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Abstract. Growing neural gas (GNG) has been successfully applied to
unsupervised learning problems. However, GNG-inspired approaches can
also be applied to classification problems, provided they are extended
with an appropriate labelling function. Most approaches along these lines
have so far relied on strategies which label neurons a posteriori, after
the training has been completed. As a consequence, such approaches
require the training data to be stored until the labelling phase, which
runs directly counter to the online nature of GNG. Thus, in order to
restore the online property of classification approaches based on GNG,
we present an approach in which the labelling is performed online. This
online labelling strategy better matches the online nature of GNG where
only neurons – but no explicit training examples – are stored. As the main
contribution, we show that online labelling strategies do not deteriorate
the performance compared to offline labelling strategies.
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1 Introduction

Self-organising approaches such as self-organising maps (SOM) [5], learning vec-

tor quantization (LVQ) [6], or neural gas (NG) [11] are often successfully used

in unsupervised learning tasks, clustering in particular. The advantage of such

neurally-inspired clustering approaches lies in their ability to learn the repre-

sentation of a feature space without supervision. A further interesting property

is the fact that they typically perform dimensionality reduction. Typical appli-

cations of these learning paradigms can be found in areas such as text mining

[3, 12, 7] or pattern recognition [10]. Growing neural gas (GNG) [2] represents

an extension of the NG algorithm in which the number of neurons is not fixed

a priori as in NG, but grows over time. This is especially interesting in such

clustering tasks where the number of clusters is previously unknown.

In order to apply self-organising approaches to classification problems, two

extensions are necessary: i) a function which assigns labels to neurons and ii)

a function that performs the prediction on unseen data points. So far, mainly

offline labelling strategies which require the explicit storage of labelled training

data have been considered for the first case [3, 12, 8–10]. They perform the assign-

ment of labels to neurons a posteriori, after the training phase has been ended.
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There are several disadvantages connected to these strategies. For example, of-

fline labelling strategies assume that there is a definite end of the training phase

after which the labelling can be performed. This is of course not given in life-long

learning scenarios in which training and prediction are interleaved. Using offline

labelling strategies, we are not able to perform predictions for unseen examples

in every iteration step, which is the crucial characteristic of online classification

approaches. In the area of cognitive systems engineering, the online nature of

learning processes is crucial in order to learn complex behaviours incrementally

and continuously [14]. Another disadvantage of offline labelling strategies is the

fact that they directly run counter to the online nature of GNG, as training

examples are stored explicitly.

In this paper we thus present and evaluate several strategies allowing to

perform the labelling on-the-fly, thus extending GNG to an online classification

algorithm. We compare these strategies to several offline strategies that have

been proposed in the literature and examine in particular whether an online la-

belling strategy can compete in terms of performance, i.e. classification accuracy,

with an a posteriori labelling strategy. In fact, we show on three data sets (one

artificial and two standard data sets) that an online labelling strategy does not

perform significantly worse compared to an offline labelling strategy.

We offer the following contributions in particular:

– We systematically evaluate different offline labelling strategies for GNG in a

classification task.

– We extend GNG by an on-the-fly labelling step that allows us to extend

GNG to an online classification algorithm.

– We present and systematically analyse various online labelling strategies and

compare them to the offline labelling strategies, showing that they do not

deteriorate the performance of a classification approach based on GNG.

The paper is structured as follows: in Section 2 we discuss how GNG can be

extended to a classification algorithm and what labelling functions are typically

used in the literature. In Section 3 we present our extension of GNG to an

online classification algorithm, relying on a novel set of labelling functions which

perform labelling on-the-fly. In Section 4, we present our experimental results

obtained on the basis of three data sets. We discuss related work and conclude

in Section 5.

2 Classification with GNG

In this article we rely on the original version of GNG introduced by Fritzke

[2] which is an extension of NG [11]. The algorithm is depicted in Figure 1

(without step 4). The GNG algorithm initially starts with a small network of two

neurons in step 1. In steps 2-8, a winner neuron and its neighbouring neurons are

determined and adapted according to the presented input example (stimulus).

In steps 9 and 10, neurons are removed and inserted into the network according



to a fixed set of parameters. The algorithm stops when a predefined criterion is

met, e.g. when the network has reached a certain size.

