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ABSTRACT 

Repair and strengthening of damaged or vulnerable reinforced concrete structures 

is important in order to guarantee the safety of residents or users.  Beams are important 

structural elements for withstanding loads, so finding the efficient repair and 

strengthening methods are necessary in terms of maintaining the safety of the structures. 

This research study investigated various repair, retrofit, and strengthening 

techniques for reinforced concrete beams. The comparison and summary of each repair 

and strengthening method are provided in this thesis. 

The thesis involves the literature review of current experimental test of repair and 

strengthening techniques for reinforced concrete beams. The experimental studies were 

summarized by describing the specimens and loading details, All the methods in the 

research were categorized into five chapters: section enlargement and concrete jacketing, 

external reinforcement, steel plates, unbonded-type strengthening, and concrete repairs.  

The installation procedures were summarized and the advantages, shortcomings, and 

considerations of each method were also discussed in the thesis.  
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CHAPTER	
  1 INTRODUCTION 

 

1.	
  1	
  Introduction 

Natural disasters such as earthquakes, tornados, and tsunamis threaten the 

integrity of civil infrastructure and safety of their users. A large number of reinforced 

concrete buildings and bridges built in the United States before the1970s typically do not 

have sufficient capacity to resist the forces during such catastrophes. In order to 

guarantee the safety of the people; older, existing structures need to be repaired and 

strengthened to prevent their collapse. Efficient methods need to be developed for 

structural repair and strengthening. This thesis evaluates the effectiveness of available 

methods for repair and strengthening of reinforced concrete beams.  

The thesis focuses on a research of experimental studies done on repair and 

strengthening of reinforced concrete beams. The objective of this thesis is to find out the 

pros and cons of each repair and strengthening methods. The results of the research can 

help engineers choose the best approach in their projects based on different 

environmental and economical condition.  

1.2	
  Overview 

A detailed literature review is conducted on research studies involving repair and 

strengthening experiments on reinforced concrete beams. The specimen, loading details, 

and the type of repair or strengthening method are described. If available, the strength 

and deformation capacity before and after the repair or retrofit as well as the change in 

the capacity are reported. Some basic details of the experiments and response parameters 
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are summarized. The thesis is organized to include the following: experiment and 

specimen details, material properties, specimen geometry, basic test setup and loading, 

and reported critical data (e.g., measured load-displacement relations). The repair and 

strengthening methods include: 

Section enlargement and concrete jacketing, e.g., reinforced concrete jackets.  

External reinforcement, e.g., external tendons.  

External steel reinforcement, e.g., web-bonded continuous steel plates. 

Unbonded-type, e.g., wire rope units. 

Concrete repair, e.g., epoxy injection. 

1.	
  3	
  Unique feature of the research: 

The research includes repairing the damaged specimens or strengthening of 

undamaged specimens with or without applied loading. Although the thesis tries to 

contain as much repair and strengthening methods as possible, the scope of this thesis is 

limited. So some strengthening and repair methods may not be mentioned, though they 

are also effective and widespread. For instance, strengthening concrete beams with fiber 

reinforced polymer materials is a widely used method due to its significant advantages. 

However, it was only slightly mentioned in some chapters, and no details were supplied 

in the thesis.  

1.	
  4	
  Scope 
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This thesis presents the current concrete beam repair and strengthening techniques 

by summarizing the experimental research results reported in technical journal papers. 

Chapter 2 is about strengthening of beams by section enlargement and concrete jacket, 

Chapter 3 describes external reinforcements to strengthen RC beams, Chapter 4 presents 

strengthening of beams by attaching steel plates, Chapter 5 involves unbonded-type 

strengthening methods, and Chapter 6 introduces some concrete repair methods. All the 

repair and strengthening techniques have their advantages and shortcomings. Choosing 

the optimum method depends on the specific conditions.  
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CHAPTER	
  2	
  Section Enlargement and Concrete Jacketing 

 
2.	
  1	
  Introduction 

Placing additional layer of concrete surrounding an existing beam is called section 

enlargement. Concrete jacket is to add reinforced concrete jacket on the existing beam. 

Jacketing by reinforced concrete could improve resistance against applied loads and 

enhances the durability at same time. Furthermore, section enlargement and concrete 

jacketing maybe easier and cheaper compared to other approaches such as steel plate 

jacketing. 

2.	
  2	
  Description of Previous Research on Section Enlargement 

 Sprayed concrete is one of the common enlargement approaches. Diab et al. 

(1998) conducted experimental research to test the efficiency of using sprayed concrete 

for strengthening the reinforced concrete beams. Nine specimens were categorized into 

three test series. The first series included three reference reinforced concrete (RC) beams 

(P1-P3). In the second series, three beams (PR1-PR3) with same properties and 

dimension with P1 were loaded to damage them. Then, two reinforcing steel bars and a 

layer of sprayed concrete strengthened them. The three specimens in the third series have 

same dimension with P1 and tested in the same manner with series two, however, instead 

of strengthening specimens with a layer of sprayed concrete, specimens were 

strengthened with concrete including metallic glass ribbon fibers. All of the specimens 

were 5000 mm long, and further properties of specimens and strengthening details are 

exhibited in Table 2.1 and Figures. 2.1-2.3. The ultimate load and deflection are 

presented in Table 2.1 and Figure. 2.4. The experimental results indicate that using 
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sprayed concrete to strengthen reinforced concrete beams can effectively increase their 

load carrying capacity or stiffness. Furthermore, additional metallic glass ribbon fibers in 

sprayed concrete improved the crack pattern and ultimate capacity of RC beams. Adding 

metallic glass ribbon fibers to reinforced concrete beams improved flexural strength, 

enhanced cracking pattern, reduced tensile stress and greatly increased the first cracking 

moment.  

Table 2. 1- Dimension and experimental results of specimens. 

Specimen 

Beam Dimension 
(mm) Ultimate 

Width Depth 
Load 
(kN) 

P1 130 330 55 
P2 130 330 171 
P3 130 330 210 

PR1 200 400 141 
PR2 200 400 136.5 
PR3 200 400 134.8 
PR4 200 400 160 
PR5 200 400 149.5 
PR6 200 400 148 

 

 

Figure 2. 1- Cross-section of beam P2 and beams PR1 to PR6 (Diab et al. 1998). 
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Figure 2. 2- Cross-section of beam P2 and P3 (Diab et al. 1998) 

 

 

Figure 2. 3- Cross-section of beams PR1 to PR3 after repair (Diab et al. 1998). 
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Figure 2. 4- Load-central deflection curve for strengthened beams (Diab et al., 
1998). 

 

Adding strain hardening cementitious composites (SHCCs) layer to RC beams is 

another effective section enlargement strengthening method, SHCC causes strain 

localization, which limits the ductility. Combining the SHCC and a small amount of steel 

reinforcement enhances the strain capacity by preventing the stiffness degradation of 

strengthening layer caused by cracking. Mohamed et al. (2012) conducted experiments to 

compare the flexural behavior of RC beams strengthened with steel reinforced and 

unreinforced SHCC layer cast to their soffit. Four-point bending flexural tests were 

conducted up to failure on two RC control beams, four RC beams strengthened with a 

steel-reinforced Ultra High Performance Strain Hardening Cementitious Composite 

(UHP-SHCC) layer, two RC beams strengthened with an unreinforced UHP-SHCC layer 

and four RC beams strengthened with a steel-reinforced mortar layer (see Table 2.2 and 

Figure 2.5). All specimens have dimensions: 200 mm × 200 mm×1800 mm and all the 

strengthened specimens have a 50 mm thick respective strengthening layer. The ultimate 

loads, the cracking loads and the yielding loads of the specimens are shown in Table 2.3.  

The load-deflection responses for tested beams are exhibited in Figure. 2.6. Test results 

revealed that using the small amount of steel reinforcement and UHP-SHCC like BU2 

dramatically increase the load carrying of RC beams. Also this combination significantly 

enhanced the post peak behavior.  
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Figure 2. 5- Test setup and specimens’ details (Mohamed et al. 2012). 

Table 2. 2- Description of test beams. 

Specimen 

Strengthening layer reinforcement No. of 
tested 
beams SHP-SHCC 

Reinforced 
mortar 

Reinforcement ratio 
% 

BC − − − 2 
B-U-0 − − 0 2 
B-U-1 1 D6 − 0.3 2 
B-U-2 2D6 − 0.6 2 
B-M-1 − 1 D6 0.3 2 
B-M-2 − 2 D6 0.6 2 

 

Table 2. 3- Cracking, yield, and ultimate load and corresponding displacement 
values. 

Beam 

Cracking Yield Ultimate load 
Maximum crack width developed in 

the substrate concrete 
Substrate 

conc. UHP-SHCC 
Main 

reinforcement 
 Load 

(kN) 
Disp. 
(mm) 

Load 
(kN) 

Disp. 
(mm) 

Load 
(kN) 

Disp. 
(mm) 

Load 
(kN) 

Disp. 
(mm) 

At 32 kN 
(mm) 

At 48 kN 
(mm) 

At ultimate 
load (mm) 

BC 19.0 1.09 − − 41.0 3.5 49 40.15 0.25 3.5 3.5 
B-U-0 35.0 0.52 50.0 0.95 78.3 3.92 82.3 4.77 − 0.05 0.2 
B-U-1 35.8 0.48 50.5 1.02 82.2 4 88.9 5.96 − 0.05 0.2 
B-U-2 35.9 0.54 51.0 1.04 95.5 4.69 100.7 11.00 − 0.05 0.25 
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B-M-1 31.0 0.46 − − 51.0 3.6 62 32.05 0.05 0.30 3.0 
B-M-2 31.5 0.47 − − 60.0 3.5 74.4 37.05 0.05 0.25 3.5 

 

 

Figure 2. 6- Load-mid-span deflection curves for beams tested by Mohamed et al. 
(2012). 

 Ferrocement is the thin layer made of a cement mortar reinforced with a layer of 

small diameter wire meshes. Strengthening RC beams with ferrocement laminates is also 

one type of section enlargement. Flexural and shear capacity can be improved by casting 

ferrocement laminates to the soffits of beams or three sides except top face of beams. 

Paramasivam et al. (1998) reviewed the previous studies and concluded that ferrocement 

laminates is the viable material for strengthening concrete structures because it has higher 

tensile strength to weight ratio, toughness, ductility, durability and cracking resistance 

that is considerably greater than conventional cement based materials.  

 Sirju and Sharma (2001) compared the enhancement of different methods of 

strengthening reinforced concrete members under axial compression and bending. The 

control or unstrengthened beam is exhibited in Figure 2.7, and two test beams that were 
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strengthened by ferrocement and fibre cement are shown in Figure 2.8. The first concrete 

beam was strengthened with five layers of 12 mm hexagonal mesh and rendering with 40 

mm thick concrete to the surface. The second beam strenghthened with 40 mm thick fibre 

reinforced concrete. The test results and load deflection relationships were shown in 

Table 2.4 and Figure 2.9. Experimental results revealed that compared to the 

unstrengthened control beam, strengthened beams have higher ultimate flexural strength 

and stiffness. The failure mode for strengthened beams was ductile and gradual. As 

shown in Figure 2.8, Sirju and Sharma also tested beams strengthened with steel plates. 

These specimens will be discussed in Chapter 4. 

 

Figure 2. 7- Test Setup and specimen cross section（Mohamed et al. 2012) 
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Figure 2. 8- Details of beams (Sirju and Sharma, 2001). 

 

Table 2. 4-Test results and Comparison of flexural strength enhancement after 
strengthening. 

Strengthening 
technique 

Moment at 
first cracks 

(kN m) 
Increase 

(%) 

Moment 
at failure 
(kN m) 

Increase 
(%) 

Failure 
flexural load 

( kN) 

Effective area of 
reinforcement based on 
BS 8110 Design Chart 

(%) 
None (control) 12.87 

 
18.02 

 
48.05 1.13 

Ferrocement 15.63 21.5 29.24 62.3 77.97 3.4 
Fibre cement 17.48 35.7 27.58 53.1 73.58 2.9 

 

 

Figure 2. 9- Mid-span deflection of test specimens (Sirju and Sharma. 2001). 



