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Abstract.—Previous work has demonstrated that survival of largemouth bass Micropterus sal-
moides through the first year of life can be size dependent, favoring larger individuals. Because
size, diet biomass, lipid accumulation, and ultimately overwinter survival of juvenilesaretypically
positively related to age, early spawning is clearly advantageous. However, a true understanding
of which largemouth bass cohorts contribute to the new year-class remains somewhat unclear
because these conclusions have largely been based upon fish collected during summer rather than
fish collected during spring. Conceivably, even earlier hatched cohorts of largemouth bass could
have existed in many of these studies, and these fish may simply not have survived to the summer
collection period. In order to assess this possibility, we quantified first-summer survival of lar-
gemouth bass cohorts collected during 1992 and 1993 in Auburn, Alabama, ponds (which were
2-5 ha each). Our results indicate that it is early-hatched cohorts that likely contribute to the new
year-class. Although we found that early-hatched cohorts were lost between May and July, these
losses were not attributable to age-dependent mortality; instead, sampling biases associated with
avoidance of seines by older, larger young-of-year largemouth bass appear to have driven these
shifts. In addition, because we found that size-dependent cannibalism during summer acted to
remove smaller, later-hatched largemouth bass, early hatching may enhance survival during larval
and early juvenile stages in southern systems (and not just during the winter period). Given this
information, fishery managers may potentially be able to implement harvest regulations that are
designed to protect large, early-spawning adults, thereby increasing the probability of producing
a strong year-class by enhancing first-summer growth and, ultimately, recruitment to adult stages.

Predicting year-class strength and eventual re-
cruitment to the fishery remains an elusive goal in
fisheries management. Subtle variation in growth
or mortality during larval and juvenile stages can
significantly influence fish recruitment (Houde
1987, 1989; Rice et al. 1987). Factors such as size-
selective predation (Post and Evans 1989; Miranda
and Hubbard 1994b) and size-dependent starvation
(Miller et al. 1988), as well as abiotic factors such
as water temperature (Kramer and Smith 1962;
Rutherford and Houde 1995) and water level fluc-
tuations (Mcdonough and Buchanan 1991), can all
influence growth and survival of young-of-year
fishes. Because mortality is typically greatest dur-
ing early life stages in fishes (Hjort 1914; Houde
1989, 1994; Rutherford and Houde 1995), under-
standing the factors that affect growth and survival
of larvae and juveniles is critical to our ability to
forecast recruitment success.
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A great deal of research has been devoted to
understanding the recruitment mechanisms of lar-
gemouth bass Micropterus salmoides. Aswith oth-
er freshwater and marine fishes, growth and sur-
vival during largemouth bass early life stages ap-
pear to be critical in determining year-class
strength and eventual recruitment into the fishery
(Swingle and Swingle 1967; May 1974; Houde
1987, 1989; Townsend 1989; Mitzner 1991). Lud-
sin and DeVries (1997) demonstrated that large-
mouth bass navigate a series of interdependent
critical events during their first year of life, events
that ultimately control survival and year-class
strength. They identified the switch from feeding
on invertebrates to piscivory as acritical early life
event that regulates summer growth, fall lipid ac-
cumulation, and survival during their first winter.
Early-hatched largemouth bass cohorts consisting
of larger fish were more successful in exploiting
available fish prey than were their smaller, later-
hatched counterparts during summer. As such,
early-hatched fish in Ludsin and DeVries's study
were able to maintain a length advantage over lat-
er-hatched fish, which resulted in enhanced fall
lipid accumulation and reduced overwinter mor-
tality of early-hatched fish (Ludsin and DeVries
1997). Prior work with largemouth bass (e.g.,
Keast and Eadie 1985; Miranda and Hubbard
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19944; Phillips et al. 1995) as well as with bluegill
Lepomis macrochirus (Cargnelli and Gross 1996)
provides additional support for several of these
conclusions.

