of	his	 transcribed	tunes	to	 the	popular	songs	of	Thomas	Moore	

(Cathcart,	2014).			
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There	are	claims	that	Buntings	original	transpositions	actually	contained	errors	

as	Bunting,	a	classically	trained	musician,	did	not	account	for	the	modal	nature	of	

Irish	music,	and	“corrected”	the	melodies	to	put	them	in	line	with	classical	music	

theory.	While	these	claims	do	not	appear	to	be	verified,	it	is	not	an	unreasonable	

assumption,	given	the	diatonic	nature	of	the	Irish	harp.	These	“corrections”	could	

be	viewed	as	copying	errors,	not	unlike	those	observed	in	birds	(Fehér	et	al.,	2009;	

Lachlan	et	al.,	2016).	While	Moore’s	setting	of	these	songs	can	be	viewed	as	an	

innovation,	 this	 example	 of	 transmission	 from	O’Carolan,	 to	Bunting,	 to	Moore	

presents	key	opportunities	for	copying	errors,	and	the	songs	likely	changed	due	

to	these	errors.	Errors	are	not	necessarily	a	bad	thing,	and	in	some	instance	may	

lead	to	genuine	innovation	that	will	give	the	individual	an	evolutionary	advantage	

(L	Rendell	et	al.,	2010).		

	

This	 gradual	 change	may	 be	 something	 a	 composer	may	wish	 to	 recreate	 and	

suggests	 that	 models	 developed	 for	 studying	 vocal	 learning	 in	 animals	 would	

allow	 a	 composer	 to	 investigate	 how	 cultural	 transmission	 may	 transform	

melodies	they	have	already	written.	For	this	reason,	the	models	developed	for	this	

thesis	may	have	use	as	a	tool	for	composition.	Similarly,	they	could	even	be	used	

in	 some	 anthropological	 capacity	 to	 investigate	 how	 songs	 learned	 in	 an	 aural	

tradition	may	 change	over	 time.	 This	move	 towards	musical	 systems	may	 also	

have	some	scientific	value.	One	popular	theory	in	language	evolution	suggests	that	

language	 evolved	 through	 a	 musical	 proto-language	 (Fitch,	 2010;	 Tallerman,	

2013).	 This	 suggests	 that	 adapting	 models	 of	 vocal	 learning	 in	 animals	 for	

composition	 may	 reveal	 insights	 into	 the	 key	 differences	 between	 music	 and	

language.		

	
In	order	to	investigate	the	potential	of	these	vocal-learning	models	for	animals	in	

composing	 music,	 this	 chapter	 attempts	 to	 connect	 the	 models	 back	 to	 their	

origins,	and	examine	their	potential	to	as	a	tool	for	algorithmic	composition.	The	

chapter	begins	by	introducing	an	adaptation	of	the	migratory	model	from	Chapter	

3	coupled	with	OSC,	allowing	it	to	communicate	with	Ableton	Live	software	via	

MAX4Live.	 A	 number	 of	 experiments	 regarding	 the	 novelty	 algorithm	 from	

Chapter	3	are	then	presented,	highlighting	why	 it	 is	 inappropriate	as	a	 tool	 for	
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composition.	 A	 new	 algorithm	 is	 then	 presented,	 called	 the	 Dynamic	 Novelty	

Algorithm.	The	model	is	used	in	a	simple	composition	experiment,	and	its	results	

and	the	potential	of	the	model	as	a	tool	for	composition	is	then	discussed.		

6.2	Adapting	The	Migratory	Model	

As	it	stands,	the	migratory	model	does	not	capture	the	full	complexity	observed	

in	humpback	whale	song.	While	agents	in	our	model	do	converge	on	a	shared	

song	in	certain	situations,	it	does	not	present	any	change	once	every	agent	in	

the	 population	 has	 learned	 the	 song.	 Furthermore,	 first	 order	 transition	

matrices	are	not	capable	of	capturing	the	hierarchical	structure	of	humpback	

whale	 song.	 Despite	 this,	 the	 model	 can	 be	 adapted	 for	 use	 in	 algorithmic	

composition.	 In	 the	 following	 section,	 the	 technical	 aspect	 of	 adapting	 the	

migratory	model	is	explained.		

6.2.1	Technical	Considerations	

Open	Sound	Control	(OSC)	(Freed,	Adrian,	and	Wright,	2018)	is	a	protocol	used	

to	 transmit	 data	 between	 different	 audio	 software	 programs.	 This	 package	

allows	for	the	quick	adaptation	of	the	migratory	model	to	be	used	as	a	tool	for	

composition.	Using	OSC,	it	can	send	data	to	and	from	the	migratory	model	 in	

order	to	generate	new	musical	sequences	in	real	time.	This	is	achieved	using	the	

Max4Live	API	 in	Ableton	 Live(Ableton,	 2017a,	 2017b),	 so	 that	 the	 composer	

may	introduce	new	songs	sequences	to	the	population,	and	play	them	back	in	

order	 to	 generate	 new	 musical	 variations,	 based	 on	 this	 input	 and	 other	

parameter	settings.	This	is	illustrated	in	Figure	62.	

	
Figure	62:	Signal	flow	from	Ableton	to	the	model.	
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In	order	to	interact	with	the	model,	the	composer	uses	the	ComposerIn	device	

(Figure	64)	with	a	MIDI	keyboard	to	create	a	sequence	of	notes	and	rhythms	to	

be	learned	by	a	selected	agent	in	the	model.	These	notes	are	appended	to	a	list	

in	Max/MSP,	where	they	are	then	formatted	so	that	they	can	be	used	as	an	input	

to	 the	 model.	 The	 sequence	 is	 then	 sent	 via	 OSC	 to	 a	 selected	 agent,	 who	

estimates	a	first	order	transition	matrix	so	that	it	may	create	variations	on	this	

theme.		This	interaction	flow	is	demonstrated	in	Figure	63	

	
Figure	63:	This	shows	how	a	composer	interacts	with	the	model.		

At	each	iteration	of	the	model,	the	song	produced	by	each	agent	is	sent	back	to	

Ableton	Live	using	the	modelOut	device	(Figure	65),	where	they	are	transposed	

in	order	for	them	to	be	formatted	into	MIDI	notes.	These	are	then	stored	in	a	

message	box	and	sequenced	using	a	metro	object.	This	allows	the	MIDI	notes	to	

be	sent	to	any	Live	or	Max4Live	device	that	the	composer	wishes	to	use.		

	
Figure	64:	The	ComposerIn	Max4Live	device.	
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Figure	65:	The	ModelOut	device.	

6.3	Developing	a	New	Novelty	algorithm	

Since	 the	 model	 relies	 on	 the	 distance	 between	 agents	 to	 influence	 the	

transmission	of	the	song,	it	is	possible	for	the	song	input	by	the	composer	to	be	

overpowered	by	the	other	songs	in	the	population	of	agents	if	they	are	clustered	

closely	together.	This	removes	the	power	of	the	composer	over	the	system,	and	

requires	some	type	of	adaptation	of	the	system.	The	solution	to	this	was	to	try	

and	incorporate	a	novelty	algorithm,	as	discussed	in	Chapter	3.	As	mentioned	in	

Chapter	3,	the	novelty	algorithm	did	not	work	as	expected,	and	agents	tended	

to	converge	on	highly	random	SR’s.	Here,	a	number	of	experiments	focussing	on	

the	novelty	algorithm	are	presented,	and	highlights	why	the	algorithm	is	also	

inappropriate	for	generating	musical	ideas.	Following	these	experiments,	a	new	

novelty	 algorithm	 is	 developed	 that	 allows	 the	 composer	 to	 have	 more	

interaction	with	the	system.		

