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Foreword

, Geometric Geodesy, Volume II, is a continuation of Volume I. While the first volume
emphasizes the geometry of the ellipsoid, the second volume emphasizes problems related to
geometric geodesy in several diverse ways. The four main topic areas covered in Volume II are the
following: the solution of the direct and inverse problem for arbitrary length lines; the
transformation of geodetic data from one reference frame to another; the definition and
determination of geodetic datums (including ellipsoid parameters) with terrestrial and space derived
data; the theory and methods of geometric three-dimensional geodesy.

These notes represent an evolution of discussions on the relevant topics. Chapter 1 (long
lines) was revised in 1987 and retyped for the present version. Chapter 2 (datum transformation)
and Chapter 3 (datum determination) have been completely revised from past versions. Chapter 4
(three-dimensional geodesy) remains basically unchanged from previous versions.

The original version of the revised notes was printed in September 1990. Slight revisions
were made in the 1990 version in January 1992. For this printing, several corrections were made
in Table 1.4 (line E and F). The need for such corrections, and several others, was noted by B.K.
Meade whose comments are appreciated.

Richard H. Rapp
March 25, 1993
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1. Long Geodesics on the Ellipsoid

1.1 Introduction

The purpose of this section is to discuss methods for the solution of the direct and inverse
problem without limitation on distance. There are several solutions that have been derived for lines
whose length does not exceed 500 or 1000 km with a number of solutions for considerably shorter
distances. The most familiar shorter solution is the Puissant's equations, where the result is
interpreted for the normal section or the geodesic as the line is too short for distinction. A
desription of several of the methods and the resultant equations may be found in Bomford (1980,
Sec. 2.14). A discussion of methods for lines up to 200 km in length may be found in Rapp
(1984).

1.2 An Iterative Solution for Long Geodesics

The discussion given here has evolved from the English translation of Helmert's "Higher
Geodesy" written in 1898 and from the Army Map Service translation of Jordan's "Handbook of
Geodesy" - Volume II1, second half, dated 1962 (original 1941), sections 23 and 24.

The problem of computing "long" geodesics is attacked by considering the relationship
between the ellipsoid and sphere, in terms of distance and longitude. The main concept of the
derivation is to use the sphere as an auxiliary surface and relate it to the ellipsoid. We do not
approximate the ellipsoid by a sphere. The radius of the sphere is immaterial and in fact, the
sphere may be considered to have a unit radius.

First let us establish some differential relationships between the ellipsoid and the sphere. We
define first:

o, L geodetic latitude and longitude on the ellipsoid

B reduced latitude, (latitude on auxiliary sphere)
A longitude on the sphere

o geodesic azimuth

o spherical arc on the sphere

A fundamental property of the geodesic on the ellipsoid follows from Clairaut's equation such that:
cos B1 sin o] = cos By sin oy = cos B; sin o = cos Py (1.1

where B and o are the reduced latitude and geodesic azimuth at any point on the geodesic, and By
is the highest reduced latitude that this geodesic has reached. Equation (1.1) represents a property
of all geodesics, whether on the ellipsoid or sphere. We now construct an auxiliary sphere. A
geodesic is mapped from the ellipsoid to a great circle on the auxiliary sphere by specifying that the
highest reduced latitude of the geodesic (extended if necessary) will be the same as the highest
latitude of the corresponding great circle on the sphere. See Figure 1.1.



Pole of sphere

90 -ﬁl 90_B2

P
Py

Figure 1.1
Polar Triangle on the Auxiliarly Sphere

A is the azimuth of the geodesic (great circle on the sphere) from PiPé. Using the property
expressed in equation (1.1) we have:

cos B sin Aj = cos B2 sin A2 = cos Bj sin A;j = cos Po (1.2)

By definition, the Bg in (1.1) must be equal to the Bg in (1.2). We must then have the
azimuths on the ellipsoid and on the sphere the same, i.e. A; = o;.

Next we consider a differential figure on the ellipsoid and sphere as shown in Figure 1.2.

dL da
u u
N'cos¢'dL ' cos B'dA / +dg = g'
¢ tde = ¢ prde = F
Mdey 4 dg do
a a
\ w A | \ B
Ellipsoid Sphere
Figure 1.2

Differential Figures on the Ellipsoid and the Sphere



Then we have for the ellipsoid:

ds cosa = Mdo
ds sinot = N’ cos¢” dL (1.3)

and for the sphere:

do cosa = df
do sina = cosp’ dA (1.4)

Dividing the first equation in (1.3) by the first equation in (1.4), and repeating for the second
equations we have:

do dg di (1.5)

But N’ cos¢’” = a cosf’ so that:

d_s= ME?.: ag].:

Equation (1.6) may be written in several forms. For example:

d_1ds

d 2do (1.7)
or

ds _ 90

ds  dp (1.8)

We consider equation (1.8) by recalling:

1/2
tanf3 =(1 - 62) tan¢ 1.9)

or upon differentiation:

172
d[: = (1 - ez) do so that
cos B cos ¢

92= 1 cos2¢
B ()" cos’B

(1.10)




Equation (1.7) then becomes (with 1.8):

dL M cos2 (0]

T

(1.11)

We also recall at this point the expression for the x coordinate of a point located on a meridian

ellipse (Rapp, 1984, Sec 3.3):

x = acosP = % cosd

where ¢ = a2/b and V2 =1 + €2 cos2 ¢. From (1.12):

2
cos” ¢ _ vZa’

cos’ B 2

Using the relation M = ¢/V3 we many write equation (1.12) as:

1 V2 a2

a(l -62)1/2 2

a 1

o Ve (1 _ ez)1/2

or

S|

£
v

B

Noting that ¢ = a%/b and b = a (1 - €2)1/2 equations (1.14) and (1.7) become:

From Rapp (ibid, eq 3.41):

V= (1 -2 cos? B)-m

so that equation (1.16) can be written as:

is—=a’\/ 1-c20052[3

do

and

(1.12)

(1.13)

(1.14)

(1.15)

(1.16)

(1.17)

(1.18)



E=‘\/ l-ezcoszﬁ
dA

(1.19)

We now must consider the integration of equations (1.18) and (1.19). Consider two points
P; and P on the sphere shown in Figure 1.3.

Equator
_/

Figure 1.3
Geometry of Auxiliarly Spherical Triangle

We let © be an arc length on the great circle and define the following:

¢ =arc from P; to gn arbitrary P’
o1 =arcfromE to P;

oy =arc fromE to P,

oT = arc from P; to P,

We also note that the arc from P’l to His 90° - o1 and o1 = 07 - 01. We let:
o = azimuth of specific geodesic at the equator
o1 = azimuth of specific geodesic at P;

o = azimuth of specific geodesic at P,
Bo = highest reduced latitude geodesic reaches.

From the spherical triangle P Pi H or using (1.1) we have:

sina;, g

so that:
cos B, cosf,



cos By=sin o cos B,

(1.20)
Applying Napier's Rules to triangle P'l PH we have:
cos o1 =tan(90 - o;) cot (90 - Bl) =cotortan B;  so that:
tan B3,
tan G, =
cos oy 1.21)
From the spherical triangle PP,H we have:
sinf, = sin (01 + O'T) sin, (1.22)

If we apply (1.22) at some arbitrary p01nt P’ (where By becomes an arbitrary B, and o is
associated with ¢) we write:

sinP = sin (01 + 0') sinf, (1.23)

From equation (1.18) or (1 19) we need to find an expression for cos2B. Thus using cos2p=1-
sin2fB with sinf} from equation (1.23) we have:

cos2[3 =1- sin2(01+ o) sin2[30 (1.24)
Ifweletx=01+0G sothat
cos2[3 =1-sin’x sinz[.%0 (1.25)

and noting dx = do since G is a constant, we write (1.18) as:

2 2 .2 . 2
ds=aV1-el+e’sin Bosin'x dx
Now

@)
< 1-e2=—1 $O:

el = ,
1+e'2 1+¢e'2




1/2

ds=a L ,_=¢ sinzﬁosinzx dx
‘2 ‘2
l1+e l1+e
or:
ds =_a—1/2 ’\/1 + e'zsinz[iosin2x dx
(1 + e’2)
We note however: —1— = E
22
(1 +e )
2 ‘2.2
We define: k" =¢ “sinB,, (1.26)
so that we now have:
2.2
ds=b"V1+k sinx dx (1.27)

Before we integrate this expression we must establish the limits on x. Recall x=61+0. At the start
of a line 0=0 yielding the lower limit on x: x=0]. At the end of the line 6 = oT. Thus, in integral
form, equation (1.27) is written:

o401
=bﬁ 1+k’sinXx dx
- (1.28)

This integral is similar to what are called elliptic integrals (Bulirsch and Gerstl, 1983). The
evaluation of these integrals could take place in two ways: by numerical integration or by analytic
integration. The first form is possible using various numerical integration methods. The second
procedure, although more complicated than the first, allows a better accuracy control on the
solution and permits a unique set of equations to be established.

We thus look at the integration of (1.28) by analytic procedures. We first expand the kernel of
(1.28):

2.2 1.4.4 1.,6.6
=1+zk"sinx-=k sinx+-—k sin x+...

)1/2
2 8 16 (1.29)

(l +k% sin’

Next we convert from powers of angles to multiple angles. We use the relationships given in Rapp
(ibid, Section 2.5).

Then equation (1.29) becomes, after combining terms:




1/2 2
2.2 k™ 3 .4, 5 .6
(l+k sin X) = (1+T-gzk +§-§'6—k +--)+ -

1,2 1.4 15 .56
Zk +T—6—k 'mk + --}cos2x

k4 3 .6 1 .6
+ -—61+ﬁk + --|cosdx + -ﬁfk + --]cosbx + -~ (1.30)
We now define the coefficients of cos (nx) as A, B, C, D, -- respectively. That is:
2
A=1+K_3 44 5 1 6__175 18, .
L 4 64 256 k 16384 k
B=-lk2+ L x4.15 64 35 484
R T ST R TV TR
k' 3 6 35 s
C=-81%356* F006 % "
1 .6 5 8
D=-gzk +5pgk +- (1.31)
etc.
Then:
5 172
(1 + k" sin x) = A + Bcos2x + Ccosdx + Dcos6x + -- (1.32)
which we now insert for integration into (1.28) yielding
S OO0t SFuacky C;+01 G0t
F=Af dx+Bf COS2x dx+Cf cosdx dx+Df cos6x dx + --
o c c, o, (1.33)
First consider the general integral:
0,+0
OrtOr 1. s 1. .
f cosnx dx = 0 sin nx == [sm n ((Sl+0T) — sin nol]
0, o
! (1.34)
We may abbreviate this by recalling the trigonometric identity:
sinnX - sinnY = 2cos £1—(X +Y) sin E(X -Y)
2 2 (1.35)

In our case:



X=01+0T

Y =01
X+Y=201+0T
X-Y=o0T1

Now (1.35) becomes:

sin n (01 + cT) — sin noj = 2cos % (207 + o7) sin % or (1.36)

Recalling that 6T = 07 - 61, we have: 20, + 6T =20, + 62 - 61 = 61+ 09. If we then define

G = Gl + 02
m 2 1.37)

equation (1.36) becomes:

sin n(0; + OT) - sin nG; = 2c0s NOySin % oT

(1.38)
Thus (1.34) now can be written as:
G1+0t
f cosnx dx = %cos no, sin % oT
o1 (1.38a)

Now we go back to (1.33), using (1.34) with (1.38) to write:

O1+0T
f dx = oT
3]

110t
cos2x dx = c0s20,,SinCT

G +Or

cosdx dx = % cos4(5m sin2(5T

|
f

\

[eFuac)y 1 )
f cos6x dx = cos60,, sinop
c

1

Then equation (1.33) becomes:




s=b Ao+ Bcos2o'm sinG .+ -(25c0s40'm sin2o+ % cos6(rm sin30'T+ — N
(1.3

This equation is an important part of the iterative solution of the direct solution. Before we go
on we define a new set of constants to be consistent with that in a paper of Rainsford (1955): In
addition, we add additional terms as given by Rainsford. We define:

Bpo=A

B>=B
B34=C2

Bg =D/3
Bg=E/4 etc.

We also let u2 = k2 = ¢ 2 sin2 g = €' 2 cos2q, recalling that a is the azimuth of the geodesic at the
equator. Then (1.39) becomes (dropping the subscript, T, on the ©):

s =b|By0 + B, sinc cos26 + B, sin20 cos4c  + B sin3o cos6o

+ By sindo cos8o + --)

(1.40)
In equation (1.40), we have the following coefficients:
Bo=1 ’%“2'%“4*226 u’- 1524 u't -
B2=-;11-u2+11—6u4-—511§2—u6+23—28ué+--
By=- 1;8 ut+ 5?2 u®- 8?32 uie - (1.41)
Bo=- 1336 *gra™ *
Bg=- 6—52_3'6_‘18 + --

10



Equation (1.40) may be used in two ways which will be discussed in detail later. Briefly,
however, we may use it to solve iteratively for ¢ (given s) by first computing a zeroth
approximation as og = s/Ab, using this on the right side of the equation and solving iteratively to
convergence. The value of 6, may be found from spherical trigonometry formulas as will be
shown later. A second application of (1.40) is in the computation of s once ¢ is determined.

At this point we have derived a connection between a distance on a sphere and the distance on
the ellipsoid. However, we do not have a relation (other than in differential form) between the
longitude on the ellipsoid and the longitude on the sphere. We now do this by integrating equation
(1.19). We consider Figure 1.4.

Pole of the auxiliary sphere

dAa

90° -84
90°

B
(3Pl +dP
7, P Equator

Figure 1.4
Auxiliary Spherical Triangle for Longitude Determination

In this figure P; is an arbitrary point on the great circle between P; and P;. This differential
triangle may be enlarged to look as follows:

11



dicosg,

do

Figure 1.5
Differential Triangle for Longitude Determination

We have:

dA cosP; = do sing;

or

dr = _S_l.% do
cosP;

From equation (1.20) we write:

cosPo
cosf;

sinoy; =

Substituting this into (1.42) we have:

dA = cosPo do
cos?p;

Using (1.44) in equation (1.19) we may write (with i now simply B):

(1.42)

(1.43)

(1.44)

12



/ 22
lecosBdG

cos” B (1.45)

dL = cosB,,

Now subtract equation (1.44) from equation (1.45):

v 1-e2c032[3 1

dL - dA = cosB,, 3 -—5—|do
cos” P cos P (1.46)

In order to simplify the bracketed expression we expand the radical term:

s g |12 o2 K K
(l-e cos [3) —1-——cosB 8cosB 1g cos B——
so that:
172
(1 - e%cos? B) 1 cz b
> =—— -5 -5 Cos [3 1g °°8 |3—-—
cos B cos B

Subtracting 1/cos? B from this expression, equation (1.46) may now be written as:

2 4

dL =dA - cosBO(%+ ©

?coszﬁ +£_ cos B+ --) do

16

which may be re-written:

2 o2 K
d?»-dL=32—cosB0(1+ - 08 [3+ cos B+—-)d6
(1.47)

We now have to put (1.47) into an integrable form. From equation (1.23) we had:
sinf} = sin (01 + 0') sinf,
With x = 01 + o this becomes:

sinP = sinx sinf,

13



Then:
2 .2 .2
cos” B =1-sin" B,sin"x
4 .2 . 2 . 4 . 4
cos B=1-2sin" Bysin” x +sin B,sin x
Now insert these into (1.47):

dA - dL =""2—2 cosBo[l + ‘2—2(1 - sin? By sin? x) + f'gi(l - 2sin? By sinZx
+ sin4[30 sin4x) + --J dx

Now substitute the multiple angle expressions for sin2x, sin?x, etc.:

o2 2
e
dr-dL=% 5 cosBO[l T - sin B [ costD

e’ 2. [1 1 4 (31
£ o l1-2s OS2 i A
+3 (1 2sin B°,2 3 cos-xJ+sm BO(S 5 COS2X
1
+ g Cos 4x 1+ --:I dx
Collecting terms:
K &2 6:4 el
d?»—dL=—2—cos[30 1+T+ T Bo —sin [30 643 sin [30

2 4 4
e’ .2 e .2 e . 4
+(?sm B0+?sm BO+——)cos2x+—ézsm Bocos4x+--]dx

We may substitute:

2 4 2 4
A if:6- e_+e_+_l__5_ 6 sin2[3 +
8§78 18° 0

ie4+i5-e6 B 25 e’ m[3
64 ° T 512 0 1024 © " Po

(1.48)

(1.50)

(1.51)

(1.52)

14



2 4
,_|e 15 6] . 2 e 15 6| . 4 75
B -(?+ TrEe )S‘“ Bo- (ﬁ+_128e)sm Bo+anzg © sin Bo

4
C= (e 1> es)sm Bo+——

64 512
S 6
D' = = 5034 © sin B0+-——

so that (1.52) becomes:

2
d-dL=% cosBO[A’ + B’ cos2x + C’ cosdx + --] dx
2 (1.53)
Integrating, we note:
A L
f di=%, [ dL=L sothar
0 0
ez S0t
(7» - L) =5 cosBOf (A’ + B’ cos2x + C’ cosdx + --) dx
1 (1.54)

The integration required in (1.54) is identical to that in equation (1.33). By inspection we may
write the result:

2 ’

(A-L)= % cosB, [A’ or+ B’ sinopcos2o, + % sin2cpcosdo,, + "] (1.55)

Rainsford (1955) expressed this equation in terms of the flattening, f. Letting cosPg = sina, as
before, we re-write equation (1.55), with ¢ = oT, as:

(A - L) = fsinox (AOG + A, SinG c0s20,_ + A4 sin20 cosdo_

+ A4 sin30 cos6o, + --)

(1.56)
where:
1 2 3 2 9 4 25 3 6
Ao—l-zf(‘l+f+f)cos a+16f (1+4f)cos a-—12—8f cos o + --
A,= %f(1+f+f)cos2a-—f (1+ f)cos a+27556f cos ot + -




1 2 9 4 15 3 6
A4=3—2f (1+Zf)COS o - 'Z—S'B-f cos O + --

5 6
A6—mf3005 o+ -
Certain terms may be dropped from the above coefficients if maximum accuracy is not required.