	
  

	
  

	
  

12	
  

Shehata and Shehata (2008) investigated the behavior of RC beams strengthened 

by partial jacketing using expansion bolts as shear connectors. They categorized eight 

beams, which were 150 mm wide, 400 mm deep and 4500 mm long, in three groups A, B 

and reference group C. The three unstrengthened reference beams were in the group C 

and the other five partially jacketed beams were in group A and group B (Figure. 2.10 

and Table 2.5).  After two initial loading cycles the beams cracked, applied two lines of 

expansion bolts to the five beams on each side as showed in Figures 2.10 and 2.11. The 

holes were close to the inner stirrups and just above the main longitudinal steel. Table 2.8 

provides specimen properties and ultimate load, where fcm is average concrete 

compressive strength, d is effective beam depth, Asb is area of main steel in the beam, 

Asr is added area of main steel in the jacket, ρst is total geometrical ratio of main 

reinforcement and Pu, exp is ultimate experimental load. Figures 2.12 through 2.17 

provide the measured beam deflections, main steel strains, main steel strains inside the 

jackets and the maximum relative displacement between the beams and the jackets. The 

experimental results showed that partial jacketing is an effective strengthening method. In 

order to get proper anchorage, the inserted depth of the expansion bolts should be greater 

than five times the bolt diameter and not less than 50 mm. Exposed part of expansion 

bolts should be left without the extension. Exposed part and holes of expansion bolts 

should be as close as possible to the original stirrups and original main longitudinal steel 

of beams.  

Table 2. 5- Characteristics of tested beams. 
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Beam 
fcm 

(MPa) 
d 

(mm) 
Asb 

(𝑚𝑚!) 
Asr 

(𝑚𝑚!) 
ρst 
(%) 

Pu,exp 
(kN) 

Failure 
mode 

Group A 
V1-A 41.6 382 285 300 1.02 150 Flexural 
V2-A 38.6 402 285 600 1.47 205 Flexural/Shear 
V3-A 39.2 409 285 800 1.77 229 Flexural/Shear 

Group B 
V1-B 36.4 360 600 300 1.67 186 Flexural 
V2-B 41.4 377 600 600 2.12 235 Flexural 

Group C 
REF1 36.2 386 285 - 0.49 72 Flexural 
REF2 41.4 369 600 - 1.08 130 Flexural 
REF3 40.8 351 1230 - 2.33 219 Flexural 

 

 

Figure 2. 10-Strengthening details of specimen tested by Shehata and Shehata 
(2008). 
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Figure 2. 11- Details of strengthening reinforcement in the jackets (Shehata and 

Shehata 2008). 

 

Figure 2. 12- Load-deflection curves for the beams of first group together with reference 
beams REF1 and REF3 (Shehata and Shehata 2008). 
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Figure 2. 13- Load-deflection curves for the beams of second group together with 
reference beams REF2 and REF3 (Shehata and Shehata 2008). 

 

 
Figure 2. 14- Load-main steel strain at mid-span curves for the beams of first group 

together with reference beams REF1 (Shehata and Shehata 2008) 
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Figure 2. 15- Load-main steel strain at mid-span curves for the beams of first group 

together with reference beams REF2 (Shehata and Shehata 2008). 

 
 

 

Figure 2. 16- Load-maximum relative displacement curves between the beam V2-A 
and the jacket (Shehata and Shehata 2008). 
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Figure 2. 17- Load-maximum relative displacement curve between the beam V3-A 
and the jacket (Shehata and Shehata 2008). 

2.	
  3	
  Previous Research on Concrete Jacketing of Beams 

 Similar to section enlargement method concrete jacketing can be easy, effective 

and inexpensive technique to rehabilitate and strengthen concrete structures.  Concrete 

jacket is achieved by adding the reinforced concrete jacket to the existing structure 

components such as beams and columns.  

Altun et al. (2004) compared the mechanical properties of RC beams before and 

after jacketing under bending test. Altun categorized nine 1800 mm long reinforced 

concrete beams with 20 MPa concrete strength, 420 MPa steel strength in three groups 

based on their three different cross sections (Table 2.6) and then loading them until full 

failure. The other nine beams that have the same dimensions were strengthened with 100 

mm thick RC jackets on all four sides (Figure 2.19), loaded them to full plastic yield. 

Typical test beam is shown in Figure 2.18 and the results of experiment are shown in 

Figure 2.20 and Table 2.6. The results revealed that damaged RC beams would behave 
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similar to the ordinary RC beams of same dimensions with added RC jackets.  However, 

the beam with highest ductility ratio is the most efficient since the section area is 

relatively less as compared to the section resisting the maximum ultimate load. This 

reduces the amount of cost of the jacketing material. 

 
 
Figure 2. 18- Loading configuration of the jacketed RC beam (Altun et al. 2004). 

 
 

                                                         
 
Figure	
  2.	
  19- Cross-section of beams before and after jacketing (Altun et al. 2004). 

Table	
  2.	
  6-The properties of specimens and test results 

 
Specimen 

 

 
Depth 
(mm) 

 
Width 
(mm) 

Amount of 
Tensile 
Steel 

Experiment 
Ultimate 

Load (kN) 

Disp at 
Yielding 
δy (mm) 

Disp at 
Ultimate 
δu (mm) 

Ductility 
Ratio 

 
1 150 150 2φ8 19.85 8.9 18.5 2.08 
2 150 150 2φ8 23.25 8 13.65 1.71 
3 150 150 2φ8 23 9.9 15.8 1.60 
4 200 150 3φ8 31.5 9.3 13.1 1.41 
5 200 150 3φ8 28.05 12.8 19 1.48 
6 200 150 3φ8 28.45 13 23.5 1.81 
7 200 200 3φ8 39.95 19 28.5 1.50 
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8 200 200 3φ8 40.25 18 30 1.67 
9 200 200 3φ8 40.8 15 24.5 1.63 
10 350 350 4φ2 262 7.1 15 2.11 
11 350 350 4φ2 247 7.65 16.5 2.16 
12 350 350 4φ2 246 8.54 17.2 2.01 
13 400 350 5φ2 283 8.7 21.5 2.47 
14 400 350 5φ2 296 7.3 20.75 2.84 
15 400 350 5φ2 295 7.8 20.2 2.59 
16 400 400 5φ2 337 6.7 12.5 1.87 
17 400 400 5φ2 343 6.07 12 1.98 
18 400 400 5φ2 339 6 11.8 1.97 

 
 

 
(a) 
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(b) 

Figure	
  2.	
  20- Load versus displacement at midspan of beams tested by Altun et al. 
(2004). 

 Cheong et al. (2000) conducted the investigation for the behavior of reinforced 

concrete beams strengthened by jacketing under static and dynamic load until failure. The 

simply supported beams were tested statically or dynamically and the continuous beams 

(see Figure 2.21) were tested statically as the details are shown in Table 2.7. Figure 2.22 

presents the test results of control specimen 2-1, jacketed beams 2-2, 2-3 and 2-9 that 

strengthened with various bond conditions as listed in Table 2.7. Figure 2.23 gives the 

test results of jacketed beams 2-4, 2-5 and 2-6 with deliberately reduced host jacket bond. 

Beam 2-8 has additional stirrups at 2d only (d= effective depth), 2-10 has additional 

stirrups grouted into underside of flange, jacketed beam 4-1 without additional links 

enclosing longitudinal reinforcement (see Figure 2.24). Figure 2.25 plots the relation of 

static load and displacement of continuous monolithic beams 6-1 and 6-2. The details of 

dynamic tests on simply supported beams 8-1, 8-2, 8-3, 9-1 and 9-2 are listed near the 
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bottom of Table 2.7 (PA means preplaced aggregate concrete and PC means plain 

concrete). The experimental results revealed that the reinforcement should be adequately 

anchored past the point of contraflexure and the support of simple beams. Also adequate 

anchorage is necessary for additional stirrups near the underside of flange. The fully 

anchored stirrups contribute fully to the strength of the jacketed beam. Width of the 

upgraded beam should be similar to support width. The effect of roughening in interface 

does not influence the behavior of jacketed beams very much. 
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Figure	
  2.	
  21- Simply supported and continuous beams (a) 1; (b) 2; (c) 3 

	
  
Table	
  2.	
  7- Details of beams tested under static loads. 

Beam Construction 
Interface 

preparation 
fcu of PA 
(N/mm!) 

fcu of PC 
(N/mm!) 

Failure load   
(kN) 

Failure 
mode 
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1 2 3 4 5 6 7 
2−1 Monolithic − − 45 404 Flexure 
2−2 Composite Partially roughen 55 45 393 Flexure 
2−3 Composite Fully roughen 50 45 433 Flexure 

2−4 Composite 
Fully roughen 
I1,I2,PaintI3 70 30 430 Flexure 

2−5 Composite 
Fully roughen 
I2,I3,PaintI1 70 50 422 Flexure 

2−6 Composite 
Fully roughen I2, 

Paint I1,I 3 70 30 410 Shear 
2−8 Composite Partially roughen 55 50 351 Anchorage 
2−9 Composite Partially roughen 55 50 418 Flexure 
2−10 Composite Partially roughen 55 50 376 Anchorage 
4−1 Composite Partially roughen 60 50 135 Interface 
6−1a Monolithic − − 30 309 Bearing 
6−2a Composite Partially roughen 60 30 374 Bearing 

1-Aug Monolithic − − 50 411 Shear 
2-Aug Composite Partially roughen 55 45 407 Flexure 
3-Aug Composite Fully roughen 55 45 393 Flexure 
1-Sep Monolithic − − 50 Cycle 608,738 Fatigue 
2-Sep Composite Partially roughen 60 30 Cycle 436139 Fatigue 

 

 



	
  

	
  

	
  

24	
  

 
 

Figure	
  2.	
  22- Beams 2-1, 2-2, 2-3 and 2-9: (a) load versus mid-span displacement: 
(b) load versus Longitudinal steel strain. (Cheong et al. 2000). 

 

 
Figure	
  2.	
  23- Load versus. mid-span displacement- beams 2-4, 2-5 and 2-6 (Cheong 

et al. 2000). 
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Figure	
  2.	
  24- Load versus displacement- beams 2-8, 2-10 and 4.1 (Cheong et al. 
2000). 

 

 
Figure	
  2.	
  25- Load versus mid-span displacement-beams 6-1 and 6-2 (Cheong et al. 
2000). 
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Figure	
  2.	
  26- Load versus mid-span displacement: a) beams 8-1 and 8-2; b) beams 
9-1 and 9-2 (Cheong et al. 2000). 

2.	
  4	
  Summary and Conclusion 

Jacketing by reinforced concrete and section enlargement may be the relatively 

easy and economic strengthening method compared to attachment of an external steel, 

external post-tensioning or externally bonded composite system. It effectively increases 

the load carrying capacity or stiffness. However, the addition of concrete and steel to 

repair beams increases the weight of beams. So, the lightweight concrete may be 

considered as better applied when strengthening the beams. Strengthening with concrete 

and steel rebar might lead to corrosion in beams. Hence, section enlargement and 

concrete jacketing are limited to use in harsh environment and the protecting corrosion is 

important work.  
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CHAPTER	
  3 External Reinforcement 

3.	
  1	
  Introduction 

 Retrofit of RC beams can be achieved by adding external longitudinal 

reinforcement to the RC beams in order to increase their load carrying capacities. This 

method can overcome many drawbacks of other methods. It is inexpensive and easy to 

execute.   

3.	
  2	
  Description of Previous Research  

 Kothandaraman et al. (2010) devised a new technique that retrofit RC beams with 

external reinforcement at soffit level. This retrofitting method is cost effective, simple, 

and easy to achieve. As shown in Figure 3.1, Kothandaraman et al. used special chemical 

adhesives anchored to the bars into two pieces and welded them together in the soffit 

level of beams ERB1 and ERB2. All the specimens were tested under two-point loading 

till failure. The deflections at mid-span and one-fourth are shown in Figure 3.2 and test 

results are presented in Table 3.1. The test results showed that the retrofitting the external 

bars on the soffit level in this way significantly decreased the width of cracks, 

deflections, and the moment carrying capacity was increased compared to un-retrofitted 

beams. 
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Figure	
  3.	
  1-The externally reinforced beams-ERB1 and ERB2 (Kothandaraman et 
al. 2010) 

 
Figure	
  3.	
  2- Load-deflection diagram at mid-span (Kothandaraman et al. 2010). 
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Figure	
  3.	
  3- Load-strain curves (Kothandaraman et al. 2010). 