6.3.1	Experiment	1:	Novelty	and	Levenshtein	Distance(LD)	Correlation	(No	

learning)	

In	order	to	investigate	how	the	novelty	algorithm	behaves	when	a	listener	agent	

has	a	sharply	defined	transition	matrix,	the	following	experiment	was	created.		

	

1. Create	two	agents.	A	singer	and	an	analyser.		

2. At	every	iteration,	both	agents	sing.		

3. The	 analyser	 agent	 carries	 out	 a	 novelty	 calculation	 with	 its	 transition	

matrix.	This	value	is	appended	to	an	array	called	nA.	

4. A	Levenshtein	distance	comparison	is	carried	out	between	the	singer	song,	

and	the	analyser	song.	This	value	is	appended	to	an	array	called	lA.		

5. Repeat	steps	2	to	4	for	N	iterations.		
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After	carrying	out	this	experiment,	the	arrays	nA	and	lA	are	normalised	by	the	sum	

of	their	respective	arrays.		

	

The	 resulting	 arrays	 are	 then	 plotted.	 A	 number	 of	 transition	matrices	 for	 the	

analyser	 and	 singer	 agent	were	 tested.	 First,	 an	 analyser	 agent	was	 given	 the	

following	transition	matrix:		

	

𝑎𝑀𝑎𝑡 = 	 `
`

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 1

`
`	

	

The	 singer	 agent	was	 initialised	with	 a	 randomly	 initialised	matrix.	 Figure	 66	

shows	the	result	of	this	experiment.			

	
Figure	66:	This	shows	the	general	behaviour	of	the	novelty	algorithm	when	the	

listener	agent	has	a	sharply	defined	transition	matrix	and	the	songs	that	are	coming	in	

are	randomly	generated.		
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From	Figure	66,	it	is	easy	to	see	that	novelty	and	Levenshtein	distance	generally	

correlate	with	one	another	when	an	agent	has	a	sharply	defined	transition	matrix,	

and	 the	 songs	 that	 it	 is	 analysing	 are	 random	 in	 nature.	 The	 experiment	 was	

repeated	again,	but	the	singers'	transition	matrix	was	changed	to	the	following:	

	

𝑠𝑀𝑎𝑡 = 	 `
`

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1

`
`	

	

This	resulted	in	a	no	variation	in	Levenshtein	distance	over	the	run	of	the	model,	

returning	a	consistent	value	of	0.2	for	both	Levenshtein	distance	and	novelty.		

	

Finally,	 the	 experiments	were	 carried	 out	 one	more	 time,	 but	with	 the	 agents	

initialised	with	random	transition	matrices.	This	produced	varying	results,	with	

Levenshtein	distance	and	novelty	correlating	in	certain	instances	as	seen	in	Figure	

67.	

	
Figure	67:	Correlation	with	random	matrices.		
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At	other	times,	it	produced	more	chaotic	behaviour,	as	seen	in	Figure	68.	

	
Figure	68:	Another	experiment	with	randomly	initialised	matrices	for	both	agents.	

This	displays	slightly	more	chaotic	behaviour.		

Despite	 this,	 it	generally	seems	that	 the	majority	of	 times	Levenshtein	distance	

and	novelty	correlated,	even	when	matrices	are	randomised.	The	extent	to	which	

this	happens	needs	to	be	investigated	further.			

6.3.2	Experiment	2:	Novelty	and	LD	Correlation	(With	Learning)	

This	experiment	repeats	experiment	1,	but	over	multiple	cycles.	After	steps	1	to	5	

in	experiment	1	are	completed,	the,	rather	than	normalising	the	values,	we	sum	

nA	array	and	append	it	to	an	array.	We	also	sum	the	values	in	the	lA	array	and	

append	these	values	to	a	separate	array.	After	this	has	been	done,	we	update	the	

analyser	 agents'	 transition	 matrix	 to	 approach	 the	 singer	 agents'	 transition	

matrix,	using	the	same	algorithm	for	learning	in	our	model.	A	new	learning	rate	

variable,	lr,	is	introduced	to	control	how	much	of	the	singers'	transition	matrix	the	

analyser	agent	will	learn.	This	is	show	in	Equation	8.	

	

																																																							𝑇𝑎 = 𝑇𝑎 ∗ (1 − 𝑙𝑟) + 	𝑆𝑎 ∗ 𝑙𝑟																																								(8)	
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Equation	7	
Where	 Ta	 is	 the	 analyser	 agents'	 transition	 matrix,	 Sa	 is	 the	 singer	 agents'	

transition	matrix,	and	lr	is	the	learning	rate.	The	results	for	this	experiment	are	

plotted	in	Figure	69.	

	
Figure	69:	This	shows	novelty	decreasing	as	the	analyser	agents'	transition	matrix	

approaches	that	of	the	singers'	transition	matrix.		

As	we	can	see	from	Figure	69,	as	the	analyser	agent	approached	the	singer	agents'	

transition	matrix,	novelty	decreased.		Because	the	songs	were	effectively	random	

Levenshtein	distance	remained	fairly	constant	throughout.	Figure	70	to	Figure	74	

show	the	analyser	agent’s	transition	matrices	at	different	cycle	iterations.		

	

Score	
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Figure	70:	Analyser	Agents	matrix	at	0	

	
Figure	71:	Analyser	matrix	at	50	iterations	
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Figure	72:	Analyser	matrix	at	150	
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Figure	73:	Analyser	matrix	at	199	

	
Figure	74:	Singer	matrix	
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6.4	Dynamic	Novelty	Weighting	
The	 experiments	 in	 the	 previous	 section	 showed	 that	 while	 novelty	 and	

Levenshtein	 distance	 do	 correlate	 under	 certain	 circumstances,	 the	 agents	

eventually	converged	on	uniform	SR’s	 if	novelty	 is	used	as	a	weighting	 in	 their	

learning	algorithm.	Once	all	agents	converge	on	uniform	SR’s,	each	transition	is	as	

likely	as	another,	and	the	novelty	of	any	incoming	sequence	is	zero,	and	effectively	

stops	 learning.	 This	 type	 of	 stagnant,	 non-dynamic	 system	 does	 not	 allow	 the	

composer	to	influence	the	songs	of	agents.	It	would	also	be	possible	to	create	this	

type	of	system	using	a	single	agent	with	a	uniform	SR,	making	this	type	of	complex	

model	 unnecessary,	 and	 highlights	why	 the	model	with	only	 novelty	 produces	

uninteresting	musical	ideas.		

	

The	original	novelty	algorithm	effectively	stops	learning	after	a	certain	number	of	

iterations,	and	the	composer	can	no	longer	influence	the	system.	To	deal	with	this	

problem	a	new	novelty	algorithm	was	investigated.	The	reason	for	developing	a	

new	novelty	algorithm	is	simply	because	it	did	not	require	dramatically	changing	

how	the	agents	learned,	and	kept	the	system	as	close	as	possible	to	the	original	

model.	This	algorithm	is	called	the	Dynamic	Novelty	Weighting	Algorithm,	and	it	

calculates	novelty	in	relation	to	the	songs	of	all	agents	in	the	population.	This	is	

achieved	by	calculating	the	novelty	value	for	every	agent	in	the	population,	and	

then	dividing	their	scores	by	the	highest	novelty	value	in	the	population,	as	shown	

in	Equation	9.		