Other work, however, has demonstrated that
growth and survival of early-hatched individuals
can sometimes be lower than that of late-hatched
fish because of stochastic abiotic factors during
larval and juvenile life stages (e.g., water tem-
perature, discharge; Kramer and Smith 1962; Crec-
co and Savoy 1985; Rice et al. 1987; Mooij et al.
1994). Rutherford and Houde (1995) found that
late-hatched striped bass Morone saxatilis exhib-
ited higher growth and survival than did early-
hatched fish because of the more stable weather
patterns and better growing conditions experi-
enced by late-hatched larvae (relative to early-
hatched larvae).

Although Ludsin and DeVries (1997) demon-
strated that hatch date was important to future re-
cruitment success, their understanding was based
upon fish collected during early July (i.e., juve-
niles). As such, the potential remains that fish
could have been spawned even earlier than their
early-hatched fish and these fish may simply not
have survived to their July sampling period. If this
had occurred, then fish with intermediate hatch
dates would actually have recruited to the new
year-class, aconclusion that isdrastically different
from the current thinking with regard to large-
mouth bass. In order to better understand the re-
lationship between hatch date and year-class
strength, we examined summer survival of lar-
gemouth bass cohorts collected during May
through July (1992 and 1993) in Auburn, Alabama.
With knowledge of whether early-hatched indi-
viduals were at a disadvantage relative to inter-
mediate-hatched individuals during summer, re-
source managers could potentially begin to in-
crease the probability of producing strong year-
classes of largemouth bass via reduced
exploitation of large, early-spawning adults, thus
advancing the average time of spawning in a pop-
ulation and possibly enhancing first-summer
growth and survival of young-of-year largemouth
bass (sensu Goodgame and Miranda 1993; Garvey
and Stein 1998; Mion et al. 1998).

M ethods
Sudy site—Six ponds (2-5 ha; mean depth, 2-3
m) located in Lee County in east central Alabama,
were drained, and remaining water was treated
with rotenone to eliminate existing fishes. Ponds
were filled and stocked with age-1 lepomid sunfish
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(mostly bluegill, 2,500 fish/ha) during winter
1990-1991. Young-of-year largemouth bass (250
fish/ha) were stocked in June 1991. Fingerling
grass carp Ctenopharyngodon idellus also were
added in spring 1991 (12 fish/ha) to control aquatic
macrophytes. Ponds were monitored during 1992
as largemouth bass-bluegill systems. Adult giz-
zard shad Dorosoma cepedianum (77 fish/ha) were
added during February 1993 to assess the impact
of young-of-year gizzard shad populations on lar-
gemouth bass-bluegill systems. However, because
gizzard shad survived to juvenile stages only in
one pond and because none of these young-of-year
shad were available as forage to young-of-year lar-
gemouth bass because of gape limitations (Ludsin
1994), the influence of gizzard shad on these pop-
ulations will not be considered here.

Collection and otolith procedures.—Young-of-
year largemouth bass used for otolith analyses
were collected on 7 May, 21 May, 18 June, and
17 July during 1992 and on 28 May and 1 July
during 1993; these largemouth bass were collected
via seining (4.5 X 1.0 m; 3-mm mesh seing; N =
three fixed, 5-m shoreline sites per pond), and on
8-9 July 1993, largemouth bass were collected via
boat-mounted DC-pulsed electrofishing. We col-
lected fish with electrofishing gear during the sec-
ond year because we were concerned that larger
fish might be avoiding the seine, thus biasing our
seine collections toward smaller individual s (Jack-
son and Noble 1995; Hayes et al. 1996; Garvey
and Stein 1998). All fish were preserved in 95%
EtOH for later laboratory analyses. In the labo-
ratory, fish were measured [to the nearest 1.0 mm
total length (TL)] and their otoliths prepared (fol-
lowing Miller and Storck 1982). Except for young-
of-year largemouth bass collected on 8-9 July
1993, we selected subsamples of 20 fish per date
per pond for otolith analyses, such that the length—
frequency distribution of each subsample matched
the length—frequency distribution of all seine sam-
plesin that pond on that date. Uneven sample sizes
across sample dates were attributable to variable
catches of largemouth bass across ponds. For fish
collected on 8-9 July 1993, a subsample of 60 fish
per pond was selected for otolith analyses in a
similar fashion (see Ludsin and DeVries 1997).
Otolith ring counts for all fish followed the meth-
ods of Ludsin and DeVries (1997). We used swim-
up dates to represent hatch dates, because daily
growth rings from the yolk sac larval stage (i.e.,
pre—swim-up) are not distinguishable from one an-
other (Miller and Storck 1982, 1984). Within
years, we compared mean swim-up dates using
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one-way analysis of variance (ANOVA), and we
compared swim-up—date distributions using Kol-
mogorov-Smirnov tests (SAS Institute 1985). Sig-
nificance levels for all tests were set at a« = 0.05.