At this point equation (1.40) for s and equation (1.56) for (A-L) are the important equations
required. We next show how these equations are specifically applied to the inverse and direct
problem.

1.21 The Iterative Inverse Problem

We assume we are given the latitude and longitude of the points for which the distance and
azimuth are to be obtained. We then have given (¢1, L1), (¢2, L2) where all longitudes are positive
east. We can now compute the reduced latitude for each of these points using equation (1.9).
Next consider Figure 1.6 showing the auxiliary sphere:

Figure 1.6.
The Auxiliarly Sphere as Used for the Inverse Problem

From the triangle P; Pole P; we can apply the spherical law of cosines to yield:

coso = sinf, sinf, + cosB, cosB, cosA (1.57)

This formula weakly determines ¢ when G is very small, so that the following equation is
recommended (Sodano, 1963) when coso is close to one or when both sinG and coso are to be
used in subsequent computations.

16



2

1/2
2
sinc = [(sinl cosBz) + (sinB2 cosP, - sinf, cosPB, COSK) ] (1.58)

G can then be determined (with a proper quadrant) using arc tangent subroutines where both sinc
and coso are input. If ¢ is regarded as < 180°, quadrant determination is provided only by (1.57).
Starting with the data of the inverse problem we could not evaluate (1.57) or (1.58) since we do
not know A. However, as a first approximation we may let A = L so that an approximate value of
¢ may be found. Iteration procedures will be described shortly to assure a precise determination of
A and consequently, ©.

In seeking to apply equation (1.56) we need to find a and functions of 20y, as well as have
0. We note from Figure 1.6;

sind;  sin),

cosB, sinc
so that:
i sink cosf,
sinot; = ——=

sino (1.59)

Applying equation (1.1) to the problem of the geodesic (great circle) passing through P, Pi and
the point on the equator we have:

. . . o
sinal, cosP, = sina; cosP, = sino cosO (1.60)
Using (1.59) we may write from (1.60):

sinA cosf, cosp,

sina = sina; cosB, = -
sinc (1.61)
from which we could find sin a and thus cosine a. In order to find 26, we first write:

1

°m=‘2'(°1+ 02)=%(201 +o)

(1.62)
C0s2G, = COS (201 + 0') = €020 COSO - sin20 sinc
. 2 . .
=coso {1 - 2sin"0, | - 25inC, COsO, sinG

= COSO - 25in<51 (sinO'1 COsC + €SO, sino)

= C0sO - 2sin0, sin ("1 + o) (1.63)
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Now we can show:

sino1 = sinf1/cosa (using the law of sines in triangle P'1EF) (1.64)

and
sin (01 + ©) = sinPy/cosa (using the law of sines in triangle P'ZEG) (1.65)

Then equation (1.63) becomes:

2sinf, sinf3,
c0s20 = COSC - ——————

2
cos o (1.66)
from which we can find 26, 40, 66, etc. using half angle formulas.

With these values we may compute (A- L) from equation (1.56). Recall, however, at this
time, the value of (A- L) is not exact as we needed to assume A = L in the initial evaluation of
equation (1.57) or (1.58). However, with this new computation we can compute a new, better
value of A by using:

A=L+(r-1) (1.67)

Using this value we return to (1.57) and (1.58), compute a new o, find a new o from (1.61), and
20, from (1.62), and finally a new (A - L) from (1.56). The iteration process is considered
complete when the value of (A - L) does not differ by a certain amount from the preceding
computed value. The amount may be on the order of 0."0001 to 0."00001 for most applications.
The number of iterations to be expected is about 4 although certain special cases to be discussed
later will not converge.

At the conclusion of the iteration, we can evaluate equation (1.40) for the distances. In order
to determine the azimuths we may use equation (1.60) to write:

. sing
Sm(l1 =
cosP, (1.68)
. sinx
sma2 =
cosP, (1.69)

where o0 would be that value found from (1.61) at the last iteration for (A-L).

Somewhat more stable equations are recommended by Sodano (1963) for azimuth
determinations:

sinA cosf3,
tantpy = B

sinf; cosP; - cosA sinPy cosp; (1.70)
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sin) cosp,

tanaz =
! sinB, cosP, cosA - sinB, cosf, 1.71)

Proper quadrant determinations for the azimuths can be made by using arc tangent subroutines
where the input parameters are sin, and sin/tan. Sodano (1963) points out that for short lines the
denominators of (1.70) and (1.71) may be close to zero and therefore he suggests the following
alternate forms:

sinA cosp,
. . .2
sin (B2 -B 1) + 2sinf, cosp, sin 5 (1.72)
sinA cosB,
tano,, = "
. . . 2
sin (B2 -B 1) - 2cosP, sinp, sin 3 (1.73)

This completes the discussion of the iterative inverse problem. Maintaining the coefficients
given in the (A-L) and s expressions, the accuracies are on the order of 0."00001 in azimuths and a
millimeter in distance for any length lines. This, of course, would assume that all calculations
carried the proper number of significant digits. The actual accuracy will depend on the number of
series terms carried and the geometry of the line.

1.22 The Iterative Direct Problem

Using the equations previously derived, it is possible to formulate an iterative solution to the direct
problem. We assume we are given the following quantities.

¢1, L1
a,, s geodesic referenced quantities.

Knowing ¢1, we may compute the reduced latitude, B, of the first point using equation (1.9). In
addition we may determine the azimuth (@) at the equator of the geodesic using equation (1.61).
The next step requires the computation of G by an iteration process using the inversion of equation
(1.40). We note that we may write from (1.40):

B¢ .
el sin3o cos6($m --

B
5 2 sinc cos20_ - 4 B
0 (1.74)

°= b8, B, n By

sin2c cos4(5m -

Noting that the coefficients By, B4, Bg (which may be computed from the given information) are
small, we may write a first approximation to ¢ = gV as:
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0 g
0 = o
BB, (1.75)

In order to iterate for ¢ in equation (1.74) we must determine 26y,. Recalling from (1.22) and
immediately preceding it that 26, = 201 + 6 we need to know at this point 0, as an
approximation to ¢ has been obtained through (1.75). This may be done by using equation (1.21)
for tancy. We can also find o1 using (1.64). We thus have all the information required to iterate
equation (1.74) to convergence.

Assuming we now know G we can apply equation (1.22) to find §2. We may note here that
sina = cosPg, so (1.22) may be written:

sinB, = sin (ol + o) cosQ

Knowing B2 we can then find ¢2. With B2 found we can find A by applying equation (1.59) to
yield:

. sinG sinal,
sinh = ————

cos, (1.76)
We can also use equation (1.57) to determine cosA, which then, in conjunction with (1.76), allows
the proper quadrant determination for .. We then evaluate (A-L) using equation (1.56) and find L
by computing:

L=A-(A-L) (1.77)

Finally the back azimuth may be computed by applying equation (1.73).
We thus see that this form of the direct problem required iteration. This iteration is required in only

one equation. Vincenty (1975) has given step by step procedures and compact equations to invoke
the procedures described in sections 1.21 and 1.22. These are as follows:

Direct Problem - Given ¢, L), . s - Vincenty Formulation

tanf = (1 - f) tan¢
tano] = tanf/cosa
sina = cosf3; sinoty

u2=¢2cos2a

2

l
N u 2| 2 ] 2
A=1 +—~———16384 {4096 +u [ 768 +u (320 175u )]} (178)
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2

_u 2 2 2]
B—m{256+u [ 128 + u?(74 - 47 )}

26,,=20,+0C

AC = Bsino {c0526m+ %B [cosc (l.l + 2cos2 20'“J

- %BcosZGm(- 3+ 4Sin2(5) (- 3+ 4cos226m)}

S
o—-bK+Ac

(1.79)

(1.80)

Equation (1.78), (1.79) and (1.80) are iterated until there is a negligible change in ¢ . The first
approximation for ©, needed in (1.79) is taken as the first term in (1.80). The following equations

are then evaluated:

sinf3, coso + cosP, sinG cosa,

tang, =

5 1/2
(1- ﬂ[sinza + (sinB1 $inG - cosf | cosc cosal) ]

sino sinOL1
tanA =

cosP, coso - sinf, sinc cosa,

f 2 2 ]
C=—1€cos a[4+f(4—3cos oc)_

L=2A-(1-C)fsinat {o + Csino |cos20, + Ccoso |- 1 +2 cos220m)]}

sino

tanoL, =
- sinf; sinG + cosf; coso cosa,

Inverse Problem - Given ¢;, L;, ¢, L, - Vincenty formulation.

A =L (first approximation)

(1.81)

(1.82)

(1.83)

(1.84)

(1.85)

(1.86)



9 2
sinZo = (00532 sin?L) + (cosB1 sinP, - sinf, cosP, cos?») (1.87)
coso = sinP; sinf, + cosB, cosB, cosA (1.88)
B sinc
COSC (1.89)
. cosf, cosP, sinA
sinol = :
sinc (1.90)
2sinf3, sin
COS20 = COSO - —M
cos o (1.91)

A is obtained by equation (1.82) or (1.84). This procedure is iterated starting with equation (1.87)
until the change in A is less than some specified value. Then:

s=bA(c- Ao) (1.92)
where AG is obtained from (1.76), (1.77) and (1.79). Finally:
cosf3, sink
tano,, =
cosp, sinf, - sinfi, cosP, cosi (1.93)
cosf, sinA
tanc, =
-sinB, cosP, + cosf, sinf3, cosh (1.94)

1.23 Improved Iteration Procedures for the Inverse Problem

Bowring (1983) has discussed several ways in which the iterative inverse problem can be
improved by the implementaion of various iteration procedures. Bowring first expresses our
equation (1.56) in the following form:

A-L=E=(1-D) fv<<f+ Dsi“G[C + Deosalat - 1)]} (1.95)

where
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x = sinf}, sinB,
y = cosp, cosB,
x=cosf, sinp,
y = sinP, cosp,
Y= ys.in?» = sindt (see 1.90)
sino (1.96)

2x
{ =coso - —
r
£ =Tcoso - x

D=1—16-fr(4+4f-3ﬂ‘)

With this notation the simple interation procedure previously discussed could be written as:

Ape=L+E(L) (1.97)

where Ag=L.

The Newton-Raphson method can be first implemented by writing the ideal function:

F(A)=2-L-E(})=0 (1.98)

We differentiate (1.98) with respect to A:

F(\)=1-E() (1.99)
Then the Newton-Raphson procedure yields the following iterative procedure:
A +17= Ay- F_()f_n)_
B (1.100)

This can be written as:

_ _[xn-L-E(x ]
)"n+1 A'l’l [1 ) E' (xn)]

(1.101)

where
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E’ (X) =f ('y2 + _Ci)
sing (1.102)

Bowring also discusses an extended Newton-Raphson procedure and Lagrange's method.
The extended Newton-Raphson procedure uses first and second derivatives of F(A). It should be
more accurate than the simple Newton-Raphson procedure. The Lagrangian method creates a
series expansion for A of the following form:

A=L+E(L)+E{LFE L)+ %Ez(L) E"(L) + E(L)(E'(L))2 (1.103)

Note that the right hand side of this equation is a function of L alone and this in reality is a non-
iterative procedure.

These improved procedures have been tested for a series of lines described in section 1.7.
Results show that the number of iterations required in the Newton-Raphson procedure is about half
that of simple iteration. This is done with a reduction of computer time needs by about 20%. The
extended Newton-Raphson procedure shows a small improvement over the Newton-Raphson
procedure.

The Lagrange method gave no iterations but yielded results that were not as accurate as the
other methods. It seems clear that the software for the iterative inverse problem should include
either the simple or the extended Newton-Raphson procedure.

The methods described in this section have not been applied to the iterative direct problem.
This may not be necessary because of the existence of accurate, non-iterative inverse problem
procedures to be discussed later.

1.24 The Non-Iterative Direct Problem

There are several solutions to the direct problem that are quite accurate and require no iteration.
Papers of interest include those of McCaw (1930), referenced in Rainsford (1955), a report by
Sodano and Robinson (1963) that expands a report of Sodano (1963), and a thesis by Singh
(1980) that discusses a non-iterative procedure based on some McCaw procedures. For the
purposes of this text we examine first the principles involved with the McCaw solution with more
detailed discussion being found in Ganshin (1969, p.86) or Singh (1980).

McCaw's solution also uses an auxiliary sphere for computational purposes. But this sphere
is used such that a point on the ellipsoid with latitude ¢, has a corresponding point on the sphere
with the same geodetic latitude. With this correspondence the longitude difference on the sphere
must be different than on the ellipsoid, and the azimuths on the sphere will differ from the
corresponding azimuths on the ellipsoid. To show the relationship between the azimuths we first
write equation (1.1):

cosP, sina; = cosP, sina, = cosB, sina

(1.1)
On the McCaw sphere, the corresponding equation will be:
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. * . * I3 *
cos0, sina; = cosd, sinc, = cosp, = sinal (1.104)

where the a* are called the reduced azimuths of the geodesic line. Note that an o* corresponds to
an (o) used in the Rainsford (1955) paper. Now we know that:

(1 - ez)mcosB

)1/2

cosf =
2 2
(1-¢*cos”p (1.105)

At 69, (1.105) becomes:

1/2 12
(1 - e2) cosf, (1 - ez)
costy = =

22 172 2.2
Cl-e cos BO) (l—e sin a)

cosP,
1/2

(1.106)

Then from (1.1), (1.104), and (1.105) we have:

)1/2

. 2 .2
sina. cosPy |{1-e"sin“a

.+ cosd 2\1/2
sinot 0 (1 -e ) (1.107)

Now we solve (1.107) for sina* and substitute it into (1.104) to find:

1/2
. 2
. sma(l-e)
cosd, sina, =
1 1 Lo g 2
(l—e sin oc)

Substituting on the left side of (1.108) for cos¢; from (1.105), dividing the left side by sincl;
cosP and the right side by sina we find:

(1.108)

sinoy _ (1 - €2 sin2a)t/?

.k 1/2
smOL] (1 - e2 COSZBl) (1.109)

Squaring (1.109), substituting for sin2c and sin2a;; by 1 - cos? o and substituting for €2 in terms
of ¢’2 we find:
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cosaL, = k cosa’; (1.110)

where

) 1/2
2
(1 +¢" cos a)

k 1/2
2/
1+¢

Equation (1.110) is valid for a point on the geodesic under consideration. Now, since sina=cosfg
we can write k in the form:

K*=1-¢”cos [30EL2
Vo
so that
COS(x1=VOCOS(Il (1.111)

We can also show that:

.« Vo
sin0; = <7 sina, (1.112)

The method of solution of the problem from this point may be found in McCaw (1930) or in
Ganshin. Singh discusses the general philosophy of the mapping from the ellipsoid to a sphere
and the development of equations similar to the above for different mappings. The general
mapping is represented by:

tanm = Jtan¢ (1.113)

where 1 is the auxiliary latitude on the sphere and a. is the corresponding auxiliary azimuth. Singh
develops the differential relationships between s (the distance on the geodesic) and o, and L and A.
We have:

5 172
gi=a(1_ez) (1+Glsin T]) 1
do J

372

(1 +G, sinza)m (ll +G, sinzn) (1.114)

where
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sinm = sinG coso (1.115)

The longitude relationship is:

1/2
[1 +(J2(1 + e’z) ; 1)cos2n]

2
cos M (1.116)

dL - d = (1 + (12-1) coszn)-m] sin;do

The mapping J = 1 corresponds to the McCaw case; J = (1 - €2)1/2 corresponds to the classical
(Bessel, Helmert) case; and J = (1 - €2) corresponds to the case of the auxiliary latitude being the
geocentric latitude.

The equations of the original McCaw solution were re-cast by Rainsford (1955) and put into
the following computational form given ¢1, L1, 012, and s:

12
tanp=(1-¢  tan (1.9)
sina = sina; cosf, (1.60)
22 2
u =¢ cosa (1.117)
2 (l+u2)
k™= 5
(14¢”) (1.118)
ktan
tanG1= ¢l
cosa, (1.119)
2
K = 1+u
b (1.120)
v=KCqs (1.121)

'Y]=Gl- C2 Sin2G1+C4 Sin4G1' C6 Sin6G1 (l 122)
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Yo=Y+

2Ym= ’Yl + 'YZ

G =y + D, siny cos2y,, + D4 sin2y cos4y,,, + D¢ sin3y cos6Y,,

G2=G1+G,2Gn =G+ Gy

_g 2+£u4_133 5+ 7491 8
2" *eaY 256" T16383 ¢

Co=1

o323 4,111 6 141 s
2=g" "1¢ 1024 Y 2048

15 4 15 6 405 8

Ca=5355U -356 " *3797 "
c._35 6 105 s
6~ 256 6144
315 8
Cs=131072 ¢
D.o3,2.3,4,213 6 255 s
2574 "3 1024 Y ~2048

21 4 21 6 1599 8

Di=13gv "128 % * 12283 "

151 6 453 8

Ds=3573 2 - 6144 ©

1097 8

Dy = 5536 ¢

) sinG, cosa

cosa, = k cotG, tand,

(cosG - sin, sin¢2)

sinG A/ ik2-cos2(x J
COSA = ; sinA =

cosd, cosd, kcoso,

(1.123)

(1.124)

(1.125)
(1.126)

(1.127)

(1.128)

(1.129)

(1.130)

(1.131)
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(A-L)= fsinat (EG - E25inG c0s2G,y + 4 5in2G cos4Gyy

- E6 din3G COS6Gm) (1132)

Ey= 1-—f(1+f+f )cos o+1e f (1+—f)cos o - 12258 f3cos6a
(1.133)

E, =% f (3+5f+7f2) cosza £ (1% f) cos4a + ;gg f cossa

Ey4= 37 f2 01 f)cos o- 05 22 £ cos’a

256
E¢= 768 t3 cos’a

We thus have found ¢ from equation (1.129), the azimuth at the second point from equation
(1.130), and the longitude of the second point by using:

L,=L;+A-(A-L) (1.134)

The accuracy of these equations is fully compatible with the set used in the iterative inverse
problem.