	

																																																												α =
nov(m)
max(𝑛𝑜𝑣)																																																								(9)		

Equation	8	
	
The	 dynamic	 weighting	 algorithm	 produces	 an	 oscillating	 effect	 on	 the	

probability	of	transitioning	from	one	unit	to	another,	as	demonstrated	in	Figure	

75.	This	shows	the	probability	of	an	agent	moving	from	unit	A	to	unit	B	(the	red	

line),	and	the	probability	of	moving	from	unit	A	to	unit	C	(the	blue	line).	At	the	

start	of	the	model,	the	probability	of	going	from	unit	A	to	B	is	100%.	Another	

agent	in	the	population	is	trained	with	a	probability	of	transferring	from	unit	A	

to	C	100%	of	the	time.	As	our	agents	meet	on	the	breeding	grounds	they	hear	
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the	song,	they	hear	this	new	song	and	deem	it	to	be	more	novel	than	their	own,	

thus	applying	more	emphasis	to	learning	it.		

	

	
Figure	75:	This	figure	demonstrates	how	the	dynamic	novelty	algorithm	creates	an	

oscillation	in	the	probability	of	transitioning	from	one	unit	to	the	other.	

(Transitioning	from	unit	1	to	2	in	blue,	transitioning	from	unit	1	to	3	in	red).	

6.5	MUSICAL	DEMO	

In	order	to	test	the	model,	testing	was	approached	from	a	compositional	point	

of	view.	First,	four	different	musical	themes	were	chosen	to	form	the	structure	

of	the	composition.	These	themes	were	chosen	specifically	because	they	have	a	

high	 novelty	 value	 when	 compared	 to	 each	 other.	 They	 are	 also	 easily	

recognisable	rudimentary	musical	themes.	They	consist	of	an	ascending	C	major	

arpeggio	(Theme	A),	a	descending	chromatic	scale	(Theme	B),	an	ascending	D	

minor	arpeggio	(Theme	C),	and	a	repeating	G#	(Theme	D).	These	themes	can	be	

seen	 in	 Figure	 76.	 At	 the	 start	 of	 our	 composition,	 every	 agent’s	 transition	

matrix	is	trained	by	theme	A.	All	subsequent	themes	were	presented	to	only	a	

single	agent	(agent	2).	The	songs	being	produced	by	agent	1	were	recorded	via	

MIDI.		
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Figure	76:	The	four	themes	used	in	the	composition.	

	
The	resulting	composition	is	interesting,	as	the	oscillatory	nature	described	in	

Figure	75	of	this	chapter	emerged	not	only	for	simple	transitions	as	originally	

observed,	 but	 also	 for	 the	 structured	 themes	 presented	 to	 our	 population.	

Whenever	a	new	 theme	was	 introduced,	 the	agent	would	move	between	 the	

newly	introduced	theme	and	the	previous	theme.	This	likely	resulted	because	

as	after	learning	the	SR	for	one	theme,	the	theme	would	immediately	cease	to	

be	 novel.	 This	meant	 that	 any	 other	 agent	 in	 the	 population	 still	 singing	 the	

previous	theme	would	 immediately	have	the	most	novel	song.	This	created	a	

type	of	musical	tug	of	war	between	different	themes.			

	

	

A	
	

B	

C	

D	
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Figure	77:	An	example	of	theme	oscillation.	The	agent	alternated	between	a	

descending	chromatic	run	and	an	ascending	D	minor	arpeggio	(theme	C).		

6.6	Discussion	
From	 this	 chapter,	 we	 have	 seen	 that	 scientific	 methods	 for	 the	 analysis	 of	

animal	vocalisations	may	be	adapted	for	algorithmic	composition.	It	explained	

the	technical	considerations	necessary	for	interaction,	and	the	development	of	

a	new	novelty	method	that	allows	a	composer	to	have	a	direct	 impact	on	the	

songs	 in	 the	 population.	 Emergent	 properties,	 such	 as	 theme	 oscillation	 and	

hybrid	 themes	were	 also	 demonstrated	 through	 a	 compositional	 demo.	 It	 is	

necessary	 however	 to	 carry	 out	 a	 full	 investigation	 into	 the	 impact	 that	 the	

dynamic	weighting	novelty	algorithm	has	on	the	evolution	of	songs	in	a	larger	

population.		

The	 emergence	 of	 oscillating	 themes	 is	 interesting,	 but	 this	 is	 a	 very	 simple	

musical	 concept.	 Gauging	 the	 musical	 success	 of	 these	 systems	 can	 be	

challenging,	and	the	success	of	the	system	is	often	in	the	ear	of	the	beholder.	

What	 is	 useful	 to	one	 composer	may	 not	 be	 useful	 to	 another.	 Similarly,	 the	

dynamic	novelty	algorithm	generated	a	very	 simple	musical	 idea,	 alternating	

between	 different	 themes.	 This	 does	 not	 make	 the	 system	 entirely	 useless	

though.	In	some	cases,	it	forces	a	composer	to	work	against	what	is	currently	

the	dominant	song	in	the	population.	In	order	to	generate	a	new	theme	that	will	

influence	the	agents,	a	composer	must	consider	transitions	that	the	agents	will	

not	expect	 and	 forces	 them	 to	adapt	 their	 input	 in	 creative	ways	 in	order	 to	

B	 C	 B	 C	 B	

C	 B	

C	 B	 C	 B	
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obtain	a	high	novelty	score.	This	constraint	creates	a	musical	game,	where	the	

composer	is	constantly	working	against	a	population	of	critics	and	forces	them	

to	reinvent	their	compositions	in	order	to	influence	a	population.		

Finally,	 it	 would	 be	 interesting	 to	 incorporate	 production	 errors,	 and	 the	

Sequitur	algorithm	discussed	in	the	previous	chapter.	Incorporating	production	

errors	would	allow	composer	to	simply	input	their	themes	and	let	the	system	

run.	 If	 the	 agents	 incorporate	 production	 errors	 that	 are	 not	 dramatically	

different	to	the	most	popular	song	in	the	population,	these	edits	would	not	have	

any	effect	on	the	songs	in	the	population.	If	they	incorporate	a	novel	transition,	

their	song	would	produce	a	high	novelty	score,	leading	this	novel	transition	to	

be	incorporated	into	the	rest	of	the	population.	Incorporating	Sequitur	would	

allow	for	 the	generation	of	musical	 themes	with	more	structure,	but	 it	 is	not	

entirely	clear	how	the	novelty	algorithm	could	be	adapted	in	order	to	facilitate	

the	 Sequitur	 algorithm.	 One	 solution	 is	 to	 have	 the	 agents	 SRs	 control	 the	

transition	from	rule	to	rule	in	the	agents	Seq	variable.	This	would	likely	result	

in	agents	oscillating	from	a	large	variety	of	musical	themes	and	would	allow	a	

composer	 to	 investigate	 how	multiple	 themes	 in	 a	 single	 sequence	 could	 be	

remixed	amongst	a	population.			

Despite	 the	ease	 in	which	a	model	may	be	adapted,	 this	does	not	necessarily	

suggest	that	it	is	going	to	be	useful	for	composing	music.	This	model	required	a	

lot	of	work	to	generate	what	is	arguably	a	very	rudimentary	musical	concept.	

However,	 the	model	was	 trained	with	very	 simple	musical	phrases,	 and	 it	 is	

possible	that	given	enough	agents,	and	if	trained	with	intelligent	musical	ideas,	

the	model	could	produce	an	 interesting	result.	This	would	require	a	 talented	

composer	 simply	 highlights	 the	 human	 element	 in	 algorithmic	 composition.	

