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Abstract. The automatic subcellular localisation of proteins in living
cells is a critical step in determining their function. The evaluation of
fluorescence images constitutes a common method of localising these
proteins. For this, additional knowledge about the position of the con-
sidered cells within an image is required. In an automated system, it is
advantageous to recognise these cells in bright-field microscope images
taken in parallel with the regarded fluorescence micrographs. Unfortu-
nately, currently available cell recognition methods are only of limited
use within the context of protein localisation, since they frequently re-
quire microscopy techniques that enable images of higher contrast (e.g.
phase contrast microscopy or additional dyes) or can only be employed
with too low magnifications. Therefore, this article introduces a novel
approach to the robust automatic recognition of unstained living cells
in bright-field microscope images. Here, the focus is on the automatic
segmentation of cells.

1 Introduction

The complete nucleotide sequences of the genomes of a variety of species have
been determined in recent years. But although we have read the genetic message
of these organisms, we still do not know its meaning. Based on hereditary infor-
mation, macromolecules are formed, the majority of which consists of proteins.
These proteins are responsible for performing numerous functions such as assem-
bling biological structures and controlling chemical reactions. Knowledge about
their functions could enable new insights into cellular processes or facilitate the
development of efficient drugs.

A common approach to determining the function of proteins is the analysis of
subcellular location patterns in fluorescence microscope images [1,2,3,4,5]. Based
on its location within a considered cell, conclusions about a protein’s function
can be drawn.
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Fig. 1. Fluorescence micrograph showing
Sf9 cells with stained lysosomes.

Fig. 2. Bright-field image taken simul-
taneously with the micrograph of Fig. 1.

In order to localise them, the considered proteins are tagged with a fluores-
cence dye, for instance with the green fluorescent protein (GFP) or one of its
spectral variants [6]. Unfortunately, the surrounding cells themselves are almost
invisible in these fluorescence images (see Fig. 1). Thus, additional information
is required in order to associate fluorescent spots with specific cells. Commonly
applied methods for the acquisition of this information are based on a manual
segmentation [1,4] or the usage of stained cells [2,4].

In contrast, our approach enables an automatic segmentation of Spodoptera
frugiperda cells (Sf9) without employing additional dyes. A bright-field micro-
scope image, taken in parallel with each fluorescence image, is used for the
identification of cells (see Fig. 2), which constitute the basis for the analysis of
the corresponding fluorescence image.

The bright-field images are segmented by means of an active contour ap-
proach briefly outlined in [7]. After a discussion of relevant literature (see Sec-
tion 2), this technique as well as required methods for the automatic determin-
ation of initial segments are described in Section 3. Section 4 proposes various
enhancements that are relevant for a practical application of our approach. These
methods are evaluated in Section 5. Eventually, the complete cell recognition ap-
proach is analysed and a short outlook is given in Section 6.

2 Related Work

In order to account for the limitations, which have to be considered within the
context of automatic protein localisation in living cells, Section 2.1 introduces
and evaluates basic microscopy techniques frequently used in conjunction with
cell recognition approaches. As the choice for a recognition method strongly
depends on the utilised microscopy technique, the application of several well-
known approaches, which are discussed in Section 2.2, is partly impeded.

2.1 Applied Microscopy Techniques

A large number of cell recognition approaches such as [8,9,10] employ phase
contrast microscopy to increase the contrast of acquired images. It visualises the
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phase shift induced by the interaction of rays of light with objects varying in
thickness or refractive index. Since this microscopy technique requires special
objectives that reduce the amplitude of incident light, the light from fluorescent
objects would be attenuated as well. An alternation of the objective between the
acquisition of the images used for protein localisation and cell recognition causes
further problems, since it modifies the optical path. Consequently, an association
of corresponding pixels of these images would be hampered.

Besides phase contrast microscopy, numerous approaches resort to additional
dyes [2,11,12,13]. If such dyes were used within the context of protein localisation,
they might interfere with the examined proteins or influence the cell state.

Bright-field microscopy, i.e. the direct observation of illuminated objects,
is a widely used method for cell observation. It is usually available without
any special devices. But the resulting contrast is rather low, which necessitates
more complex recognition techniques [14,15,16,17]. On the other hand, bright-
field microscopy is compatible with fluorescence microscopy and is probably the
most frequently applied microscopy technique. Therefore, we have decided to use
bright-field images as the basis of our cell recognition method.