Another version of the non-iterative direct problem has been described by Singh (ibid) based
on some procedures developed by McCaw applied to the original iterative solution discussed in
section 1.21. To consider the new procedure we start with equation (1.33) written in the following
indefinite form:

—S——f(A+B0032x+Ccos4x+ )dx

b (1.135)
Integrating this we have:
S = lax+ 3 sin2x o+ 5 sindx + ..
(1.136)

Divide each side by A to write:
s . .
—Co=x+ C, sin2x + C, sind4x, where
b0 2 4 (1.137)
C -1 Co=5:;C -C etc
0~ A 2= 2A° 4= 4A .
Note that the C values appearing in (1.137) are not the C values defined in (1.127). Similar notice

should be taken for the D values to be defincd in (1.142) which are not the same as the D values in
(1.128).
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Now evaluate (1.137) between 6 = 0 and 6 = 0] where s = s3. Then we define y; which becomes

SICO . .
Y= ——=06,+C;sin206, + C4sindo, + ...

1575 (1.138)

Now evaluate (1.137) for the distance O to s + s = s where s is the length of the line between the
two points of interest. We have:

Co (s+s1)

b =7Y+7v; =63+ Cz sin20, + C4 sindo; + ...

(1.139)

where o7 is the arc corresponding to s + s;. Here ¥ = Cp s/b and would be a known quantity in the
direct problem. Now perform a series inversion (Rapp, 1984) of (1.138) and (1.139) to find:

o=V + 62 sin2y, + —64 sindy, + 66 sinby; + ... (1.140)

0= (¥+7,)+ Casin2fy +v,) + Ty sindfy + "+ (1.141)

The arc between the two points is 6 = 62 - 61 which can be found by differencing (1.140) and
(1.141) and using (1.35). We have:

6 =Y+ D, siny cos2y, + D, sin2y cosdy_ + D¢ sin3y cos6y,, + ...

(1.142)
where:
2y =7+2y, (1.143)
1t 21 4 71 6 85 8
Da=zv-3u *1052" 208" ¥
5 4 5 6 383 3
Da=12gv ~128% Y1288 "t
D. = 29 b - 29 ot
67 3072 " 2048 T (1.144)
539 8
DS—————“1966OSU + ...

2
2 . 2
u =¢' sin"B,

In the actual computations for the direct problem using the Singh procedure the value of 67 is
found using equation (1.21). Knowing u? the C and D coefficients can be computed. Then find
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v(=Cps/b) and y; from (1.138). Using (1.143) we can then find ¢ from (1.142) after which the
usual equations developed for the iterative direct solution can be used.

Numerical tests conducted by Singh indicated the procedures give accuracies equivalent to the
iterative procedure. Due to the way in which the inverse problem is developed the procedure of
Singh does not appear to be applicable. However other techniques are available as discussed in the
next section.

1.3 The Non-Iterative Inverse Problem

The computation of an iterative solution to a high accuracy can be time consuming.
Requirements for a non-iterative approach led Sodano (1958) to the development of such a system.
In the following paragraphs we outline the method of derivation and present working formulas.

If we consider (1.56) we see that it can be written in the form:
A=L+x (1.145)

where x is a small quantity equal to the right-hand side of (1.56). We may use (1.145) wherever
the value of A is required. For example, we need cosA in equation (1.57). We may write:

cosA = cos (L + x) = cosL cosx - sinL sinx

2 3
cosA = cosL (1 - _xi_ + --) - {sinL) (x - ')351" + ---)

and finally:

cosA = cosL - (sinL} x - X2 4o

1
'2" cosL

(1.146)

The process of developing the non-iterative procedure consists of substituting series such as
(1.146) and all subsequent series into the usual iterative procedures. For example, equation (1.57)
could be written:

cosG = sinf3; sinf3» + cosPy cosP, [cosL - sinlLx - 1 cosLx? --
B sinf, B [32( 3 ) (1.147)

= sinf3, sinf, + cosP, cosf, cosL.
- cosP cosP; sinL x
1 2
-5 cosf, cosP, cosL x

If we let
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: 1 2
c05G = C05Gy - cosB; cosP, sinl. x - 5-cosP; cosP, cosL x ™+ - (1.148)

which may be written:
2
COsO = CosO+ ky X + Ko X" + ---

where k1, k2 are appropriate constants that may be read from equation (1.148). We could continue
writing:

2
o=0p+kyx+ksx"+-- (1.149)

sink = sinL + kex + kgx” = - (1.150)
Continuing through the equations we find equation (1.56) may be written in the form:
2
(ML) =k + kgx o+ kg - (1.151)

where k7, kg, and kg are complicated expressions. Now we note that from (1.145) A -L =x or
using (1.151):

2
(A-L)=x =k, + kgx + kgx (1.152)
Equation (1.152) may then be solved for x to yield:

2
X=k7(1+k8+k8+k7k9) (1.153)

Since we know expressions for k7, and kg, and kg it is possible to develop an algebraic
expression for x or (A-L) without recourse to iteration. Before we give this expression we may
note that it is also possible to modify the distance expression, equation (1.40), by using the series
expressions for G, or sinc and its multiples, that are a function of the parameter x. This expression
will be a function of the ellipsoidal longitude difference as opposed to equation (1.40), which is
basically a function of the longitude difference on the auxiliary sphere. In this case we could write:

2
S=b(k10+k11"+k12x +") (1.154)

It is also possible to develop expressions for the azimuths that will be a function of the ellipsoidal
longitude difference and the parameter x. Although these expressions have been developed by
Sodano, they are not specifically required as previously derived expressions may be used since we
will have the value of l))» using the x value found from equation (1.153).

Once the value of (A-L) has been established through equation (1.153) we may go back and
find ¢ from equation (1.57) or (1.58), proceed to find the azimuths as in (1.59) and (1.60), and
finally the distance from equation (1.40). In the latter case, however, an alternative is to use
equation (1.154) for s. This is accomplished by algebraically substituting the expression for x
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found from equation (1.153) into equation (1.154). Although algebraically complex, the result is a
fairly patterned equation.

Sodano (1965) published the following recommended working equations for his non-iterative
solution. These equations, given to the order of f3, are as follows for the inverse solution:

a=sinf, sinB,
b=cospP, cosB, (1.155)

cos® =a+ b cosL

172
2 2
sin® = (sinL cosBz) + (sinB2 cosf, - sinB, cosf, cosL)
(1.156)

These equations should be compared with (1.57) and (1.58) where the only difference is seen to be
the replacement of A by L to obtain (1.156).

Next define:

c= bsinL
sin®.

m=1-c2 (1.157)
Then the following equations for s as taken from Sodano and Robinson (1963) are
S 2, .3
B—6=(1 +f+f +f )d)
+a [(f+f2+f3) sin® + (- % 2. f3) 2 cscd + % Bd° csed cotd

+m[(-lf-—21—f2-%f3)(b+(--é—f

2 1 3\
1 f 2f)s1n<Dcos(D+

-1
2
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1.2 13,3133
(2f +f)<I> cotCI)-gf i} -if d cot <D]

3
+a2|:-—;—f2-f3)sind>cosd>+%ts<l> csczd)+%f3<1>:|
(1 2 1

3 1 1.3} .
+m (ﬁf +§f)d>+(ﬁf2+§f)smd)cos(b

f2-—t3)d> cotd>+(-lf2-lf3) sin® cossd)

EEN |

B =

8 4

3 3
+-}4-f3<1> cos D + %f3d) + %f3<b cot2d)]

. 2
sin® cos @

12 73 12 3
[(2f +4f)<I> csc<I>+(2f +f

33 3 3
-z-f D cos® - 2f” @ csc® cotd

[ 3
+a’ml|- % £ - % £2 sin® cos® - %f3 @ csc’D+f sino® coscb]

N
1

2
+ am -%tjcb cscCD+%f3sind)cosz®+%—f3(bcostb

L

2
+ % f3 D cscdcotd - %— f3 sin® + % f3 sinsd)]

3] 1 3
+m [ 32f <I>+4f (I) cot®d - 3—2f sm<Dcos<D]

3 3
+11—613sin®cos3d>-4lf3<bcosz¢-%t3d> —-f3<I> cot2<D

+ L 13 sin 3<I> cos3<I>
12
3(1 .3

2
2f smcb-gf sin <I>

(1.158)
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In addition:

Q‘CL [le+6%45 ) o]+ a[

2
* f2-f3) sin® + (- £2- 46 @ cscd

(1.159)
3
+%f3d> csc¢c0t®]+m[-%f2 3f3 (I>+(i 2 ltj)smcbcosd)
2 3

+(a) 0 corw -1 £ @ -%f3(1> cot <I>]

2131 3 7 .3 . 13,3 13.3
+m 16f @—Tgf smd>cosd)+§-f D ——8—f sin @cos@}
950 co@+ L Dok + 2 £ 0 cot’d

2 2 2

9 3 3 7 £

+ am ff <D csc(D-if (Dcosd)—if CD csc(DcotCD-Tsm(I)cos d>+f sin®

[ 8]

2

] 3
+a f3(I>+1—f3 sin® cos® + f3<1) csczd)]

Finding the value of A from (1.159) we may use equation (1.70) and (1.71) to find the required
azimuths.

In the development of the Sodano non-iterative equations a problem arose in numerically
checking the iterative inverse problems with lines whose ¢ value was nearly 180°. Such lines are
called anti-podal lines, or near anti-podal lines. The discrepancies that arose were caused by the
increase of some terms in equations similar to (1.158) and (1.159). This may be seen from these
equations in the terms involving csc® and cot®. As @ approaches 180° these terms become quite
large, and in the limit go to infinity. Examination of equations (1.151) and (1.154) would show
that the rapid increase in certain terms does not occur in the constant coefficients (e.g. k7 or k),
but in the coefficients of x. Thus it was reasoned that if x could be made sufficiently small the
increase previously noted would be balanced out. These problems do not occur when @
approaches zero because the terms @ and sin® will approach zero.

To this end, equation (1.145) may be reformulated to read:

=L, +2 (1.160)




where Ly, is a value closer to A than L, and z is a value smaller than x. We could take the value of
L, to be that value of A calculated using equation (1.145). Thus, we could write:

A=(L+x)+z (1.161)

Using equation (1.161) the complete procedure deriving the non-iterative procedure may be
repeated, this time with the equations being a function of L, instead of L. Thus considering
equation (1.56):

(X-L)=fsina (A00+---)=Ln+ z-L X (1.162)
so that
(L - Lp) + fsino (Ago + -—-) =z (1.163)

Expressing the series terms in the manner of developing equation (1.151), we will have (A-L) as a
function of L, and z. In fact the series expressions will be the same as previously except that the
coefficients will be a function of L instead of L, and of z instead of x. We have:

fsinat (Ao + ) =F Ly, 2) (1.164)

A solution directly for z may be obtained in a manner similar to that expressed in (1.153).
Carrying these computations out, Sodano found the following:

16 {L-L,) +|16e” Ne® - e’hed - e ’hesin®cos® + 2e e “cPsin“®|
7=
16(1 —echz—ezNP(D)n (1.165)
where
N=—©
(e’ + e)
h= e’ m
2
P=(1-c )cotCD-acscCD (1.166)

where the subscript n signifies that all evaluations must be made with the value of L, instead of L.

The procedure in applying the non-iterative inverse problem of Sodano for near anti-podal
lines is to first find the value of x using the right side of (1.157). This will give a value of L,=A
which is then used in (1.165) to find z and consequently the better value of A through equation
(1.161).

The value of z primarily depends on the length of the line. For lines under 170° in arc length z
can be on the order of 0."001. However for lines whose length is a degree or so less than 180°, z
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can reach 4 or 5" depending on aximuth, starting latitude, etc. The Sodano procedure fails for
lines in the antipodal region that is described later on.

Sodano has also applied his reduction process to the direct problem. Equations for this
computation given to O(fg) are described in Sodano (1965). Extension of the equations to terms of
£3 may be found in Sodano (1963). The application of these equations could be compared with
those of McCaw and Singh. The critical development of the Sodano was in the area of the non-
iterative inverse problem.

1.4 A Numerical Integration Approach to the Solution of the Direct and Inverse Problem.

In previous sections we were concerned with solutions obtained by the integration, through
series expansions of equations (1.28) and (1.53). An alternate procedure has been described by
Saito (1970) where the needed integrations are carried out numerically. To develop this procedure
we re-write equation (1.46) in the following form:

1/2
(1 ezcoszﬁ) -1

cos 2[3

do

dL - dA = cosP,
(1.167)

We next multiply the numerator and denominator on the right hand side of (1.167) by
(1- €2 cos2B)1”2 + 1 to obtain:

2
e” cosB,do
)1/2

dA-dL =

(1 —62c052[3 +1 (1.168)

We now let x=0} + 0 so that dx=do. Using (1.26), (1.168) becomes:

2
e cosP,dx
di - dL = b 172
1+2(14k%6in%)  +1
a (1.169)
where k2 is defined in equation (1.26). Integrating (1.169) we have:
o0
l-L=ezcosB0ﬁ dx
o b 1/2
! 1 +—(1+k sin x)
a (1.170)

In order to normalize the interval of integration we define a quantity z so that:
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x =0, + Gpz with dx = 6dz (1.171)

with 0<z<1. Then we can write equations (1.28) and (1.170):

1
s=bor [| YV 1+k%sin?(o, + 0-2) dz
le (01+ 0] (1.172)

K—L:ezcos[ioo-[fl 5 dz
0 1424 14k sin2(0'1+ oTz)
a (1.173)

The integrals in (1.172) and (1.173) are in a form that can be numerically integrated using any
appropriate numerical integration method of sufficient accuracy.

Saito (1979) has also discussed a specific numerical integration procedure to use for
evaluation of equations such as (1.170), (1.172) or (1.173) considering Gaussian quadrature
formulas. To do this we introduce a new quantity z” so that:

xX=0 +GZ
m-2 (1.174)

where Op, is given in (1.37). Equations (1.28) and (1.170) can then be written as:

1 ()
s=%oTII V1+kzsin2(cm+fz') dz’
ezcosB c 1 dz’
A-L= 0 Tf
1

2 A >
1+ —,\/ 14k sin2(6 +——Tz')
a m 2
(1.176)

Now the Gaussian quadrature procedure applied to f(x) can be written:

(1.175)

f tax= wi £ xy
-1 k=1

(1.177)

where wy are the weights and the x are the corresponding nodes. The accuracy of the evaluation
will depend on n. With this formulation equation (1.175) and (1.176) can be written as:
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b
==01G

$=201 (1.178)

with
X 2 .2 c
G =2Wi 1+k” sin Oty Zi
i=1
F 2
X-L-Ee orcosf, (1.179)
F=Y o
i=1 b 2.2 c
1+ —f\/1+k sin (csm+— ZJ
a 2 (1.180)

For the case of n=8 we have the following weights and nodes (Saito, 1979):

i zi wi

1 96028 98564 97536 23168 10122 85362 90376 25915

2 79666 64774 13626 73959 22238 10344 53374 47054

3 52553 24099 16328 98582 31370 66458 77887 28734

4 18343 46424 95649 80494 36268 37833 78361 98297

5 -4 W4

6 -3 w3

7 -23 w2

8 -Z] w1

We conclude this section by giving a step by step procedure for the solution of the direct and

inverse

For the

problem using this integration procedure.

inverse problem: Given: ¢, ¢2,L1,L2

Steps

LWOoO~ION N BN —

—t
—_O

L=1s-14
Compute By, B2 from (1.9)
Assume A =L
Compute ot using (1.57) or (1.58)
Compute (cosBp = sina) from (1.61)
Compute k2 from (1.26)
Compute o7 using (1.23) with c=oTand B=
Evaluate (1.173) or (1.179) to find (A - L)
Using the result in 8, update A to A=(A-L)+L. Repeat solution from step 4 until
convergence.
. After convergence evaluate (1.172) or (1.178).
. Compute azimuths using (1.70) and (1.71).
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For the direct problem: Given ¢1, s, 012, L1

4

Compute B; from (1.9).

Compute BQ from cosPq = sina; cosPi.

Compute k< from (1.26).

Compute 61 from (1.21).

Compute the first approximation to o as s/b.

Evaluate (1.172) or (1.178) for ot using the value of o from step 5 as the values needed
in the integral.

Repeat 6 until convergence.

Compute B2 (and then ¢) from (1.23).

9. Compute A from (1.59).

10. Evaluate (1.173) or (1.179) to find (A-L). ThenLy =L - (A-L).
11. Compute azimuths using (1.70) and (1.71).

00 AN W —

Tests described by Saito (ibid) show that this procedure gives results equivalent to the usual series
solution of the problem.