These	models	fall	short	compared	to	any	human	musical	ability.	However,	this	

model	may	 have	 alternative	 applications.	 One	 of	 the	 challenges	 in	 analysing	

humpback	whale	song	is	its	long	duration.	It	is	difficult	to	identify	the	patterns	

aurally	without	 the	aid	of	a	spectrogram.	However,	by	assigning	unique	midi	

note	values,	it	would	be	possible	to	sonify	humpback	whale	song.	This	would	

allow	for	easy	identification	of	the	hierarchy	of	the	song	and	may	be	of	use	as	a	

tool	for	outreach.	Furthermore,	it	would	allow	for	a	faster	identification	of	how	
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the	song	may	change	over	time.	In	the	original	Fast	Travel	composition	(Kirke,	

Freeman,	 Miranda,	 &	 Ingram,	 2011a),	 changes	 in	 the	 song	 were	 sped	 up,	

reducing	the	time	of	change	over	the	gradual	drift	of	blue	whale	song	from	10	

years,	 to	10	minutes.	By	speeding	up	these	rapid	changes,	we	may	be	able	 to	

identify	 changes	 in	 a	 system	 over	 long	 periods	 of	 time.	 Furthermore,	 by	

adapting	the	model	for	use	as	a	tool	for	composition	brings	it	closer	to	use	as		a	

tool	for	studying	the	cultural	transmission	of	music.		
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Chapter	7	–	Conclusions	and	Future	Work		
This	 final	chapter	discusses	the	contributions	of	 the	thesis	and	summarises	the	

work	presented.			

7.1	Contributions	

This	 thesis	 presented	 three	 multi-agent	 models	 that	 address	 specific	 issues	

surrounding	 humpback	 whale	 song.	 The	 first	 contribution	 is	 a	 model	 for	

investigating	 the	 role	 of	 migratory	 behaviour	 and	 spatial	 distribution	 in	 song	

learning	(section	3.2),	with	extensions	added	to	investigate	the	effect	of	novelty	

(section	 3.3),	 production	 errors	 (section	 3.4),	 and	 the	 coupling	 of	 these	 two	

parameters	 (section	 3.5).	 Analysis	 of	 these	models	 revealed	 the	 importance	 of	

feeding	grounds	as	a	location	for	cultural	transmission	that	may	facilitate	cultural	

revolution	(section	3.7	and	3.8),	and	also	highlighted	that	simple	Markov	models	

are	 not	 capable	 of	 achieving	 song	 revolution	 as	 seen	 in	 wild	 populations	 of	

humpback	whales	(section	3.7	and	3.8).		

	

The	literature	review	reveals	a	distinct	lack	of	knowledge	surrounding	the	social	

networks	of	humpback	whales	on	the	breeding	ground	(section	2.2.2).	In	order	to	

address	this,	a	model	was	developed	that	synthesised	social	networks	in	order	to	

control	which	agent’s	are	capable	of	learning	from	each	other	(section	4.3).	This	

model	 showed	 that	 social	 networks	 with	 small	 world	 properties	 consistently	

facilitate	 high	 levels	 of	 song	 convergence	 in	 a	 population	 (section	 4.5)	 and	

outperform	 social	 networks	 that	 did	 not	 possess	 these	 properties.	 However,	

statistical	 analysis	 showed	that	 there	was	not	any	 statistical	significance	 in	 the	

mean	 difference	 of	 convergence	 between	 random	 networks	 and	 small	 world	

networks.	 Since	 random	networks	 facilitate	high	 levels	of	song	 convergence	as	

well	as	small	world	networks,	they	are	also	a	likely	candidate	for	the	facilitation	

of	song	convergence,	and	do	not	rely	on	imposing	as	strict	social	network	as	small	

world	networks.	More	research	is	necessary	however	in	order	to	investigate	the	

rate	at	which	song	convergence	occurs	in	these	networks.		

		

The	third	model	examined	the	issue	of	hierarchal	structure	in	humpback	whale	

song	 (Chapter	 5).	 The	 literature	 review	 showed	 that	 Markov	 processes	 were	
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inadequate	for	modelling	humpback	whale	song	(section	2.8.3	and	2.10),	and	the	

failure	of	Markov	models	to	achieve	true	song	revolution	in	the	migratory	model	

(section	3.7.1)	suggested	that	Markov	models	were	not	capable	of	recreating	the	

hierarchal	 structure	 of	 humpback	 whale	 song.	 In	 order	 to	 address	 this,	 the	

Sequitur	algorithm	was	used	 to	analyse	 the	hierarchal	 structure	of	 songs	 from	

2002	and	2003	(section	5.3).	This	revealed	the	hierarchal	structure	of	the	song,	

showing	 that	 Sequitur	 could	 break	 down	 the	 song	 into	 rules	 resembling	 the	

hierarchal	structure	described	 in	 (R	S	Payne	&	McVay,	1971).	Following	 this,	 a	

sampler	was	developed	 for	 the	 Sequitur	 algorithm	 in	order	 to	 utilise	 the	 rules	

Sequitur	 generates	 in	 order	 to	 recreate	 humpback	 whale	 song.	 A	 variety	 of	

production	errors	were	also	implemented,	and	their	individual	effects	on	a	real	

world	song	investigated	in	a	vertical	cultural	transmission	model	(section	5.4.1	to	

5.4.7).	After	identifying	the	effect	that	individual	production	errors	had,	they	were	

coupled	together	in	order	to	investigate	how	they	may	affect	the	transmission	of	

the	song	(section	5.4.7).	Over	the	course	of	a	long	run	model.	This	resulted	in	a	

song	that	was	significantly	different	to	the	original	song	that	was	used	to	train	the	

model,	but	still	possessing	the	hierarchal	structure	(section	5.4.8).	This	suggests	

that	 once	 some	method	 of	 identifying	 the	 hierarchy	 of	 a	 song	 is	 in	 place,	 the	

changes	 observed	 in	 the	 song	 may	 simply	 be	 caused	 by	 relatively	 simple	

production	and	learning	errors.		

	

Finally,	the	migratory	model	was	adapted	in	order	to	investigate	its	potential	as	a	

tool	for	composition	(Chapter	6).	The	reason	for	adapting	the	model	for	music	was	

to	investigate	how	a	composer	may	evolve	a	melody	based	on	concepts	in	cultural	

transmission.	Another	reason	is	that	adapting	models	of	vocal	learning	in	animals	

may	 help	 shed	 light	 on	 the	 concept	 of	 the	musical	 proto-language	 theory,	 and	

highlight	 the	distinct	ways	 that	 animal	vocalisations	differ	 from	music	 (section	

6.1).	The	chapter	showed	how	the	model	could	easily	be	adapted	using	existing	

protocols	 in	 music	 technology	 (section	 6.2.1).	 A	 new	 novelty	 algorithm	 was	

developed	in	order	to	address	the	shortcomings	of	the	original	novelty	algorithm	

discussed	in	section	3.3.	This	lead	to	the	development	of	a	new	novelty	algorithm	

where	the	most	novel	song	in	the	population	has	the	largest	impact	on	the	overall	

song	of	the	population	(section	6.5.1).	This	new	novelty	algorithm	caused	agents	
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to	oscillate	between	the	various	themes	they	were	trained	with,	and	in	some	cases	

combine	 different	 themes	 in	 order	 to	 create	 hybrid	 themes	 (section	 6.6),	 and	

paves	the	way	for	the	using	the	model	to	investigate	cultural	transmission	in	music	

.		

