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Abstract. We describe the response properties of a compact, low power, ana-
log circuit that implements a model of a leaky I&F neuron, with spike-frequency
adaptation, refractory period and voltage threshold modulation properties. We
investigate the statistics of the circuit’s output response by modulating its oper-
ating parameters, like refractory period and adaptation level and by changing the
statistics of the input current. The results show a clear match with theoretical and
neurophysiological data in a given range of the parameter space. This analysis
defines the chip’s parameter working range and predicts its behavior in case of
integration into large massively parallel VLSI networks.

1 Introduction

Models of spiking neurons have complex dynamics that require intensive computa-
tional resources and long simulation times. This is especially true for conductance–
based models that describe in details the electrical dynamics of biological neurons [1].
These models include non–linear voltage–dependent membrane currents and are diffi-
cult to analyze analytically and to implement. For this reason, phenomenological spik-
ing neuron models are more popular for studies of large network dynamics. In these
models the spikes are stereotyped events generated whenever the membrane voltage
reaches a threshold. The Integrate–and–Fire (I&F) model neuron, despite its simplicity,
captures many of the broad features shared by biological neurons. This model can be
easily implemented using analog VLSI technology and can be used to build low power,
massively parallel, large recurrent networks, providing a promising tool for the study of
neural network dynamics [2, 3].

VLSI I&F neurons integrate presynaptic input currents and generate a voltage pulse
when the integrated voltage reaches a threshold. A very simple circuit implementation
of this model, the “Axon–Hillock” circuit, has been proposed by Mead [4]. In this cir-
cuit an integrating capacitor is connected to two inverters and a feedback capacitor. A
pulse is generated when the integrated voltage crosses the switching threshold of the
first inverter. An alternative circuit, proposed in [5], exhibits more realistic behaviors,
as implements spike–frequency adaptation and has an externally set threshold voltage
for the spike emission. Both circuits however have a large power consumption due
to the fact that the input to the first inverter (the integrated voltage on the capacitor)
changes slowly, typically with time constants of the order of milliseconds, and the in-
verter spends a large amount of time in the region in which both transistors conduct



a short–circuit current. The power consumption is reduced, but not optimized, in the
circuit described in [6], using an amplifier at the input, to compare the voltage on the
capacitor with a desired spiking threshold voltage. As the input exceeds the spiking
threshold, the amplifier drives the inverter, making it switch very rapidly. In [7] Boahen
demonstrates how it is possible to implement spike-frequency adaptation by connect-
ing a four transistor “current-mirror integrator” in negative-feedback mode to any I&F
circuit. An I&F circuit optimized with respect to power consumption but lacking of
spike-frequency adaptation mechanisms, voltage threshold modulation, refractory pe-
riod and explicit leak current is described in [8]. We designed a compact leaky I&F
circuit, similar to previously proposed ones, that additionally is low power and has
spike-frequency adaptation, refractory period and voltage threshold modulation proper-
ties [9]. In this work we characterize the circuit and compare its response properties to
the ones predicted by theory and observed in neocortical pyramidal cells.

A typical feature exhibited by the majority of the pyramidal cells in neocortex and
hippocampus, is the spike-frequency adaptation that depends on a Ca2+-gated K+ con-
ductance. One of the aims of this study is the quantitative analysis of the performance
of a circuit that reproduces this behavior. It has been shown that in vitro neocortical
neurons exhibit in vivo-like activity when noisy inputs are injected [10, 11]. Inspired
by these findings we measured the response function of the circuit to noisy input sig-
nals, by varying both circuit parameters and the parameters that control the statistics
of the input current. The results described in this paper present a description of the
integrated-circuit’s data in neurophysiological terms, in order to reach a wider scientific
community. With this approach we address important questions like the feasibility of
simulation of neural networks built using analog VLSI circuits.

2 The I&F circuit

The I&F neuron circuit is shown in Fig. 1. The circuit comprises a source follower M1-
M2, used to control the spiking threshold voltage; an inverter with positive feedback
M3-M7, for reducing the circuit’s power consumption; an inverter with controllable
slew-rate M8-M11, for setting arbitrary refractory periods; a digital inverter M13-
M14, for generating digital pulses; a current-mirror integrator M15-M19, for spike-
frequency adaptation, and a minimum size transistor M20 for setting a leak current.

2.1 Circuit operation

The input current Iinj is integrated linearly by Cmem onto Vmem. The source-follower
M1-M2, produces Vin = κ(Vmem − Vsf ), where Vsf is a constant sub-threshold bias
voltage and κ is the sub-threshold slope coefficient [12]. As Vmem increases and Vin

approaches the threshold voltage of the first inverter, the feedback current Ifb starts
to flow, increasing Vmem and Vin more rapidly. The positive feedback has the effect
of making the inverter M3-M5 switch very rapidly, reducing dramatically its power
dissipation.