A completely different numerical integration approach was given by Kivioja (1971). He uses
as a starting premise the following equations taken from (1.3) and Clairaut's equation:

ds cosa; = M, do (1.181)
N, cosd, sina, = constant = ¢ : (1.183)

For the direct problem a suitable ds increment is chosen, the initial azimuth is used as the
starting azimuth and increments of ¢ and L computed using (1.181) and (1.182) with (1.183)
being used to compute a new azimuth. Analogous procedures are used for the inverse problem.
Jank and Kivioja (1980) have discussed additional application of this procedure but the significant
amount of computer time needed for the technique and other concerns may limit the application of
this method. Meade (1981) discusses some of these limitations.

1.5 Geodesic Behavior for Near Anti-Podal Lines

Two points on the ellipsoid are defined to be anti-podal when L=180° and ¢3 = - ¢1. Near
anti-podal points will have these conditions approximately met in a sense to be clarified later.
When the inverse solutions previously discussed are applied to anti-podal lines they fail to
converge. It is thus important to understand the general behavior of these anti-podal lines. The
general case of two points located at an arbitrary ¢ is discussed by Fichot and Gerson (1937). A
special case of the general problem occurs when the two points lie on the equator. This situation is
discussed in the next section which is followed by a discussion of the general case.



1.51 Anti-Podal Behavior for Two Points on the Equator

Consider two points located on the equator not too far apart. The geodesic will be the equator
itself with the forward azimuth at the first point 90° and the distance between the two points on the
equator is simply the arc of the equatorial circle given by:

S=alL (1.184)

Now consider the two points exactly 180° apart. The aximuth from the first point will be 0°, and
the geodesic distance will be twice the quadrant arc. Note that the geodesic is not along the equator
as it is not the shortest distance between the two points.

There, thus, must be a region in which the azimuth changes from 90° to 0° and a formulation
of the distance problem to regard the above two situations. Helmert (1896) discussed some of
these problems as well as Lambert (1942), and Lewis (1963). Thien (1967) has shown the
formulation of this problem to a high degree of accuracy.

We first consider the form that the Rainsford formulations take when the two points are on the
equator. Since ¢ = ¢p =0, we have B; = Bp =0 and equation (1.57) reduces to:

COSG = COSA or o=A (1.185)

From equation (1.59):

sinA

sinot; = ——
sinG (1.186)

which gives sinay =1 or a1 = 90°, provided A (or ©) is not 0° or 180° at which time o] is
indeterminate. In order to determine 26y, needed both in equation (1.39) and (1.56), we recall
from (1.37) and preceeding, that:

26,,=20,+0q (1.187)

However, 61=0 and we have let 0T=0, so we conclude 20mh=0. Since cosa=0, sina=1 we may
write (1.56) as:

(A-L)=fo=f (1.188)
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L

A=
1-f (1.189)

L=A(1-1) (1.190)

If we let L=180° in (1.189) we obtain a value of A greater than 180°. This cannot be correct as
there would then be a geodesic of length smaller than 180° on the sphere. This would imply an
inconsistency in the method. This inconsistency is resolved by noting that the maximum value of
A is 180°. When A reaches this value L may be computed from:

L=180°(1-1) (1.191)

Although we know L can be greater than 180° (1-f), we cannot formulate the behavior of the
geodesic after L = 180° (1-f) as we meet with the inconsistencies in the value of A previously
mentioned. The longitude given by (1.191) is the maximum longitude that can be reached with the
assumption that a;=90° or that equation (1.186) is determinate. At the point given by (1.191) this
assumption is no longer valid and other steps must be taken for the solution.

To do this we go back to equation (1.56) and consider it for the case A=180°. Now we cannot
consider a=90°. However, we still have 26, = 6 =180° so that we now write (1.56) as:

(180° - L) = fsino A, 180°
or

L= 180°(1 - fsinct Ao) (1.192)

When a=90° equation (1.192) reduces to (1.191). Thus, equation (1.192) shows how L will be a
function of the azimuth of the geodesic, after the longitude indicated by (1.191) is reached.

At this point we may summarize the behavior of the geodesic for our special case. For
longitudes on the ellipsoid less than a certain amount, the azimuth from the first point is 90°
(assuming the second point is east of the first) and the relationship between L and A is given by
equation (1.190). In this region the path is equatorial. At the longitude given by (1.191) (i.e.
A=180°) the critical point of "lift off" is reached. That is, beyond this point the path is no longer
equatorial, but rises from the equator with the azimuth of the geodesic such that equation (1.192) is
maintained.

We may also be interested in the difference in length between the geodesic and the equatorial
arc for the special case. Up to the lift off point, the geodesic coincides with the equatorial arc and
thus there is no distance difference. We now consider what happens beyond the lift off point.
Using the fact that for this special case beyond lift off A = o = 180°, we write equation (1.40) as:

s:an0=1ta(1 'ﬂBO (1.193)

where By is given in equation (1.41). By substituting equation (1.192) into (1.184) we may write:
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S =ma(l - fsinaAg) (1.194)

Subtracting (1.193) from (1.194) we have:

S-s =7ca(l - fsinoA ;- By (1 ‘ﬂ)

(1.195)
Neglecting higher order terms we can write:
f 2
Apg=1- zcos @
By=1 +—1—e 2 cos’o =1 +£cos o
4 2 (1.196)
Substituting (1.196) into (1.195) we find approximately:
2
S-s=xnaf(1- sina)
2 (1.197)

When a=90°, S-s=0, and when a=0° we have the maximum difference, maf/2, approximately.

It is of interest to apply some of the equations previously derived in this section. For this
purpose we take the parameters a = 6378388 m, f = 1/297. From equation (1.191) the lift off
longitude is 179° 23’ 38.18182. Beyond this point the geodesic rises off the equator. If we desire
to compute the azimuth of the geodesic beyond this critical point by specifying L, we use equation
(1.192). This equation can be solved by iteration as follows: Noting that Agis approximatelly
one, we may write from (1.192):

. 0 180°-L
Sino =

180° f (1.198)

where a(0) is the initial approximation to the desired azimuth. After this is obtained, the more
precise value may be obtained by iteration of (1.192), written in the form:
180° -

sinot = ——
180° fA

(1.199)

Alternately we may specify the value of o and compute from (1.192) the value of L at which the
geodesic will intersect the equator.

An alternate solution to (1.192) has been carried out by Vincenty (1975) and Bowring (1983)
who gives the following direct solution for sina.:

. 3 5 7
sina =b;Q+b3Q” +bsQ" +b;Q (1.200)
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sino =b;Q+ b3Q3 + b5Q5 + by Q7

where

o- =)
nf
b1=1+£+%2+138 £
2
-
bs=ragt
by=-pagt

With the ellipsoid parameters above some compatible values of & and L are the following:

04

o 179°23 3818182
70 179°25 49796405
5P 179°32 09.21295
3P 179°41" 4978063
10° 179°53  41'44083

A sketch of this variation is shown in Figure 1.6:

(1.200)

(1.201)
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I Lifr-ofr
179°28'38"

Figure 1.6
Azimuth vs Longitude Difference For Two Points on the Equator.

We note from this figure that the fastest change of o with L takes place at the lift off point.
This could be verified by differentiating (1.198) or (1.199).

For the same case the values of S-s have been computed from (1.195) with the values plotted
in Figure 1.7.
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Figure 1.7
Difference in Length Between a Geodesic and an Equatorial Arc for Two Points on the Equator.
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One final property of the geodesic which is of some theoretical interest lies in the fact that as a
geodesic is extended around the ellipsoid it, in general, will not close back on itself. To
demonstrate this, consider the Figure 1.8 (taken from Lewis (1963)) which is a view from above
the pole (designated N) of the ellipsoid where a geodesic crosses the equator at point P1 and
continues until it intersects the equator again at P, which does not coincide with the point A which
is 180° apart from P;. The geodesic then continues around the back of the ellipsoid until it reaches
the equator again at point B which does not coincide with the starting point P;. The shift between
P; and B may be computed using the equations previously discussed.

[

Figure 1.8
A Geodesic Extended as a Continuous Curve.

To compute P1B we first use (1.192) to express the longitude difference between A and P;. We
have

AP,=L,- L, = 180° - 180° (1 - fsinoA )
— © fo1
AP, = 180° fsinaA (1.202)
Now, the angular distance BP3, by the same procedures will be

BP, = 180° fsin (180° - o) A, (1.203)

where 180°- o is the azimuth of the geodesic at P2. Adding (1.202) and (1.203) yields the distance
BP; by which the geodesic does not close back upon itself. Thus:



In terms of distance:

BP, = 2ra fsinoA (1.205)

We should finally note that unless the distance BP;/2m is a rational number the geodesic will never
close on itself but will continue to creep around the ellipsoid. It should be clear that the curve we
are discussing here is not the shortest distance geodesic. Instead it is a curve that has all the
properties of a geodesic except for the shortest distance property.

1.52 Geodesic Behavior for Near Anti-Podal Points - General Case

The discussion in the previous section has addressed a special case of a geodesic when the
two points involved are on the equator. A similar problem must occur when two points on the
ellipsoid are approximately opposite each other. By exactly opposite we mean ¢1 = - ¢2 and L is
equal to 180°.

If two points are nearly opposite (antipodal) the standard iterative inverse procedqure described
in sections 1.21 and 1.23 will fail to converge. Such a case can be detected when |A| is greater
than 1 as computed from equation (1.67) with (1.56) or from (1.101) at the first iteration. This is
because the maximum allowable value of A is . If we consider P; fixed and P; exactly antipodal,
then there will be a region on the ellipsoid about P in which the iterative solution will fail to
converge for the line between Pj and an arbitrary point in the region. This region will depend on
the equations (e.g., 1.67 or 1.101) being used to calculate A.

Since the standard procedure fails to work an alternate procedure must be used (Vincenty,

1975). To do this we first assume as first appromxation that A is 180°. At this point equation
(1.57) can be written as:

COSG = - (COSBl cosP, - sinB, sinf, (1.206)

This formula is consistent with:

c=180°-|B, +B,) (1.207)

Note that in the near antipodal case ¢ is approximately 180°. At this point we need to find the
azimuth and length of the line between the two near antipodal points. This procedure will be an
iterative procedure.

We first rewrite equation (1.56):

A-L

sing =

f (A G + A, sinc cos20__ + ———)
’ : " (1.208)
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where the coefficients are function of f and cos2a; cos20y, can be computed from (1.62).
Knowing L, and taking A = (sign L), an approximate value of o can be found from (1.208). We
next solve (1.61) to find an updated value of A:

sing sinc

sinA = ———
cosf, cosP, (1.209)

This A value can then be used to determine an improved value of ¢ from equation (1.58) for
example. The process is then iterated back through (1.208) until the change in sina from the
previous value is less than a specified amount.

At the completion of the iteration the following values would be known: ©, A, B1, B2 and a.
We then can use (1.61) to determine 01:

sino

sinal =
cosp, (1.210)

Then:

cosoy = (1 - sin? oy)!/?

when the minus sign is chosen if:

cosP, sinf, - sinB, cosB, cosA <0

Equation (1.73) in conjunction with (1.69) can be used to determine oy while the distance is
determined using equation (1.40).

A special case of these equations occurs when ¢ = - ¢2 and we are interested in the behavior
of a1 and L in the antipodal region. In this region A = 7 so that for this case (1.207) yields
0=180°. Then (1.56) becomes the same as (1.192). Thus (1.192) holds not only for two points
on the equator but for two points of opposite latitude provided the points are within the antipodal
region. The geodesic distance is then found from equation (1.193). Vincenty notes that in this
special antipodal case the value of o and s do not depend on latitude but only on the longitude
difference of the two points which must be within the antipodal region.

As an example, consider two cases with L=179°54’ for both cases. Case one has ¢1=80° =-¢2
and case two has ¢1=1° = - ¢2. If one solves (1.192 or 1.200) and (1.193) we find (for the
International Ellipsoid):

o =9°30" 1834717
s = 20003657.4122 m

Note that only the azimuth at the equator is the same in this example.
Let's now return to the discussion of the more general antipodal problem. Again consider Py

fixed and P exactly antipodal. About P there is a locus of points inside of which the standard
iterative solution will fail. If (1.67) with (1.56) is used, the points form an approximate circle
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about P;. If the Newton-Raphson procedure (e.g. eq. (1.101)) is used the region corresponds to
the geodesic envelope described by Fichot and Gerson (1937).

Geodesic Z

Figure 1.9
The Geodesic Envelope about Ps.

To define this latter region we can construct the envelope of the tangents to the geodesic that passes
throught the same parallel on which P; lies. Such an envelope is called the geodesic evolute by
Thomas (1970). Let sy and sy be the axis lengths shown in Figure 1.9. Then Bowring (1976)
shows that:

sy = maf 1—%f)cosz[31 (1.211)
s, =maf(l 1fsin2[3 0052[3

x= vy 1 1

(1.212)
The ratio of these two lengths is:

S
=1 -lfcoszB1

S 4 (1.213)

which shows the envelope is not exactly symmetric. If 31=30° we find that sy = 50559 m and
sx=50591 m. As the latitude increases the radius of this region decreases.

The equation of the envelope would be (Bowring, 1976, p. 100, Fichot and Gerson, 1937, p.66):

2/3 2/3 2/3

X y =

l-l fsinz[i1 (l-%f)

2
nafcos [,

4 (1.214)

Here x and y are local plane coordinates whose origin is at the antipodal point. The x and y
coordinates are (Fichot and Gerson, ibid, p.65):
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2
= - afncos B, (1 - % sin” [31)(1 - ?;—fcosz B, coszal) sin’ o,
(1.215)
2 2f2
y = - afTicos ]31(1 - 901 + %ECOS2 B, sinzm1 cos” o, - an2 sinB, c053B1 .
(1 ;3cos20c )
1 (1.216)

Given the starting latitude and azimuth the coordinates of the envelope may be computed. Figure
1.10 shows a part of the anti-podal envelope for the case of ¢$1=30°, and Ly=0°.

1.521 A Convergence Problem

One problem noted by Vincenty (1975, private communication) was the slow convergence of

the standard iterative procedure when Py is just outside the antipodal region. A similar problem
was encountered with the antipodal solution when Py was just inside the antipodal circle. In each
case the problem was caused by the oscillation of A or o respectively during the iteration.
Vincenty has suggested that in carrying out a calculation that a test for oscillation be made during
the iteration. If such is the case, faster convergence can be obtained by computing a weighted
mean values of A or o as follows:

Ao (24;+3A:,+Ai)
i+1 6

(1.217)

1.6 The Behavior of "Backside lines"

To this point we have been investigating the single shortest line between two points. We
could clearly imagine another path from P1 to P2 that goes around the "backside" of the ellipsoid.
This line is not a geodesic since it is not the shortest distance, but it has all the other properties of
the geodesic.

In order to compute a backside line the usual inverse broccdure can be used with some
minor changes. Vincenty suggests the following: Compute the usual ¢ from (1.57) and/or (1.58).
Then compute a backside o:

-1( . )
Ops= 2n + tan {-sinc, COSC (1.218)

Now change the two azimuths by + 7 which is easily done by changing the sign on the numerator
and denominator in equations (1.70) and (1.71).

Several special cases arise in the backside solution. If the second point lies within the antipodal
envelope there are four distinct "geodetic connections” between the two points (Fichot and Gerson,
1937, p. 47). And if the two points are very close, there can also be three backside lines. One can
always check a backside inverse by performing a direct solution with the computed distance and
azimuth.

3/18/93
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The Anti-Podal Envelope when ¢ = 30°.
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1.7 Test Lines

When programs have been written to solve the so called long line problems it is convenient to have
test lines for which previously computed results are available. This section gives such results for
three types of cases on the International Ellipsoid (i.e. a=6378388 m, f=1/297).

1.71 Standard Test Lines

The first set of lines are rather standard not involving anti-podal or backside cases. The first four
lines have been previously used by Rainsford (1955). The fourth line was designed to be a short
line while the fifth line was one where G was forced to be close to 90°. The seventh line is one
where o112 was chosen greater than 180°. Table 1.1 gives the latitudes of the end points and the
longitude difference. Table 1.2 gives the geodesic distance and azimuths.

Table 1.1
Standard Test Lines - Position Definition

o1 /) L
Line 1 | 37° 197 54.95367 26° 077 42.83946 41° 28" 35.50729
2 | 35° 16 11.24862 67° 22" 14.77638 137° 47" 2831435
3 1° 00" 00.00000 0 59 53783076 | 179° 17" 48.02997
4 1° 00" 00.00000 P 01" 1518952 179° 46’ 17.84244
5 | 41° 41" 4588000 | 41° 41’  46.20000 ¢ 0 0.,56000
6 | 30° 00 0000000 | 37° 53 32:46584 | 116° 19° 16.68843
7 | 37° 00 00.00000 | 28 15" 36.69535 2° 37" 39.52918

Table 1.2
Standard Test Lines - Distance and Azimuths

N aj2 0.5
Line 1 4085966.7026 95° 27" 59.630888 [ 118 05’ 58.961608
2 8084823.8383 15° 44’ 231748498 | 144° 55’ 39.921473
3 19959999.9998 88° 59° 59.998970 | 91° 00' 06.118357
4 19780006.5588 £ 59 59.999953 | 174° 59" 59.884804
5 16.2839751 52° 40" 39.390667 | 52° 40" 39.763168
6 10002499.9999 45° 00" 00000004 [ 129° 8 12326010
7 1000000.0000 195° 00’ 00.000000 [ 193° 34’ 43:74060

In this computation the iteration on A-L was stopped when this value changes less than 0.5x10-14
radians or 0.000000001. The number of iterations needed averaged 5 but line 4 needs 23
iterations. A fluctuation of a single digit in the last place of the results could be expected.