7.2	Research	Questions	Revisited		
	
Here,	the	contributions	and	their	achievements	are	related	back	to	the	research	

questions	raised	in	section	1.3.	

	

RQ1:	Can	methods	used	in	computer	music	research	be	applied	to	the	analysis	of	

animal	vocalisations?		

	

Throughout	this	 thesis,	 there	has	been	a	conscious	effort	 to	relate	 the	methods	

used	in	the	development	of	these	models	to	the	methods	used	in	computer	music	

research.	 Given	 the	 interdisciplinary	 nature	 of	 computer	music,	many	 of	 these	

methods	 have	 their	 origins	 in	 other	 disciplines,	 such	 as	 computer	 science,	

linguistics,	and	informatics.	Despite	these	close	relations,	the	thesis	uses	computer	

music	research	as	a	springboard	for	the	development	of	the	models,	and	there	is	

indeed	potential	to	draw	on	these	methods	for	research	into	biology	and	cultural	

transmission.	The	 ideas	 for	 this	project	originate	 in	a	composition	(Kirke	et	al.,	

2011b),	and	a	simple	agent	based	on	this	compositional	tool	was	developed	in	as	

a	proof	of	concept	for	this	project	(Kirke	et	al.,	2015).	The	first	model	developed	

for	 this	 project	 (the	 migratory	 model,	 discussed	 in	 section	 3.2)	 was	 inspired	

heavily	by	an	agent	based	model	used	to	investigate	cultural	transmission	in	music	

(Todd	&	Werner,	1999).	This	included	the	use	of	Markov	models,	but	also	helped	

inspire	the	development	of	the	original	novelty	algorithm	discussed	in	section	3.3.	

The	 Sequitur	model	 discussed	 in	 section	 5.2	was	 designed	 to	 work	 with	 long	

strings	of	text,	and	has	been	used	to	identify	structures	in	music	(Nevill-Manning	

&	Nevill-Manning,	1996).	Sequitur	has	been	compared	with	Probabilistic	Context	

Free	 Grammars	 (PCFG)	 that	 have	 been	 used	 in	 composition,	 as	 discussed	 in	

section	2.8.6.	The	 relative	ease	with	which	 these	methods	 could	be	adapted	 to	

examine	cultural	transmission	in	humpback	whale	song	shows	that	these	methods	

can	easily	be	applied	to	animal	vocalisation	research.		
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RQ2:	Can	the	phenomena	of	song	revolution	and	evolution	be	addressed	through	

a	spatially	explicit	model	that	recreates	humpback	migratory	patterns	and	fine-

scale	 cultural	 transmission	 issues	 that	may	 occur	 in	 individual	 interactions	 in	

humpback	song	transmission?	

	

The	spatial	model	in	Chapter	3	of	this	thesis	was	designed	to	specifically	address	

this	 question.	 It	 used	 the	 simplest	 method	 of	 song	 synthesis,	 and	 sound	 loss	

transmission	as	weighting	for	song	learning	(section	3.2.2).	While	the	model	itself	

did	not	succeed	in	recreating	evolution	or	revolutionary	patterns,	it	points	the	way	

towards	what	is	required	in	order	to	achieve	these	phenomena	(section	3.7	and	

section	3.8).		

	

In	regards	to	song	revolution,	Chapter	3	showed	that	feeding	grounds	are	likely	to	

play	a	key	role	in	the	phenomena	of	song	revolution.	Even	with	a	low	singing	rate,	

it	was	possible	for	the	geographically	separated	populations	to	achieve	identical	

songs	and	song	representations	(section	3.7.1).	However,	this	is	not	the	same	as	

song	revolution,	as	the	resulting	SR’s	were	more	similar	to	a	mixture	of	the	two	

songs	 rather	 than	 one	 populations	 song	 replacing	 another.	 This	 suggests	 that	

other	 biases	 are	 necessary	 in	 order	 for	 song	 of	 a	 population	 to	 replace	 its	

neighbour,	and	the	revolutionary	pattern	of	western	to	eastern	song	replacement	

(Garland	et	al.,	2011)	 	 is	not	explained.	However,	assuming	that	whales	remain	

loyal	to	their	respective	feeding	grounds,	it	is	likely	that	revolutionary	behaviour	

occurs	on	the	feeding	ground.	Non-cognitive	biases	that	may	be	responsible	could	

be	 asymmetrical	 feeding	 grounds	 that	 facilitate	 song-learning	 opportunities.	

Another	factor	may	be	related	to	population	size,	and	song	replacement	may	occur	

when	one	breeding	ground	has	a	significantly	higher	population	than	the	other.	

Another	possibly	important	non-cognitive	driving	factor	in	song	evolution	could	

be	the	structure	of	the	social	networks	of	humpback	whales,	as	shown	in	Chapter	

4.	 This	 would	 be	 particularly	 true	 if	 the	 social	 structures	 were	 dynamic,	 and	

changed	over	the	course	of	the	whales	migratory	season.		
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In	terms	of	individual	interactions,	the	design	of	the	agent	based	models	in	this	

thesis	is	always	bottom	up,	meaning	that	when	building	these	models,	the	role	of	

individuals	and	how	they	 learn	and	produce	their	songs	is	 the	main	 factor	 that	

drives	cultural	transmission	and	evolution.	In	this	regard,	the	models	have	been	

successful	 in	 identifying	 sound	 loss	 transmission	 and	 production	 errors	 as	

important	 factors	 in	 song	 learning.	 More	 importantly,	 this	 model	 helps	 in	

eliminating	cognitive	biases	that	are	not	important	in	regards	to	song	learning	and	

production	(section	3.8),	such	as	the	novelty	algorithm	developed	in	section	3.3.	

Novelty	 weightings	 caused	 agents	 to	 converge	 on	 unrealistic	 song	

representations,	where	 the	potential	 transitions	 that	 could	occur	had	 the	 same	

probability.	This	shows	that	in	order	for	novelty	to	be	a	factor	in	song	revolution,	

it	may	need	to	be	coupled	with	other	cognitive	factors.	At	the	time	of	writing,	the	

author	and	his	colleagues	at	University	of	St	Andrews	are	developing	a	new	model	

that	 incorporates	 song	memory	 coupled	with	 novelty	 that	 shows	 potential	 for	

revolutionary	behaviour.		

	

One	of	the	most	important	factors	individuals	carry	out	appears	to	be	production	

and	learning	errors,	as	exemplified	by	the	models	presented	in	sections	3.4	and	

5.4.		In	a	spatially	explicit	model,	song	changes	would	only	occur	when	production	

errors	 were	 introduced,	 otherwise	 songs	 and	 song	 representations	 quickly	

converged	on	a	single	song	and	would	not	change.	The	most	dramatic	effect	of	

production	 errors	 occurred	 when	 it	 was	 coupled	 with	 the	 hierarchical	 model	

shown	in	Chapter	5,	and	it	was	demonstrated	that	if	an	agent	has	the	potential	to	

identify	 hierarchy,	 simple	 production	 and	 learning	 errors	 might	 lead	 to	

dramatically	different	songs,	given	enough	time	(section	5.4.8).		

	

RQ3:	What	different	types	of	social	networks	could	theoretically	facilitate	cultural	

transmission	phenomena	in	humpback	whales?		