2.2 Known Approaches to Cell Recognition

The most common approach to cell recognition consists in thresholding [18,19].
But it is often applied to nuclei rather than whole cells [20,21]. As each cell
usually has a single nucleus, which covers the major fraction of its volume, these
tasks are roughly equivalent.

Thresholding requires a uniform and unambiguous distribution of pixel in-
tensities, which does not occur in bright-field images that show a great variety
of cell appearances. Even if fluorescence images of stained nuclei are to be ana-
lysed, fuzzy transitions between objects and the image background may result
in difficulties in selecting a proper threshold. In addition, thresholding causes
problems in separating adjoining objects, which have to be dealt with separ-
ately. Here for example, the distance transform and the watershed transform
can be applied [20]. Nevertheless, the prior binarisation of the image leads to a
loss of information, which might be crucial for the determination of the objects’
exact boundaries.

As an alternative to thresholding, there are approaches that determine and
link the edges of stained nuclei using geometrical constraints [12]. Unfortunately,
these constraints do not necessarily reflect the shape of visible objects – especially
if these objects partially overlap.

Since subcellular structures are to be analysed after cell recognition, a high
magnification (60×) is required. So, the considered cells comprise about 10,000–
80,000 pixels. Therefore, methods utilising small rectangular patches in order to
detect whole cells (cf. [11,13,14,15]) cannot be employed, as the computational
costs would be too high. So, for example, the approach proposed in [14] takes
1 to 8 minutes to recognise cells in relatively small images (640×480) using a
patch size of 625 pixels on an Intel Pentium 4 processor operating at 1.6GHz.
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However, Petra Perner and her co-researchers proposed a technique for recog-
nising fungal spores using bright-field microscopy [22], which resorts to image
pyramids in order to decrease the processing time. The suggested technique it-
eratively compares small image regions with a set of examples for the objects
under consideration, referred to as cases. Since these cases constitute images
themselves, the translation, rotation and scaling of the cells have to be dealt
with explicitly. A more abstract representation, for instance by means of rep-
resentative features, could circumvent these problems. Furthermore, it might
allow for a better generalisation, since irrelevant information can be neglected.
Nevertheless, the given recognition rates appear very promising.

Cells in bright-field microscope images are separated from other cells and
the surrounding by their membrane. Consequently, it is beneficial to include
information about it in the segmentation procedure. This can be accomplished
by determining cell membrane pixels and linking them [23,24]. But, in the case
of images containing numerous cells of varying shape or size, it is difficult to
obtain unambiguous solutions.

As an alternative to edge-linking methods, snakes have proven advantageous
[9,10]. Besides exploiting gradient and image information, they allow for the
incorporation of prior knowledge on cell features such as curvature and size
without assuming a rigid model. Therefore, we decided to develop a snake-based
algorithm for the recognition of Sf9 cells in bright-field images [7,16]. The com-
ponent of our recognition system that performs an automatic segmentation of
the images is detailed in the present article.

3 Cell Segmentation in Bright-Field Images

In order to find cells in microscope images in an automated way, several tasks
are fulfilled (cf. Fig. 3). First, possible cells must be localised, i.e. the positions of
candidate cells are to be determined. This enables the analysis of specific image
regions instead of iteratively moving a region of interest over the complete micro-
graph. Here, several intermediate images are computed: one image depicting the
image background (see Section 3.1) and another one showing possible cell mem-
branes (see Section 3.2). Based on these two images, small regions within the
possible cells are determined – the cell markers (see Section 3.3). They reflect
the positions of the surrounding cells. Unfortunately, at this step no differenti-
ation between real cells and other image objects is possible, since not enough
information about the corresponding image objects is available.

After the localisation of candidate cells, they are segmented; that is, all pixels
showing a specific cell are associated with it (see Section 3.4). Then representa-
tive features describing a cell are computed and non-cell objects can be rejected.
This is achieved by means of a classifier. The classification process is introduced
in [16].
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(ii) image background

(iv) cell markers

(vi) classification(i) bright−field image (iii) membrane pixels (v) segmentation

Fig. 3. Outline of the proposed cell recognition approach. On the basis of an acquired
bright-field image (i) three further images which contain background pixels (ii), prob-
able cell membrane pixels (iii) and cell markers (iv) are generated. They constitute the
foundation of the proposed segmentation procedure. The segmentation (v) is followed
by a classification step (vi) rejecting non-cell segments.