Checks of a direct problem program may be made by using the results of the inverse problem
and comparing them with the original starting values.

1.72 Anti-Podal Lines

We now consider six test lines for which the second point is near the antipodal region. Table
1.3 gives the information on the point coordinates while Table 1.4 gives the azimuths and distances
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between the points. Also given is the longitude difference A and the number of iterations to
converge the solution when the Newton-Raphson procedure is used for iterations on A (non-
antipodal) and simple iteration when the sin o iteration is used.

Table 1.3
Anti-Podal Lines and Near Anti-Podal (*) Lines - Position Definition and ¢

Line 01 d2 L o

A 41° 417 45.88 | 41° 417 46.20 | 179° 59” 59.44 179° 59 59.68013
B 0 ¢ 179° 41 49778063 | 180°

c | 3 -30° 179° 40’ 180° )

D 60° -59° 597 179° 50’ 179° 5%’ 51'.’15676
E 30° 29° 507 179° 48’ 179° 49" 36.79418
F 30° -29° 55 179° 48’ 179° 54" 43.94956

Table 1.4
Anti-Podal Lines and Near Anti-Podal (*) Lines - o1, ¢, A, and s

Line | oY o A . s{(m) iteration
A [179° 58 4971625 | (° 01710.8376 | 179° 59" 59.99985 |20004566.7228 3
B 29° 59’ 599999 [ 150° ) 180° 19996147.4168 21
C | 39° 24 51.8058 | 140° 35’08‘.'1942 180° ' 19994364.6069 21
D | 20° 11’ 51,0700 | 150° 49’ 06'.'8680 179° 58’ 53:.03674 20000433.9629 14
E* | 16° 2’ 283389 | 163°59°10.3369 |179° 56' 41.64754 |19983420.1536 6
F | 18° 38 1205568 | 161° 22" 45.4373 | 179° 58’ 3.57082 | 19992241.7634 22

Lines A, B, C, and D are the anti-podal lines described by Vincenty (1975, Table 1). LineEis a
point just outside the anti-podal envelope (see Figure 1.10) and line F is a point just inside the
envelope.

1.73 Backside Lines
Backside lines have been discussed in section 1.6. The four examples given in Table 1.5 are

taken from Vincenty (ibid):

Table 1.5
Backside Geodesic Lines

Ling A B C D

o1 | 41° 417 45:88000 [ 00° 00’ 00.00000 [ 30° 00" 00.00000[ €0° 00" 00.00000
¢ | 41° 41’ 46,20000 | (P 00" 0000000 [ 30° 00’ 00.00000{ 59° 59’ 00.00000
L ® 00" 56.000 ¢° 18’ 10.21937 | ¢ 20’ 00.00000; ¢ 10° 00.00000
o | 180° 007 35423 | 194° 28’ 47.448 1198° 30’ 47.488 |[344° 56 31.727
op |180° 00" 357423 | 194° 28’ 47.448 | 198° 30’ 47488 [344° 56" 59.622

s ] 40 009 143.3208 | 40004 9382722 | 40004 046.7114 | 40 006 087.0024

3/18/93



As noted in section 1.6 it is possible to have four geodetic connections between two points
provided the second point lies within the antipodal envelope. Vincenty has constructed a test case
for this situation. The first point has a latitude of 40° and a longitude of 0°. The second point has a
latitude of -40° 1 5.75932 and a longitude of 179° 55’ 15.59578. The azimuths and distances
between the two points are shown in Table 1.6.

Table 1.6
Four Geodetic Connections
Method o172 o1 s (m)
1 170° 417 42.49809 | 189° 18" 26.51095 20002002.7295
2 272° 407 42701097 | 87° 407 15.32624 20031200.7134
3 86° 207 38715306 | 273° 24° 31722084 20017727.6841
4 10° 2070 377186 | 349° 39’ 46.25456 20005999.9995°

Method 1 is the usual anti-podal solution. Method 2 is the backside solution described in
section 1.6. Method 3 uses the initial value of A as -L and reverses the sign of the tan on the ©
backside determination. Method 4 carries out a backside solution but iterating for sinc and
specifying sinc < 0. All values have been computed on the International Ellipsoid.

3/18/93
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2. Transformation of Geodetic Data Between Reference Datums

2.1 Introduction

The history of Geodesy must include a discussion of positioning for one of the
fundamental goals of geodesy is to precisely define positions of points on the surface of the
Earth. In order to do this it was necessary to define some starting point and reference
ellipsoid. With this information and with the measured angles and distances, the usual
computation of the geodetic positions took place. In Europe, individual countries started in
the 18th century the development of national triangulation networks. These national
networks were subsequently extended over Europe in the 19th century with connections
between various countries. After World War II, extensive efforts were made to combine
the national networks into a consistent system which became known as the European
Datum (1950). The development of an improved, consistent network, incorporating
precise distance and angle observations, as well as VLBI, Doppler and SLR derived
positions, continues. New networks such as ED79 and ED87 have been developed.

In the United States the development of the geodetic network started in 1815 when F.
Hassler started geodetic measurements near New York City (Dracup, 1976). During the
remaining part of the 19th century, a number of major areas were developed including the
Eastern Oblique Arc from Calais, Maine to New Orleans and the first Transcontinental Arc
along the 39th Parallel. In 1879 the New England Datum was adopted for triangulation in
the northeast and eastern United States. The origin was chosen at station Principio in
Maryland. In 1901 the New England Datum was adopted as the United States Standard
Datum with the origin point moved, by definition, to Meades Ranch, Kansas. In 1913 the
Standard Datum was adopted for use by Mexico and Canada, and its name changed to the
North American Datum. In 1927 a readjustment took place fixing the coordinates of
Meades Ranch. This led to the North American Datum 1927 which served for almost sixty
years as a reference system for the United States Improvement in measuring techniques,
and errors in the NAD?27 led to the development of NAD83 which was completed in 1987
(Bossler, 1987). Additional discussion on this system will be found in Section 3.

The two examples described above will be typical of various countries and areas.
Clearly, each system will have its own coordinate system and reference ellipsoid. One easy
task to visualize is the conversion of coordinates from one geodetic system to another.
However we now have a number of fundamental reference systems or, in practice, a
conventional reference system. This system can be associated with a particular satellite
(Doppler or laser, for example) system. Consequently, we will be interested in the
transformation between geodetic systems and some externally defined system.

However, we must recognize that most geodetic systems are essentially horizontal in
nature. We have been speaking of horizontal datums where latitude and longitude are
determined. Vertical datums have historically been treated separately. The conversion of a
horizontal system and a vertical system into a consistent three dimensional system is
difficult because of the role of the geoid or the height reference surface. The development
of horizontal networks was hindered because of the lack of knowledge of the separation
between the ellipsoid and the geoid. This lack of knowledge made it impossible to reduce
angles and, most importantly, distances down to the ellipsoid which was the actual
computational surface. Instead, the measurements were reduced to the geoid with
computations taking place as if they were on the ellipsoid. This method of reduction to the
geoid was called the development method where the observations are "developed” on the
geoid. Because the geoid undulations can vary substantially in a large country, the neglect
of geoid undulations can cause systematic errors in the computed positions.
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An alternate method of triangulation and triliteration computation is known as the
projective method. In this procedure the observations are rigorously reduced to the
ellipsoid taking into account deflections of the vertical and the separation between the geoid
and ellipsoid. This projective method has not been widely used because of the lack of
knowledge of geoid undulations as historical networks were determined. Today the
situation is much easier, but this does not help the problems of the past.

We should also note that there are several methods in which the projective method can
be implemented. In the Pizzetti method, a point is reduce from the surface along a curved
vertical to the geoid and from there to the ellipsoid on a perpendicular to the ellipsoid. The
Helmert procedure projects the surface point to the ellipsoid along the ellipsoidal normal.
The two projection methods are shown in Figure 2.1 which represents a section in an
arbitrary direction.

P GEOP

TT Y T T rrryrey SURFACE

/\ GEOID

1
— @ Q, — ELUPSOD

Figure 2.1 Two Projective Techniques

A discussion of the projection of point P to the ellipsoid may be found in Heiskanen
and Moritz (1967, p. 180). A discussion of the projection method and the development
method may be found in Wilcox (1963).

With this section as a background we now turn to transformation procedures. In
principle we should define whether we are working with a development or projective
geodetic network. We should also distinguish between horizontal or vertical network
transformations. In practice this is rarely done and we simply form three dimensional
systems although such systems may have never been computed in three dimensions
originally.

2.2 Similarity Transformations

We are given a set of rectangular coordinates, (x,y,z), in an "old" system and we
want to transform these coordinates into the "new" system to obtain (X,Y,Z) (X). We can
first postulate a general linear (affine) transformation of the form (Leick and van Gelder,
1975):

X=Ax+Ao (2.1)

where A is a 3x3 matrix while Ao is a 3x1 vector. There are a total of 12 parameters
describing this linear transformation as can be seen from the component form of (2.1):
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X a1 a2 a3 X ap
Y |=| a1 a2 axz y([+] ax
VA a3y azy asg z azp (2.2)

The 12 parameters can be interpreted as follows (ibid): six for the orthogonality
transformation (three parameters for translation and three parameters for rotation) and 6
parameters describing the scaling transformation (three scale parameters along three
perpendicular axes whose orientation is defined by the remaining three parameters).

A special case of the general affine transformation is the orthogonal transformation.
Such a transformation preserves lengths and an orthogonal system of axes. The
coefficients in A must meet the following conditions (Leick and van Gelder, 1975, p. 15).

ajjayp +agazy + a3jazy =0
ajjaj3+agaz+azass=0
ay9813 + 89893 + 839233 =0 (2.3)
a%l + a%l + a§1 =1
2 2 2
312 + a22 + 8.32-— 1

2 2 2
a13+asx3+ 833=1

Under these six conditions, the number of parameters of the general transformation is
reduced to 6: three in Ag and three in A. The latter three are rotations about each of the
"old" axes. We will designate these rotations as wx, Wy, and @z so that this orthogonal
transformation can be written in the form:

X =R(wy, 0y, 0)x + Ao (2.4)

where R is a 3x3 orthogonal matrix that will be derived shortly. An alternate form of (2.4)
can be written if the rotations are applied to the translated axes. We then would have:

X=R(x +Aop) (2.4A)

We may now introduce a single scaling parameter, s, into the process, which yields a
seven parameter similarity transformation. Leick and van Gelder point out that two
versions of this type of transformation given by (2.4) can be written:

X=sRx+Ao (2.5)

X =s(Rx + Ao) (2.6)
Similarly two versions of the (2.4A) form can be written:

X =sRx + Ao) 2.7)

X =R(sx + Ao) (2.8)

The easiest form to interpret is (2.5) where A, represents the three translations
between the origins of the two systems; R represents the rotation from the old to the new
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system and s is the scale between the two systems. If there is no scale difference, s = 1. If
there are no rotations between the systems, R is an identity matrix, and if there are no
translations, Ag is zero.

In the next sections we will examine in detail a number of similarity transformations.

2.21 The Bursa - Wolf Transformation Model

We now consider the seven parameter similarity transformation discussed by Bursa
(1962) and by Wolf (1963). The general geometry of the transformation is shown in
Figure 2.2.

Figure 2.2. A Translated and Rotated Coordinate System

In Figure 2.2, we have indicated the translation parameters Ax, Ay, Az which will be
designated T in vector form. We have also shown the three rotation angles y, Wy, and
;. A positive rotation is a counterclockwise rotation about an axis when viewed from the

end of the positive axis in right-handed coordinate systems. Equation (2.5) can now be
written as:
X = sRz(wz)Ry(wy)Rx(x)x + T (2.9)

where Ry, Ry, R; are the following rotation angles (also see Rapp, 1984, p. 69).

1 0 0
Ry(w) = 0 COs® sin ®
. 0 -sin® cos® | (2.10)
I cos ® 0 -sin @ ]
Ry(m) = 0 1 0
L sih @ 0 cos @ | (2.11)
cCoOs® sin 0
R(®)=| sinw cosw 0O
0 0 1 (2.12)
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The product of the three rotation matrices yields the following:

RzRny =

COSWy COSW, COSWy Sinw, + sinwy sinMy COS®W,  sinWy sinw, - COSWy Sinwy COSW,
-COSMy Sin®, COSWy COSM; - SiNWy Sinwy Sinw,  sinwWy COsSMW, + COsWy SinWy sinw,
sinwy -sin@y cosqy COSWx COSWy

(2.13)

Equation (2.13) can be evaluated assuming the rotation angles are small (a few seconds of
arc) as they are in the cases we are concerned with. Under these circumstances (2.13)
becomes:

1 o -y
R:RyRy = | -, 1 o
Wy -y 1 (2.14)

Malys (1988) has studied the numerical impact of the small angle approximation in
obtaining (2.14). He found that the disagreement between an element of (2.13) and (2.14)
was at the level of 0.5 x 10-11 when the rotation angles were on the order of 1"; on the
order of 0.5 x 10-10 when the angles were on the order of 3"; and on the order of 0.5 x 10
9 when the angles were on the order of 9". An error of 0.5 x 10-9 propagates into a
coordinate error on the order of 3mm. We should note that the order of rotation is not
important when the angles are small, as (2.14) is independent of the order of rotation.

We can now write (2.9), with (2.14), as

1 o - |
X=s| -0, 1 oy [x+T

wy -ox 1 (2.15)
We now introduce a scale difference quantity, As, defined such that:
s=(1+As) (2.16)
We can introduce this into (2.15) to write:
X Ax 1 o -0y |[X
Y |=| Ay |[+(1+A4s)| -@, 1 y
z] | Az @ -ox 1 J[z (2.17)
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Multiplying out and neglecting higher order terms such as @ As we have
X =X + Ax + XAs + 0z - WyZ
Y =y + Ay + yAs - X + Wz (2.18)

Z =7+ Az + zZAs + yX - Oy

Equation (2.17) may be written in an alternate form which is convenient for some modeling
problems:

X Ax Wy X
Y|=| Ay |[+U|0y|+(1+As)| Yy
7z Az W, z (2.19)
where
0 z(1+A4s) y(1+As)
U=| z(1+As) 0 x(1 + As)
-y(1+A4s) x (1+ AS) 0 (2.20)

The above form (i.e., 2.19) has been used by Vincenty (1982) who neglected the As terms
in (2.20) which is a reasonable assumption.

From (2.18) we can identify specific changes in the rectangular coordinates due to
scale and due to rotation effects. We define the following quantities:

Axg = xAs

Ayg = yAs (2.21)
Azg = zAs

AXI' = (Dzy - O)yz

Ayr = -(zX - OZ (2.22)
Azp = -@yX - Wy

With these symbols, our seven parameter similarity transformation can be written in the
form:

X X Ax Axg Ax,
Y (=| Y|+ Ay [+| Ays [t| Ay:
z] Lz Az Az, Az (2.23)
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We see that each effect takes on the form of a translation that will depend on scale change
or rotation effects.

Some physical significance can be given to the rotation parameters if we recognize
that the diagonal elements of the rotation matrix, R, (in 2.4) represent the direction cosines
between the new and old like axes. We can write, for example, from (2.13):

cos (x, X) = cos Wy Cos W (2.24)
cos (y, Y) = COs Wx COS Wz - sin 0 Sin Wy sin (2.25)
cos (z, Z) = cos Wy COS Wy (2.26)

These angles can be expressed in the following form:

cos (x, X) = cos J,,

2.27)
cos [y, Y)=cos 9, (2.28)
cos (z,Z)=cos B, (2.29)
We then have:
15
Oy = ((0,2 + (012) (2.30)
1h
& = (03%'*'(0%) (2.31)
1
5,= (w2 +w3) (2.32)

The 8, angle is the angle between the directions fo the z and Z axes. The 8)' and 8} angles
will represent the angle between the initial meridian of the two systems only when wy and
Wy are zero. Figure 2.3 shows a geometric interpretation of the three rotations.

63



Figure 2.3 Angular Rotations in Going from x,y,z to X,Y,Z

A major problem in transformation work is the estimate of the seven (or less)
parameters given estimates of the coordinates in the new and old system along with, in
principle, the error variance matrix of these coordinates. This problem has been studied in
several reports including those by Kumar (1972), Leick and van Gelder (1975), Adam
(1982) and Malys (1988). To formulate our observation equation, we consider from
(2.19) the observables as X,Y,Z,x,y,z while the parameters to be determined are:
Ax,Ay,Az,0x,0y,0z, and As. We formulate the mathematical model for adjustment
purposes as:

Ax Wy X X
F=| Ay [+Ujoy|+(1+As)| Yy |-|Y
Az @, z Z (2.33)
The linearized observation equation is:
BV+Ax*+w=0 (2.34)

where V is the observation residuals and x* are the parameters, which may be corrections
to assumed values.