Table	
  3.	
  1-Test results using external bar in two pieces and tied by welding. 

Beam Concrete 
Strength 
(N/mm) 

Mid-span 
deflection 
at ultimate 
load (mm) 

Maxium 
crack 
width 
(mm) 

Tested 
ultimate 
moment 
𝑀!,!"#! 
(kNm) 

Calculated 
ultimate 
Moment 
𝑀!,!"# 
(kNm) 

Comparative 
ultimate 
moment 
𝑀!,!"#$ 
(kNm) 

𝑀!,!"#! 
/𝑀!,!"# 

𝑀!,!"#!/ 
𝑀!,!"#$ 

Mode of 
failure 

RFB1 46.71 8.78 4.00 31.2 26.29 - 1.19 - 
Yielding of 

bars 

RFB2 8.74 8.74 5.00 30.88 26.2 - 1.18 - 
Yielding of 

bars 

ERB1 15.19 15.19 2.00 53.63 52.25 43.39 1.03 1.24 
Crushing of 

concrete 

ERB2 14.5 14.5 2.00 53.63 53.25 44.38 1.01 1.21 
Crushing of 

concrete 
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Cairns et al. (1997) conducted 21 tests with six beams cast in three sets which 

each set contained two beams. Every first specimen in each group was set as reference 

specimen and the other one was strengthened with external reinforcement anchored at the 

end of the beam.  All specimens had 3500 mm overall length and 3000 mm span were 

tested under four-point bending (Table 3.2 and Figure 3.4). The reference beams were 

first loaded up to 65% of the ultimate capacity. The beams were then removed from the 

load, and finally they were reloaded to failure.  The second sets of beams were also 

subjected to a pre-loading cycle to develop service crack patterns. The applied load and 

mid-span deflection are reported in Table 3.3. In order to identify beams during test, each 

test is described by a five characters identifier which as shown in Table 3.3. The first 

letter means the test series and the second letter indicates the specimen number within 

that series. The third number represents the shear span/effective depth ratio (𝑎!/𝑑) for the 

test and the forth represents the effective depth of the external bars, 𝑑!"#. The last number 

represents the load cycle.  Orb indicates ordinary reinforced beam, EUBRF represents 

beam with additional external unbonded reinforcement. The test results revealed that the 

loading arrangement, effective depth of external reinforcement, and geometric ratio of 

bounded reinforcement increased ultimate flexural strength of RC beams especially for 

the lightly reinforced beams.  
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Figure	
  3.	
  4- Details of test specimens (Cairns et al. 1997). 

 
 
 

Table	
  3.	
  2- Details of test specimens as cast. 

Specimen Ref 
Beam Depth 
   h (mm) 

Effective depth of 
bonded bars 

d (mm) 

Bonded Reinforcement Concrete 
compr. Strength 

fcu (N/mm!) No. 
Dia. 

(mm) 
Yield Strength 

fy (N/mm) 
A1 400 355 2 20 493 42 
A2 400 355 2 20 493 45 
B1 400 355 2 16 510 35.4 
B2 400 355 2 16 510 39.5 
C1 300 255 2 16 497 39 
C2 300 255 2 16 497 36.5 
 
 

Table	
  3.	
  3- Applied loads and mid-span deflections. 

Specim
en Ref. 

Shear 
Span av 
(mm) 

Effective 
depth of 
ext-bar 

dext 
(mm) 

P65 
(kN) 

Neutra
l axis 
depth 
factor 

x/d 

Max 
comp 
strain 

in 
conc 
×10^-

6 

Surface 
strain at the 

level of 
bonded 

bars ×10^-
6 

Force in 
external 

bars 
Fext 
mm 

Mid-span 
deflection 
Δc mm Comments 

A1/20/2 1250 − 105 0.377 709 1172 − 5.31 
Cracked ORB: to 

failure 

A2/20/2 1250 − 105 0.36 868 1543 − 5.97 
Cracked ORB: to 

failure 
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A2/21/3 1250 355 105 0.63 1270 746 36.1 5.59 EUBRF: to P65 
A2/23/4 1250 255 105 0.45 1161 1420 28 5.7 EUBRF: to P65 
A2/32/5 1100 305 105 0.595 1212 825 23 4.25 EUBRF: to P65 
A2/12/6 1400 305 105 0.377 990 1637 31.5 5.96 EUBRF: to P65 

A2/22/7 1250 305 105 0.58 1308 948 30 4.93 
EUBRF: to 

failure 

B1/20/2 1250 − 72 0.376 762 1265 − 4.25 
Cracked ORB: to 

failure 

B2/20/2 1250 − 72 0.37 776 1322 − 4.62 
Cracked ORB: to 

P65 
B2/21/3 1250 355 72 0.382 508 823 32 4.23 EUBRF: to P65 
B2/23/4 1250 255 72 0.343 549 1052 26.5 4.15 EUBRF: to P65 
B2/32/5 1100 305 72 0.368 498 855 25.5 3.18 EUBRF: to P65 
B2/12/6 1400 305 72 0.33 492 999 40.5 4.1 EUBRF: to P65 

B2/22/7 1250 305 72 0.351 491 908 29.4 3.85 
EUBRF: to 

failure 

C1/20/2 1100 − 56 0.369 888 1518 − 7.73 
Cracked ORB: to 

failure 

C2/20/2 1100 − 56 0.403 819 1214 − 7.54 
Cracked ORB: to 

P65 
C2/21/3 1100 355 56 0.453 646 782 32 4.24 EUBRF: to P65 
C2/23/4 1100 275 56 0.401 713 1066 26 5.68 EUBRF: to P65 
C2/32/5 800 215 56 0.43 637 845 22.5 5.84 EUBRF: to P65 
C2/12/6 1400 215 56 0.393 1032 1594 38.5 7.82 EUBRF: to P65 
C2/22/7 1100 215 56 0.41 721 1039 29.5 5.81 EUBRF: to P65 

 
Tan et al. (2003) investigated the shear deficiency of reinforced concrete 

continuous beams strengthened with different external tendons. The four two-span 

externally prestressed T-beams are shown in Figure 3.5. The top of the beams had four or 

six deformed 10 mm diameter steel bars. The transverse reinforcements consisted of mild 

steel closed stirrups with diameters of 6 and 8 mm. Strengthening the beams with seven-

wire prestressing steel strands that each one has a diameter of 9.5 mm and a cross-area of 

66 mm!. The strengthening details are provided in Table 3.4.  Four strengthened beams 

and one unstrengthened reference beam S0 were tested monotonically under four-point 

loads until failure. Ultimate load of beams, deflections and stress of internal stirrups are 

recorded and exhibited in Table 3.5, Figures 3.6 and 3.7.  In Table 3.5, strengthening 

ratio indicates the ratio of observed ultimate load of the test beam to the predicted 
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ultimate load of the unstrengthened Beam S0. The experimental results proved the 

effectiveness of using external tendons strengthening continuous beams. However, the 

flexural capacity of strengthened beams was limited by lower shear capacity. 

Furthermore, strengthening concrete beams with draped or parabolic profile tendon 

minimized the shear failure risk because they increased the shear strength. 

 

 

Figure	
  3.	
  5- Cross-section of unstrengthened beam (Tan et al. 2003). 

Table	
  3.	
  4- Details of test beams. 
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Table	
  3.	
  5- Ultimate loads of test beams. 

Beam 

Ultimate load Pu, kN 

Test/Predicted 
Strengthening 

radio Test 
Predicted 

Flexure Shear 
S0 - 322 398 - 1 
S1 382.2 (FT) 364 410 1.05 1.18 
S2 410.2 (SC) 470 414.4 0.99 1.27 
S3 421.3 (FT) 418.4 419.2 1.01 1.3 
S4 397.8 (SC) 413.2 409.6 0.97 1.23 

 



	
  

	
  

	
  

35	
  

 

Figure	
  3.	
  6- Load-deflection response (Tan et al. 2003). 

 

Figure	
  3.	
  7- Load-stress relations in internal stirrups (Tan et al. 2003) 

3.	
  3	
  Summary and Conclusion 

 
 Strengthening and retrofitting of RC beams by attaching external reinforcement is 

an effective, easy, and economic method due to it being easy to install, speedy execution, 

and cost less compared to other methods. However, the extra reinforcement may also 

increase the weight of beams. Protection from corrosion and fire need to be considered. 
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CHAPTER	
  4	
  Strengthening Beams Using of Steel Plates 

 
4.	
  1	
  Introduction  

Attaching steel plates to certain external surface of the beams is another popular 

strengthening technique. Anchoring or bonding steel plates to reinforced concrete beams 

can increase flexural and shear capacity. Furthermore, it can control deflections and 

cracking of beams.  The efficiency of steel plates is influenced by some factors such as 

the dimension of the steel plate, the arrangement of bolts, and bonding method. This 

chapter discusses how to optimally repair and strengthen the beams by considering these 

factors.  

4.	
  2	
  Description of previous research  

Hussain et al. (1995) explored the steel plate bonding repair technique including 

the effects of plate thickness and end anchorage on ductility, ultimate load and mode of 

failure. They tested eight beams named from FRB1 to FRB8. FRB1 is kept as a control 

beam since it is not strengthened. Figure 4.1 shows the dimensions of beams that the 

length is 1200 mm, breadth is 150 mm and the width is 150 mm. As Table 4.1 shows, the 

different thickness plates are bonded by two-part epoxy glue in some beams and end 

anchorage was used for bonded steel plates by anchor bolts. Yield strength of main steel 

and stirrups of tested beams are 414 MPa and 275 MPa. Concrete strength of beams is 31 

MPa. All the beams are preloaded to 85% of ultimate load. Figure 4.2 shows the 

strengthening details of two typical beams with and without end anchorage. The retrofits 

beams have 1100 mm long and 100 mm wide. The yield strength of steel plate is 269 

MPa and shear modulus of glue is 120 MPa. The thickness of steel plates and bolt 
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dimension details are given in Table 4.1. The repaired beams were tested to failure under 

four-point loading and the results properties are listed in Table 4.2, Figures 4.3 through 

4.8 shows the experimental results that indicate the ductility of the repaired beams 

decreases as plate thickness increases. Although end anchorages to the bonded plate can 

improve ductility, the improvement in ductility due to end anchorages decreases as plate 

thickness increases.  Instead of pure flexure failure, the failure could due to increased 

thickness of bonded steel due to the tearing of concrete in the shear span. Even end 

anchorages to the bonded plates could not help to prevent the premature failure.  

Table	
  4.	
  1- The retrofits properties 

 Thickness 
(mm) 

Bolt dimension (mm) 
Specimen Diameter Length 

   FRB1 - - - 
FRB2 1 No end anchorage 
FRB3 1.5 No end anchorage 
FRB4 1.5 15 75 
FRB5 2 No end anchorage 
FRB6 2 15 75 
FRB7 3 No end anchorage 
FRB8 3 15 75 

 

Table	
  4.	
  2- Summary of Test Results. 

 Experimental Modulus of Interface Max 

Specimen Maximum Load Toughness Shear 
stress Displacement 

 (kN)  (kN-mm) (N/mm2) (mm) 
FRB1 54  954 - 55 
FRB2 69.54  872 5.43 70 
FRB3 75  325 6.15 75 
FRB4 77.86  734 - 78 
FRB5 60  178 4.79 60 
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FRB6 66  633 - 66 
FRB7 58  102 4.55 58 
FRB8 57.8  237 - 59 

 

 

Figure	
  4.	
  1- Dimensions and reinforcement detail of Beams FRB2 through FRB8 
(Hussain et al. 1995). 
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Figure	
  4.	
  2- Strengthening detail of two typical beams, one with anchored plate and 
another with unanchored plate (Hussain et al. 1995). 
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Figure	
  4.	
  3- Load-deflection curve of Beam FRB3, strengthened with 1.5-mm-thick 
steel plate without end anchorage (Hussain et al. 1995). 