Adult largemouth bass (>150 mm TL) were
sampled with pulsed-DC electrofishing every 2—3
weeks during the study to quantify cannibalism.
After measuring (nearest 1 mm TL) and weighing
(nearest 1 g wet weight) collected adults, stomach
contents were removed using clear Plexiglas tubes
(Van Den Avyle and Roussel 1980). In order to
assess whether cannibalism was size selective dur-
ing summer, we used one-tailed t-tests and Kol-
mogorov—Smirnov tests to compare length distri-
butions of young-of-year largemouth bass found
in adult stomachs with length estimates of young-
of-year largemouth bass collected in ponds. Dur-
ing 1992, length distributions of largemouth bass
found in stomachs were compared with fish col-
lected in seines within the same week. Because we
were again concerned that seine samples may not
be adequately capturing larger fish, for 1993 com-
parisons, we back-calculated largemouth bass
length distributions during summer (i.e., 14 May,
28 May, and 25 June) using otolith ring-width
measurements of fish collected (via el ectrofishing)
on 8-9 July 1993. The potential for gear bias was
further quantified by comparing seine samples
from 1 July with electrofishing samples from 8-9
July (see Results and Discussion) using a Z test
(Zar 1984). For fish that were less than 5 weeks
of age at the time of collection on 8-9 July, we
relied strictly on otolith ring—width measurements
to estimate size on earlier dates (quantified by Lud-
sin 1994; Ludsin and DeVries 1997). For fish that
were greater than 5 weeks of age, we calculated
an average daily growth rate (DGR) across all
young-of-year largemouth bass collected on 8-9
July 1993, using the following equation:

DGR = (TL. — 6)/age, D)

where TL . isthe total length of fish at capture, age
isthe number of days since swim-up (as calculated
by otolith ring count), and 6 mm is subtracted to
correct for growth occurring prior to swim-up
(Goodgame and Miranda 1993). In order to deter-
mine largemouth bass length on 25 June, we then
subtracted this average DGR (0.67 mm/d) for eve-
ry day (i.e., 13-14 d) the fish was alive after 25
June. In order to estimate lengths on 14 and 28
May, we added the average DGR (when necessary)
to our estimates of size at 5 weeks of age. Because
the DGR was determined by averaging across the
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entire growth period of fish (including the slow
growth period during larval stages; Ludsin 1994,
Ludsin and DeVries 1997), our estimates of fish
lengths in the ponds on 14 and 28 May are con-
servative (i.e., they likely underestimate true size).

Results and Discussion

Mean largemouth bass swim-up dates differed
across collection dates during both years. During
1992, mean swim-up dates changed (one-way
ANOVA: F = 134, df; 416, P = 0.0001) from early
April for fish collected during early and late May
(Figure 1a, b) to late April in June and July sam-
ples (Figure 1c, d), which indicated aloss of early-
hatched largemouth bass from our later collec-
tions. We observed a similar shift in mean swim-
up date (from 8 April to 10 May) for fish collected
via seining from 28 May to 1 July 1993 (one-way
ANOVA: F = 250, df,, 495, P < 0.0001; Figure le,
f); however, the mean swim-up date of fish col-
lected via el ectrofishing on 8-9 July 1993 was sim-
ilar (11 April; Figure 1g) to that for fish collected
on 28 May. Because el ectrofishing is more efficient
at capturing larger fish (including largemouth
bass) than are seines (Jackson and Noble 1995;
Reynolds 1996; Garvey and Stein 1998), these re-
sults suggest (1) that little age-dependent mortality
occurred during summer 1993 (i.e., the 1 July seine
sample may have been biased toward collecting
smaller, late-hatched largemouth bass) and (2) that
differencesin mean swim-up date during 1992 also
may have been an artifact of gear selection. Below,
we attempt to delineate whether age-dependent
mortality or sampling bias drove these changesin
hatch-date distributions by examining adult diet
data (to quantify the potential for size-dependent
cannibalism) as well as by comparing total length
and hatch-date distributions of fish collected via
seining versus electrofishing.