3.1 Separation of Image Foreground and Background

Kenong Wu and his colleagues have shown that the local intensity variation is
a valuable feature for the separation of the foreground and the background in
bright-field images [17]. Instead of computing the local variation defined by the
variance within a square neighbourhood, we take advantage of a morphological
operator: the self-complementary top-hat %S(I) [25].

%S(I) = φS(I)− γS(I) (1)

It constitutes the difference between a closing φS(I) and an opening γS(I),
which have been applied to an image I. The required structuring element is
denoted by S. This operator preserves bright as well as dark image structures
that cannot include S.

Figure 4 depicts the result of the application of the self-complementary top-
hat to an exemplary bright-field image as well as the corresponding variance
map using a square structuring element and neighbourhood of 41×41 pixels,
respectively (suggested by Wu et al.).

The bimodal distribution of the local intensity variations resulting from the
application of the self-complementary top-hat is considerably more distinctive
than the one computed by analysing the variance. Hence, the automatic separ-
ation of image foreground and background is alleviated. Here, minimum error
thresholding [26] is utilised, as it yields excellent results for the emerging grey-
level distributions [17].
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Fig. 4. Local intensity variations in a bright-field image (left). The result of the self-
complementary top-hat (right) allows a noticeably better recognition of the image
foreground than the variance map (centre).

In order to increase the computational efficiency, structuring elements com-
prising 25×25 pixels have been employed. Despite their reduced size, they still
perform better than the variance map using a neighbourhood of 41×41 pixels.

In principle, the application of structuring elements that do not have a rect-
angular shape would be possible, as well; but, since rectangular structuring elem-
ents can be decomposed into two linear elements, they are more computationally
efficient [25]. Furthermore, other shapes do not yield considerably improved re-
sults.

3.2 Detection of Probable Cell Membrane Pixels

Probable cell membrane pixels are determined by utilising morphological oper-
ators, as well, since they enable the inclusion of knowledge concerning the shape
of the image structures in question. As the cell membrane possesses a linear
shape that is less curved than other cell compartments, linear structuring elem-
ents are applied. The membrane is further characterised by a substantial change
of intensities between neighbouring pixels. Therefore, the gradient magnitude
image is utilised instead of the original image. All image structures that cannot
contain the linear structuring element – e.g. dirt, noise and intracellular objects
– are removed by a morphological opening. In order to get closed contours, this
operation is repeated for seven additional orientations. The resulting images are
fused by computing the point-wise maximum (see Fig. 5). The whole operation
constitutes an algebraic opening [25].

The length l of the linear structuring elements is crucial to the result of
the algebraic opening. If it is chosen too small, irrelevant image structures will
remain; if the value is too high, cell membrane pixels will disappear. Hence,
a procedure for the automatic determination of an optimal value had to be
developed (see Section 4.1).

In order to decrease the computational effort, an optimised technique en-
abling the computation of morphological openings using line elements at arbi-
trary angles was implemented. It is based on methods proposed by Pierre Soille
and his colleagues [27] who generalised an algorithm originally introduced by
Marcel van Herk which solely allowed for the usage of horizontal, vertical and
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Fig. 5. Detection of pixels probably representing cell membranes. Morphological open-
ings with linear structuring elements having eight different orientations are performed
to suppress image structures that do not represent cell membranes. The resulting im-
ages are fused by a point-wise maximum operation denoted by ’∨’.

diagonal lines [28]. Soille’s algorithm performs morphological operations inde-
pendently of the length of the linear structuring elements used. In particular,
images of a specific size can be processed in constant time with respect to the
structuring elements’ lengths.

3.3 Determination of Cell Markers

On the basis of the computed image background and cell membrane pixels, small
regions within probable cells are identified – the cell markers (see Fig. 6). It is
assumed that points possessing a great distance to the image background and
membrane pixels lie inside cells. These points are determined by computing the
local maxima of the distance transform [25].

Fig. 6. Computation of cell markers. The cell markers (right) are determined in such
a way that they maximise the distance to the image background (left) and membrane
pixels (centre).