	

Chapter	4	was	designed	to	address	this	question.	It	showed	that	social	networks	

with	small	world	properties	allowed	the	highest	 level	of	song	convergence	 in	a	

population	of	whales		(section	4.4	and	4.5).	However,	random	networks	can	also	

facilitate	song	convergence	just	as	well.	In	a	population,	all	humpbacks	generally	
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conform	to	the	same	song.	In	order	for	this	to	occur,	the	social	network	of	these	

animals	must	allow	 for	 consistently	 returning	high	 levels	of	 song	 convergence.	

This	was	 related	 to	 social	 network	 analysis	 of	 transmitted	 feeding	 behaviours	

(section	4.6).	Allen’s	analysis	of	the	social	networks	found	on	the	feeding	grounds	

revealed	an	average	of	50	associates	for	653	whales	examined.	While	this	value	

was	not	tested	due	to	time	constraints,	a	model	where	agents	were	able	to	learn	

from	 as	 many	 as	 30	 conspecifics	 still	 returned	 a	 high	 average	 level	 of	 song	

convergence	 (section	4.5).	 It	 is	 important	 to	note	 that	while	a	whale	may	have	

many	associates,	it	will	not	necessarily	learn	from	every	single	one	of	them.	This	

chapter	also	revealed	that	the	lowest	number	of	conspecifics	an	agent	must	learn	

from	is	4	(section	4.4).		

	

RQ4:	Can	formal	grammar	methods	be	used	 in	the	analysis	of	whale	song,	and	

synthesis	of	song	when	coupled	with	production	and	learning	of	humpback	whale	

song?		

	

As	 a	 tool	 for	 analysing	 humpback	 whale	 song,	 Chapter	 5	 demonstrated	 that	

algorithms	 that	 place	 an	 emphasis	 on	 hierarchy	 succeed	 in	 identifying	 the	

hierarchical	 patterns	 originally	 described	 in	 (R	 S	 Payne	 &	McVay,	 1971),	 with	

Sequitur	 dividing	 up	 the	 songs	 into	 its	 respective	 themes	 and	 phrases.	 It	 also	

helped	demonstrate	that	is	a	wide	variety	in	the	complexity	of	the	song.	The	song	

analysed	in	2002	preceded	a	revolutionary	event,	and	the	song	displayed	a	much	

lower	higher	degree	of	complexity	than	the	song	in	2003.	This	analysis	was	still	

relatively	simple,	and	it	should	be	noted	that	there	are	many	more	uses	of	where	

the	 Sequitur	 algorithm	 could	 be	 used	 in	 examining	 cultural	 evolution.	 Most	

importantly,	 following	 the	 transcription	 of	 song	 at	 the	 unit	 level,	 it	 provides	 a	

reliable	method	to	 identify	 the	hierarchy	of	 the	song,	without	having	to	rely	on	

humans	in	order	to	validate	this	structure	of	the	song.			

	

As	discussed	in	section	2.8.6	and	section	5.9,	the	use	of	formal	grammars	in	the	

synthesis	of	animal	vocal	sequences	is	a	controversial	topic.	However,	the	use	of	

formal	 grammars	 in	 agent	 based	models	 trained	with	 sequences	 of	 humpback	

song	 have	 never	 been	 carried	 out,	 and	 the	 Sequitur	 algorithm	 combined	with	
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production	and	learning	errors	enabled	the	synthesis	of	evolving	hierarchal	songs	

similar	to	those	seen	in	humpback	whales.	Some	of	the	production	and	learning	

errors	 such	 as	 character	 deletion,	 substitution,	 and	 insertion	 produced	

predictable	 results	 (see	 sections	 5.4.2	 and	 5.4.3)	 while	 others	 such	 as	 rule	

replacement,	insertion	and	deletion	were	less	predictable	(sections	5.4.5	to	5.4.6).	

The	most	interesting	results	were	obtained	in	long	run	models,	where	agents	were	

allowed	 to	 carry	 out	 all	 these	 operations	 freely	 (section	5.4.8),	 suggesting	 that	

there	is	no	one	single	operation	that	has	an	overpowering	effect	on	the	evolution	

of	the	song,	and	that	the	combination	of	these	production	and	learning	errors	are	

necessary	in	order	for	these	new	songs	to	emerge.				

	

RQ5:	How	can	the	methods	developed	to	answer	research	questions	2	through	6	

be	used	in	order	to	create	music?			

	

As	seen	in	Chapter	6,	it	was	relatively	easy	to	connect	the	model	to	Ableton	Live	

software	 using	 OSC	 and	 Max4Live.	 This	 did	 not	 produce	 the	 most	 interesting	

music	because	of	the	models	tendency	towards	short	songs,	and	the	model,	while	

inspired	by	methods	in	computer	music,	still	had	a	scientific	focus.	The	musical	

results	were	unsatisfying,	and	required	a	more	innovative	approach	in	order	to	

produce	 interesting	 results.	 The	 incorporation	 of	 population	 based	 novelty	

weighting	presented	in	section	6.5.1	produced	an	interesting	tug	of	war	between	

different	themes	in	the	population	(section	6.6).	However,	the	model	does	succeed	

in	showing	that	it	is	relatively	painless	in	order	to	adapt	an	agent-based	model	for	

scientific	research.		

7.3	Suggestions	for	Future	Research	

In	this	section,	potential	avenues	for	future	research	are	presented	and	discussed.		

7.3.1	Migratory	Social	Network	Models	

A	 downfall	 of	 the	 social	 network	 model	 is	 that	 it	 does	 not	 incorporate	 the	

migratory	movements	of	humpback	whales.	It	also	assumes	that	for	these	social	

network	 shapes	 are	 static,	 which	 is	 unlikely.	 Given	 the	 vast	 distances	 that	

humpbacks	travel,	 it	is	much	more	likely	that	the	networks	through	which	they	

learn	songs	change	as	 they	migrate,	being	affected	by	geographical	boundaries,	
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and	bottlenecks	where	whales	from	separate	populations	could	possibly	meet	and	

learn	each	other's	songs.	 It	 is	also	 likely	 that	a	specific	shape	of	social	network	

could	 facilitate	 behaviour	 such	 as	 song	 revolution.	 However,	 combing	 these	

complex	social	networks	with	flocking	and	animal	movement	systems	could	prove	

unwieldy	due	to	the	already	large	parameter	space	increasing.	The	social	network	

would	also	impose	strict	movement	rules	on	the	system.	In	reality,	it	is	possible	

that	the	movement	behaviour	leads	to	these	social	structures,	but	the	Migratory	

Model	 developed	 from	Chapter	 3	would	 require	 a	 complex	 analysis	method	 in	

order	to	investigate	if	these	social	structures	are	emergent.	In	order	to	address	

this,	 a	 simpler	 grid	 based	model	 could	 be	 implemented	 in	 order	 to	 investigate	

cultural	transmission	in	social	networks	using	the	song	learning	and	production	

methods	discussed	earlier.		

	

This	 potential	 model	 would	 combine	 the	 social	 network	 methods	 outlined	 in	

Chapter	4	with	the	migratory	patterns	discussed	in	Chapter	3.	In	order	to	do	this,	

social	 networks	would	 be	 based	 on	 real	world	 observations,	 of	 the	 number	 of	

humpback	whales	within	each	other’s	acoustic	ranges	at	different	points	on	their	

migratory	cycle.	Multiple	unique	social	networks	with	different	structures	would	

then	be	 synthesised	 to	 represent	 these	different	geographical	 locations.	Agents	

would	then	spend	a	certain	amount	of	time	learning	from	each	other	in	these	social	

networks,	before	moving	on	to	the	next	one.			