In order to apply GNG to a classification task, most approaches in the

literature extend the algorithm by two functions. A neuron labelling function

l : N → C where C is the set of class labels, and a prediction function l : D → C
where D is the input space. We analyse the following offline neuron labelling

functions as proposed by Lau et al. [9]. They are offline in the sense that they

assume that the pairs (d, ld) with d ∈ Dtrain ⊆ D and ld ∈ C seen in the training

phase are explicitly stored:

– Minimal-distance method (min-dist): According to this strategy, neuron ni adopts
the label ld of the closest data point d ∈ Dtrain:

l(ni) = ld = l(arg min
d∈Dtrain

|ni − d|2)

– Average-distance method (avg-dist): According to this strategy, we assign to neuron
ni the label of the category c that minimises the average distance to all data points
labelled with category c:

l(ni) = argmin
c

|D(c)|�

k=1

|ni − dk|2

|D(c)|

where D(c) = {d ∈ Dtrain | l(d) = c} is the set of all examples labelled with c.

– Voronoi method (voronoi): According to this strategy, we label neuron ni with
that category c having the highest overlap (in terms of data points labelled with
c) with the data points in the voronoi cell for ni. We denote the set of data points
in the voronoi cell for ni as v(ni) = {d ∈ Dtrain | ∀nj , j �= i : |nj − d|2 ≥ |ni − d|2}
within the topological map.

l(ni) = argmax
c

|D(c) ∩ v(ni)|

In addition to the neuron labelling strategy, we need to define prediction

functions that assign labels to unseen examples. These prediction strategies are

inspired by linkage strategies typically used in cluster analysis (see [4, 1, 13]):

– Single-linkage: In this prediction strategy a new data point dnew is labelled with
category c of the neuron n that minimises the distance to this new example:

l(dnew) = argmin
c

(arg min
n∈N(c)

|n− dnew|2)

where N(c) = {n ∈ N | l(n) = c} is the set of all neurons labelled with category c
according to one of the above mentioned neuron labelling function.

– Average-linkage: In this strategy, example dnew adopts the label of category c
having the minimal average distance to the example:

l(dnew) = argmin
c

(
|N(c)|�

k=1

|nk − dnew|2

|N(c)| )

– Complete-linkage: In this prediction strategy a new data point dnew is labelled
with category c of the neuron n that minimises the maximal distance to this new
example:

l(dnew) = argmin
c

(arg max
n∈N(c)

|n− dnew|2)



3 Online labelling strategies for GNG

In order to extend GNG to an online classification algorithm, we extend the

basic GNG by a step in which the label of the presented stimulus is assigned to

the winner neuron during the learning process. We denote the winner neuron for

data point d by w(d). All prediction strategies are local in the sense that they do

not consider any neighbouring neurons besides the winner neuron w(d). As the

labelling is performed on-the-fly, the label assigned to a neuron can change over

time, so that the labelling function is dependent on the number of examples the

network has seen and has the following form: l : N × T → C. We will simply

write lt(ni) to denote the label assigned to neuron ni after having seen t data
points.

– Relabelling method (relabel): According to this very simple strategy, the winner
neuron w(d) adopts the label of d:

lt(ni) = ld, where ni = w(d)

– Frequency-based method (freq): We assume that each neuron stores information
about how often a data point of a certain category has been assigned to ni after t
examples have been presented to the network as freqt(c, ni). A neuron is labelled
by the category which maximises this frequency, i.e.

lt(ni) = argmax
c

freqt(c, ni)

– Limited-distance method (limit): According to this strategy, the winner neuron
ni = w(d) adopts the category label ld of the data point d if the distance between
them is lower than the adaptive distance θt(ni) of the neuron ni. In case of a
smaller distance, θt(ni) will be updated with the new distance.

lt(ni) =

�
ld, if |ni − d|2 ≤ θt(ni)

lt−1(ni), else

As these labelling strategies do not guarantee that every neuron in the net-

work is actually labelled, we need to extend the prediction strategy to handle

unlabelled neurons. For the presented prediction strategies we simply ignore

unlabelled neurons during the prediction state.