 

Figure	
  4.	
  4- Load-deflection curve of Beam FRB4, strengthened with 1.5-mm-thick 
steel plate with end anchorage (Hussain et al. 1995). 
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Figure	
  4.	
  5- Load-deflection curve of Beam FRB5, strengthened with 2.0-mm-thick 
steel plate without end anchorage (Hussain et al. 1995). 

 

 

Figure	
  4.	
  6- Load-deflection curve of Beam FRB5, strengthened with 2.0-mm-thick 
steel plate with end anchorage (Hussain et al. 1995). 
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Figure	
  4.	
  7- Load-deflection curve of Beam FRB7, strengthened with 3.00-mm-thick 
steel plate without end anchorage (Hussain et al. 1995). 

 

 

Figure	
  4.	
  8- Load-deflection curve of Beam FRB8, strengthened with 3.00-mm-thick 
steel plate with end anchorage (Hussain et al. 1995). 
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Barnes et al. (2001) compared the adhesive bonding and bolted external plate 

attachment techniques to increase shear capacity of beams. In both techniques steel plates 

are attached in the web areas of beams. Bolted plate attachment technique typically 

improves the connection between the steel plates and RC beam. Adhesive plate bonding 

is also a widely used strengthening technique that enhances the flexural capacity of 

beams by using advanced composites, such as GFRP and CFRP to bond the steel plates. 

Barnes et al. (2001) strengthened four beams with adhesively bonded steel plates, and 

three beams with bolted steel plates. Two beams were not strengthened and were treated 

as control specimens. Table 4.3 shows the properties, the strengthening details and the 

experimental results. The experiments show that when beams are carried high shear 

loading and anchorage is sufficient, the use of shear plates can improve serviceability and 

ultimate capacity of beams. The thin plates improve shear capacity very well, although 

heavy plates and additional strapping can significantly improve flexural capacity. The 

ultimate capacity of section depends on the bolting arrangement. The adhesively bonded 

plates highly control the surface crack but inadequate surface area can lead to sudden 

collapse and interface failure. The efficiency of bonded plates probably improves when 

the shear span and depth increase. 

Table	
  4.	
  3- The properties of beam before and after test. 

Beam 
Name 

Shear 
span (a) 

Depth (d) 

Plate 
Thick 
(mm) 

Plate conn 
type 

Conc 
strength 
N/mm! 

Thick
ness 

(mm) 

Yield 
strength 
(N/mm2) Ult capa 

(kN) 

Yield 
Strength 
of steel 

(N/mm!) 
EP1.C 1.25 Control - 60 2 248 765 340 
EP1.2 1.25 2 Bolted 60 2 248 1412 340 
EP1.4 1.25 4 Bolted 60 2 248 1884 340 
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EP1.6 1.25 6 Bolted 60 2 248 2001 340 
EPG1.4 1.25 4 Bonded 67 4 239 1255 450 

EPG1.4/2 1.25 4 Bonded 67 4 239 1373 450 
EPG1.6 1.25 6 Bonded 67 4 239 1452 450 
EPG1.C 0.78 Control - 67 4 239 1422 450 

EPG1.6/2 0.78 6 Bonded 67 4 239 1393 450 
 

Adhikary and Mutusyoshi (2006) investigated shear strengthening of RC beams 

having internal shear reinforcement. In their experimental program, the five beams with 

dimensions 150mm(b)×200mm(h)× 2400mm(l) were tested until failure (Figure 4.9). The 

properties of reinforcement and epoxy adhesive details are provided in Table 4.4. Beam 

C-1 was kept as control beam while remaining four beams were strengthened with steel 

plates with different thicknesses. The steel plates were anchored to the beam sides with 

epoxy adhesive and anchor bolts. The test results (Table 4.5) indicate that increasing 

plate depth and thickness across the beam section can increase the ultimate shear 

strength. Figures.4.11 through Figure 4.13 show that, the displacement and strains in 

beam are reduced when steel plates are used. Use of thicker plates could not increase the 

strength proportionally. The best way to achieve the larger shear strength is to use deeper 

plates rather than thicker plates.  

Table	
  4.	
  4- The properties of reinforcement and epoxy adhesive. 

Epoxy Adhesive Yield Yield 
T.S C.S S.S Strength Strength 

(MPa) (MPa) (MPa) L.S(MPa) T.S(MPa) 
49 72 15.6 391 346 

 

Table	
  4.	
  5- Material properties and test results. 
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Specimen 

Concrete 
strength 
(MPa) 

Plate 
thickness 

(mm) 

Plate 
depth 
(mm) 

Yield 
strength 
(MPa) 

Diagonal 
crack 

strength 
(kN) 

Ultimate 
shear 

strength 
(kN) 

C1 38.6 - - - 36.7 98.2 
C2 42.5 2.3 100 378 63.7 116.4 
C3 41.5 4.5 100 382 63.3 106.3 
C4 37.6 6 100 398 63.7 126.4 
C5 42 2.3 150 378 80.8 132.4 

 

 

Figure	
  4.	
  9- Beams loading details 

 

Figure	
  4.	
  10- Cross section of beams (Adhikary and Mutusyoshi 2006). 
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Figure	
  4.	
  11- Load versus mid-span displacement relationships for test beams 
(Adhikary and Mutusyoshi 2006). 

 

  

Figure	
  4.	
  12- Steel plate strain in mid-span of beam (horizontal) (Adhikary and 
Mutusyoshi 2006). 
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Figure	
  4.	
  13- Strains in internal shear reinforcement (Adhikary and Mutusyoshi 
2006). 

Su and Sui (2010) conducted four point bending tests for five simply supported 

RC and bolted side-plated (BSP) specimens. The beams have different bolt-plate 

arrangement to cover both under-reinforced and over-reinforced bolt side-plate 

conditions but same dimensions. Depth of strengthened strong plate specimens is 150 

mm and the depth of strengthened weak plate is 75 mm (Figure 4.14). The strong and 

weak bolt arrangement is valued by degree of shear connection (Pb/Fp,fi) which is the 

ratio of the total strength of bolts on a shear span (Pb) and the plate force at ultimate state 

in full interaction analysis respectively (Fp,fi). The measured moment-deflection 

response of all specimens is shown in Figure 4.15. The test results imply that the strength 

of the bolts and plates greatly influences the two structural performance criteria: post-

elastic strength enhancement and displacement ductility. The specimen strengthened by 

strong bolt arrangement and weak steel plate had sufficient strength enhancement and 

ductility. The beam strengthened by strong bolt arrangement and strong steel plate 

experienced brittle and undesirable failure.  The amount of steel plates should be 

controlled, while sufficient bolts should be used to ensure the desirable ductile beam 

failure. Displacement ductility of 2.45 and post elastic enhancement of 1.17 gives 

impending warning prior to failure of beams for 'strong bolt weak plate'. The cost of 

strengthening arrangement for 'strong bolt weak plate' is also reduced since the depth of 

the plate is half the depth required for strong plate arrangement. However, lower depth of 

steel plate is not as effective as higher depth in enhancing the shear capacity of the 

beams.  
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Figure	
  4.	
  14- RC and bolt-plate detail of BSP specimens (Su and Sui 2010). 

 

 

Figure	
  4.	
  15- Measured moment deflection response (Su and Sui 2010). 
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Altin et al. (2005) conducted an experiment on strengthening shear deficient 

beams with external web bonded steel plates. Altin et al. tested eleven beams. The 

dimensions, and reinforcement details of those beams are exhibited in Figure 4.16 and 

Table 4.6. Except for the control specimen Beam-1 which has greater shear strength than 

flexural strength, others did not have enough shear capacity. To strengthen shear deficient 

beams, steel straps and plates were bonded to the web of beams along the length of the 

shear span by using epoxy resin. All the steel plates had a thickness of 4 mm and the 

other geometric dimensions and arrangements of steel strap and plate are shown in 

Figures 4.17 and 4.18. Altin et al. tested all the beams under four-point loading. They 

loaded the beams to failure and then measured the mid-point deflection and shear cracks 

of the specimens (Table 4.7 and Figures 19 through 22). Experimental results show that 

the strength, stiffness and ductility of all the types of strengthened beams were improved. 

Strengthened beams had similar flexural capacity compared to control beam. Altin et al. 

(2009) found that the displacement ductility ratio has inverse proportionality to the 

spacing of the steel straps. Increasing the bonding area on the shear span led to a decrease 

in development and propagation of shear cracks. “L” type steel straps had the lowest 

ductility ratio among all of the specimens. Similarly to bonding steel plates, bonding the 

segmented steel plates to the shear span of beams also led to successful results in 

preventing shear cracks. 
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Figure	
  4.	
  16- Reinforcement details of specimens (Altin et al. 2005). 

Table	
  4.	
  6-Specimen properties 

Specimen 
# 

fc 
(MPa) 

Stirrups 
ρw 

Ratio ρw/ρw 
Beam 1 

Steel member used for strengthening 

Dimensions Type 
Spacing 
(mm) 

Beam-1 25.8 0.00224 1 - - - 
Beam-2 27 0.00056 0.25 - - - 

Beam-3 27.6 0.00056 0.25 40×285×40 
Narrow steel 

strap 80 

Beam-4 27.3 0.00056 0.25 40×405×40 
Narrow L shape 

steel strap 80 

Beam-5 26.5 0.00056 0.25 40×285×40 
Narrow steel 

strap 40 
Beam-6 26.5 0.00056 0.25 150×285×40 Wide steel strap 150 

Beam-7 25.8 0.00056 0.25 150×405×40 
Wide L shape 

steel strap 150 

Beam-8 25.6 0.00056 0.25 150×285×40 
Widee steel 

strap 75 
Beam-9 26.7 0.00056 0.25 1550×285×40 Steel plate - 
Beam-10 26 0.00056 0.25 310×285×40 Wide steel strap - 

Beam-11 26.4 0.00056 0.25 1550×285×40 
Steel plate with 

opening - 
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Figure	
  4.	
  17- Steel straps and plates used for strengthening (Altin et al. 2005). 
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Figure	
  4.	
  18- Steel strap and plate arrangement of strengthened specimens (Altin et 
al. 2005). 

Table	
  4.	
  7-Test results. 

Specimen 
# 

Cracking Load 
(kN) 

Yield 
load 
kN 

Ultimate 
load 
kN 

Yield 
disp. 
mm 

Ultimate 
disp. 
mm 

Stiffness 
at yield 

(kN/mm) 
Ductilit
y radio  

Failure 
mode at 
ultimate Flexure Shear 

Beam-1 13.4 36.0 81.0 90.4 23.5 84.9 3.45 3.61 Flexure 
Beam-2 12.6 34.5 － 55.3 － 20.5 － － Shear 
Beam-3 14.0 36.3 79.2 81.0 25.2 50.4 3.14 2.00 Shear 
Beam-4 14.1 37.5 81.2 79.7 24.9 33.0 3.26 1.33 Shear 
Beam-5 12.9 40.6 80.0 83.6 24.8 76.0 3.23 3.06 flexure 
Beam-6 13.6 35.7 79.0 79.9 22.8 40.7 3.47 1.79 Shear 
Beam-7 13.7 34.3 80.1 80.2 22.2 33.5 3.6 1.51 Shear 
Beam-8 12.4 34.3 80.6 80.1 25.1 46.0 3.21 1.83 Shear 
Beam-9 12.8 38.2 81.3 88.6 22.0 93.7 3.69 4.26 Flexure 

Beam-10 12.2 38.0 81.0 87.5 20.7 88.0 3.91     4.25 Flexure 
Beam-11 13.5 37.8 81.0 84.7 23.5 67.9 3.44 2.89 Shear 
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Figure	
  4.	
  19- Typical examples of crack width measurements (Altin et al. 2005). 
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Figure	
  4.	
  20- Load-displacement curves of specimens strengthened with narrow 
steel straps (Altin et al. 2005). 