In order to obtain an appropriate initialisation for the segmentation step,
these regions are dilated by a small circular structuring element (diameter: 5%
of the maximal cell radius, 9 pixels). Afterwards, the contours are traced so as
to obtain a polygonal representation that comprises only the start and the end
point of adjoining lines.
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3.4 Cell Segmentation by Active Contours

Active contours have several advantages with respect to the segmentation of
cells. Firstly, they always yield closed contours even if the corresponding cell
membrane is barely visible. Secondly, they enable the inclusion of context-specific
knowledge such as membrane curvature and cell size. So, the robustness can be
improved.

Several approaches have been proposed for the computation of active con-
tours, e.g. variational calculus, dynamic programming and greedy methods. We
have decided to apply a greedy approach [29] due to its efficient computability,
stability and flexibility. Since our approach aims at complete independence from
user interactions while processing images, special requirements have to be ful-
filled. In particular, the determined cell markers instead of close approximations
of the resulting contour should be applied as initialisations.

Cohen [30] proposed a method to realise the growth of snakes by introducing
an inflation force. This technique resorts to normal vectors of the contour in order
to determine the direction of extension. As a result, the contour might overlap
with itself if it is initialised with a concave cell marker. Hence, we have decided to
utilise an alternative basis for the growth of the contours – the minimal distance
to the respective initial contour. Equation (2) shows the corresponding energy
functional E∗snake of a parametric curve v

(
x(s), y(s)

)
with arc length s.

E∗snake =

∫ 1

0

[
αEcont + βEcurv + γ(Edist)Eao + δ(Edist)Edist

]
ds (2)

Econt and Ecurv control the continuity and curvature, respectively. Moreover,
Econt fosters equal spacing between points [29]. Eao represents the resulting
image of the algebraic opening (see Section 3.2) and Edist the distance from the
initial contour. As the energies are minimised, the image as well as the distance
have to be inverted. Thus, a maximal considered distance ∆max is required. We
have set it to the maximal cell radius increased by a tolerance interval of 20%
(198 pixels in total).

The parameters α, β, γ and δ control the influence of the respective energy
terms. Here, γ and δ are modified dependent on Edist.

γ(Edist) = γ0 ·
∆max − Edist

∆max
(3)

δ(Edist) = δ0 + γ0 − γ(Edist) (4)

According to Equation (3), γ(Edist) yields high values if Edist is small, i.e.
if the snake has a great distance to its initialisation. By this, high pixel values
near the cell markers, within the cells are suppressed. Equation (4) ensures that
the sum of γ(Edist) and δ(Edist) equals the sum of its base values γ0 and δ0, re-
spectively. So, the extending force is reduced if the snake reaches a distance from
its cell marker where the probability of membrane pixels is high. Additionally,
background pixels receive a high value of Edist in order to avoid an extension of
the snake in this region.
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This method allows for the snakes to be initialised by means of the cell
markers, which are determined automatically and do barely resemble the final
snakes. User interactions are not necessary.

4 Enhancements

In the introduction of our segmentation approach in Section 3 several questions
were left open although they are crucial for the correct function. They are topics
of current research and are answered in the following. Section 4.1 outlines a
method that enables the automatic determination of the optimal length l for
the linear structuring elements which are applied during the algebraic opening.
A further problem consists in the parametrisation of the snakes. As they are
growing, new points have to be inserted (see Section 4.2).

4.1 Optimal Length of the Linear Structuring Elements

The basis for the automatic determination of the length l of the linear structuring
elements consists in n cell masks, which were manually extracted by biological
experts. Besides the mask of a cell i itself, the points of a tube with a diameter of
5% of the mean cell radius that is centred at the mask’s boundary are considered
in order to detect the intensities of membrane pixels. The sets of the correspond-
ing points p are denoted by Mi (mask) and Ti (tube), respectively. According
to Equation (7), an optimal value lopt for the length of the line elements is then
computed by iterating over all possible values up to ∆max.

