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Abstract 
Relaxation can provide time for reflection. This paper illustrates 
how relaxation, in the form of fishing, led to reflection involving 
mathematics and technology – in particular, the calculator 
technology fostered by Bert Waits and Frank Demana, Ohio’s 
internationally-recognized leaders in the field. 
 
   

 
 
common form of pier fishing for salmon and trout in Lake Michigan involves repeatedly 
casting and retrieving an artificial lure. It is usually advantageous to cast the lure as far as 
possible, so it covers more potential territory and spends more time in the water. This results 
in the question of how to achieve the maximum distance.  It leads to an interesting application 

of mathematics and illustrates the role of technology in problem solving by:  
 

1. allowing for powerful interactive visualization of problems, 
2. finding new ways to solve problems, and  
3. performing tedious computations. 

 
The range of technology includes graphing equations in both parametric and function modes and 
performing difficult computations using a computer algebra system (CAS). All these computations can 
now be done using any of the several technology platforms which are available. We illustrate it here using 
Texas Instruments’ Nspire CAS. 
 

 
In the process of casting, as shown in Figure 1, the fisherman swings 
the rod in an overhead circular motion, releasing the line and the lure 
at some point in the arc. While many factors, including the weight of 
the line and the length of the rod are involved, we address this 
question:  
 
 
 

At what point in the motion should the lure be released 
 in order to travel the maximum distance? 

 
 

 
 

Preliminary Problem 
A first step in solving the problem is to think of a simpler problem: A projectile is launched with an initial 
velocity v0 at ground level at an angle of   with the horizontal (see Figure 2). Find   so that the distance 

Figure 1. Casting Motion 
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traveled by the projectile before it hits the ground is maximized. 

 
       Figure 2. A projectile launched with initial velocity 0v  at an angle   with the horizontal. 

 
The x-coordinate at time t, represented by [A] below, is determined by 0( cos )v t , the horizontal 

component of the initial velocity multiplied by t. The y-coordinate, represented by [B] below, is 
determined by 0( sin )v t , the vertical component of the initial velocity multiplied by t, minus 16t2, the 

distance in feet that an object falls in t seconds. 
 

[A]  0( ) ( cos )x t v t  

[B]  2
0( ) ( sin ) 16y t v t t   

 
One of the most significant contributions to learning mathematics, provided by the technology fostered by 
Waits and Demana, is the power of visualization. A parametric function grapher brings life to the 
preliminary problem as shown in the following example, in which students can trace the path of the object 
in specific cases. 
 
Modeling Examples 
A parametric function grapher (see Figure 3) is used to determine how far the projectile will travel if v0 is 
100 feet per second and for selected value for   of 30o, 45o, and 60o. 
 

  
Figure 3. Parametric graphs of [A] and [B] with canonical values of angle 30 ,  45 ,  and 60        . 
 
Tracing the graphs determines the distances traveled by the projectile are approximately 271 feet, 313 
feet, and 271 feet, respectively. An alternate method to tracing the graphs would involve looking at a table 
of values when y(t) is near zero. 
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After modeling to determine an approximation, finding an exact solution to the preliminary problem 
involves three steps: 
 

(1) Find the time t when the projectile hits the ground (has height of 0) in terms of  . 
(2) Substitute this value of t into the formula for the distance the projectile travels, so that the 

distance is expressed solely as a function of  . 
(3) Find   so that the distance is a maximum.  

 
Step (1): Using [B], 

2
00 ( sin ) 16v t t   

00 ( sin 16 )t v t   

 00 or sin 16 0t v t     
1

0160 or = sint t v   

 
Step (2): Using [A] to find the distance traveled for 1

016= sint v   

 

1
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21
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21
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 ( ) ( cos ) sin
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x t v v

v
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Step (3): The maximum occurs when sin 2 1  , so 2 90    or 45   . 
 
[Note that the answer is independent of the initial velocity, v0.] 
 
Fishing Problem 
Solving the fishing problem adds several new considerations, including the initial height from which the 
lure is released (dependent upon the height of the pier and the height of the fisherman), the length of the 
rod (including the lower arm which swings with the rod), and the angular velocity of the casting process. 
The problem is solved here using data that fit the situation, shown in Figure 1, with some assumptions:  
 

 the height of the pier is 5 feet, 
 the center of rotation of the rod is an additional 5 feet (shoulder height on a 6-foot fisherman), 
 R, the length of the rod (including the lower part of the arm that is part of the casting motion), is 8 

feet, 
 the angular velocity in radians is 2π per second, based on an estimate that the casting motion is a 

semicircle which takes half a second, 
 the initial velocity perpendicular to the rod at the time of release is 0 2v R  feet per second, or 

16π feet per second, with a horizontal component of 16 sin   feet per second and a vertical 
component of 16 cos   feet per second, 

 the solution is independent of the properties of the line and the lure, 
 there is no drag on the line, making the cast free of friction, and 
 the fisherman’s physical motion is optimal and is described as in the diagram. 