 

Figure	
  4.	
  21- Load-displacement curves of specimens strengthened with wide steel 
straps (Altin et al. 2005). 

 

Figure	
  4.	
  22- Load-displacement curves of specimens strengthened with steel plates 
(Altin et al. 2005). 

 Oh et al. (2003) investigated the behavior of RC beams that were flexure-

strengthened with steel plates under static and fatigue loads. A total 20 beams were 

tested. All but one was strengthened with steel plates before the test; while the other one, 

which was used as the control specimen, was not. The specimens had dimensions of 150 
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mm × 250 mm × 2400 mm as shown in Figure 4.23. After bonding steel plates to beams 

by injecting epoxy between steel plates and RC beams, 14 specimens were tested under 

static loads and the others were tested under fatigue loads. Oh et al. applied the static 

loads step-by-step up to 70 kN to the beams and then shifted to a displacement control 

method until they failed. The fatigue loads were 60%, 70%, and 80% of the static failure 

load of reference specimen S43 and the minimum load level was set to 10 kN. The main 

test of the experiments included thickness of plates, adhesive thickness and shear span to 

depth ratio (Table 4.8). Table 4.9 shows the test results including the separation loads, 

peak loads, displacements and strain at the peak loads, and the failure modes for tested 

beams. In Table 4.9, “PY” indicates plate yielding, “PS” means plate separation, “DT” 

represents diagonal tension failure and “SC” means shear compression failure. Test 

results indicate that the peak load is close to the separation load Psep for each beam, 

hence the separation of steel plates and beams are very risky for the strengthening 

method. Figure 4.24 exhibits the effects of plate thickness on the load-deflection curves 

and load-rebar strains. The figures indicate that increasing the thickness of plates 

effectively decreases the mid-span displacements, tensile rebar strains, and compressive 

rebar strains. Figure 4.25 shows the effects of adhesive thickness on the load-deflection 

curves and load-rebar strain. Compared to the unstrengthened control beam, strengthened 

beams have a much higher stiffness and peak load but slightly higher displacements at 

peak loads.  
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Figure	
  4.	
  23- Details of test specimen (unit: millimeter) (Oh et al. 2003). 

	
  

Table	
  4.	
  8- Test parameters and specimen identification 

Beam 
identification 

Test 
type 

Plate thickness 
(mm) 

Adhesive 
thickness (mm) 

Shear-span-to-
depth radio (a/d) 

Control Static — － 3.18 
S23 Static 2 3 3.18 
S33 Static 3 3 3.18 
S43 Static 4 3 3.18 
S53 Static 5 3 3.18 
S41 Static 4 1 3.18 
S43 Static 4 3 3.18 
S45 Static 4 5 3.18 
S47 Static 4 7 3.18 

S43S1 Static 4 3 4.77 
S4352 Static 4 3 4.09 
S43 Static 4 3 3.18 

S43S3 Static 4 3 2.27 
S43S4 Static 4 3 1.36 

Cont-F60 Fatigue － － 3.18 
F60 Fatigue 4 3 3.18 
F70 Fatigue 4 3 3.18 
F80 Fatigue 4 3 3.18 

 

Table	
  4.	
  9-Test Results for Steel Plate Beams 

Beam 
identification 

Spearation 
load Psep 

(kN) 

Peak 
load 
Pult 
(kN) 

Ratio to 
unstrengthened 

beam 

Pult 

 
Strain 

 
displacement 

steel 
plate 

tensile 
rebar stirrup 

Failure 
mode 
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Control - 89(79) 1 34.7 (7.2) - ≥1800 691 Flexure 
S23 131 136 1.53 8.15 ≥1400 1633 1825 PY, PS, DT 
S33 129 137 1.54 7.02 128 1484 1222 PY, PS, DT 
S43 126 126 1.42 4.35 1079 1040 581 PS, DT 
S53 132 142 1.6 5 1005 835 898 PS, DT 
S41 120 125 1.4 4.68 1090 1220 1022 PS, DT 
S43 126 126 1.42 4.35 1079 1040 581 PS, DT 
S45 134 134 1.51 4.97 1172 1045 879 PS, DT 
S47 140 150 1.69 5.35 1244 1207 1004 PS, DT 

S43S1 129 132 1.48 5.94 1913 1642 594 PY, PS, DT 
S4352 127 128 1.44 5.61 1427 1266 593 PS, DT 

S43 126 126 1.42 4.35 1079 1040 581 PS, DT 
S43S3 131 135 1.51 4.67 869 793 447 PS, DT 
S43S4 214 221 2.48 5.13 691 689 1015 SC, PS 

 

 

Figure	
  4.	
  24- Effect of plate thickness on the load-deflection curves and load-rebar 
strain relations (Oh et al. 2003). 
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Figure	
  4.	
  25- Effect of adhesive thickness on load-deflection curve and load-rebar 
strain relations (Oh et al. 2003). 

Jones et al. (1988) focused on the problem of anchorage at the ends of steel plates 

glued to the tensile faces of reinforced concrete beams. To investigate the issue “sudden 

failure by steel separation”, the seven RC beams were strengthened by epoxy-bonded 

steel plates were tested with loading applied at the third points. All the beams had the 

same dimensions: 115 mm × 255 mm × 2500 mm. The strengthening details were 

provided in Figures 4.26 and 27. Details are summarized in Table 4.10. F31 was treated 

as base beam to compare with others since it failed suddenly by plate separation. 

Compared to beam F31, beam F32 were bonded with additional 3 mm thickness at the 

ends and failed at 14.3% higher load. The F33 was strengthened with tapered plate but 

the failure load only increased 4.9%. Beams F34 and F35 were similar to beams F31 and 

F32 but with anchored bolts. Their failure load increased 21.4% and 24.7% and the plate 

separations were prevented. Eventually the beams failed because the concrete crushed. 

Beams F36 and F37 strengthened using the most effective method with L-shaped anchor 

plates reached their theoretical ultimate loads. The load-deflection relationship is shown 

in Figure 4.28. This figure shows that the anchorage details won’t affect the deflection 

performance at service load.  F31, F32, and F33 failed suddenly and did not show 

ductility. Beams F34 and F35 showed considerable ductility before failure. The response 

of beams F36 and F37 flatten more gradually but showed similar ductility compared to 

beams F34 and F35. The experimental results refer that anchorage arrangement effect on 

the ultimate strength and mode of failure. Using tapered and multiple systems increased 

the failure loads slightly. Using bolts did not prevent debonding, but prevented the 



	
  

	
  

	
  

60	
  

separation and increased strength by 8%. After comparing the different anchor details, it 

can be concluded that the most effective method is using additional glued anchor plates. 

Table	
  4.	
  10- Strengthening details and test results 

Beam No. Strengthening 
Failure load 

(kN) 
% over 

F31 
% over 

unplated Mode of failure 

F31 1 no. 6mm plate 182 - -13.3 Plate separation 

F32 
2 no. 3mm plates, 

curtailed 208 14.3 -1 
Plate separation —

inner plate 

F33 
1 no. 6mm plate tapered 

to 2mm 191 4.9 -9.1 Plate separation 

F34 As F31 + bolts at end 221 21.4 5.2 Debonding followed 
by concrete crushing F35 

As F32 + bolts at end 
and curtailment 227 24.7 8.1 

F36 
As F31 + one short and 
one long anchor plate 285 56.6 35.8 Plate yield and 

concrete crushing 
F37 

As F31 + short end and 
anchor plates 283 55.5 34.8 
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Figure	
  4.	
  26- Plating details: beams F31-F35 (Jones et al. 1988). 

 

Figure	
  4.	
  27- Plating details: beams F31-35 (Jones et al. 1988). 
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Figure	
  4.	
  28- Load-deflection curves (Jones et al. 1988). 

Sirju and Sharma (2001) tested of reinforced concrete members that were 

strengthened with different methods under axial and bending compression. In the 

experiment, the control beams exhibited in previous chapter 2 Figure 2.7, and one beam 

was strengthened with steel plates fixed with adhesive and the other beam strengthened 

with steel plates fixed with bolts (Figure 4.29). The one concrete column was externally 

reinforced with 6mm×100mm×2300mm steel plates that were fixed by the adhesive 

under axial bending. Another beam strengthened with same dimension steel plates and 

were attached by 10 mm diameter × 60 mm long bolts. The beams were tested until 

failure. The test results and load deflection relationships, which are shown in Table 4.11 

and Figure 2.9, reveals that compared to the unstrengthened control beam, strengthened 

beams have higher ultimate flexural strength and stiffness. The failure mode for 

strengthened beams was sudden and brittle.  
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Figure	
  4.	
  29- Details of test beams (Sirju and Sharma 2001). 

Table	
  4.	
  11- Test results and Comparison of flexural strength enhancement after 
strengthening 

Strengthening 
technique 

Moment at 
first cracks 

(kN m) 
Increa
se (%) 

Moment 
at failure 
(kN m) Increase 

Failure 
flexural 

load( kN) 

Effective area of 
reinforcement based 
on BS 8110 Design 

Chart (%) 
None (control) 12.87 

 
18.02 

 
48.05 1.13 

Steel plates fixed 
with adhesive 36.78 185.8 40.46 124.5 107.9 5.1 

Steel plates with 
expanding bolts 18.39 42.9 27.58 53.1 73.55 2.9 

 

Adhikary  ! and Mutsuyoshi! (2006) compared effectiveness of various 

strengthening methods of RC beams in term of enhancing shear capacity. The two series 

of specimens were tested in flexural failure and shear failure (Figure 4.30). The 

experimental results indicated that although strengthening RC beam with epoxy bonding 

steel plates to the sides of beams can increase average 72% shear capacity compared to 

the control beam. The amount of increase is relatively low compared to the increase RC 

beams gained through other strengthening methods. However, the flexural strengthens of 

beams could not be increased (Figures 4.31 and 32). 
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Figure	
  4.	
  30- (a) Different strengthening schemes for beams in series-A 
(𝐀𝐝𝐡𝐢𝐤𝐚𝐫𝐲  𝐚 and 𝐌𝐮𝐭𝐬𝐮𝐲𝐨𝐬𝐡𝐢𝐛 2006). 
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Figure	
  4.	
  31- (b) Different strengthening schemes for beams in series-B 
(𝐀𝐝𝐡𝐢𝐤𝐚𝐫𝐲  𝐚 and 𝐌𝐮𝐭𝐬𝐮𝐲𝐨𝐬𝐡𝐢𝐛 2006). 

Table	
  4.	
  12-Test results 

  
  
  

Specimen 
  

 
Strengthing scheme  

  

Yield  
strength 
(MPa) 

Failure 
load 
(kN) Mode 

Series A CA Control Beam - 187 shear 

 
PA Steel Plates 378 279.3 flexure 

 
PAA 

Steel Plates (anchors) 
 378 272.2 flexure 

Series B CB Control Beam - 233.6 shear 

 
PB Steel Plates 320 405.5 shear 
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PAB Steel Plates (anchors) 320 400.6 shear 

 

 

Figure	
  4.	
  32-­‐	
  Load versus mid-span displacement relationships for beams in series 
(𝐀𝐝𝐡𝐢𝐤𝐚𝐫𝐲  𝐚 and 𝐌𝐮𝐭𝐬𝐮𝐲𝐨𝐬𝐡𝐢𝐛 2006) 

 

Figure	
  4.	
  33-­‐	
  Load versus mid-span displacement relationships for beams in series 
B (𝐀𝐝𝐡𝐢𝐤𝐚𝐫𝐲  𝐚 and 𝐌𝐮𝐭𝐬𝐮𝐲𝐨𝐬𝐡𝐢𝐛 2006). 
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 Aykac et al. investigated the influences to flexural behavior, ductility of 

externally plated reinforced concrete that are led by strengthened plate properties. For 

example, the thickness of the soffit plate, anchorage of the soffit plate to the beam, and 

the presence of perforations in the soffit plate and the height of side plates of collars. A 

total 13 full-scale rectangular reinforced concrete beams with different strengthening 

details were tested under two-point monotonic loading until failure. The beams 

strengthening details were exhibited in Figure 4.34 and Table 4.13 where “S” means that 

bottom plate is solid, “P” represents the bottom plate being perforated, “R” indicates that 

the beam was obtained by repairing a previously tested beam, “U” refers to when the 

soffit plate was anchored and “B” shows that the bottom plate is only epoxy-bonded to 

the beam. Figure 4.35 shows an example of perforated beams.  The deflections of beams 

at mid-span points were listed in Figure 4.36. Table 4.14 shows the ultimate loads and 

failure modes of specimens. The test results indicated that strengthening beams with 

perforated steel plates instead of solid plates improved the ductility but decreased the 

ultimate strength of beams. The bolt anchorage in the thick steel plates is more effective 

compared to thin plates.  
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Figure	
  4.	
  34-­‐	
  Specimens details (Aykac et al. 2012). 