A spike is emitted when Vmem is sufficiently high to make the first inverter switch,
driving Vspk and Vo2 to Vdd. During the spike emission period (for as long as Vspk is
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Fig. 1. Circuit diagram of the I&F neuron.

high), a current with amplitude set by Vadap is sourced into the gate-to-source parasitic
capacitance of M19 on node Vca. Thus, the voltage Vca increases with every spike,
and slowly leaks to zero through leakage currents when there is no spiking activity. As
Vca increases, a negative adaptation current Iadap exponentially proportional to Vca is
subtracted from the input, and the spiking frequency of the neuron is reduced over time.

Simultaneously, during the spike emission period, Vo2 is high, the reset transistor
M12 is fully open, and Cmem is discharged, bringing Vmem rapidly to Gnd. As Vmem

(and Vin) go to ground, Vo1 goes back to Vdd turning M10 fully on. The voltage Vo2 is
then discharged through the path M10-M11, at a rate set by Vrfr (and by the parasitic
capacitance on node Vo2). As long as Vo2 is sufficiently high, Vmem is clamped to
ground. During this “refractory” period, the neuron cannot spike, as all the input current
Iinj is absorbed by M12.

The adaptation mechanism implemented by the circuit is inspired by models of
its neurophysiological counterpart [13, 14, 15]: the calcium concentration [Ca2+] is
increased with every spike and decays exponentially to its resting value; if the dynamics
of [Ca2+] is slow compared to the inter-spike intervals then the effective adaptation
current is directly proportional to the spiking rate computed in some temporal window.
This results had been extensively applied to investigate the steady state responses [16,
17] and the dynamic proprieties [17] of adapted neurons.

Figure 2(a) shows an action potential generated by injecting a constant current Iinj

into the circuit and activating both spike-frequency adaptation and refractory preiod
mechanisms. Figure 2(b) shows how different refractory period settings (Vrfr) saturate
the maximum firing rate of the circuit at different levels.
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Fig. 2. (a) Measured data (circles) representing an action potential generated for a constant input
current Iinj with spike-frequency adaptation and refractory period mechanisms activated. The
data is fitted with the analytical model of eq. (5) (solid line). (b) Circuit’s f -I curves (firing rate
versus input current Iinj ) for different refractory period settings.

2.2 Modeling the neuron’s subthreshold behavior

The circuit presented does not implement a simple linear model of an I&F. Rather its
positive feedback and spike-frequency adaptation mechanisms represent additional fea-
tures that increase the model’s complexity (and hopefully its computational capabili-
ties). The overall current that the circuit receives is Iin + Ifb − Iadap, where Iin is
the circuit’s input current Iinj subtracted by the leak current Ileak (see Section 2.3),
Ifb is the positive feedback current and Iadap is the adaptation current generated by
the spike-frequency adaptation mechanism. We can use the transitor’s weak-inversion
equations [12] to compute the adaptation current:

Iadap = I0e
κ

Vca
UT (1)

where I0 is the transistor’s dark current [12] and UT is the thermal voltage.
If we denote with Ca the parasitic gate-to-source capacitance on node Vca of M19,

and with Cp the parasitic gate-to-drain capacitance on M19, then:

Vca = Vca0
+ γVmem (2)

where γ =
Cp

Cp+Ca
and Vca0

is the steady-state voltage stored on Ca, updated with each
spike.

To model the effect of the positive feedback we can assume, to first order approxi-
mation, that the current mirrored by M3,M7 is:

Ifb = I1e
κVin (3)



where I1 is a constant current flowing in the first inverter when both M4,M5 conduct,
and Vin = κ(Vmem − Vsf ) is the output of the source-follower M1,M2.

The equation modeling the subthreshold behavior of the neuron is:

C0
d

dt
Vmem = Iin + Ifb − Iadap (4)

where C0 = Cm + γ Ca. Substituting Iadap and Ifb with the equations derived above
we obtain:

C0
d

dt
Vmem = Iin+

[
I1e

−κ2
Vsf
UT e

κ2 Vmem
UT

]
−

[
I0e

κ
Va0

UT e
κγ

Vmem
UT

(
1 − e

−

Vmem
UT

)]
(5)

We fitted the experimental data by integrating eq. (5) numerically and using the
parameters shown in Table 1 (see solid line of Fig. 2(a)). The initial part of the fit
(for low values of Vmem) is not ideal because the equations used to model the source
follower M1,M2 are correct only for values of Vmem sufficiently high.