We have:
L [Ax ]
X Ay
v
y Az
V; = 2l x*= W,
v
X @,
Vy
(OZ
| VZ A
| AS (2.35)



where i is the ith station. The elements of the B matrix are (for a given station):

1001 0 0
B,=[0 1 0i0 -1 0

The elements of A would be (again for a given station and neglecting the As term in (2.20):

1 0 0:0 -z y:ix
01 0z 0 =—xiy
0 0 li-y x O0:z (2.37)

A normal adjustment can be carried out to estimate the parameters under the least squares
principle. A complication arrises when dealing with geodetic systems as the x,y,z
coordinates are not generally derived. Usually given is information on the ¢,A,h triplet
where h represents the height above the ellipsoid of the given datum. The ellipsoidal height
is the sum of the orthometeric elevation and the astrogeodetic undulation (Rapp, 1984,
Chapter 7). Since the astro geodetic undulations are determined from information including
the geodetic coordinates, the h value is intrinsically correlated with both ¢ and A.
Therefore the error correlation matrix of ¢,A,h is a 3x3 full matrix which could be
represented as:

C¢o Oor Ooh
Z¢,x,h= Oxp Oar Oan

Oh¢ Ohh Ohh (2.38)

This matrix can be propagated into the error correlation matrix for x,y,z, (or X,Y,Z). We
can write:

2, y.2=GZy 2 nG’ (2.39)

where G is a matrix representing the partial derivatives of the transformation from ¢, A, h
to X, Y, Z.

Specifically we have:

-(M+h) sing cos A -(N+h) cos¢ sinA cos¢ cosA
G =| -(M+h) sing sinA (N+h) cos¢ cosA cos¢ sink
(M+h) cosd 0 sing (2.40)

We can see that, even if 2y, is a diagonal matrix Z y ; will not be.
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In most geodetic networks the Z¢ 3 h is not rigorously available. Instead, various
rules have been suggested that represent the proportional accuracy of a given network. One
such rule was developed by Simmons (1950) based on the analysis of triangulation loop
closures in NAD 1927. This rule states that the 20 (standard deviation) proportional
accuracy between two points in NAD27 can be given by:

20 =1partin 20,0003\/ﬁ (2.41)

where M is in miles. An equivalent statement is that the standard error in meters between
two points separated by a distance of K (km):

%
E = 0.029 K /3 (m) (2.42)

Other accuracy estimates determine the accuracy of the distance (r) from the initial (origin)
point to an arbitrary point in the network. Wells and Vanicek (1975) have used the
following form:

V2
Cy= 0y =T, 3k (meters) (2.43)

where they suggest k = 0.0004 m1/3 for the NAD27 and Australian datum, and k = 0.0008
m!/3 for ED50 and the South American datum.

Other procedures for estimating triangulation accuracy have been discussed by
Bomford (1980, p.172). He expressed the standard error of position as of function of the
length of the chain, scale errors, and angular errors in the networks.

We finally turn to height accuracy. Estimates on the accuracy of the orthometric
height can be derived from the levelling process. The accuracy of astro-geodetic
undulations can also be estimated from rules (Rapp, ibid, Chapter 7). The magnitude of
error correlations between the ¢, A quantities and h would be small.

The above guidelines are only approximations that enable some estimate of Xy y ; to
be made. For proper weighting in the adjustment leading to proper statistical results, it is
important that reliable statistical information on the accuracy of the geodetic networks be
part of the solution process.

We should note here that the accuracy of the parameters being determined is sensitive
to the geometry of the given points. Ideally, a global distribution of points is needed for
good (i.e., low correlations between parameters), parameter determinations. If stations in a
small area are analyzed, it may not be possible to effectively find all seven parameters since
some will be highly correlated. For example, in some areas there will be insufficient
information to determine wy and wy.

Malys (1988) has studied various station configurations to learn what parameters are
best estimated with different station geometry. He did this by carrying out an adjustment
with the simulated station positions and examining the error covariance matrix of the
estimated parameters as a function, not only of station geometry, but of the error covariance
matrix (specifically cross covariance terms) of the gbserved coordinates. One test carried
out postulated 28 stations in the United States area (20°< ¢ < 50°; 240°< A < 300°) at 10°
increments in latitude and longitude. Malys (ibid) then examined the correlations between
various parameters. He found that the scale parameter was never significantly correlated
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with a rotation angle and that the rotation angles are only slightly correlated with each other.
He found that the dominant correlations are between the translation parameters of one axis
and the rotation parameters of another axis. For example, a correlation of 0.8 was found
between Ax and @z, and -0.9 between Az and wy. Malys pointed out on the basis of these
results that x translation can be disguised as a rotation about a distant axis.

The previous discussion has outlined a method where the seven parameters can be
simultaneously estimated. Alternate procedures have been developed that can determine As
and the rotation angles independently of the other parameters. The scale difference can be
estimated by comparing the chord distance between two points in the new and old system.
For a single line, we can write:

¢ (2.44)

where C is the chord distance between two points in the new system and c is the
corresponding distance in the old. Note that this determination is independent of translation
and rotation effects. A best estimate of As could be obtained by combining individual
estimates of As from independent lines. Special care must be taken to recognize the various
error correlations between station coordinates.

A procedure suggested by Bursa (1966, sec.5.28) enables the determination of the
rotation angles independently of the scale and translation parameters. One version of this
procedure derives the direction cosines of a line between two points in the old and the new
system. In the old system, we can write for the line between stations i and k:

- x.
cos(x,)=a= xl; -

ik
cos(y,)=b= ____ch' Yi

ik (2.45)
cos(zh)=c= Zl: Zi

ik

where | indicates the direction of the line between i and k. The direction cosines in the new
system would be designated A,B,C. We now can substitute the relationships given in
(2.18) into the expressions for A,B,C to find:

A=a+wzb-wyc

B=b-ma+ wx (2.46)

C=c+wya-wxb
Given the station information, the values of a,b,c,A,B,C along with their rigorously
determined error covariance matrix are to be computed. A least squares adjustment is then
carried out to determine the three rotation angles. However this adjustment does not

rezcoggize the implicit condition between the direction cosines (i.e., A2+ B2+ C2=1, a2 +
bs+ ¢4 =1).
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An alternate procedure that could reduce the effect of neglected error correlations is to
calculate two quantities (o and 8) from the direction cosines .and to fpmqlate two
observation equations in these variables. We first define the following quantities in the old
system.

1b
Tog=-tan —

(2.47)
c

1
(a2+b2)/2

1
8,,4= tan

with similar expressions for the new system. The three direction cosine equations now
become two equations in the two new variables:

0 - 0 cosT tand + @y sinT tand + (To1d - Tpew) = V(1) 2.48)
@y SinT + @y cosT + (Soid - Bnew) = v(B) '

Again a rigorous least squares adjustment can take place to estimate the rotation parameters
independently of the other parameters.

These methods involving As, oy, Wy, ®; are attempts to solve the transformation
problem using quantities that are invariant with respect to one or more other quantities. For
example scale is invariant to translations and rotations; rotations are invariant with respect
to scale and translations. At issue is the value of splitting up the adjustment into the various
components. Leick and van Gelder (1975) have carried out tests with the same given data.
They show that the results from either approach must be identical provided all assumptions
made are the same. They recommend that the simultaneous adjustment process should be
the preferred procedures since all seven transformation parameters and the corresponding
error covariances are obtained at the same time.

The discussion concerning the seven parameter adjustment has used the usual least
squares technique. Alternate adjustment procedures are possible. For example, Somogyi
(1988) suggests the application of the robust estimation method for the parameter
determination. In this method the weights for the observations are made dependent on the
magnitude of the residuals in various ways that are specified.

2.22 The Veis Transformation Model

This similarity transformation model was proposed by Veis (1960). This form was
an attempt to introduce rotations that could be associated with some process that took place
at the datum origin point when the geodetic datum was originally defined. We first define a
local right handed coordinate system at the datum origin point which is defined by ¢o, Ao
in the old (datum) system. The local axes are u (tangent to the geodetic meridian, positive
south); v (perpendicular to the geodetic meridian passing through the datum origin, positive
east); and w (in the direction of the (old) ellipsoid normal at the datum origin, positive up).
This system, along with the new (X,Y,Z) and old (x,y,z) rectangular coordinate system are
shown in Figure 2.4.
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Figure 2.4
The Veis Transformation Method

The vector from the datum origin to an arbitrary point (i) in the datum would be x; - xo.
Now the original alignment of the datum can be changed by considering small rotations
about the local origin axes; o about w, & about v, 1 about u. The a rotation, for example,
could be due to an azimuth error in the original azimuth definition. We want to apply these
rotations to the vector from the origin to the ith point. To do this we rotate x; - X, into the
local system, apply the rotations, then rotate back into the rectangular system. This
rotation can be accomplished using the following (see Rapp (1984, section 4.19)):

M=R; (L) Ry (90° = 69 R, (n) Ry (§) R (o) R, (90° — 0 R, (9 (2.49)

The rotated vector is then scaled by a factor (1 + Asy) where Asy is the scale change
parameter associated with the Veis transformation. The complete transformation follows,
somewhat, from the inspection of Figure 2.4. Actually we define the Veis transformation
as follows:
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xv=:r’v+xo+(l +ASV)M(%M%§’“)(X' Xo (2.50)

where Ty is the translation vector measured in the pew x frame. Multiplying out (2.49) we
have:

osing, .
-0COS Qo Sin
1 -NcosPo —E,.::P(())s),o Ao
—NsinQ, sink,
M= -asingo : 0LCOSPoCOSAo
+McosPo ~Esinko
+Msin@ocosio
0COSPoSinAg  -0LCOSPCOSAo
+Ecosho +Esinko 1
+nsin@osink,  -Msin@ocosio 2.51)

Equation (2.50) can be modified such that a linear adjustment model can be established to
estimate the seven (Ax, Ay, Az, Asy, a, &, 1) parameters of this model.

We can compare new coordinate difference computed with the Bursa-Wolf system
with those computed by the Veis system. From the origin to the ith point, in the new
system, we have, from (2.18):

AX o= (1+ Asp) Ry (0,0,,0,) (x;X) (2.52)

This difference in the Veis model would be, from (2.50):

AXio(V)= (1 + As v) M (¢O,Xo,a,§,’ﬂ) (xi'x()) (2.53)

Since AX must be the same from both equations, and (x; - xg) is the same, the equality of
(2.52) and (2.53) implies the following:

Asp = Asy 2.54)
Rp (wx, Wy, ©z) = M (¢, Ao, o, &, M) (2.55)

The scale factor in the Veis and Bursa-Wolf system are the same. The implications of
(2.55) is found by equating (2.14) to (2.51). We have:
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®x = 0 cosg cosrg — & sinkg + M sindg cosg

©y = o cosdy sinkg + § coshg +1 sindg sindg (2.56)
®, = o sind, — y cosQ,

We can invert (2.56) to write:

£ |= 0 coshg -sin)g @y

ul -cosdo singp sinkg  singp coshp |\ Px

[ o J sin ¢g cosdp sinkg  cosdp cosAg (“)Z)
2.57)

It is clear that the rotations of one system have a complete analogy with the rotations in the
other system through (2.57).

A special case of (2.51) and (2.55) occur if we assume & and 1 are zero. That such
quantities should be zero has been discussed by Wells and Vanicek (1975) and Vanicek and
Carrera (1985). In essence the authors argue that if the parallel conditions involving
astronomic coordinates, geodetic coordinates and deflections of the vertical are maintained
(Rapp, 1984, Chapter 7) at the datum origin point, § and i} (i.e., the corrections to the
assumed deflections) should be zero. This would leave only a rotation, ¢, about the
geodetic normal, as the remaining rotation. Under these circumstances equation (2.51)
becomes.

1 o sindg -0l cosdyg sinAg
Mgy = -a sindyg 1 o cosdg CosAg
o cosdg sinkg -0 cosdg cosrg 1 (2.58)

In addition the rotations about the x, y, z axes would be given by (2.56) with £ and 1} zero:

W, o, = O COsQ, COsA

w, = O cosd, sink,

y (2.59)

W, = o sing,

Equation (2.59) is also equation (3.16) in Vincenty (1985) and equation (1) in Vanicek and
Carrera (1985).

We next compare equation (2.9) (Bursa/Wolf) and (2.50) (Veis) for the transformed
coordinates recognizing the equality given in (2.54) and (2.55). We have:
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T = xo — (1+45) R(0,,0,,0,) xo +T, (2.60)

It is clear from (2.60) that the translation vectors of the two models are generally different.
This occurs because of the manner in which the Veis transformation is defined by equation
(2.50). Such a definition leads to a translation vector without geometric meaning.

2.23 The Molodensky Transformation Model

A set of differential formulas for transformation to a new coordinate system is
described in Molodensky et al., (1962, Section 3). The discussion in this book relates to
the calculation of latitude, longitude, and height changes considering eight parameter
changes. These are three rotations, three translations, and two ellipsoid parameter changes.
Our previous discussion has excluded ellipsoid parameter changes and we will modify the
Molodensky discussion, for now, to continue this exclusion. We also note that
Molodensky allowed a change to the geodetic coordinates in the old system. Our prior
discussion has not introduced such a change and therefore, in this discussion, we will set
such changes (dB, dL, dH in Molodensky's notation) to zero. Various interpretations
and/or application of the Molodensky transformation have been given in Badekas (1969) ,
Leick and van Gelder (1975) Soler (1975) and others. Our discussion will follow that of
Soler (ibid).

The Molodensky transformation is designed to consider a translation and the rotation
of a vector from the datum origin point to a arbitrary point in the system. The rotations are
about the old (x, y, z) axes. We have from Molodensky (ibid, eq. (I-3.2)) and Soler
(1976, equations (4.3-2), (4.4-5) or (A.1-5)):

X X dxo 0 o, -wy|| XX
Y |=|Y dyo |+| —®, 0 w4 || Y-Yo
Z z oz o, -0, 0 z-Z

where X, Y0, zg are the coordinates of the datum origin point. The 8xg, dyg, dz¢ are
quantities that require careful interpretation.

(2.61)

Let the rectangular shifts between the datum point, in the new system, and the old
system be dX, dY, dZ. We have:

dX Xo {(_0
dy = Y() - Y()
dz Llx |=
X Zolx (2.62)

where Xg, Y0, Zp are the new coordinates based on the new origin, and X, Yo, Zg are the
coordinates of the datum origin based on the old coordinate origin but with the new axis
alignment as seen in Figure 2.5. Note that dX, dY, dZ correspond to dx, dy, dz given in
Molodensky (ibid, eq. (1.3.4)).
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Datum Origin Point

Figure 2.5
Geometry of the Molodensky Transformation Model

Now the (f , Y, Z), vector can be obtained by rotating the (x, y, z), vector from the old
system to the new system. From eq. (2.17) we can write (letting Ax=Ay=Az=As=0):

Xo Xo 0 o -oy |[%
Y, |=|Yo |+ -0, 0 Yo
= Z - 0 Z
Z, Dy (2.63)
Then eq. (2.62) becomes:
dXx Xo Xo 0 o -o |[%
dy = Y, | Yo [-] -, O @ Yo
dz I Z, k L% W -ax 0 JlZo) (764



We now write equation (I.3.4) in Molodensky in our notation:

dX Ox, 0 o -wy ||X%
dY = Syo - -0, 0 Wy Yo
dZ v 8z, o -0, 0 ||% (2.65)

Comparing (2.64) and (2.65) we can see that

0x, Xol | %o
5yo =1Yo|-| Yo
oz, Z, Z, (2.66)

Note that (2.65) does not strictly give a translation vector as the coordinates used are
defined in different coordinate systems. Now solve (2.65) for (8x¢ , 8yo , dz¢) and
substitute into (2.61):

L5523

We can compare this equation with the Bursa/Wolf model given by equation (2.17)
(setting As = 0). We see that the equations are the same so that the Molodensky
transformation model is, in reality, the same as the Bursa/Wolf similarity transformation.

X
Y
Z

(2.67)

2.24 The VanicCek-Wells Transformation Models

A transformation described by Wells and Vanicek (1975) introduces several
coordinate systems in dealing with a network (datum) coordinate system, a coordinate
frame defined by a particular satellite observation system, and an ideal system such as the
Conventional Terrestrial System (CTS) (or its successor, the IERS Reference Frame).
Vanicek and Wells postulate station positions given in the network system is assumed
properly aligned with the exception of a single azimuth rotation about the ellipsoidal normal
at the datum origin. The space system axes (X, Y, Z) are considered rotated by amounts
(o, Wy, 0;) with respect to the CTS (X, Y, Z). Thls information is portraycd in Figure
2.6 where the datum origin is at O, and an arbltrary point in the system is i.

74



Figure 2.6
The Wells-Vanicek Transformation Method

The following quantities are three component vectors: pj, T, Ig, Isg, To, Ti. From the
figure we can see that there are two ways in which the vector to tl%c arbitrary point can be
represented in the CTS. We have:

Xi =15 + R(0x, Wy, 02); (2.68)

Xj=1g+(1+ As) R(®) (10 +Ioi) (2.69)
Equation (2.68) assumes the scale of the satellite system and CTS are the same. In (2.69)
the scale difference between the CTS and network is As as dealt with earlier. In (2.69) the
As is applied to the vector from the center of the datum to the point after this vector is
rotated about the ellipsoid normal at the datum origin.

The elements of R(wy, Wy, ®;) are given by (2.14) while the elements of R(a) are
given by (2.57). If we let R(0x, Wy, ;) =1+ Q, and R(a) =1 + A(a) we can equate
(2.68) and (2.69):

Is + Pi + Q(wy, Wy, 0)P; =Ig+Io +Loi + A(Q) (To + Ioi) + As(fo + Ioi) (2.70)

With sufficient accuracy we can let 1 + o = pj in the last two terms in (2.70). We then
can write:

[Q(wx, Wy, ) - A(®) - 1As] i - (tg - Is) =Io+ Li - Pi (2.71)
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In this equation we have the right hand side known while there are a set of parameters to be
determined. These values are y, (uty, ®;, O, As, and three translation difference terms of
(1g - 1s) for a total of 8 parameters if only one datum is being considered. If we consider
data from several different systems we will have an additional five parameters per datum.
Since Q(wx, Wy, ®z) and A(a) enter in the same way on pj, it will not be possible to
separate ¢ from @y, Wy, W, if only one datum is being considered. We also conclude that
we must have a minimum of two stations per datum to achieve a solution.