 

Figure	
  4.	
  35- Perforation pattern of the perforated plates (Aykac et al. 2012). 

Table	
  4.	
  13- Properties of test specimens 



	
  

	
  

	
  

69	
  

Beam Intervention 

Soffit Plate& 
Thickness 

(mm) 

Additional 
Spffit Plate 
Anchorage 

Side Plate 
Depth of 

Collar 
BS Basic - - - 

Sb1.5 Strengthening Solid-1.5 - - 
Sb3 Strengthening Solid-3.0 - - 

Sb3.6 Strengthening Solid-3.6 - - 
Sb4.5 Strengthening Solid-4.5 - - 
Su4.5 Strengthening Solid-4.5 Collars 250 
Sb6 Strengthening Solid-6.0 - - 

Sbb 1.5 Strengthening Solid-1.5 Bolts - 
Sbb3 Strengthening Solid-3.0 Bolts - 
Sub6 Strengthening Solid-6.0 End Collars 110 
Rub6 Repair Solid-6.0 End Collars 350 
PRb6 Repair Perfor.-6.0 - - 
PRub6 Repair Perfor.-6.0 End Collars 110 
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Figure	
  4.	
  36- Load versus deflection curve of specimens (Aykac et al. 2012). 

	
  
Table	
  4.	
  14	
  - Ultimate loads and failure modes of the specimens. 

Beam 

Ultimate load (kN) 

Pex/Pan Pex/𝑃!"# 
Failure 
mode 

Modulus of 
thougness 

Deformation ductility 
index (δu/δy) 

Test, 
Pex 

Todeschini, 
Pan 

ACI 
318, 
Paci Absolute Relative Absolute Relative 

BS 152 137 130 1.11 1.17 flexure 20994 1 16.8 1 
Sb1.5 205 177 174 1.16 1.18 flexure 46602 2.22 18.6 1.1 
Sb3 258 218 217 1.19 1.19 flexure 43728 2.08 9.4 0.56 

Sb3.6 228 233 234 0.98 0.98 flexure 32240 1.54 9 0.54 
Sb4.5 245 256 258 0.96 0.95 shear 3952 0.19 - - 
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peeling 

Su4.5 282 256 258 1.1 1.09 flexure 39200 1.87 10.4 0.62 

Sb6 225 292 297 0.77 0.76 
shear 

peeling 2290 0.11 - - 
Sbb 1.5 170 177 174 0.96 0.98 flexure 28248 1.35 13.5 0.8 

Sbb3 225 218 217 1.04 1.04 flexure 44832 2.14 11.6 0.69 

Sub6 304 292 297 1.04 1.02 
shear 

peeling 15097 0.72 - - 
Rub6 275 292 297 0.94 0.93 flexure 36961 1.76 6.5 0.39 

PRb6 229 233 234 0.98 0.98 
shear 

peeling 3796 0.18 - - 
PRub6 216 233 234 0.93 0.92 flexure 23395 1.11 5.9 0.35 

 

 

4.	
  3	
  Summary and Conclusions 

Attaching external steel plates in different areas of reinforced concrete beams can 

certainly improve flexure and shear capacity of RC beams. Bolting or bonding plate to 

the certain external surface of the beams could effectively strengthen beams. The 

researchers focus on the different specific factors like bolt arrangement, thickness and 

depth of the steel plate, attachment method; which can influence the performance of steel 

plate. The obvious advantage of using this strengthening method is that it needs relatively 

short installation time and the steel plates do not disrupt operations compared to concrete 

jacketing. The disadvantages include debonding, expensive, temporary weakening, and 

corrosions.  
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CHAPTER	
  5	
  Unbounded External Strengthening 

5.	
  1Introduction  

Unbounded-type strengthening techniques include attachment of the externally 

unbounded steel units such as wire rope, steel clamping, post-tension units. It is an 

economical, environmentally friendly, and efficient strengthening method. 

5.	
  2	
  Description of previous studies 

Wire ropes are lightweight, high-strength and have high flexibility. They are used 

as external shear reinforcement in concrete beams. Kim et al. (2007) explored the 

significance and shortcomings of using wire rope techniques strengthening concrete 

beams.  Kim tested 15 reinforced concrete beams to failure in shear then strengthened 

them with wire rope units and retested them. The specimens have various shear span-to 

depth ratio, pre-stressing force, orientation and spacing of wire rope units. The properties 

of specimens and properties of retrofit are shown in Figure 5.1 and Table 5.1. The results 

of experiment are shown in Figure 5.3s and 5.4. The investigation indicates that using 

wire units to strengthen beams that failed due to shear stress could control the crack 

distribution. The diagonal cracking loads increased after strengthening beams with wire 

units. Use of wire units strengthening beams will increase ultimate shear strength of 

beams by 20%-70% compared to un-strengthened damaged beams.  

Table	
  5.	
  1- The properties of specimens tested by Kim et al. (2007). 

Beam 
no. 

fc' 
(MPa) a/d a  

(mm) 
L 

 (mm) 

  
config 
  

space of  
wire rope 
sw mm 

Init ten 
force 
Fi (kN) 

Init orque 
T (N m) 
  

fi/fp

u 
  
 

1 24.5       only repair - - - - 
2 24.5 1.5 540 1140 vertical 

150 46.4 35 0.5
3 3 22.5       45° incline 
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4 24.7       only repair - -   - 
5 24.7       vertical 

150 

33.2 35 
0.3
8 6 24.5       45° incline 

7 24.1 2.5 900 2160 vertical 
46.4 0.5

3 8 22.5       45° incline 

45 9 22.5       vertical 
60 0.6

9 10 20.6       
45° 
incline 

11 24.7       only repair - - - - 
12 24.5       vertical 

150 
46.4 

35 0.5
3 13 22.5 3.25 1170 2700 45° incline 

14 24.8       vertical 100 26 0.4 
15 20.6       vertical 200 52 0.8 
 

 

 
Figure	
  5.	
  1- Details of wire rope units and strengthening procedure (Kim et al. 

2007). 

 

 



	
  

	
  

	
  

74	
  

 

 
 
Figure	
  5.	
  2- Specimen details and arrangement of wire rope units (Kim et al. 2007). 

 
Table	
  5.	
  2-The mechanical properties 

Type fy(MPa) εy fsu  (MPa) Es (GPa) 
Reinforcement (22mm) 445 0.00244 620 182 

Steel plate 
 

307 0.00157 448 195 
Eye Bolt (10mm) 355 0.00187 465 190 

Wire rope (4.8mm) - - 2145 120 
 
 

 
Figure	
  5.	
  3- Total Load versus mid-span deflection a/h=1.5 (Kim et al. 2007). 
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Figure	
  5.	
  4- Total load versus mid-span deflection a/h=2.5 (Kim et al. 2007). 

 
 

 
Figure	
  5.	
  5- Total load versus mid-span deflection a/h=3.25 (Kim et al. 2007). 

Yang et al. (2009) also explored the significance and shortcomings of unbounded 

wire rope unit technique for continuous reinforced concrete (RC) T-beams. Ten two-span 

RC T-beams strengthened by U-type and closed-type wire rope units and one control 

unstrengthened specimen were tested until failure. Table 5.3 shows the properties of 

units, where 𝑠! means spacing of wire rope units, Ni is the total initial prestressing force 

in a unit and Ti represents initial torque. Figures 5.6 and 5.7 and Table 5.3 give the details 

of these two types of developed wire rope units. The type of wire units rather than the 

amount of wire ropes influenced the cracks propagation of specimens. All the specimens 
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had significant diagonal crack within the interior shear span except that the specimens 

with closed type wire rope units exhibited more ductile failure than others. The test 

results after strengthening are shown in Table 5.4 where 𝑀!" indicates the nominal 

moment capacity of beam section obtained from ACI 318-05, subscripts N and P 

represent the hogging and sagging zone, subscripts I and E identify the interior and 

exterior shear spans respectively. The test results indicate the specimens with closed type 

rope units have higher load and shear capacities compared to specimens with U-type wire 

ropes when they have the same amount of wires. No matter what kind of wire rope units 

the beams are strengthened with, the diagonal shear cracks will decrease when the 

amount and initial prestressing force of wire ropes increase.   

 

a) Closed-type wire rope unit. 
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b) U-type wire rope unit. 
 

Figure	
  5.	
  6- Details of wire rope units and strengthening procedure (Yang et al. 
2009). 

 
 

a) Beams strengthened with closed-type wire rope units. 
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𝑓!/𝑓!" 
b) Beams strengthened with U-type wire rope unit 

Figure 5. 7- Specimen details and arrangement of reinforcement and wire rope units 
(Yang et al. 2009) 

Table	
  5.	
  3- Wire rope unit properties (Yang et al. 2009). 

Specimen 
fc' 

(MPa) 

Details of wire rope unit 

Type 𝜌! 𝜌!/𝜌!"# 𝑠!(mm) 𝑓!/𝑓!" Ni 
(kN) 

Ti 
(N*m) 

N 26.8 N/A 
      C2.0-0.6 25.9 

Closed 
type 

0.0017 2 223 

0.6 78.8 76.8 C2.5-0.6 25.9 0.0021 2.5 178 
C3.5-0.6 26.4 0.0029 3 127 
C4.5-0.6 26.4 0.0038 4.5 100 

C2.5-0.45 25 0.0021 2.5 178 0.45 59.1 57.6 
C2.5-0.75 26.4 0.0021 2.5 178 0.75 98.5 96 
U2.5-0.6 26.7 

U type 

0.0021 2.5 178 

0.6 78.8 76.8 
U3.5-0.6 26.7 0.0029 3.5 127 
U4.5-0.6 26.7 0.0038 4.5 100 
U2.5-0.75 26.7 0.0021 2.5 178 0.75 98.5 96 
 

Table	
  5.	
  4- Test results after strengthening (Yang et al. 2009). 

Specimen 

Initial 
Flexural 
Cracking 
Load Pft 
(kN) 

Diagonal cracking load( pcr) 
and shear force(Vcr) (kN) Load capacity (Pn) 

and Corresponding 
shear force (Vn) at 
failed span (kN) 

Ultimate 
moment 
(Mn)  (kNm) 

(𝑀!)!
(𝑀!")!

 

 
(𝑀!)!
(𝑀!")!

 

Interior Exterior 
(𝑃!")! (𝑃!")! (𝑃!")! (𝑉!")! (𝑃!")!  (𝑉!")!  𝑃! (𝑉!)! (𝑉!)!  (𝑀!)! (𝑀!)!  