ITl =
n∑
i=1

∑
∀p∈Ti

Il
(
xp, yp

)2
(5)

IMl =

n∑
i=1

∑
∀p∈Mi

Il
(
xp, yp

)2
∆
(
xp, yp

)
(6)

lopt = arg max
∀l

 ITl
max
∀l

ITl
− IMl

max
∀l

IMl

 (7)

Il
(
xp, yp

)
constitutes the image generated by an algebraic opening with a

structuring element of length l. The consideration of squared pixel values re-
sults in a reduced influence of small intensities that have less negative effects on
the segmentation than high ones. Moreover, the points of the mask image are
weighted by their minimal distance ∆

(
xp, yp

)
to the boundary. lopt is optimal

in a sense that it maximises the difference of the intensities (scaled to fit into
the interval [0, 1]) within both examined image regions in order to enhance the
contrast.
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4.2 Insertion of New Points

The segmentation consists in extending the snakes starting from small regions
within probable cells. So, the distances between adjoining points are increased
and a resampling of the snake, i.e. the insertion of new points is necessary. On the
other hand, too high a number of points results in an increased computational
effort. Thus, some kind of compromise has to be reached. Since Sf9 cells are
almost elliptically shaped, an ellipse approximation of the current snake is per-
formed [31]. This yields the lengths of the semiminor axis b and of the semimajor
axis a as well as the centre C. On the basis of these values, the approximation
error ε occurring if the ellipse is approximated by a line segment of length λ is
computed (see Fig. 7).

C

P ′

P

αa

b λ
2

λ
2

a− ǫ ǫ

Fig. 7. Approximation of an ellipse by line segments. A line segment of length λ con-
necting the points P and P ′ causes an approximation error ε if it is divided equally by
the major axis. As the distance between the ellipse and its centre C is maximal there,
ε is maximal, as well. Thus, ε constitutes the worst case value.

An ellipse can be described by x = a · cosα and y = b · sinα. Inserting the
coordinates xP = a − ε and yP = λ

2 of point P and fusing the results leads to
Equation (8) which enables the determination of λ.

λ = 2b · sin
(

arccos
a− ε
a

)
(8)

Instead of computing the ellipse approximation after every iteration step
of the snake algorithm (variable split length, VSL), it can be applied to the
determination of a constant split length λ∗ (CSL). For this purpose, all manually
extracted cells are approximated by an ellipse and λ∗ is set to the minimal value
of λ. So, a correct approximation of all cells with an error less than ε can be
guaranteed, as well.

5 Results

We evaluated our methods on a dataset containing 499 cells manually extracted
from 45 images by biological experts. In order to enable investigations regard-
ing different foci, the dataset comprises images of the same specimens at three
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A B C

Fig. 8. Cells at different focal planes. The appearance of the examined cells varies if
the focus is modified.

manually adjusted focal planes (A, B and C) showing the cell characteristics
depicted in Fig. 8.

All 499 manually extracted cells were automatically marked during the pre-
processing step (see Section 3.3) and each cell mask was associated with the
marker closest to its centre. Furthermore, the length of the linear structuring
elements for the algebraic opening was automatically set to lopt = 31 according
to Section 4.1.

In order to assess the segmentation, the manually extracted cell masks were
compared with the corresponding automatically segmented cells by performing
15-fold cross-validation. The energy weights were chosen in such a way as to
minimise the error term d̄err for all except one of the images of a focal plane

(
see

Equation (9)
)
.

d̄err =
1

n

n∑
i=1

dmax
i

bi
(9)

dmax
i denotes the maximal distance of corresponding manually and automatically

determined contours of a cell i. These values are normed to the current manually
determined cell size represented by the length of the semiminor axis bi of the
cell’s approximation by an ellipse.

After computing the energy weights, the remaining image was segmented in
order to measure the test errors. d̄testA , d̄testB and d̄testC denote the mean of these
test errors over all images (see Tab. 1). Additionally, the mean point number per
snake p̄ and the average processing time1 per image t̄ using an AMD Athlon 64
processor (2GHz) were determined.