The potential for cannibalism to be an important
forcein structuring young-of-year largemouth bass
populations has been demonstrated (Kramer and
Smith 1962; DeAngelis et al. 1980; Miranda and
Hubbard 1994b). In these studies, cannibalism act-
ed in a size-dependent manner, with predation se-
lectively removing smaller individuals. Likely this
occurs because smaller individuals are more vul-
nerable to a wider size range of predators (Post
and Evans 1989) and are poorer swimmers than
are larger individuals (Miller et al. 1988). Because
we found that largemouth bass age and length were
positively related during both yearsin our systems
(Figure 2), for cannibalism to have been respon-
sible for the observed differences in swim-up—date
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Figure 1.—Frequency distributions of 7-d-old swim-up cohorts for young-of-year largemouth bass collected on
four dates in 1992 (left panels) and three dates in 1993 (right panels). The mean swim-up dates and sample sizes
(N) are included in each panel. Samples for panels a—f were collected via seining, whereas those for panel g were
collected via electrofishing.
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Figure 2.—Regression of fish length as a function of age for young-of-year largemouth bass collected during

1992 (top panel) and 1993 (bottom panel).

distributions across collection dates within years,
it would have had to act to remove the larger, older
individuals (i.e., opposite to the trends observed
in previous studies). However, by comparing
length distributions of largemouth bass cannibal-
ized versus those of largemouth bass collected via
seining (i.e., al 1992 comparisons) or versus those
estimated by back-calculating length at age (i.e.,
all 1993 comparisons), we found that small (i.e.,
late-hatched; Figure 2) largemouth bass were more
common in adult diets than were large fish (Table
1; Figure 3). Across all dates (except 26-29 June
1992), we found that mean largemouth bass
lengths in adult stomachs were less than mean
lengths of young-of-year largemouth bass in

ponds. In addition, we found that length—
frequency distributions differed between canni-
balized and available (i.e., in the ponds) young-
of-year largemouth bass, which indicated that size-
selective predation operated to remove the smaller,
early-hatched fish (Table 1; Figure 3). As such, we
conclude that cannibalism could not beresponsible
for the absence of early-hatched cohorts in June/
July seine samples.

Alternatively, the absence of large, early-hatched
individuals in June/July seine collections during
1992 (and on 1 July 1993) was likely attributable
to avoidance of the seine by larger individuals.
Indeed, Garvey and Stein (1998) noted reduced
capture efficiency of young-of-year largemouth
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TaBLE 1.—Results of one-tailed t-tests and Kolmogorov—Smirnov grouped distribution tests used to compare mean
total lengths (TL) and length distributions, respectively, of young-of-year largemouth bass (LMB) found in adult diets
to those of young-of-year LMB captured in ponds. During 1992, LMB lengths in ponds were estimated from seine
collections, whereas 1993 |ength-at-age estimates were back-cal culated from daily otolith increments from fish collected
via electrofishing on 8-9 July.