N 166.6 215 390.3 126.1 547.9 97.9 580.1 182 108 66.6 97.2 0.37 0.52 
C2.0-0.6 178.2 197.2 411.5 131.6 555.9 103.3 707.2 214.9 138.5 68.9 124.7 0.39 0.67 
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C2.5-0.6 170.6 210.3 417.4 133.1 564.7 104.1 799.9 239.7 159.6 72.7 143.6 0.41 0.77 
C3.5-0.6 176.9 218.9 431.6 137.8 565.8 103.7 966.5 308.2 174.9 120.1 157.4 0.67 0.84 
C4.5-0.6 187.7 222.5 437.6 141.3 608.2 111.2 1063.7 341.6 190.5 135.8 171.5 0.76 0.92 
C2.5-0.45 160.2 212.8 424.5 130.9 564.7 104.7 756.8 218.8 160.2 52.2 144.2 0.29 0.78 
C2.5-0.75 181.6 220.2 418.6 135.7 575.9 103.4 868.5 269.3 165.8 92.4 149.2 0.52 0.80 
U2.5-0.6 176.8 221.9 398.2 125.8 530.0 98.8 622.8 191 120.9 62.6 108.8 0.35 0.58 
U3.5-0.6 172.5 215.5 394.8 124.5 546.6 101.1 617.6 191 118.1 65.3 106.3 0.37 0.57 
U4.5-0.6 185.3 226.0 411.3 130.9 532.6 100.5 647.9 193 130.2 57.2 117.2 0.32 0.63 
U2.5-0.75 184.0 217.5 410.2 131.4 589.3 109.4 689.5 208 136.4 64.8 122.8 0.36 0.66 

 

Attaching external clamps to the beams is another unbonded-type strengthening 

method to solve the problem when reinforced concrete beams have sufficient moment 

capacities but insufficient shear strength.  The external clamps are made by 

symmetrically bending the steel strap to improve ductility of the beams and by wring 

them together around the beams. Altin et al. (2003) investigated the effects of attaching 

clamps to beams under flexure. In total, 13 specimens were divided into two groups in 

term of their different ratio of the shear span to the effective height of specimens (M/Vd = 

a/d). One group had a shear span/effective depth ratio of 4.5 (M/Vd = a/d=4.5) and the 

other group had 3.3(M/Vd = 3.3). The specimens had 3900 mm or 3000 mm span and 

same sectional geometry and longitudinal reinforcement (Table 5.5 and Figure 5.8.). All 

the beams had three ϕ20 mm longitudinal tension reinforcement 𝑓!" = 517.3  MPa, ϕ6 

and ϕ8 mm reinforcement with 𝑓!" = 328.5 MPa and 𝑓!" = 299.8 MPa. The specimens 

were damaged by shear strength and then repaired by the clamps that are shown in Table 

5.6 and Figure 5.10. The repairing details are given in Figure 5.9 and Table 5.6. All 

specimens were tested by four-point loading test until they failed. Load-deflection curves 

are presented in Figures 5.11 through 5.14. The results reveal that using clamp to 
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strengthen the specimens can improve the ductility and rigidity. Clamps can control the 

size of the cracks and force the flexural behavior to govern in the section.   

Table	
  5.	
  5-The properties and experiment results of specimens. 

  
Concrete Failure Yield Failure Ductility 

Specimen Application Strength Load Disp Disp ratio 

 
Type fc' (MPa) (kN) δy(mm) δu(mm) δu/δy 

S500 Control 24 104 22 69 3.14 
S500A - 21 61.5 - 19 - 
S521 Strengthen 25.2 102.5 25 69 2.76 
S531 Strengthen 20.1 93.2 25.2 29 1.15 

S531-A Strengthen 18.8 95 24 40 1.67 
S531-B Strengthen 22.4 95.9 22.2 51.1 2.3 
S541 Strengthen 21.8 97 22 43 1.95 
S521 Repair 21.7 93.6 22.9 55.9 2.44 
S300 Control 26 147.5 14.4 44.2 3.07 
S321 Strengthen 23.9 143.7 13.1 38.2 2.92 
S331 Strengthen 25.6 146.5 13.5 36.5 2.7 
S341 Strengthen 22.1 134.5 15.2 25.4 1.67 
S320 Repair 24.6 138.5 15.8 39.1 2.47 

 
Table	
  5.	
  6- The details of clamps. 

Clamp 

   
Steel Yield 

Steel Bars Steel box plates strength 

  
(mm) (mm) bar (MPa) 

10 mm diameter 40x40x4 60x60x10 276.9 
500 mm Length 

 
40x40x10 
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Figure	
  5.	
  8- Reinforcement layout of specimens (Altin et al. 2003). 
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Figure	
  5.	
  9- Strengthened/repaired specimens (Altin et al. 2003). 
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Figure	
  5.	
  10- Details of the clamps (Altin et al. 2003) 

 

 
Figure	
  5.	
  11- Load-displacement relations; evaluation of number of clamps (a/d=4.5) 

(Altin et al. 2003). 
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Figure	
  5.	
  12- Load-displacement relations; evaluation of clamp space (a/d=4.5) 

(Altin S. et al. 2003). 

 

 



	
  

	
  

	
  

85	
  

Figure	
  5.	
  13- Load-displacement relations; evaluation of application type (a/d=4.5) 
(Altin et al. 2003). 

 

 
Figure	
  5.	
  14- Load-displacement relations (a/d=3.3) (Altin et al. 2003). 

Shamsai et al. (2007) investigated another unbounded-type method that 

strengthened reinforced concrete beams with post-tensioning in the critical shear region. 

A total of 24 specimens are categorized into three groups: BB, SC and SB. Beams in BB 

are bare or unstrengthened beams. Beams in SC are specimens tested until large shear 

cracks developed and then were strengthened with post-tensioning in cracked shear 

region. SB beams are specimens post-tensioned before loading. The specimens’ 

properties and strengthening details are listed in Table 5.7 and Figure 5.15 where a 

represents the shear span, 𝜌 indicates longitudinal reinforcement ratio and 𝜌!"# means 

the maximum allowed reinforcement ratio. Shamasi et al. tested 24 specimens until they 

experienced flexural failure near the middle of the beams. Figure 5.16 presents the 

experimental and theoretical load-deflection relations for these 19 specimens. It indicates 



	
  

	
  

	
  

86	
  

that the factors including post-tensioning stress, existence of stirrups in the critical shear 

regions and an additional steel plate under the post-tensioning angles did not significantly 

impact the behavior of beams. The theoretical and experimental load-deflection relations 

for shear-critical beams are presented in Figure 5.17. The plots refer that the influence of 

the amount of longitudinal reinforcement on shear strength. Strengthening with post-

tensioning is an effective method in terms of preventing shear failure and developing 

maximum flexural strength no matter strengthening is done before or after shear cracks 

occur.  

 

Figure	
  5.	
  15- Beam specimens with different shear span: a) a= L/4, b) a=L/6 
(Shamsai et al. 2007). 

	
  

Table	
  5.	
  7- Load and parameter specification for beam specimens. 

# 
Specimen 

name 
fc' 

(MPa) a 
fp 

(MPa) ρ/𝜌!"# 
Stirrups at shear 

region 
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Figure	
  5.	
  16-Theoretical and experimental load-deflection relations for beams 
failing in flexure. (a) beams with fc'=35, ρ=1/2ρmax, a=L/4, (b) beams with fc'=35 

MPa, ρ=2/3ρmax, a=L/4, (c) beams with fc'=35 MPa, ρ=1/2ρmax, a=L/6 

(d) beams with fc'=35 MPa, ρmax, a=L/6, (e) beams with fc'=50 Mpa, ρ=1/2𝝆𝒎𝒂𝒙, 
a=L/4 (Shamsai et al. 2007). 

 

1 SB1 35 L/4 0.075 fc' ½ Yes 
2 SC2 35 L/4 0.075 fc' ½ No 
3 SB3 35 L/4 0.075 fc' ⅔ Yes 
4 SC4 35 L/4 0.075 fc' ⅔ No 
5 SB5 35 L/4 0.075 fc' ½ Yes 
6 SB6 35 L/4 0.075 fc' ½ Yes 
7 SC7 35 L/4 0.075 fc' ½ No 
8 SB8 35 L/4 0.075 fc' ⅔ Yes 
9 BB9 35 L/4 - ½ Yes 
10 BB10 35 L/4 - ⅔ Yes 
11 BB11 35 L/4 - ½ No 
12 BB12 35 L/4 - ⅔ No 
13 SB13 35 L/6 0.075 fc' ½ Yes 
14 SC14 35 L/6 0.075 fc' ½ No 
15 SB15 35 L/6 0.04 fc' ⅔ Yes 
16 SC16 35 L/6 0.04 fc' ⅔ No 
17 BB17 35 L/6 - ½ Yes 
18 BB18 35 L/6 - ⅔ Yes 
19 BB19 35 L/6 - ½ No 
20 BB20 35 L/6 - ⅔ No 
21 BC21 50 L/4 0.075 fc' ½ No 
22 BC22 50 L/4 0.04 fc' ½ No 
23 BB23 50 L/4 - ½ No 
24 BB24 50 L/4 - ½ Yes 
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Figure	
  5.	
  17- Theoretical and experimental load-deflection relations for beams 
failing in shear. (a) beams with fc'=35 MPa, ρ=1/2ρmax, a=L/4 (b) beams with 

fc'=35 MPa, ρ=2/3ρmax a=L/4 (c) beams with fc'=35 MPa, ρ=1/2ρmax a=L/6 (d) 
beams with fc'=35 MPa, ρ=2/3ρmax, a=L/6  (e) beams with fc'=50 MPa, ρ=1/2ρmax, 

a=L/4 (Shamsai et al. 2007). 

Ozturk et al. (2002) did research on behavior of beams strengthened with U 

connecting bars and V connecting stirrups. The average concrete compressive strength 

was 25 MPa, the tensile strength of steel was 565 MPa and tensile strength of stirrups 

was 516 MPa. The reinforcement details of specimens are presented in Figures 5.18 

through 5.20. For each strengthening techniques contained a strengthened beam, a 
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repaired strengthened beam and an unstrengthened beam are tested and compared. The 

comparison of beams was monolithic in construction. The span of test specimens was 

1900 mm and other details of reinforcement and dimension of specimens are presented in 

Figures 5.18 through 20. All beams are firstly loaded by controlling load magnitude until 

tension steel yielded and then loaded by controlling their displacement until exceeded 

carrying capacity. The measured displacement and loading are reported in Table 5.8 and 

Figures 5.18 through 25. From the test results it can be inferred that the load carrying 

capacity of strengthened beam was slightly less than control beam, load carrying capacity 

of V connecting bars is higher than U connecting stirrups. However the energy 

dissipation capacity of U connecting stirrups is better than those of V connecting bars. 

The application of U connecting stirrups is more labor intensive than that of V connecting 

bars. From the ductility point of view, U connecting stirrups outweighs the advantage as 

compared to V connecting bars. Hence for a designer with seismic retrofit in mind, the U 

connecting stirrup will be preferred. 

Table	
  5.	
  8- Results of the retrofit tests. 

Specimen 

Load at 
yielding 

(kN) 

Load at 
failure 
(kN) 

Displacement 
at yield (mm) 

Displacement 
at failure 

(mm) 
Displacement 

ductility 

Energy 
dissipation 

(kNm) 
BB 27 28.2 6.95 23.53 3.39 

 SBV 69.55 72.5 6 28 4.67 1.629 
SBU 60 69 9 38.82 3.15 1.543 

RSBV 62 70 10.11 31.46 7.17 1.982 
RSBU 58 62 7.59 35.52 4.31 1.995 
CBV 59 75 4.6 33 4.69 1.758 
CBU 63 72 6.3 38.9 6.17 2.264 
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Figure	
  5.	
  18- Reinforcement Details of Beam BB (Ozturk et al. 2002). 

 
 

 
 

 
 

 
 
 

Figure	
  5.	
  19- Reinforcement details of SBV, RSBV and CBV (Ozturk et al. 2002). 
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Figure	
  5.	
  20- Reinforcement details of SBU, RSBU and CBU (Ozturk et al. 2002). 

 
 

 
Figure	
  5.	
  21- Recorded load displacement curve of SBV and SBU (Ozturk et al. 

2002). 
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Figure	
  5.	
  22- Recorded load displacement curves of RSBV and RSBU (Ozturk et al. 

2002). 

 

 
Figure	
  5.	
  23- Recorded load displacement curves of BB, SBV, RSBV and CBV 

(Ozturk et al. 2002). 
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Figure	
  5.	
  24- Recorded load displacement curve of CBV, CBU (Ozturk et al. 2002). 

 
 

 
Figure	
  5.	
  25- Recorded load displacement curve BB, SBU, RSBU and CBU (Ozturk 

et al. 2002). 

 Adhikary and Mutsuyoshi (2006b) conducted experiments to compare the 

effectiveness of different strengthening methods. As the details mentioned in Chapter 4, 

all strengthening methods can effectively increase the shear capacity of RC beams. 