7.3.2	Investigating	the	Role	of	Females	

This	 thesis	 has	 focussed	 exclusively	 on	 male	 humpbacks,	 viewing	 their	

interactions	as	being	the	driving	force	behind	the	changes	observed	in	songs.	This	

was	done	so	that	the	results	would	be	consistent,	across	models	and	it	would	not	

be	necessary	to	consider	any	type	of	inter-sexual	interaction	that	is	involved	in	

song	changes.	One	potential	method	would	be	 to	 create	a	new	 type	of	 agent,	 a	

female	humpback,	who	can	 learn	 songs,	but	does	not	produce	any.	The	 female	

humpbacks	 could	 then	 choose	whether	 to	mate	with	 a	male	 humpback	whale	

depending	on	how	novel	their	song	is.	This	would	require	male	agents	to	adjust	

their	songs	to	be	the	most	novel	in	the	population	and	would	affect	the	songs	that	
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they	produce.	This	is	similar	to	the	evolutionary	pressure	model	implemented	in	

(Todd	&	Werner,	1999).	

7.3.3	Population	Turnover	and	Genetics	

None	 of	 the	models	 here	 investigated	 the	 possible	 role	 a	 population	 turnover	

would	 have	 on	 the	 song	 of	 the	 whales.	 To	 implement	 this,	 it	 would	 first	 be	

necessary	 to	 implement	 female	 agents	 in	 the	model	 as	 discussed	 above.	 If	 the	

agents	are	allowed	to	mate,	they	could	be	equipped	with	some	type	of	genetic	code	

in	their	structure.	This	could	be	a	simple	string.	Following	this,	new	agents	could	

be	created	that	possess	some	type	of	crossover	of	their	parent’s	genetic	string.	If	

the	role	of	females	drove	the	song,	this	would	result	in	a	model	to	investigate	how	

cultural	 transmission	 could	 affect	 the	 genetic	 make	 up	 of	 a	 population,	 and	 it	

would	 be	 possible	 to	 investigate	 if	 the	 songs	 and	 the	 genetic	 composition	 are	

related.	 This	 could	 be	 compared	 to	 other	 models	 that	 investigate	 the	 role	 of	

culture	 in	 evolution,	 such	 as	 those	 implemented	 in	 (Hal	 Whitehead,	 2005;	 H	

Whitehead	et	al.,	2002).		

7.3.4	A	Humpback	Specific	Formal	Grammar	

While	the	Sequitur	algorithm	was	useful	in	recreating	the	hierarchical	structure	

of	humpback	whale	song,	it	is	necessary	to	remember	that	it	was	not	the	original	

intention	 of	 the	 algorithm.	 It	 was	 designed	 to	 identify	 hierarchies	 in	 strings	

regardless	of	 their	origin.	 Sequitur	points	 towards	how	 it	would	be	possible	 to	

develop	a	more	realistic	formal	grammar	for	analysing	and	synthesising	songs	of	

humpback	whales	based	on	the	description	put	forward	by	Payne	(R	S	Payne	&	

McVay,	1971).		

	

In	 order	 to	 achieve	 such	 a	 model,	 it	 would	 be	 necessary	 to	 tie	 non-terminal	

symbols	 to	 specific	 terminology	 relating	 digrams	 to	 phrases,	 and	 how	 these	

phrases	could	be	combined	to	create	themes,	and	the	order	themes	are	performed	

in	order	to	create	songs.	The	result	would	provide	a	robust	tool	that	would	enable	

the	comparison	of	songs,	and	allow	researchers	to	identify	hierarchies	that	do	not	

rely	on	transcribing	songs	by	hand.	An	example	of	a	potential	formal	grammar	is	

presented	below.		
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Song	Structure	→ T1, T1, T2, T2, T3, T3, T4, T4 
 
T1 → P1 P2 
T2 → P3 P3 
T3 → P1 P3 
T4 → P4 P4 P5 
P1 → a a 
P2 → b b b b 
P3 → c c d  
P4 → d d d d  
P5 → d a d d  
 
Realised Song → aabbbbaabbbbccdccdccdccdaaccdaaccddddddadddddddadd 

7.3.5	Real	Time	Audio	Models	

This	 thesis	 investigated	the	songs	of	humpback	whales	 from	a	discrete	point	of	

view.	For	every	transcription	used	in	this	thesis,	each	sound	was	classified	as	a	

unit,	and	assigned	a	symbol	for	training	the	models.	This	means	that	we	miss	out	

on	 the	 finest	 level	 of	 detail	 in	 regards	 to	 vocal	 learning,	 and	 if	 there	 are	

mechanisms	that	could	cause	 individual	agents	 to	change	their	 individual	units	

over	 time.	 Such	 a	model	would	most	 closely	 resemble	Mirandas'	 research	 into	

intonation	 discussed	 earlier	 in	 the	 thesis	 (Eduardo	 Reck	 Miranda,	 2002)	 with	

particular	attention	being	paid	to	the	auditory	and	vocal	production	mechanisms.		

	

In	 order	 to	 achieve	 this,	 a	 physics-based	model	 of	 the	 humpback	 vocal	 system	

would	need	to	be	implemented.	While	research	has	been	carried	out	in	this	area	

for	 toothed	whales	 (Dubrovsky,	 Gladilin,	Møhl,	&	Wahlberg,	 2004),	models	 for	

baleen	 whale	 vocalisations	 are	 still	 in	 their	 infancy.	 This	 is	 mainly	 due	 to	 a	

potential	 sound	 source	 (U-shaped	 folds)	 being	 identified	 ten	 years	 ago	

(Reidenberg	 &	 Laitman,	 2007).	 However,	 there	 are	 currently	 researchers	

investigating	 potential	methods	 for	modelling	 the	U-shaped	 folds	 (Adam	 et	 al.,	

2013;	Cazau	et	al.,	2016)	so	it	may	be	possible	to	model	this	in	the	near	future.		

7.3.6	Development	of	Database	of	Song	Analysis		

One	area	that	would	benefit	all	future	researchers	in	this	area	is	the	creation	of	a	

database	the	combines	the	different	types	of	analyses	discussed	in	this	thesis.	In	

order	to	structure	such	a	database,	it	would	be	necessary	to	carry	out	analysis	of	

all	the	songs	in	the	Noad	database	using	acoustic	analysis,	Markov	chain	analysis,	

Sequitur,	and	Levenshtein	distance	analysis.	Researchers	could	type	in	the	name	
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of	the	recording	they	want,	and	the	type	of	analysis	they	require.	Many	problems	

during	the	three	years	of	this	research	involved	extracting	metadata,	formatting	

songs,	and	hand	based	transcriptions.	The	development	of	a	database	such	as	this	

would	enable	research	in	this	field	to	be	carried	out	much	more	effectively.		

7.3.7	Investigating	the	Influence	of	Humans	

There	 have	 been	 efforts	 to	 investigate	 the	 role	 that	 humans	 have	 on	 marine	

mammals,	 these	have	mainly	 focussed	on	the	role	of	whale	watching	boats	and	

marine	traffic	(Chion	et	al.,	2013,	2017;	Parrott	et	al.,	2011).	The	model	could	be	

adapted	 in	 order	 to	 investigate	 theories	 regarding	 the	 effect	 of	 anthropogenic	

noise	on	whale	vocalisations.	A	recent	study	suggested	that	anthropogenic	noise	

was	 creating	 a	 masking	 effect	 that	 was	 causing	 humpback	 whales	 increase	

repetition	in	their	communication	signals	(R.	A.	Dunlop,	Cato,	&	Noad,	2010).	In	

order	to	investigate	this	theory,	a	new	type	of	agent	could	be	introduced	to	the	

migratory	model.	Specifically,	a	ship	agent	that	is	equipped	with	a	noise	model.	If	

a	ship	agent	was	too	close	to	a	whale,	 the	agent	may	respond	by	repeating	the	

number	of	times	they	sing	a	phrase.	This	model	is	very	simplistic,	but	would	be	

useful	 as	 a	 demonstration	 tool,	 and	 also	 could	 be	 implemented	 in	 a	 more	

sophisticated	fashion.		