Number
of adults 11 (mm, mean + SE) of LMB
sampled - t-test statistics K olmogov—Smirnov statistics
(% empty In diets In ponds
Date stomachs) (N) (N) df t P D k df P
5-9 Jun, 1992 92 353+ 15 393 + 04 14 —-2.50 0.0100 89 11 403 <0.001
(30.4%) (13) (404)
26-29 Jun, 1992 108 515+ 33 527+08 314 -033 03700 27 17 297 <0001
(22.2%) (18) (298)
9-16 Jul, 1992 89 514+ 22 579+ 11 33 —264  0.0060 42 18 161  <0.001
(19.1%) 22) (162)
14 May 1993 156 222+ 07 38.7 = 0.6 306 —17.65 0.0000 205 11 351 <0.001
(46.8%) (116) (352)
3 Jun, 1993 25 320 = 25 539 = 0.7 105 -10.21 0.0000 249 11 351 <0.001
(36%) (6) (352)
25 Jun, 1993 117 397 £ 12 550 = 1.0 6 —8.44 0.0001 118 20 354 <0.001
(27.4%) (41) (355)
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Figure 3.—L ength—frequency distributions of young-of-year largemouth bass from diets of adult largemouth bass
(black bars) and from seine collections (open bars).
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Figure 4.—L ength—frequency distributions (left panels) and swim-up date distributions (right panels) of young-
of-year largemouth bass collected via electrofishing (upper panels) and seining (lower panels). The narrow black
bars in the upper left panel represent the actual lengths of fish on 8-9 July 1993, whereas the open bars are the
lengths back-calculated to 1 July 1993 (generated using the average growth rate, as described in text) to allow for

direct comparison between electrofishing and seining samples.

bass caught using seines relative to that seen in
fish captured via electrofishing gear during sum-
mer in Ohio reservoirs (also see Reynolds 1996;
Willis and Murphy 1996). Similarly, Jackson and
Noble (1995) found that seining was less effective
for sampling fish larger than 60 mmin TL (relative
to sampling via a handheld el ectrofishing unit) and
that a boat-mounted boom unit underestimated the
abundance of fish smaller than 150 mm. In order
to assess the plausibility of gear avoidance as a
mechanism for the missing early-hatched cohorts,
we compared lengths and ages of seined young-
of-year largemouth bass collected on 1 July 1993
to those of fish collected on 8-9 July with elec-
trofishing. In order to control for the 7-8-d dif-
ference in collection dates, we used the average
daily growth rate (0.67 mm/d; see Methods) to
back-calculate the length that electrofished fish
would have achieved on 1 July 1993. Seines clear-

ly collected smaller fish than did electrofishing
gear (Z test: Z = 4.38, P < 0.0001; Figure 4).
Apparently seines did not capture fish larger than
80 mm TL as efficiently as did electrofishing gear
(Figure 4, left panels), which helps explain why
fish older than about 80 d (i.e., early-hatched co-
horts) were missing from 1 July seine samples
(Figure 4, right panels). Gear avoidance could also
explain the early mean swim-up date for fish col-
lected in early and late May relativeto that of June/
July seine samples during 1992 (one-way ANO-
VA, Tukey’s honestly significant difference: F =
134, df; 416, P < 0.001; Figure 1). It is likely that
during May 1992, all young-of-year largemouth
bass were vulnerable to the seine because they
were less than 80 mm in TL (W. E. Pine, unpub-
lished data). However, during June and July, we
could not efficiently capture (i.e., in proportion to
their abundance) the larger, early-hatched fish,
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which resulted in swim-up—frequency distribu-
tions that were skewed toward smaller, late-
hatched fish.

Age-dependent mortality operating during
spring and summer has been shown to be important
in understanding the recruitment dynamics of
some fishes (Crecco and Savoy 1985; Rutherford
and Houde 1995). Although we cannot say for cer-
tain whether age-dependent mortality occurred
through the spring and summer in southern lar-
gemouth bass populations because of our gear
avoidance problems, this does not appear to be the
case. In this study, protracted spawning reduced
the ability of seines to adequately sample all
young-of-year largemouth bass; seines overrepre-
sented the abundance of smaller, young individuals
and underrepresented the larger, older individuals.
The addition of electrofishing data in 1993 sup-
ports our conclusion that age-dependent mortality
did not lead to differential cohort losses, although
having these data for 1992 would certainly have
strengthened our conclusions.