4 Experiments and results

We evaluate the labelling strategies in dependance of the mentioned prediction

methods on three classification data sets: an artificial data set generated follow-

ing a gaussian distribution, the ORL face database1 and the image segmentation

data set of the UCI machine learning database2:

1 Samaria, F.S.: Parameterisation of a stochastic model for human face identification,
In Proc. of the IEEE Workshop on Applications of Computer Vision 1994, 138-142

2 Blake, C.L., Merz, C.J.: UCI repository of machine learning databases, 1998



Online labelling for growing neural gas (OGNG)

1. Start with two units i and j at random positions in the input space.
2. Present an input vector x ∈ Rn from the input set or according to input distribution.
3. Find the nearest unit s1 and the second nearest unit s2.
4. Assign the label of x to s1 according to the present labelling strategy.
5. Increment the age of all edges emanating from s1.
6. Update the local error variable by adding the squared distance between ws1 and x.
7. Move s1 and all its topological neighbours (i.e. all the nodes connected to s1 ∆error(s1) =

|ws1 − x|2 by an edge) towards x by fractions of eb and en of the distance:

∆ws1 = eb(x − ws1 )

∆wn = en(x − wn)

for all direct neighbours of s1.
8. If s1 and s2 are connected by an edge, set the age of the edge to 0 (refresh). If there is no such

edge, create one.
9. Remove edges with their age larger than amax. If this results in nodes having no emanating

edges, remove them as well.
10. If the number of input vectors presented or generated so far is an integer or multiple of a

parameter λ, insert a new node r as follows:
Determine unit q with the largest error.
Among the neighbours of q, find node f with the largest error.
Insert a new node r halfway between q and f as follows:

wr =
wq + wf

2

Create edges between r and q, and r and f . Remove the edge between q and f .
Decrease the error variable of q and f by multiplying them with a constant α. Set the error r
with the new error variable of q.

11. Decrease all error variables of all nodes i by a factor β.
12. If the stopping criterion is not met, go back to step (2). (For our experiments, the stopping

criterion has been set to be the maximum network size.)

Fig. 1. GNG algorithm with extension for online labelling

Artificial data set (ART): The first data set is a two dimensional gaussian mix-

ture distribution with 6 classes located at [0,6], [-2,2], [2,2], [0,-6], [-2,-2], [2,-2].

The data points of each class are gaussian distributed with the standard deriva-

tion of 1.

ORL face database (ORL): The second data set is the ORL face database which

contains 400 frontal images of humans, performing different gestures. The data

set consists of 40 individuals showing 10 gestures each. We downscaled each im-

age from 92× 112 to 46× 56 and applied a principal component analysis (PCA)

to reduce the number of dimensions from 2576 to 60, corresponding to 86.65%
of the total variance.

Image Segmentation data set (SEG): The image segmentation data set consists

of 2310 instances from 7 randomly selected outdoor images (brick-face, sky, fo-

liage, cement, window, path, grass). Each instance includes 19 attributes that

describe a 3× 3 region within one of the images.

In order to compare the different labelling strategies to each other, we chose a

fixed set of parameters for GNG and used this set in all of our experiments. This

set was empirically determined on a trial-and-error basis through preliminary



experiments. The GNG parameters are set as follows: insertion parameter λ =

300; maximum age amax = 120; adaptation parameter for winner eb = 0.2;
adaptation parameter for neighbourhood en = 0.006; error variable decrease

α = 0.5; error variable decrease β = 0.995
For our experiments we randomly sampled 10 training/test sets out of our

data and averaged the accuracy for each labelling and prediction setting. Thereby,

we trained each GNG classifier with 4 labelled examples of each category. We

validated the accuracy of the labelling methods and prediction strategies on

test. Our results are shown in Tables 1 and 2. Both tables show the classifica-

tion accuracy for various configurations of labelling methods (min-dist, avg-dist,

voronoi, relabel, freq, limit) and prediction strategies (single-linkage, average-

linkage and complete-linkage) averaged over the three different data sets using 4

training samples per class. We evaluated the accuracy of each labelling method

combined with three prediction strategies (rows of the tables). Therefore, we

consider the results of 54 experiments overall 3. The results license the following

conclusions:

– Comparison of offline labelling strategies: According to Table 1, there

is no labelling method which significantly outperforms the others. Compar-

ing the accuracy results averaged over all prediction strategies, the voronoi

method is the most effective labelling method as it provides the highest

accuracy with 77.59%, followed by the min-dist method with 76.27% and

the avg-dist method with 74.28%. Concerning the prediction strategies, the

single-linkage prediction strategy shows best results averaged over all meth-

ods with 81.41%, followed by the average-linkage prediction strategy with

an accuracy of 77.65%. The complete-linkage yielded the worst results with

an averaged accuracy of 69.07%.