Wells and Vanicek (ibid) applied this transformation model to data given on several
geodetic datums. Since the data available at that time was sparse, their results would be
regarded as encouraging rather than definitive. Additional computations are now warranted
with the improved satellite derived station coordinate that are available.

2.3 Geodetic Coordinate Transformation

The discussion in the previous section has been directed to the conversion of
rectangular coordinates in an "old" system to coordinates in a "new" system. We
recognized that the "old" coordinates would be determined by combining horizontal and
vertical datum information together. Now that such transformations have been developed it
is time to consider going back to a latitude, longitude, and ellipsoid height. Assume that
we have the transformed rectangular coordinates X, Y, Z. We want to obtain the ¢, A, h
with respect to.some ellipsoid whose parameters (a,f) are defined. The procedure for doing
this has been discussed via several techniques in Rapp (1984, Section 6.8) and presents no
special problems.

An alternate method is to develop a differential procedure. We can write (2.23) in the

following form:
X Ax
Y| = Ay
Z Az Jr 2.72)

where [Ax, Ay, Az]T represent the sum of the translation, scale, and rotation effects shown
on the right hand side of (2.23). An analogous equation in geodetic coordinates would be:

+

X
y
z

MK Ad
Al=S{A+HT AL
i h Ah

(2.73)
In both (2.72) and (2.73) we regard the quantities as differential in nature. Our next task is

to calculate A, AA, Ah as a function of [Ax, Ay, Az}t and ellipsoid change (old to new)
parameters.

2.31 A Differential Projective Transformation Procedure

We first repeat the standard equations relating rectangular and geodetic coordinates:

x = (N + h) cosdcosA
y = (N + h) cosd sinA
z=(N(1-e?) + h) sin¢ (2.74)
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We differentiate each of these equations with respect to five variables: ¢, A, h, a, f. For
example:

dx=§id¢+2¥—dk+a—xdh+a—xda+a—xdf

8¢ dA oh da of (2.75)

with similar equations for dy and dz. The dx, dy, dz quantities can be associated with the
total changes [Ax, Ay, Az]T or with any of the specific changes associated with
translation, scale, or rotation.

The derivatives needed for (2.75) and the other expressions are as follows:

9 =— (M + h)sing cosA, o =— (N + h)cos¢ sinA,
o
0
Y (M + h)sing sinA, Do (N + h)cos cosA,
0@ oA
0
9z _ (M+h)cose, Z o,
oQ oA
0x _ cos@ cosh 9x__ asin’p cosp cosA 5
da w7 de? 2wW3 ox - cosd cos A
dy _ cosg sinA dy _ asin’p cosg sink E;h
da w o’ De2 W3 a—y= cosd sin A
h
1 — e2)si
% _{(zeksing, % L Msintg-2Nysing 2
da oe? 2 oh (2.76)
where:
W2 =1 - e2sin2¢
2
M = 3_(122 N =2
3 W
W (2.77)
To find changes with respect to the flattening, we note that:
2
9_290 %
o6 2 o
¢ (2.78)
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Since e2 = 2f - f2 we have:

2
& _2a-p

of (2.79)
Using the derivatives in equations (2.76) and (2.79), we can write the three equations
implied in equation (2.75) as follows: ‘
dx = -(M + h) sin ¢ cos Ad¢ - (N+h) cos ¢ sinAdA + cos ¢ cos Adh
- ) sin?
+cosq)coskda +a(1 f) sin (1)(:05(1)cos7»df
W w3 (2.80)

dy = -(M +h)sin¢ sin Ad¢ + (N+h) cos ¢ cos AdA + cos ¢ sin Adh

. . 2 .
cosq)smlda +a(l-f)sm (bcosq)smkdf
W w3 (2.81)
dz = M+ h) cos ¢dd + sin ¢dh

2. .
+(1_e\3vsm¢da + Msin’g-2N) (1-£) sin ¢df (2.82)

Various approximations may be made to equations (2.80), (2.81), and (2.82) to simplify
them . For some computations this may be desirable, but when calculations are done on a
computer no reduction appears called for. As an example of a simplification, we write the
equations assuming the coefficients of the differential changes refer to a spherical earth of
radius a, and that h = 0. We find:

dx = -a sin@ cosAd¢ - a cos¢ sinAdA + cos@ cosA (dh + da + a sin?¢df) (2.83)
dy = -a sing sinAd¢ + a cosd coshdA + cos® sinA (dh + da + a sin2¢df) (2.84)
dz = a cosd@ + sing (da + dh) + a sing (sinZ@ - 2)df (2.85)

These equations may also be found in Heiskanen and Moritz (1967, p. 206, eq. 5-
54). A better approximation to equations (2.80), (2.81) and (2.82) may be found in
Vincenty (1966, eq. 5). It should be noted, however, that the equations (2.80), (2.81) and
(2.82) are the exact differential equations. The accuracy of these equations will depend on
the magnitude of the changes since, implicitly, the terms are first terms in a Taylor's series,
with terms in A@2, AA2, Ah2, Aa2, Af2 and higher powers neglected.

Given dx, dy, and dz as well as da and df, we must now develop equations to give us
do, dA, and dh. We may note that solution 2 obtained by regarding (2.80), (2.81) and
(2.82) as three equations in three unknowns. If we were to rewrite these equations, we
could put them in the matrix form shown symbolically as follows:
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A1 A Az de Dy
B; B; B3 dr| = | D,
C G G dk Ds (2.86)

where the terms A, B, C, and D are known quantities. Consequently, d¢, dA, and dh may
be found by inverting the coefficient matrix and multiplying by the D vector. This
procedure is inconvenient if we need to consider only a single change, and consequently,
we proceed to find separate expressions for d¢, dA and dh.

To find d¢, multiply (2.80) by -sin@ cosA; (2.81) by -sing sinA; and (2.82) by
cos®. Add the resulting equations to find d¢ separately. To find dA, multiply (2.80) by -
sinA; (2.81) by cosA; and (2.82) by zero, and then add as before. To find dh, multiply
(2.80) by cos® cosA; (2.81) by cos® sink; and (2.82) by sin ¢. We find:

. oo ezsin(p cos®
(M + h)d = -sin@ cosA dx - sin@ sinA dy + cos¢ dz + —w da

+ sing cosd (2N + €2 M sin? @) (1 - f) df 2.87)
(N + h)cos@dA = -sinAdx + cosAdy (2.88)

_ : : a(l-1) . 2
dh = cos¢ cosAdx + cos@ sinAdy + singdz - Wda + W sin‘odf (2.89)

Equations (2.87), (2.88), and (2.89) represent working formulas for converting geodetic
coordinates referred to an old system to a new system. We must specify the shifts by Axr,
AyT, Azt (which are dx, dy, and dz) and the parameters of the new ellipsoid. Note that
dx, dy, dz will only be constants if there is no orientation and scale effects. If this is not
the case, dx, dy, dz will be position dependent. Spherical approximations to (2.87),
(2.88), (2.89) are given in Heiskanen and Moritz (1967, p. 207, equation (5-55) with a
more accurate approximation being given by Vincenty (1966, equation (10)).

2.31.1 The Molodensky Geodetic Coordinate Transformation

Section 2.23 discussed the rectangular coordinate transformation using a method
described in Molodensky, et al.,, (1962). Equations (I.3.5, 1.3.6., and 1.3.7) in
Molodensky, et al., can be used to calculate changes in latitude, longitude and height as
(2.87), (2.88), and (2.89) do. As the Molodensky formulas are used by a number of
different groups (e.g., see DMA WGS84 report, 1987), they are repeated here in a form
similiar to our previously derived values. We have:

2.
€ sin ¢ cos ¢

(M + h)dd = -sin¢ cosAdx - sin sinAdy + cos¢ dz + W

+ sin cosq{Mf + N%)df (2.90)

(N + h) cos ¢ dA = -sinAdx + cosAdy (2.91)

dh = cos¢ cosA dx + cosd sinA dy + sing dz - W da + a (1&; D sin2¢ df (2.92)
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We see that (2.91) is identical to (2.88); (2.92) is identical to (2.89) and (2.90) differs from
(2.87) only in the coefficient of df.

A set of "Abridged Molodensky Formulas” can be obtained by setting h equal to zero
and simplifying the coefficients of da and df. These formulas are:

Md¢ = -sin¢ cosA dx - sin¢ sinA dy + cos¢ dz + (adf + fda) sin2¢ (2.93)
NdA = —sinA dx + cosA dy (2.94)
dh = cos¢ cosA dx + cos¢ sink dy + sind dz + (adf + fda) sin’ - da (2.95)

2.31.2 Geodetic Coordinate Changes Caused by Changes at the Datum Origin Point Due
to Shift and Ellipsoid Changes.

Equations (2.87), (2.88) and (2.89) are convenient if the values of dx, dy, and dz are
given. In some cases we desire to know the changes in coordinates at any point in our
system if the coordinate changes at the origin, and ellipsoid changes are given. This, of
course, may be done as a two-step problem, first computing dx, dy, dz from (2.80), (2.81)
and (2.82) and then applying these values in (2.87), (2.88) and (2.89). However, we seek
a set of equations that eliminates the two-step procedure. First we assume in the following
discussion that the changes being considered are due solely to the origin shifts (dx, dy, dz)
and ellipsoid parameter changes. The effects due to the other quantities will be considered
later.

Now, evaluate (2.80), (2.81), (2.82) at the origin point designated by subscript 0.
We then have:

dx = -(M + h)gsin ¢y cos A (doy— (N + h)gcos @, sin A (A, + cos @gcosA gdhy,

cosP, sin A, g a (l—f)sinz(pO cos P cos A

+
W, a S df

(2.96)

dy = -(M + h) sin @ sin A [d,+ (N + h), cos@, cos A dA,+ cos @, sin A, dh

cos ¢, sin A d a(l-f) sinl)(pO cos @, sin A

+ af
W, a Wy’

(2.97)

80




2, .
(1-¢7) sing,

dz = (M + h)gcos ¢, dp,+ sin Adh o+ W
0

+ (M sin’@ - 2N sin @) (1 - f) df

(2.98)
Now substitute these equations in (2.87), (2.88), (2.89) to find:
M +h) dp = M + h)( (cos¢ cos@, + sin @, sin @ cos AL) dg,
-(N + h) sin ¢ cos @ sin AAdA,,
+ (sin @, cos @ - cos @ sin @ cos AX) dhy
2
+ [Vill—a (sin @, cos @ (1-c2) - €os @, sin @ cos AL) "SW_ sin ¢ cos @] da
+ (sin @y cos @ (Msin” ¢-2N) (1 - f) - K¢ sin @ cos AL
+ sin @ cos ¢ (1-D) (2N + ' Msing)) df (2.99)
(N + h) cos @dA = (M + h) sin@p sin AAd@g
+ (N + h)g cos @g cos AL dAy
- cos@p sin AAdhg
_COs Qg _.
W sin AAda
- Ko sin Adf (2.100)
dh = (M + h), (cos@y sin@ - sin@,, cos cosAL) dg,
+ (N + h) cos @ cos @, sin AL dA,,
+ (sin @, sin @ + cos @, cos @ cos AA) dhy
+ o= (sin @y sin @ (1 - €) + cos ¢ cos ¢ cos AL - WW,) da
0
. .3 . a .
+ (cos @ cos ALK+ sin ¢ (1 - f) ((Msin 2NsinQ)g + = sin @)) df
¢ 0 ¢ - Do+ SIn @ 2.101)
where:
AL=2X-%,
a(1-f) sin’ @ COSP,
0 =

Wo
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The spherical form of equations (2.99), (2.100), and (2.101) may be found in Heiskanen
and Moritz (1967, p. 207, equation (5-57)).

Vening-Meinesz (1950) derived equations similar to (2.99), (2.100), and (2.101).
Although in terms of the deflection of the vertical they may easily be converted to the form
of the above equations. His derivation makes use of some series expansions that generally
retain terms including £2.

Examination of equations (2.99), (2.100) and (2.101) shows that they may be written
in the general form as follows:

d¢=E do,+ E[dAy+ Egdhg+ Eda + E4if
dA = Fd@,+ FdA ,+ Fqho+ F da + F(df

dh = G doy+ GAAy+ Ggho+ G da + GAf (2.102)

where E;, Fj, and G, are coefficients determined by comparison of (2.102) with (2.99),
(2.100) and (2.101).

Again we should note that the d¢, dA and dh terms in (2.102) are due only to origin shifts

and ellipsoid changes. We have implicitly assumed that the axes of the two systems are
parallel and the scale difference is zero.

2.31.3 Differential Change Formulas in Terms of Deflections of the Vertical and Geoid
Undulations (or Height anomalies) .

From previous discussion we know that we can write, with sufficient accuracy for
this differential purpose:

E=0-0¢
N = (A - A)os ¢ (2.103)

If we let H be the orthometric height of a point P and N the geoid undulation at the point we
have:

h=H+N ' (2.104)

To find the change in these quantities we differentiate them, noting the @ , A and H are
independent of the geodetic datum coordinate system. Thus we have:

d¢ = d
dn dx cosQ
dh = dN

(2.105)

At the datum origin we write from (2.105):
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dgo =-d&o

-d
Do = Zoso6
dh =dNg (2.106)

with similar expressions holding for the arbitrary point in the system. Then we may write
(2.102) in the form:

d§ =E,’d§,+ E;’dny+ E3’dN+ E;'da + Es5’df
dn="F;’dg+ F,'dny+ F3'dN+ F,'da + F5'df
dN =G; ‘d§o + G2 ‘dng + G3 ‘dNo + G4 "da + Gs “df (2.107)

Thus we interpret d€o, and dno as changes of the deflections of the vertical at the origin.
dno may be considered as the change from an adopted geoid height to a better or absolute
value.

We can also express (2.87), (2.88) and (2.89) in a form where the changes computed
are of deflections and undulations. We have:

da = El 7dx + E2”dy + E3”dZ + E4”da + Es”df
dn=F,”dx + F,"dy + F3"dz + F,"da + F5"df
dN = G, "dx + G “dy + G3 "dz + G4 "da + Gs “df (2.108)

In equations (2.103) and (2.104) the E, F, and G coefficients (single and double
prime) can be found by simple substitution and comparison with the original equations.

2.31.4 Special Cases of Transformation Involving Origin Shifts and Ellipsoid Parameter
Changes.

There are certain cases where the general cases derived here reduce to a simpler form.
Suppose we consider the case when the rectangular coordinates change due to changes of
0, K, and h with no change of the reference ellipsoid parameters. Thus, da = df =0 so that
equations (2.80), (2.81) and (2.82) become:

dx = -(M+h)sing cosAd¢ -(N+h)cos@ sinAdA +cos¢ cosAdh (2.109)
dy = -(M+h)sing sinAd@ +(N-+h)cos® cosAdA +cos¢ sinidh (2.110)
dz = (M+h)cos@ do+ sin @dh (2.111)

Under the specification that da = df = 0, equations (2.87), (2.88) and (2.89) become:

(M+h)do = -sin@ cosAdx - sin@ sinAdy + cos¢pdz (2.112)
(N+H)cos@dA = -sinAdx +cosAdy (2.113)
dh = cos¢ cosAdx +cos@ sinAdy + sin@dz (2.114)
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Both cases could be represented in matrix form as:

dx -(M+h)sing cosA  -(N+h)cos@ sinA cos¢ cosA do
dy | = | -(M+h)sing sinA  (N+h)cos® cosA cos¢ sinA dr
dz M+h 0 i
(M+h)cose sing dh (2.115)
and
(M+h)de -sin@ cosA -sing sinA cosg }( dx
(N+h)cos@dA |= -sinA COsA 0 dy
dh i i dz
cos@ cosA cosQ sinA sin@ 2.116)

Equations (2.115) and (2.116) are only valid when no ellipsoid parameters are changed.

A similar procedure could be adopted if no change is made in the coordinates at one
point in the geodetic network, but the ellipsoid parameters are changed. From (2.80),
(2.81) and (2.82) we find:

_ COSQ cosA a(1-f)sinZ@ cos@ cosA
. x l_ . 2 . A'
dy = cosc%vsm da + a(1-f)sin“p cos@ sinA . (2.118)
-e)2si
dz = LI gz + (MsinZg - 2N) (1-Bysing df (2.119)

The change produced at any other point in the system would be given by substituting these
equations into (2.87), (2.88) and (2.89). A similar procedure may be applied directly
through equations (2.99), (2.100) and (2.101) where in this special case d¢g, dAg and dhg
are zero.

Another special case occurs when we define the centers of the two ellipsoids to be
coincident. We then set dx = dy = dz =0 in equations (2.87), (2.88) and (2.89) to obtain:

2 .
(M+h)dg =222 da + sing cosg (2N + e2Msin2g) (1 -f) df (2.120)
(N+h)cos@dA =0 (2.121)
dh =-Wda + é(vlv;f) sin2@df (2.122)

Note that the change in latitude due to changes in a are small (they depend on €2); there is
no change in A (due to symmetry reasons), and the change in height is essentially the
negative change in the equatorial radius.