 
 
 



Ohio Journal of School Mathematics, Spring 2015, No. 71 Page ~ 7 ~ 
 

The relationships among the variables are 
summarized in Figure 4, where point E is the 
fisherman’s elbow and F is the point the lure 
is released. 
 
The horizontal distance x(t) traveled by the 
lure t seconds after release is  16 sin t  , 

the horizontal component of the velocity, 
multiplied by the time t. From this subtract 
8cos , the horizontal distance the lure is 
behind the fisherman’s elbow at the time of 
release: 
[C]   ( ) 16 sin 8cosx t t    . 

 
At the point of release the height of the lure 
is 5 5 10 8sinp     . 
 
 
The height of the lure in feet after t seconds, represented by [D] below, consists of the sum of 
(10 8sin ), the height at the time of release, and  16 cos t  , the height gained by the casting motion 

(the vertical component of the velocity times t), minus 216t  (the distance the lure falls in t seconds due to 
gravity): 

[D]     2( ) 10 8sin 16 cos 16y t t t      . 

 
Modeling Example 
A parametric function grapher is used to determine how far the lure will travel given the above 
parameters. Graphs (see Figure 5) of parametric equations [C] and [D] are shown in the case where   is 
45o, which is the solution to the preliminary problem. When   is 45o, tracing the graph (or displaying a 
table of values) shows that the lure is released approximately 5.7 feet behind and 15.7 feet above the 
water level, reaches a height of about 35.4 feet in 1.1 seconds, and hits the water about 86.8 feet away in 
about 2.6 seconds. 
 

       
Figure 5. Parametric graphs of [C] and [D] for 45    illustrating the height and distance of the lure. 
 
 
 

Figure 4. Illustration of the Fishing Optimization Problem, 
including the variables and constants used to solve the problem. 
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While it is quite easy to find an exact solution to the preliminary problem, this is not the case for the 
fishing optimization problem. Here function graphing technology is used to provide a new approach to 
finding an approximate solution. To find the value of   which results in the maximum distance, the same 
three steps are used that were used to solve the preliminary problem, this time with the aid of function 
graphing technology as employed by Waits and Demana:  
 
Step (1): Using [D], 

    20 10 8sin 16 cos 16t t       

 Using the quadratic formula to solve for t in terms of  and simplifying gives 

 
2 24 cos 8sin 10 2 cos

4
t

      
   

 
Note that the other solution gives t as a negative value, which is discarded. 
Step (2): Using [C] and expressing the distance as a function of  , 

 [E]  
2 24 cos 8sin 10 2 cos

( ) 16 sin 8cos
4

x
         

  . 

Step (3): Putting [E] in a form compatible with a function grapher and 
zooming in, or using the calculate maximum feature of the technology, 
shows that the lure attains the maximum distance of about 88.8 feet, which 
occurs when the angle of release is about 52° (see Figure 6). In fishing 
terms, this may translate to “just a bit more than” 45°.  

 

As a check on this result given parametrically by [C] and [D], tracing the graph (or displaying a table of 
values) when   is 52° shows that the lure is released approximately 4.9 feet behind and 16.3 feet above 
the water level, reaches a height of about 31.3 feet in 1.0 seconds, and hits the water about 88.7 feet away 
in about 2.4 seconds, slightly better than releasing when   is 45° (see Figure 7). 

       

 

 

 

 

             Figure 7. Parametric graphs of [C] and [D] for 52   , illustrating the optimal solution. 
 
A third important use of technology in the teaching of mathematics is to use technology to perform 
tedious computations.  Just as decades ago when calculators replaced tedious computations done by hand 
to find approximations for square roots and values of trigonometric functions (like sin 23°), computer 
algebra systems (CAS) can now replace more complex computations. 
 
 

Figure 6. Graph of  [E] with   being  
the independent variable and x, 
the dependent variable. 
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For students familiar with calculus, finding a maximum for [E] involves computing the derivative, setting 
it equal to zero, and solving the resulting equation.  A formidable task to do by hand, finding derivatives 
and finding approximate solutions to equations can be readily done using a computer algebra system, 

technology promoted by Waits and Demana late in their careers. An approximate result of 52    with a 
corresponding maximum value of about 88.8 feet is obtained using the TI-Nspire. 
 
Having himself visited Sheboygan’s South Pier, Bert 
Waits was delighted to hear about this unexpected 
application of the Demana/Waits technology shortly 
before the events which led to his unfortunate 
passing. When asked, while discussing the fishing 
problem with the authors, to cite an article he felt 
best represented the work he did with Frank 
Demana, he suggested A Call for Action! (Waits, B. 
& Demana, F., n.d.). 
 
The authors proudly dedicate this paper to “Hank” 
and Frank as a token of their appreciation of the 
outstanding contribution they provided to the 
appropriate use of technology in the teaching of 
mathematics.  
  
 
The following related problem is offered in closing: 
Use a function grapher to simultaneously graph the two functions:       
using the  window: xmin = 0, xmax = 18, ymin = -10, and ymax = 1.  
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Jim Schultz, his wife Donna Menzer, with Barb and Bert 
Waits near the South Pier in Sheboygan, WI, in 2007. 
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