– Comparison of online labelling strategies: According to Table 2, all

three online labelling strategies are almost equal in their classification per-

formance. The limit method performs slightly better than the other two

methods and achieves an accuracy of 78.15%, followed by the freq method

with an accuracy of 78.09% and the relabel method with an accuracy of

77.88%. As for the offline labelling strategies, here it is also the case that

the single-linkage prediction is the best choice with an accuracy of 83.30%,

followed by the average-linkage prediction with an accuracy of 80.90% and

the complete-linkage prediction with an accuracy of 69.88%.

– Online vs. offline labelling strategies: Comparing the averaged accuracy

of all labelling methods of Table 1 and 2, the results show that there is

no significant difference between them in terms of performance. The online

labelling methods even provide a slightly higher accuracy.

– Impact of memory: Strategies relying on some sort of memory (e.g. storing

the frequency of seen labels as in the freq method), do not perform signif-

icantly better than a simple context-free (or memory-less) method (relabel

3 The results of all 54 experiments can be found at http://www.sc.cit-ec.uni-
bielefeld.de/people/obeyer



Prediction Min-dist Avg-dist Voronoi Average
strategies method method method

Single-linkage 81.93 78.92 83.39 81.41
Average-linkage 77.15 76.35 79.46 77.65
Complete-linkage 69.72 67.56 69.92 69.07

Average 76.27 74.28 77.59

Table 1. Classification accuracy for the offline labelling strategies (min-dist, avg-
dist, voronoi) combined with the prediction strategies (single-linkage, average-linkage,
complete-linkage) averaged over the three data sets (ART, ORL, SEG) trained with 4
labelled data points of each category (best prediction strategy and labelling method
results are marked).

Prediction Relabel Freq Limit Average
strategies method method method

Single-Linkage 83.25 83.25 83.39 83.30
Average-Linkage 80.46 81.12 81.13 80.90
Complete-Linkage 69.92 69.79 69.93 69.88

Average 77.88 78.05 78.15

Table 2. Classification accuracy for the online labelling strategies (relabel, freq, limit)
combined with the prediction strategies (single-linkage, average-linkage, complete-
linkage) averaged over the three data sets (ART, ORL, SEG) trained with 4 labelled
data points of each category (best prediction strategy and labelling method results are
marked).

method) performing decisions on the basis of new data points only. This

shows that the implementation of a label memory does not enhance the

classifiers performance.

5 Related Work and Conclusion

In this paper we have presented, analysed and compared different online la-

belling strategies in order to extend the growing neural gas (GNG) algorithm

to an online classification approach. While GNG is essentially an unsupervised

algorithm, previous approaches have presented extensions of GNG for classifi-

cation tasks. Such extensions typically rely on a suitable labelling function that

assigns labels to neurons as well as a prediction function that assigns labels to

unseen examples. In this line, we have experimentally compared different offline

and online labelling strategies inspired by previous research. To our knowledge,

there has been no systematic investigation and comparison of different offline

strategies so far, a gap we have intended to fill. The question of how GNG can

be extended to an online classification algorithm has also not been addressed

previously. In most cases, offline strategies have been considered that perform

the labelling after the training phase has ended and the network has stabilised

to some extent as in the WEBSOM [7, 8] and LabelSOM [12] approaches. In

both of these approaches, the label assignment is essentially determined by the

distance of the labelled training data point to the neurons of the already trained



network. Such offline labelling strategies contradict the online nature of GNG,

whose interesting properties are that the network grows over time and only neu-

rons, but no explicit examples, need to be stored in the network. In this sense,

an important question we have addressed in this paper is whether GNG can

be extended to a classification algorithm without affecting its online nature or

degrading performance considerably. Our research has shown that this is indeed

possible. Online labelling functions where the label of a neuron can change over

time and is computed when a new example is assigned to the neuron in question

do not perform worse than offline labelling strategies.
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