Cm = 0.66pF Iin = 177pA Vsf = 0.5V
Ca = 0.12pF I1 = 2.29pA Va0 = 50mV
Cp = 500fF I0 = 100fA κ = 0.6

Table 1. Parameters used to fit the data of Fig. 2(a)

2.3 Stimulating the neuron circuit

To inject current into the neuron circuit we use an on-chip p-type transistor operating
in the weak-inversion domain [12]. By changing the transistor’s gate voltage we can
generate the current:

Iinj = I0e
κ

UT
(Vdd−Vp) (6)

where Vp is the p-type transistor’s gate voltage that we can control. If we take into
account the leak current Ileak sourced by the transistor M20 of Fig. 1 we can write the
net input current to the circuit as:

Iin = Iinj − Ileak = I0p
e

κ
UT

(Vdd−Vp)
− I0n

e
κ

UT
Vlk(1 − e−Vmem) (7)

We can write the desired input current that we want to use to stimulate the neuron
as

Ides = Id0 · η (8)

where Id0 is a normalizing factor and η is a noisy signal with mean value µ and standard
deviation (STD) σ.



We can force the net input current Iin to be the desired input current Ides if we
break up the current source gate voltage Vp in the following way:

Vp = Vp0 −
UT

κ
ln(C0 + η) (9)

with η > −C0.
In this case the net input current becomes:

Iin = I0e
κ

UT
(Vdd−Vp0)e

κ
UT

UT
κ

ln(C0+η)
− Ileak (10)

which becomes
Iin = Ip(C0 + η) − Ileak (11)

with
Ip = I0e

κ
UT

(Vdd−Vp0) (12)

If we set Ileak = IpC0 and Ip = Id0 then Iin = Ides, and the signal η is directly
proportional to the desired input current.

3 Results

We first tested the neuron with the adaptation mechanism turned off, injecting an input
current with a given statistics, parameterized by mean and STD, and analyzing the out-
put’s statistics. Then we repeated the same tests with the adaptation turned on, analyzing
the output’s statistics also for variations of the adaptation strength.

3.1 General proprieties of the I&F circuit

We measured the I&F circuit’s f -I curves for different values of the input current’s
variance and mean. The input current (Iin) is characterized by the statistical properties
of η (see eq. (8)). The signal η is white noise with mean µ and STD σ. Figure 3 shows
the f -I curves for different values of STD. All the curves were obtained by setting the
refractory period to approximately 6.6 ms (Vrfr =280 mV).

The circuit’s firing rate f has a dependence on the the refractory period (τr) of the
type [18]:

f ≈

1

τr + 1
Ides

(13)

Figure 2(b) shows f -I curves obtained for three different values of Vrfr (τr). The curves
tend, in the limit of τr → 0, to a straight line with slope inversely proportional to the
circuit’s spiking threshold voltage, that can be modulated by the source-follower bias
voltage Vsf (see Fig. 1).

We measured the distribution of the Inter–Spike Intervals (ISIs) generated by the
circuit for three different values of τr, sweeping the mean input current. To analyze the
statistic of these distributions, we measured their Coefficient of Variation (CV), given
by the ratio between the ISI STD and its mean [19, 20]. Although the literature had
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Fig. 3. f -I curves measured for five different values of σ.

extensively reported plots of CV against frequency or against ISI, we plotted the CV
versus the mean input current to keep the notation consistent with the other figures pre-
sented here. The CVs reported for physiological-like values of τr (first two curves) are
in accordance with theoretical [21] and experimental studies on neurons of layer 4 and
5 of the rat [16]. The ISI distribution for increasing input currents shifts toward lower
mean-ISI, and its STD decreases. The refractory period constrains the distribution to re-
main above a certain ISI even if its STD decreases with the current. This is evident from
the two traces with low value of Vrfr (high τr). Removing this constrain both mean and
STD of the ISI can increase at the same rate and the resulting CV is approximately
constant.

3.2 Effects of the adaptation on the I&F circuit

Next, we consider how the spike frequency adaptation mechanism influences the firing
rate. We used six different values of Vadap (see Fig. 1). This voltage spanned values
ranging from from 4.10V to 4.35V with steps of 0.05V. We denoted these values re-
spectively with very-high (VH), high (H) medium-high (MH), medium-low (ML), low
(L), and very-low (VL) adaptation. In the following we will refer to this scale. All the
collected data were obtained sweeping the mean input current by changing the mean
value µ of the signal η (see eq. (8)).

Dynamic firing proprieties We measured the circuit’s response to a series of depo-
larizing current steps with increasing values of µ and with σ=0. The neuron responds
to current steps with frequencies that progressively adapt to lower steady state values
(see Fig. 5). The circuit’s adaptation current Iadap is integrated by a non-linear inte-
grator (see M15-M19 of Fig. 1) and increases progressively with every spike (see also
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Section 2.2). As Iadap is subtracted from the input current Iin, the neuron’s net input
current progressively decreases, together with its output firing rate. In the steady state
an equilibrium is reached when the adaptation current is balanced with the output firing
rate (significantly lower that the initial one).