While we found that size-dependent cannibal-
ism may reduce the survival of smaller, younger
largemouth bass, its importance to understanding
first-summer survival at the cohort level appears
to be minimal in these systems, given that indi-
viduals from all cohorts (both early and late
hatched) survived to July. This is not to say that
size-dependent cannibalism cannot play a role in
these systems, because we do not yet know how
cumulative mortality operating at low levels dur-
ing summer and fall can structure populations
(Forney 1977; Houde 1987, 1989; Rice et al.
1993). As such, the survival bottleneck for these
southern populations appears to occur during their
first winter (Miranda and Hubbard 1994a, 1994b;
Ludsin and DeVries 1997). The fact that recruit-
ment appearsto be set during juvenile stagesrather
than larval stages is consistent with other research
into the freshwater recruitment process (Roths-
child 1986; Houde 1987; Walters and Juanes
1993).

Indeed, explicit conclusions about early life sur-
vival remain difficult to make. Although age-
dependent mortality does not appear to occur at
high levels during summer in these systems, we
still suggest that events taking place during spring
and summer can be important to understanding
recruitment. First, we do not know the absolute
levels of mortality occurring during these early life
periods. A host of factors, including starvation and
predation, can interact in acumulative manner dur-
ing thistime to influence survival to later life stag-
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es and, ultimately, recruitment to the fishery (Hou-
de 1987; Rice et al. 1987; Garvey et al. 1998).
Second, many examples exist in which stochastic
abiotic factors (e.g., low water temperature and
water level fluctuations) have resulted in age-
dependent mortality, reduced year-class strength,
and recruitment failure in fishes (Kramer and
Smith 1962; Busch et al. 1975; Clady 1976; Rice
et al. 1987; Freeberg et al. 1990; Reinert et al.
1997; Mion et al. 1998). Third, because early life
events are interdependent (Ludsin and DeVries
1997), timing of spawning may be the single most
important determinant of largemouth bass year-
class strength in southern systems. Clearly, early-
hatched fish have an advantage over late-hatched
ones relative to their ability to forage on a wider
(and likely energetically more beneficial) prey
base, which ultimately results in enhanced lipid
accumulation and increased survival over their
first winter (Ludsin and DeVries 1997). Likewise,
Cargnelli and Gross (1996) found that early-
hatched bluegill attained the largest body size and
contributed 40% of the total recruits in Lake Op-
incion, Ontario, even though they accounted for
only 17% of the total fry production. Conversely,
Donovan et al. (1997) demonstrated that saugeye
Sizostedion vitreum X S. canadense stocked in ear-
ly spring grew better but exhibited lower survival
than did saugeye stocked later in spring. Finally,
alternating life history strategies (Bayliss et al.
1993), in which late-spawned individuals produce
early-hatched progeny, remain to be explored for
southern largemouth bass populations.

Conclusions

With this work, we attempted to further our
mechanistic understanding of largemouth bass re-
cruitment, ultimately as a means to enhance our
ability to manage largemouth bass populations. Al-
though these results were produced in arelatively
simplistic setting (i.e., in two-species pond sys-
tems), we suggest that our results may be applied
to larger, more complex reservoirs and natural
lakes. First, these results point to the importance
of appropriately selecting sampling gear. We en-
courage researchers to use multiple gears, when
possible, to sample individuals that may be sep-
arated temporally or spatially. Second, this work
offers hypotheses concerning first-year survival
that can be tested in larger, more complex systems.
Because early-hatched largemouth bass cohorts
appear to survive as well as (if not better than)
late-hatched ones during summer and since larger
individuals are the ones that likely recruit in south-
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ern systems, managers may want to consider har-
vest strategies that protect early spawners (Good-
game and Miranda 1993; Garvey and Stein 1998;
Mion et al. 1998). Of course, thereis no guarantee
that early-hatched largemouth bass will survive
well in a given year because of the stochastic na-
ture of weather. However, because of the inter-
dependency and predictive nature of early life
events (Ludsin and DeVries 1997), shifting the av-
erage time of spawning in apopulation to an earlier
date should increase the probability of producing
strong year-classes over the long term by enhanc-
ing young-of-year growth during the summer and,
ultimately, survival during the first winter.
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