7.3.8	Application	of	Models	to	Other	Species	

In	the	broad	scope,	this	work	could	be	considered	part	of	the	field	of	evolutionary	

linguistics.	One	of	the	key	topics	in	evolutionary	linguistics	is	why	certain	species	

demonstrate	 vocal	 learning	 while	 others	 do	 not.	 For	 this	 reason,	 it	 would	 be	

interesting	to	see	how	the	models	presented	in	this	thesis	perform	when	they	are	

trained	using	data	from	other	animals.	The	Migratory	model	would	not	be	suitable	

for	 such	 research,	 since	 its	 design	 is	 closely	 tied	 to	 theories	 surrounding	 the	

migratory	 movements	 of	 humpback	 whales.	 The	 social	 network	 and	 formal	

grammar	model	however	could	be	trained	using	song	sequences	of	birds,	or	even	

other	cetaceans	such	as	the	bow-headed	whale.		

7.4	Conclusion	

While	 these	 models	 shed	 light	 on	 factors	 such	 as	 the	 importance	 of	 feeding	

grounds	 as	 key	 locations	 for	 cultural	 transmission,	 and	 the	 importance	 of	
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production	and	learning	errors	for	song	evolution,	there	are	still	many	things	we	

do	not	understand	about	humpback	whales.	Specifically,	what	is	it	that	drives	song	

revolution?	What	role	(if	any)	do	female	humpbacks	play	in	song	evolution	and	

revolution?	How	may	realistic	auditory	and	vocal	models	influence	the	evolution	

of	the	song?	Why	do	humpbacks	sing	such	complicated	songs	compared	to	other	

members	of	the	cetacean	family?		

	

We	are	still	seeking	answers	to	these	questions.	When	we	do	find	them,	more	will	

emerge.	However,	this	is	one	of	the	most	profound	aspects	of	researching	these	

animals.	 Humpbacks	 have	 always	 been	mysterious,	 and	 they	 evoke	 something	

deep	inside	us.	We	become	enamoured	with	these	charismatic	animals	and	feel	

genuinely	moved	by	 them.	Perhaps	 there	 is	 a	 certain	amount	of	 irony	here.	As	

scientists,	there	is	a	danger	of	anthropomorphising	these	animals	because	of	the	

feelings	that	they	stir	in	us.	Yet	the	methods	used	in	this	thesis	were	developed	in	

a	computer	music	research	lab,	and	the	origins	of	this	project	lie	in	the	creation	of	

music.	 This	 is	 dangerous	 territory	 of	 course,	 and	 every	 effort	 has	 been	 taken	

throughout	 this	 thesis	 to	 avoid	 projecting	 human	 characteristics	 onto	 these	

animals,	but	 the	danger	remains.	However,	 this	 is	 the	spirit	of	 interdisciplinary	

research	that	makes	it	so	exciting.	To	take	ideas	from	other	fields,	pay	attention	to	

their	academic	rigour,	and	then	apply	them	to	the	questions	we	have	about	the	

world.	I	hope	that	this	thesis	has	achieved	this,	and	I	hope	that,	if	anyone	is	still	

reading	by	now,	that	this	work	inspires	the	same	type	of	passion	for	researching	

these	animals.		
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Appendix	1	–	Unit	Naming	Convention	

	
	
	
	
	
	
	
	
	

! 47!

Appendix&II:&Unit&naming&convention&
!
Sound!name! Sound!ID! Picture!

Ascending!moan! am!

!
!

Ascending!
shriek!

ash!

!
!

Bark! bk!

!
!

Bellow! be!

!
!

Croak! cr!
!

!
Descending!
groan!

dgr!

!
!

Dolphin!whistle! Dolphin!whistle!

!
!

Groan! gr!
!

!
Growl! gr!

!
!

Grunt! gt! !
!

High!cry! Hc!

!
!

Modulated!
moan!

Mm!
!

!
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! 48!

n/shaped!high!
cry!

Nhc!

!
!

Purr! Pr!

!!
!

ratchet! ratchet!

!
!

Siren! Si!

!
!

Squeak! Sq!

!
!

Trumpet! Tr!

!
!

Violin! Vi!

!
!

Wail! wail!
!

!
Whoop! Wh!

!
!
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! 49!

Wup! wp!

!
!

Long!wup! lwp!

!
!

Wiggle!moan!! wm!

!
!

u/shaped!
ascending!moan!

UAM!

!
!

!
!
!
!
!
! !
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Appendix	2	–	Chapter	2	Production	Error	and	Production	
Error	and	Novelty	Coupling	Results	(FGS	100	to	500)	
	
Model	3,	FGS	100	
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Migratory	Model	3	FGS	500
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Migratory	Model	1.4,	FGS	100
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Migratory	Model	1.4	FGS	500
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Appendix	3	–	Digital	Supplementary	Material		
	A	CD	with	all	agent	based	models	and	instructions	on	how	to	use	them	is	provided	

with	this	 thesis.	The	CD	contains	a	 folder	with	each	model.	 In	order	to	run	the	

model,	 you	 will	 need	 Python	 Version	 2.7.13	 and	 the	 SciPy	 packages.	 The	

recommended	distribution	for	running	the	scripts	is	Anaconda	Ver	2.0.0.	This	is	

available	at	the	link	below:	

	

https://repo.continuum.io/archive/	
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Appendix	4	–	Conference	Proceedings	
Attached	at	the	end	of	this	thesis	are	the	conference	proceedings	where	work	from	

this	 thesis	was	 published.	 This	 includes	 an	 abstract	 presented	 at	 the	 EvoLang	

conference,	and	a	paper	presented	at	the	Sound	and	Music	Computing	Conference.		

The	titles	of	the	proceedings	are	printed	below:	

	

McLoughlin,	M.,	Lamoni,	L.,	Garland,	E.,	Ingram,	S.,	Noad,	M.,	Rendell,	L.,	Kirke,	A.,	

Miranda,	 E.R.,	 (2016).	 "Adapting	 a	 Computational	 Multi	 Agent	 Model	 for	

Humpback	 Whale	 Song	 Research	 for	 use	 as	 a	 Tool	 for	 Algorithmic	

Composition."	In	Proceedings	 of	 the	 Sound	 and	Music	 Computing	 Conference,	 31	

August	-	3	September,	Hamburg,	Germany,	2016	

	

Mcloughlin	M.,	Lamoni	L.,	Garland	E.,	Ingram	S.,	Kirke	A.,	Noad	M.,	Rendell	L.	and	

Miranda	 E.	 (2016).	 "Preliminary	 Results	 From	 A	 Computational	 Multi	 Agent	

Modelling	Approach	To	Study	Humpback	Whale	Song	Cultural	Transmission."	In	

S.G.	Roberts,	C.	Cuskley,	L.	McCrohon,	L.	Barceló-Coblijn,	O.	Fehér	&	T.	Verhoef	

(Eds.)	 The	 Evolution	 of	 Language:	 Proceedings	 of	 the	 11th	 International	

Conference	(EVOLANG11).		

	

	

	

	