However, strengthening RC beams by using vertical strips has the most significant effect, 
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increasing the shear capacity by 117%, which is much higher than other methods (Table 

5.9). 

Table	
  5.	
  9-Test results of Series A and B. ( Adhikary and Mutsuyoshi, 2006b) 

  Specimen Strengthing Scheme 
Yield  
(MPa) 

Failure Load 
(kN) Mode 

Series A CA Control Beam - 187 shear 
  BA Steel Brackets 398 201 shear 
  PA Steel Plates 378 279.3 flexure 
  PAA Steel Plates (anchors) 378 272.2 flexure 
  VSA Vertical Steel Strips 382 292 flexure 

  ESA 
Externally anchored 

Stirrups 480 272.5 flexure 
Series B CB Control Beam - 233.6 shear 
  BB Steel Brackets 347 220.5 shear 
  PB Steel Plates 320 405.5 shear 
  PAB Steel Plates (anchors) 320 400.6 shear 

  ESB 
Externally Anchored 

Stirrups 450 507.6 flexure 
 

5.	
  3	
  Summary and Conclusions 

Unbounded-type strengthening techniques not only increase the flexural and shear 

capacities but also can lower the cost and minimize environmental impact because they 

minimally increase the weight of beams, require short time to install, and produce no 

additional pollution during the strengthening process. However, they need sophisticated 

instruments and sufficient attention on protecting them from environmental effects such 

as corrosion and fire. 
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CHAPTER	
  6	
  Concrete Repair 

6.	
  1	
  Introduction 

Although most concrete structures perform satisfactorily, they may still have 

some durability or structural problems that need to be solved. For example, they are 

vulnerable in strict environments; they may carry higher loads compared to designed 

loads; and they maybe designed inadequately. In these scenarios, cracking and corrosion 

are two common factors that cause the deterioration of concrete structures. Hence, 

repairing of concrete structures is necessary.  

6.	
  2	
  Description of Previous Study 

The most common cause that leads to deterioration of concrete structures is 

cracking. Shash et al. (2005) investigated the causes of cracks on five concrete beams in 

the university campus. The five reinforced concrete roof beams were 16 m long, 1.5 m 

deep, and 0.3 m wide.  The cracks of the beams were occurred in six months after 

construction. After cracks were cleaned, a liquid epoxy resin was injected to cracks. The 

properties, information of cracks and repair properties are exhibited in Figure 6.1 and 

Table 6.1. The repaired beams were tested by load test. The deflections of roof beams 

were recorded in Table 6.2. B1 is a roof beam located at the center and B2 is a roof beam 

located 8m from the center. The experimental results indicated that sealing the existing 

cracks by epoxy injection is an effective method to repair the cracked RC beams since it 

reduced the deflection under allowable value (6.4 mm).  Epoxy injection does not 

increase the weight of beams very much and effectively reduce the deflections of beams, 

so it can be used to successfully repair the cracked RC beams. 
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Figure	
  6.	
  1- Cracks noted on two beams (Shash et al. 2005). 

Table	
  6.	
  1- Properties of cracks and injection 

Crack # Width (mm) Length (m) 
Volume of epoxy 
resin injected (ml) 

1 0.3 0.4 125 
2 0.2 1 245 
3 0.3 0.2 100 
4 0.4 0.5 245 
5 0.2 0.9 125 
6 0.4 0.85 368 
7 0.4 0.9 368 
8 0.4 0.5 245 
9 0.3 0.85 125 
10 0.2 0.65 368 
11 0.4 0.87 125 
12 0.2 0.9 245 
13 0.4 0.5 125 
14 0.2 0.95 100 
15 0.2 0.5 125 
16 0.2 0.5 180 
17 0.2 0.5 125 
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18 0.2 0.9 125 
19 0.2 0.65 60 
20 0.2 0.65 125 
21 0.2 0.4 125 
22 0.2 0.6 125 
23 0.2 0.6 125 
24 0.2 0.6 125 
25 0.2 0.65 125 

 

Table	
  6.	
  2- Deflection of beams due to applied load 

Measurement (mm) Beam B1 Beam B2 
Deflection immediately after loading 1.1 0.1 

Deflection after 24 h of loading 2 0.3 
Limiting deflection after 24 h of 6.4 3.8 

 

 Corrosion of reinforcement is another typical cause that leads to damage in 

concrete structures. Protecting reinforcement from harsh weather conditions is necessary 

and important. Nounu and Chaudhary (1999) conducted experiments with 18 large beams 

with same dimensions: 2.5×0.25×0.25m. All specimens were tested until they failed in 

bending. Then they were repaired in central area of their span, and they finally were 

tested in flexure under the third point loading (Figure 6.2). The beams were categorized 

to three groups: Batch A included six beams for preliminary corrosion, Batch B contained 

six control beams, and Batch C had six beams for the assessment of repairs in the 

aggressive climate conditions. The amount of chlorides varied between the sections and 

beams (Tables 6.3 and 6.4). Ordinary Portland cement (OPC) mortar and free flowing 

micro-concrete are two repairing materials that were applied and compared during the 

experiment (Tables 6.3 and Table 6.4). After curing the repairs, the beams of Batch C 
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were placed in the weathering chamber. Table 6.5 provides the failure loads of all 

specimens. The comparison of corroded (D) beams and control (DC) beams indicated 

that the beam damage occurred much earlier than the loss of steel section and load 

bearing capacity. Furthermore, corrosion can slightly affect the bond.  The comparison 

between repaired beams and control beams referred that, in short term, free flowing 

micro-concrete and OPC mortar show similarly effectiveness but for longer term 

durability, free flowing micro-concrete showed little cracking and restored only 40%~50% 

of the capacity, while OPC mortar showed extensive cracking and restore approximate 90% 

of the capacity. The Figures 6.3 through 6.6 provided the load-deflection curves. They 

indicate that the preliminary corrosion hardly influenced the stiffness, but the repaired 

beams had higher deflections compared to control beams. Overall, the free flowing 

micro-concrete performed better in resisting chloride ingress from and external source 

than OPC mortar under accelerated conditions.  

Table	
  6.	
  3- Details of beams cast for load testing (un-weathered) 

Batch 
Beam 
code 

Chloride level (% by weight of cement) 
Corroded Repaired 

Repair 
material Section 1 Section 2 Section 3 Section 4 

A 
 
 
 
 
 

D1 1 3 1 Nil Yes No 

OPC 
mortar 
Free-

flowing 
micro-

concrete 

D2 1 3 1 Nil Yes No 
DB1 1 3 1 Nil Yes No 
DB2 1 3 1 Nil Yes No 
R1 1 3 1 Nil Yes Yes 
R2 1 3 1 Nil Yes Yes 

B 
 
 
 
 
 

DC1 Nil Nil Nil Nil No No 
DC2 Nil Nil Nil Nil No No 

DBC1 Nil Nil Nil Nil No No 
DBC2 Nil Nil Nil Nil No No 
RC1 Nil Nil Nil Nil No No 
RC2 Nil Nil Nil Nil No No 
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Table	
  6.	
  4- Details of beams cast for accelerated weathering in climatic chamber 
(weathered) 

Batch 
Beam 
code 

Chloride level (% by weight of cement) 
Corroded Repaired Repair material Section 1 Section 2 Section 3 Section 4 

C 
 
 
 
 
 

Beam 1 Nil Nil Nil Nil No Yes OPC mortar 

Beam 2 Nil Nil Nil Nil No Yes 
Free-flowing 

micro-concrete 
Beam 3 0.5 3 0.5 Nil Yes Yes OPC mortar 

Beam 4 0.5 3 0.5 Nil Yes Yes 
Free-flowing 

micro-concrete 
Beam 5 1 3 1 Nil Yes Yes OPC mortar 

Beam 6 1 3 1 Nil Yes Yes 
Free-flowing 

micro-concrete 
 

Table	
  6.	
  5- Failure loads (kN) 

Beam Load (kN) Beam Load (kN) Beam  Load (kN) 
D1 260 DB1 22.5 R1 180 
D2 248 DB2 see Beam 7 R2 160 

DC1 250 DBC1 240 RC1 256 
DC2 260 DBC2 241 RC2 266 

Beam 1 120 Beam 3 110 Beam 5 136 
Beam 2 230 Beam 4 230 Beam 6 245 
Beam 7 270 

    C=control beam; D=damaged beam; B=broken beam; R=repaired beam; 



	
  

	
  

	
  

100	
  

 

Figure	
  6.	
  2- Design of beams (Nounu and Chaudha 1999). 

 

Figure	
  6.	
  3- Load-deflection relationship of Beams D1, D2 and DC2 (Nounu and 
Chaudha 1999). 
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Figure	
  6.	
  4-­‐	
  Load-deflection relationship of Beams R1, R2, RC1 and RC2 (Nounu 
and Chaudha 1999). 

 

Figure	
  6.	
  5- Load-deflection relationship of Beams 1, 3 and 5 (Nounu and Chaudha 
1999). 
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Figure	
  6.	
  6- Load-deflection relationship of Beams 2, 4, 6 and 7 (Nounu and 
Chaudha 1999). 

6.	
  3	
  Summary and Conclusions 

 From the review of the previous studies, it can be concluded that epoxy injection 

is an easy and effective method to repair the cracked beams. It not only reduces the 

deflection and control the cracks but also slightly increases the weight of beams. 

Furthermore this method is inexpensive and unsophisticated. Using OPC mortar and a 

free flowing micro-concrete are two possible methods to repair the beams under 

corrosion conditions. However, for long term, a free flowing micro-concrete can restore 

higher structural capacity and resist chloride better under accelerated weather conditions 

compared to using OPC mortar. 
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CHAPTER	
  7	
  Summary and Conclusions 

7.	
  1	
  Summary 

This research analyzed the various reinforced concrete strengthening and 

repairing methods for reinforced concrete beams. The experimental results that are 

summarized from literature review were used to conclude the pros and cons of current 

strengthening and repair methods. The suggestions about retrofit and rehabilitation 

methods are provided in the thesis for future work and study. The problems and 

experiences reported in this research will be used to improve the future repair and 

strengthening research. 

7.	
  2	
  Conclusions 

Section enlargement and concrete jacketing can effectively increase the load 

carrying capacity and stiffness of reinforced concrete beams. Compared to other methods 

such as attaching external steel plates, they are relatively easy, cheaper and will add less 

weight to beams. However, using section enlargement and concrete jacketing can lead to 

beams gaining relatively more weight when compared them to using unbounded-type 

methods. So in order to minimize the extra weight, the light weight concrete can be used. 

Furthermore, the material properties used to determine the protection of concrete jackets 

and additional enlargement layers are important. 

External reinforcement can increase flexural capacity of RC beams very well, but 

it will be limited by shear capacity sometimes. The external reinforcement can also 

increase the weight of beams, and they are vulnerable in harsh environment. Compared to 

other methods, this technique is inexpensive and easy to execution. 
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Attaching external steel plates can increase flexural and shear capacity of RC 

beams. However it may increase weight to beams and cost more than other methods. 

Attaching steel plates to beams also has the risk of peeling and corrosion. The 

construction process could be complicated and the cost of this method is higher compared 

to other methods. The efficiency of steel plates is influenced by some factors such as 

dimension of steel plate, the arrangement of bolts, and bonding method. So the 

strengthening should be designed based on the different situations.  

Unbounded-type strengthening technique is adding externally steel units such as 

unbounded wire rope units, steel clamping or post-tension to the RC beams. These 

strengthening methods not only increase the carry capacity of beams but also add little 

weight to them. Compared to steel plates, this is a better option in term of increasing the 

shear strength of RC beams. The construction time of using this method is short, but it 

requires relatively more technical labor.  

 For damaged beams, injecting epoxy to seal the cracks is an effective method to 

repair the cracked beams. It is very easy to apply and slightly increases the weight of the 

beams. When it comes to corrosion, flowing micro-concrete and OPC mortar are two 

foundational materials to repair the damaged beams.  They both work effectively in short 

term. However in long term, OPC mortar performs much better than flowing micro-

concrete in terms of maintaining the load carrying capacity.  
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