In Fig. 5 we show different instantaneous frequency response curves over time for
increasing values of the input’s step amplitude (µ) and for a fixed adaptation setting
(VL). Initially, the instantaneous step response is directly proportional to the step’s
amplitude; however in the steady state regime, for increasing values of µ the mean
firing rate first decreases and then monotonically increases. The same behavior was
measured also changing adaptation values (see the inset in Fig. 8). During the transition
to the steady state we can observe two behaviors:

short term transient - this transient is observed with any input step amplitude; the
adaptation reaction time is inversely proportional to the injected current. Higher
current injections require shorter periods to reduce the output firing rate. For input
steps in the low current regime (µ<̃50), the circuit reaches the steady state right
after this short-term transient. This adaptation mechanism has been reported in the
literature with the name of initial adaptation [22]: it is observed when the neuron
is injected with high enough currents, and it is modelled with a negative spike
frequency dependent current.

long term transient - this transient is observed with step amplitudes greater then a
certain threshold (µ>̃50). The f -t curves reach the steady state with an exponential
decay time that decreases if the amplitude is increased. This adaptation mechanism
has been reported in the literature with the name of late adaptation [23, 24, 25]: for
strong enough input current the cell is unable to sustain the elevated activity im-
posed by the stimulation. After 2-3 seconds the mean spike frequency is constantly
decaying.
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The exponential decay of the output firing rate observed for low input currents is
consistent with our predictions. However, high input currents evoke second order and/or
non-linear effects, as evident from the oscillations shown in Fig. 5.

In Fig. 6 we plotted different f -t curves for different values of the adaptation set-
tings and in Fig. 7 we plotted the variation of the frequency in the first time steps against
the µ. Figure 6 shows how increasing levels of adaptation shorten the time required by
the neuron to adapt and to reach a mean steady state value. From Fig. 7 we can deduce
that in a restricted range of µ different adaptation settings produce approximately the
same step response decay times.

Steady state firing proprieties In Fig. 8 we plotted different f -I curves for different
adaptation values. The curves in the inset show how increasing adaptation levels bring
the steady state curves to be approximatelly linear at the rheobase, in agreement with
theoretical [13] and experimental [16, 17] evidence. As expected, increasing adaptation
values decrease the resulting firing rate f . High input currents clearly disrupt the adap-
tation mechanism: it has an abrupt loss of efficiency around a specific threshold of the
incoming current for each adaptation level.

The variance of the net input current to a neuron embedded in a network increases
with the number of connections it makes [19, 26, 27]. Hence we are interested in under-
standing how the effect of adaptation can change the f -I curves for increasing levels
of STD in the afferent current. In Fig. 8 we plotted different f -I curves for different
adaptation values. The figure is divided into four quadrants each referring to a different
adaptation level. In each quadrant we plotted three curves for the three corresponding
STD values. For medium and high adaptation values (ML, MH, H) the response of the
neuron to inputs with high variance is still adapted. Note that the fluctuations (due to
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very small number of samples even if each test run for one minute) should be compared
with the scale (i.e. the fluctuations are in the range of maximum 1Hz for the highest
variance input).

4 Conclusions

We presented a novel analog VLSI circuit that implements a real-time model of a leaky
I&F neuron. We characterized its response properties in a wide range of conditions, as
a function of both the circuit’s parameters and the statistics of the input signals. One of
the most interesting properties of the circuit is its ability to model spike-frequency adap-
tation. We activated this feature, characterized the circuit, and showed how it exhibits
different adapting behaviors when its operating conditions change. The inclusion of the
adaptation mechanism addresses the question of which neurophysiological parameters
in real neurons (spike induced Ca2+ influx, [Ca2+] decay time, ionic conductances) are
actually captured by the VLSI circuit. Ahmed et al. [28] reported that spike frequency
adaptation to a current step in neurons of the cat primary cortex can be well fitted by a
single exponential curve depending on the degree of adaptation. This behavior is well
captured by our circuit (see Fig. 5): the exponential rate decay is observed for low val-
ues of input currents, and the degree of adaptation can be set with Vadap. Moreover, the
two behaviors (short and long term transients) in the dynamics (in Fig. 5) have been
observed experimentally [22, 23, 24, 25]. The results presented here, together with the
circuit’s low-power characteristics [9] make it suitable for integration in very large ar-
rays containing also synaptic circuits [2, 7, 29], and for the construction of massively
parallel analog VLSI networks of spiking neurons.
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