The results of all methods show that the choice of the focal plane has a
considerable effect on the quality of the segmentation. The errors rise from plane
A to plane C. These results originate in less distinctive cell membranes (B) and
stronger intracellular intensity variations (C), respectively (cf. Fig. 8)

Both reparametrisation methods attained smaller segmentation errors than
the original approach which does not perform resampling. Since CSL utilises
a minimal value of the split length λ that is sufficient for all cells, it requires
additional points in comparison to VSL. These unnecessary additional points
seem to deteriorate the segmentation compared to VSL (e.g. for ε = 0.125). The

1 excluding the time for the computation of the cell markers
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Table 1. Comparison of the segmentation if variable split length (VSL), constant split
length (CSL) and no resampling are applied. The dash denotes parameters that were
not available.

method ε λ∗ d̄testA d̄testB d̄testC p̄ t̄

VSL 0.5 – 0.104 0.118 0.142 33.9 1.038s
0.125 – 0.088 0.109 0.139 59.2 1.200s

CSL 0.5 18 0.094 0.130 0.143 45.2 0.802s
0.125 9 0.102 0.116 0.141 89.6 0.980s

no resampling – – 0.109 0.123 0.146 23.4 0.708s

lowest errors were reached by VSL with ε = 0.125, which required significantly
more processing time than the other methods because of the determination of λ
during the actual segmentation. So, if enough time is available VSL should be
employed. Otherwise, the original approach and CSL, especially with ε = 0.5,
are beneficial.

In order to assess our results, the manually extracted segments of 363 cells
determined by five people were compared pairwisely. The corresponding contours
possess a mean maximal distance of 5% of the cell size with a standard deviation
of 2.5%, as the cell membranes cannot always be determined unambiguously.
Thus, we conclude that our methods are very accurate.

6 Conclusion

We have presented an approach to the automatic segmentation of cells in bright-
field microscope images. Furthermore, several enhancements with respect to the
quality of the preprocessing as well as the segmentation have been introduced.
The result of our segmentation procedure is depicted by Fig. 9. Here, VSL with
ε = 0.125 was applied.

Fig. 9. Segmentation of a bright-field image (left). The final snakes are depicted as
dark contours. The central image only shows segments that could be associated with
manually extracted cell masks, whereas the right picture comprises all snakes.

The evaluation of our segmentation method occurred based on images at
three different focal planes in order to enable the choice of an optimal one. At
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this focal plane, all methods yielded excellent results insofar as the segmentation
error is only slightly higher (difference < 10%) than the deviations of segments
manually determined by different persons.

As several cells receive multiple cell markers and other image objects – for in-
stance dead cells and dirt – are marked as well, the number of segments is higher
than the number of cells. But since the snakes are grown independently, over-
lapping segments do not influence one another. Furthermore, if the cell marker
is situated in the centre of a real cell, the respective cell is usually segmented
properly. In principle, this even enables a correct segmentation of overlapping
cells. But as Sf9 cells grow adherently and the cell density is kept relatively low,
the cells usually do not overlap in our images. If a cell marker does not lie close
to a cell’s centre, arbitrarily shaped segments might result. These segments have
to be sorted out. Hence, a classification of the final snakes is performed [16].
The result of the application of our complete cell recognition approach to an
independent test image is shown in Fig. 10.

Fig. 10. Cells recognised in an independent test image (left). After the classification
(right) only segments enclosing individual cells remain. Other regions yielded by the
segmentation procedure (centre) are dropped.

Assuming a cell has been segmented by multiple snakes, the one best repre-
senting the cell should be chosen. Therefore, a value is computed, which reflects
the confidence in the classification result [32]. Afterwards, segments that rep-
resent cells and strongly overlap are analysed and the one yielding the highest
confidence value is selected.

Based on a test set comprising 302 cell masks extracted from 19 bright-field
micrographs (focal planes A and B), recognition rates up to 90.1% were reached.
The corresponding mean segmentation error of the recognised cells amounts
to d̄rec=0.11, which confirms the results summarised by Tab. 1. The complete
processing of a bright-field image (1344×1024 pixels) takes approximately 15s
using an AMD Athlon 64 CPU operating at 2GHz. Although this is comparably
fast, techniques such as image pyramids could probably be applied to realise
a reduction of the computational load. But even without such an acceleration,
this approach is suitable to be applied in conjunction with a high-throughput
protein localisation technique. The first experiments regarding the usage of our
cell recognition approach in conjunction with a protein localisation method have
led to very promising results [5].
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Recently, we have conducted experiments using an alternative cell line ori-
ginating from the fruit fly Drosophila melanogaster [32]. Although these cells are
considerably more difficult to recognise, our cell recognition method – after it
had been adapted to them – performed very well.
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