ROTATIONAL SPECTRA OF THE MOLECULAR IONS H₂NCO⁺ AND NCO⁻

Valerio Lattanzi Carl A. Gottlieb Patrick Thaddeus Michael C. McCarthy

> Harvard-Smithsonian Center for Astrophysics School of Engineering & Applied Sciences, Harvard University

Sven Thorwirth

I. Physikalisches Institut Universität zu Köln Max-Planck-Institut für Radioastronomie

The H, N, C, O system

- ✓ 4 main elements in the ISM; > 90 % molecules detected
 ✓ HNCO observed in over 60 galactic sources and 9 external galaxies
- \checkmark Discovery of isomerization

(Liebig & Gay-Lussac, Ann. Chim. Phys. 1824)

✓ Cyanic acid and fulminic acid recently observed in interstellar gas

(Brünken et al., ApJ 2009; Marcelino et al., ApJ 2009)

The NCO⁻ anion

- ✓ Closed-shell $^{1}\Sigma$ ground state with a very large electron affinity (EA = 3.6 eV)
 - (Bradforth et al., 1992)
- ✓ Several studies on the solid state properties of cyanate ion (Sherman & Wilkinson, 1973)
- ✓ IR laser spectroscopy work derived ground state rotational constant and CD quartic term; from CC study dipole moment of $\mu = 1.5$ D (*Gruebele et al., 1987; Pak et al., 1997*)
- ✓ No-detection search for NCO⁻ in dark cloud, LI34N by Morisawa et al.

(Morisawa et al., 2005)

 New CCSD(T)/aug-cc-pwCV5Z calculations for nitrogen quadrupole coupling constant (eQq)

Protonated isocyanic acid, H₂NCO⁺ & HNCOH⁺

- ✓ Isocyanic acid large proton affinity (7.49 eV) ✓ C_{2v} isomer more stable form by ~ 18 kcal/mol
 - (Green, 1981)
- ✓ In the gas phase protonation sequence is: H₃⁺ + HNCO → H₂ + H₂NCO⁺

N

Η

(Hudson, 2005)

- ✓ No lab/astro data
- ✓ New calculations:
 - ✓ H_2NCO^+ :

CCSD(T)/cc-pwCV5Z - CCSD(T)/cc-pVQZ

✓ HNCOH⁺:

CCSD(T)/cc-pwCVQZ - CCSD(T)/cc-pVTZ

8 kcal/mol

C

Experimental setup - FTMW

- Detection of the fundamental rotational transition by FTMW spectroscopy
 - √ 5 42 GHz
 - ✓ 6 Hz pulsed nozzle to inject the supersonic molecular beam (~ Mach 2)
 - $\checkmark \quad T_{rot} \sim \ I\text{--}3 \ K$
 - ✓ Synthesized isocyanic acid from KOCN + H_3PO_4
 - ✓ DC discharge of HNCO heavily diluted in a H_2 buffer

J = I - O

✓ 4 consecutive scans
 ✓ 15 minutes each
 ✓ 20 from IR
 rotational constant
 ✓ expected 3:5:1
 hyperfine ratio

Lattanzi et al., ApJ in press

Experimental setup - mm-wave

- ✓ Mixture of H₂O and (CN)₂ in an argon buffer, in a room temperature cell
- ✓ 6 lines detected with this conditions in the 161 368 GHz range

MM-wave spectrum

NCO[—]: freqs & consts

Transition		Frequency	O - C
J' - J	F'-F	(MHz)	(kHz)
1 0	1 1	23027 650(2)	1
I = 0	1 — 1	23021.039(2)	T
	2 - 1	23027.969(2)	0
	0 - 1	23028.432(2)	0
7 - 6		161189.304(20)	9
8 - 7		184214.146(20)	3
9 - 8		207238.157(20)	29
10 - 9		230261.101(20)	-21
13 - 12		299323.109(20)	7
16 - 15		368372.276(20)	-5

Constant	This work	IR	Theoretical
B $10^3 D$	11513.96789(50) 4.5588(16)	11516.3(13) 4.62(33)	11507
eQq	-1.0307(37)		-1.00

Lattanzi et al., ApJ in press

H_2NCO^+ & $HNCOH^+$

- ✓ Under the same experimental conditions, search with FTMW for protonated isocyanic acid
- ✓ Fundamental rotational transition of H₂NCO⁺ found at 0.02% from the predicted value!!
- ✓ Soon observed the J(2 I) $K_a = 0$ and $K_a = I$ lower
- ✓ All the transitions with the expected hyperfine structure
- ✓ First two K_a = 0 rotational transitions of the higher energy isomer (18 kcal/mol) HNCOH⁺

mm spectrum of H₂NCO⁺

- After the MW
 detection, mm-wave
 search
- ✓ Better condition using the HNCO synthesized sample in a -50 °C cell
- A total of 18 mm-wave transitions detected
- \checkmark Up to K_a = 3

Constant(MHz)	Laboratory	Theoretical
A	319339(33)	319690.8
В	10278.6785(19)	10280.3
C	9948.9010(14)	9951.8
D_{JK}	0.381397(85)	0.386
$10^{3}D_{J}$	3.0604(12)	2.96
$10^{3}D_{K}$	25.3	25.3
$10^{6}d_{1}$	-108.8(16)	-96.6
$10^{6}d_{2}$	-41.4(13)	-26.2
$\chi_{aa}(\mathrm{N})$	3.6263(56)	3.205
$\chi_{bb}(N)$	1.369(14)	0.932

mm spectrum of H₂NCO⁺

Conclusion

- ✓ B and D for the anion three orders of magnitude improvement
- ✓ The entire rotational spectrum can now be calculated well into the THz region to 1 km s⁻¹
- ✓ Two new molecular ions detected for the first time
 ✓ mm-wave spectrum of H₂NCO⁺ good for
 radioastronomical search
- ✓ Isomer interstellar chemistry
- \checkmark mm-wave search for HNCOH⁺ in progress

Acknowledgments

- Harvard-Smithsonian Center for Astrophysics
- √ NSF NASA
- ✓ Damian Kokkin
- ✓ R. Saykally, V. Bierbaum, E. Herbst, B. Winnewisser and A.Viggiano

FTM spectrometer

credit M. C. McCarthy