84



2.31.5 Geodetic Coordinate Changes Due to the Scale Change

We are now interested in the changes of ¢,A, and h due to the scale change As. We
take the rectangular coordinate changes from (2.21) and substitute them into (2.116) where
x,y and z are given by (2.74) we find:

Ne2 sin2
doAs = - _qu—) As (2.123)
dAAs =0 (2.124)
dhAs = (aW+h) As (2.125)

We see that the latitude change is zero, in a spherical approximation, indicating the
insensitivity of the latitude to scale. The longitude change is zero due to symmetry reasons.
The dominant effect of the scale change is on height. If As = 106, dh is approximately 6.4
m.

2.31.6 Geodetic Coordinate Changes Due to the Three Rotation Angles
The rectangular coordinate changes introduced by the wy, Wy, @, rotations in the

Bursa/Wolf model are given by equations (2.22). We can substitute these equations into
(2.112) using (2.74) for x,y and z. The results are Soler (1976, p.70):

_ aW+h| . aW+h
dop=- o, [_—M+h ] sind + @, SV cosA (2.126)
2 2
Ne Ne .
dig=-w,+ O)x[l- m] tandcosA + (oy[l— N—Hl] tangsinA @.127)
dhgr = -wxNeZsindcospsini + myNezsin¢cos¢cosl (2.128)

An alternate form for (2.126) and (2.127) has been given in Bursa (1965, eq. (18)):
dor = -0x(1 + €2 cos2¢)sinA + wy(1 + €2 cos2¢)cosA (2.129)
dAR = -, + wx(1-€2) tandcosA + wy(1-€2) tandsin) (2.130)
We see that the latitude change is primarily a function of wy, ®y and the longitude. The
longitude change is a function of the three rotation angles, latitude and longitude. Note that

at low latitudes (tan¢ is small) the longitude change will be primarily -w,. The change in
height does not depend on ®,. For a 1” rotation the maximum effect on height is 21 cm.

2.31.7 The Total Change in Geodetic Coordinates From the Sum of the Individual
Components
In our previous discussion we identified 9 change parameters (3 rotations, 3

translations, one scale, 2 ellipsoid). We have now isolated these changes with the total
change being the sum of the individual changes. In brief summary we have:
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Translations Equation (2.116)

Ellipsoid Parameters Equations (2.120, 2.121, 2.122)
Scale Equations (2.123, 2.124, 2.125)
Rotations Equations (2.126, 2.127, 2.128)

If one is not interested in the individual component changes the direct approach as
discussed in Section (2.3, eq. (2.72)) can be used. A similar form of these equations may
be found in Vincenty (1985, p. 191).

2.31.8 Azimuth Changes Due to Rotation Parameters

As the coordinates change in going form an old to a new system, so must the geodetic
and astronomic change. We first examine the geodetic azimuth change by expressing the
normal section azimuth between two points in the following form Rapp (1984, eq. (4.71));
Vincenty (1985, eq. (4.2)):

-Axsi
tancL = — xsink + A.ycosk 2.131)
-sin¢(AxcosA + Aysind) + Azcosd

Also of interest here is the Laplace equation (Rapp, 1984, eq. (7.29)). We write:

o = A - (sind - cosd cosatanV)(A - A) - sina. tan V(D - ¢) (2.132)
where the @ and A designate astronomic quantities and V is the vertical angle from the
observing point to the observed point. In evaluating (2.132) we first consider corrections
to the astronomic coordinates associated with changes in the astronomic system reflected in

oy, Oy and ®,. In analogy with (2.129) and (2.130) (and with Rapp (1984, eq. (7.1) and
(7.2)) we have:

d® = -sinAwyx + cosAmy (2.133)

dA = tand (cosA wyx + sinAwy) -, (2.134)

The change in the astronomic azimuth follows from Rapp (ibid, eq. (7.3) or Vincenty
(1982, eq. (4.9)):

dA = (coslcox + sinl(oy) /cosd (2.135)

These changes implicitly reflect a rotation about a pivot point at the center of mass of the
system.

The changes in the geodetic Laplace azimuth caused by change in the astronomic
system would be (from (2.132)):

do, = -sinatanVdd - (sind - cos cosatanV) dA +dA (2.136)
Using (2.133), (2.134), and (2.135) this becomes (Vincenty, 1885 eq. (4.8)):
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dog = (cosdcosA + tanV(sinpcosA coso+sinAsina)) wx +
(cosdsinA + tanV(sindsinAcosc - cosAsina))wy + (sing - cos cosatanV) w, (2.137)

We next consider the change in the geodetic azimuth due to change in the geodetic
coordinates. Differentiating (2.132) we have:

dog = sinatanddo + (sing - cosdcosatanV) di (2.138)

We now must consider the appropriate procedure for the calculation of d¢ and dA.
Vincenty (ibid) used the Molodensky approach (see section 2.23) where the rotations take
place about the datum origin point. The rectangular coordinates changes would be given by
the third term on the right hand side of (2.61). Following Vincenty we write:

dx] [dx] [dx
dy |=|dy] -{dy
dz dz |y [dz | (2.139)

where:

dX (0)(

dy =U(x,y,z) Wy

dz | (0% (2.140)
and:

dx ®x

dy | = U(x0y0.20) | @y

dz | 07 (2.141)

where U is given by equation (2.20) where As can be neglected. The "r" subscript in
(2.140) indicates the rotation effect while the "t" indicates the translation of the center of the
coordinate system.

The value of d$ and dA in (2.138) is now considered to be made up of 2 components:
one due to the rotation and one due to the translation caused by the rotation about the datum
origin point. We write in analogy to (2.139):

d¢ = dor - dot
d\ = dA, - dAy (2.142)

Using (2.129) and (2.130) as d¢; and dA;, and substituting (2.142) into (2.138) we have
(Vincenty, 1985, eq. (4.01)):

dog = (sindtanfcosA - tanV(sinpcosAcoso + sinAsina)mx +
(sinptangsinA -tanV(singsinAcosca - cosAsina))wy + (-sing +
cospcosatanV)wz - sinatanVddt - (sind - cosdcosotanV)dAs (2.143)
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We now add (2.137) (for doa) and (2.143) (for dog) together to obtain the total change in
a geodetic azimuth computed through the Laplace azimuth (Vincenty, ibid, eq. (4.11):

do = (cosAwx + sinAWy)/cosd - sinaitanVddt - (sing -cospcosatanVydAr  (2.144)

The d¢¢ and dA¢ terms are found by substituting (2.141) into (2.116) (See Vincenty, ibid,
2.16, 2.17 for dq)t, d;\.t)

Special cases of these transformations are discussed in Vincenty (ibid). The general

equations can be used in the adjustment of terrestrial networks with space defined positions
as will be discussed in a later section.

2.32 A Differential Development Transformation Procedure

The equations of the previous section have been used assuming the projective method
has been used in the calculation of our geodetic network. If the development method has
been used, there is an argument that an alternate procedure—a development based

procedure—should be used. In establishing this method we consider the following change
possible:

dég, dAg, coordinate changes at the datum origin point;

doy, a change in the azimuth of an initial line although it is an idealism to believe an
actual network is oriented by a single azimuth;

ds, the effect on ¢ and A of the lack of a reduction of distances from the geoid
to the ellipsoid;

da, df, the usual ellipsoid parameter changes.
We may represent the above changes in the following form:
d¢ = F1(d¢o, dAo, dap, ds, da, df)
dA = Fao(ddg, dAg, day, ds, da, df) (2.145)

If we determine the geodetic azimuth at the origin point such that the Laplace equation is
fulfilled we have:

ag = Ag - (Ag - Ag)sindg (2.146)

If we consider that both the astronomic azimuth and geodetic longitude are subject to
change at the origin, we have

dag = dA + dAgsingy (2.147)

On the other hand, assuming an astronomic azimuth is fixed, the value dogis simply
dAgsindyg so that such change may be combined with the dAg indicated in equation (2.141).

Equation (2.141) expresses changes previously discussed as differential formulas of

the first and second kind (Zakatov, 1962, Chapter II, or Rapp (1984)). Formulas of the
first kind define the effect at an arbitrary point of dgg, dAg, doy, and a ds change while
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formulas of the second kind consider ellipsoid parameter changes (i.e., da and df). Of the
various formulas available, the earliest and most comprehensive are probably due to
Helmert (1880, Chapter 12, Section 15). We now give these equations as taken from Bursa
(1957) for an arbitrary point in the development computed geodetic network:

da
ddi = p1d@o + p2cos@odAg + pads; + padog + ps - + pedf (2.148)
cos@idAi = q1d@p + qacosPodA + q3dsi + g4dop +qs % + qedf (2.149)
The p and q coefficents are given below:

_M My .
p1= WOSAl q = %)sm(posmlﬂ.
p2=0 Q2 = SECOOCOSP;

_ 2C0s%io _ -Singio
p3= M q3 N;

_Ro. Sigoo ~Ro. S o
P4 =}y, Sin g, Sinctio G4 =7 S Ry 080

_ 5{C0S00 _ Sisinaio

T M =N
pe= [AQ(2 - W-3—;2n sin2@Qm) + q = -Aksin2@qcos@g _W_d-()ce

AN2 . 3 1
+77 sin PmCcOoSPm] _\/ﬁ

®m = 12 (@g + @) , AL = A; - A, (positive east), Rg = VMyNp (2.150)

In these equations i indicates an arbitrary point in the system while the subscript zero
refers to the origin at which the changes are originated. ojg indicates the azimuth from
point 1 to the origin. -

ds; represents the desired change in the length of the line between the origin and i
caused by the reduction from the geoid to the ellipsoid. Recalling the formula for base line
reductions we may estimate ds; as follows:

dsi=-¢ N (2.151)

where N is the average astro geodetic geoid undulation from the origin to point i with
respect to the old ellipsoid, and R is a mean radius of curvature along the line.

It should be clear now that we do not consider in (2.144) and (2.145) quantities
considered in the projective system such as orientation changes, scale changes, etc. Such
changes do not play a direct role in the development method transformation formulas. In
addition (2.148) and (2.149) are generally considered to have a working radius of 600-
800km (Zakatov, 1962, p.113).
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Equations (2.144) and (2.145) may also be written in terms of deflections of the
vertical using equation (2.105) applied at the origin and at the arbitrary point in the system.
Then we write:

, , o , da,
d€;=p’1 o +p ANy + P 3ds; + P'gdong + s -+ Pdf (2.152)

, , , , , da
dn;=q’; 8o +q',dNg + q'3ds; + 4" dog + q's —— + @' df (2.153)

For consistency purpose all coefficients, p and q in (2.152) and (2.153) have been primed,
even if they do not change in going from (2.148) and (2.149) to (2.152) and (2.153).

If we assume that dA of equation (2.147) is zero, we note that:
dog = dAgsingp = -dnotan@g (2.154)

which may be substituted into (2.152) and (2.153) to yield:

’ ’ ’ ’ ,da /
d&,= py'dE +{py - p4tangy) dng + pds; +ps 2 TPedl (2.155)

, o , ,da .,
dn, =q; d§0+(q2 -qy tan(Po) dn +q3'ds; +q5" -+ q¢'df (2.156)

Equations (2.148) and (2.149) or (2.152) and (2.153) may be used to implement
system changes in development computed triangulation. Notice that they are not written in
terms of dx, dy and dz as the corresponding projective method equations. In addition the
development transformation considers an azimuth change and a distance change which is
not found, or required, in the projective system transformations, except when network
scale and orientation is being considered. The derivation of the development equations is
not as concise as the projective transformation. It obviously involves some assumptions
not required in the projective system.

2.32.1 Comparison of Certain Projective and Development Change Formulas

We are now in a position to compare changes in ¢ and A due to changes at the origin
form either the projective method as expressed through equation (2.99), and (2.100) or by
the development method as expressed through (2.148) and (2.149). Comparisons can be
made analytically and/or numerically to determine the differences between the two methods
of computing the differential change. Such a study has been carried out for all change
expected by Rais (1969). His results show that for small arc distances away form the
origin the results form the projective and development methods (with ds = Q) are very
close. However, as the arc distance increases so does the difference between the methods.
For example, out to 20° from the origin the differences are on the order of 0."05. This is
to be expected as (2.148) and (2.149) have a limited distance over which they are to be
considered highly accurate. In addition the inclusion of a ds term not equal to zero in the
development formulas causes a greater difference with the projective method results that
when ds was set to zero.
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2.33 Non-Conventional Transformation of Geodetic Coordinates

The methods discussed in the previous sections assume that there is some relationship
that can be simply established between a new and old coordinate system. This relationship
is modeled by a selected number of parameters which is usually nine. In reality the actual
parameterization is not as simple as implied by our models. The coordinates in a typical
geodetic datum, that has been built up over a period of time, do not have a uniform
accuracy. Distortions can exist as new (and more precise) data are fitted to an older
geodetic frame. That such distortions exist was used as one argument for the development
of the North American Datum 83 to replace the North American Datum 1927. Because of
the complex nature of these distortions, it is not possible to use the simple models
described so far in this report.

An alternate method has been used in converting NAD27 coordinates to WGS84
(DMA, 1987). In this method the differences between the geodetic coordinates of both
systems are modelled by a polynomial of sufficient terms to represent the differences over
the network, to a given degree of accuracy. In the specific case of the NAD27 to WGS84
the transformation equations took the following form:

AY” = Ag +A1U + AV + A3U2 + A4U3 + AsU2V + AgU2V + A7V3 + AgU3V + AgUV3
+A10V4 + A11U5 + AppUAV + A13U2V3 + A1a V3 +A15V0 + A16U7 + A17V7 + A1gU8 +

A19V8 + ApgU9 + Ar1USV3 + AppU3V9 + Ap3U4VI (2.157)
where:
U=K(@-37)
V =K(A - 265) (2.158)

K =0.05235988
¢ = latitude in degrees
A = longitude (positive east) in degrees

Similar, but not identical equations were used for AA and AH. The number of terms to be
retained can be determined by usual significance tests.

An empirical transformation between NAD 1927 and NAD 1983 coordinates (the
datums will be discussed in the next chapter) has been developed by Dewhurst (1990).
This procedure interpolates datum position differences at known points using a procedure
that minimizes "the total curvature associated with surfaces defining the differences
between the datums" (Dewhurst, ibid.).
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3. The Determination of Geodetic Datums and Ellipsoid Parameters
3.1 Introduction

The discussion in Section 2 has assumed that we have been given geodetic information
on a defined geodetic datum. The horizontal coordinates (usually ¢ and A) were combined
with vertical coordinate information (orthometric height and astro-geodetic undulation) to
defined a three dimensional position with respect to the ellipsoid associated with the datum.
Given the ellipsoid parameters we can then calculate the three rectangular coordinates.

In Rapp (1984, Chapter 9) we have discussed the adjustment of a
triangulation/trilateration network on the ellipsoid through the development of observation
equations for direction measurements, distances, astronomic azimuths, and Laplace
azimuths. In these discussions we assumed that a geodetic datum was defined so that there
would be no rank defect in the normal equation matrix of the adjustment process.

In this section we examine various definitions of geodetic datums based on our
experience with the transformation process discussed in Chapter 2. In addition we will
examine various ways in which the parameters of the reference ellipsoid can be estimated
by classical (triangulation/trilateration) and non-classical (e.g., sea surface heights from
satellite altimeter data) data types.

3.2 Horizontal Geodetic Datums—Theory

Discussions of the manner in which horizontal datums are defined have often been
carried out in the literature (e.g., Hotine (1969), Jones (1973), Vanicek and Wells (1974),
Mueller (1974), Moritz (1978), Bomford (1980, Section 2), Vanicek and Carrera (1985),
Vincenty (1985) etc.). In the discussions one needs to distinguish between the ideal
situation and a situation that may have existed a number of years ago when the horizontal
geodetic datum was being established.

We might start from an ideal definition of the coordinate frame, its center, and an
ellipsoid to be associated with this system. We will argue here (but with counter arguments
to come later) that the ideal system should be one whose center is at the center of mass of
the earth. The alignment of the axes of this system should coincide with an internationally
adopted Conventional Terrestrial System (CTS). In practice there may be several candidate
CTS. International agreement does exist on the establishment of the ideal CTS from 1988
onwards (Mueller, 1985, 1988). Before the establishment of the new system various
estimates of such a system have been made. A widely used one is the Bureau International
De L'Heure, (BIH) Terrestrial System (BTS). Various BTS systems have been defined.
For example, the definition and estimation of BTS (1987) is described by Boucher and
Altamimi (1988). In the future the ideal frame will be defined by the International Earth
Rotation Service (Mueller, ibid).

The ideal reference system has only become a near reality due to the rapid progress
made in the development of space related observation systems. In the development of
geodetic datums in the early 20th century access to the ideal system was not available. In
practice astronomic observations were used to obtain access to some reference system and
an ellipsoid, derived using existing geodetic data, was used as the reference surface.
Before we consider some specific details we need to consider a very simple definition of a
horizontal datum.

A simple definition of a horizontal datum involves the definition of the latitude (¢q)
and longitude (Ap) of the datum origin point; the azimuth from the origin point to an
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arbitrary point in the datum; the equatorial radius (a) and the flattening (f). These five
parameters (¢g, Ao, 00, a, f) constitute a minimal definition of a horizontal datum. Itis a
minimal definition as nothing is said about the alignment of the axes of the geodetic system
or about the location of the ellipsoid with respect to the origin of the datum (or its location
with respect to the center of mass of the earth.)

This simple definition does not take into account the realities of the observational
procedures used in the development of geodetic networks in the first half of this century.
For example, we know that in practice Laplace (geodetic) azimuths are derived for various
lines in a network. Such azimuths provide the orientation to the network and thus the
azimuth at the datum origin is not, in reality, needed.

In order to be more complete we must now extend our simple datum definition so that
it's realization in terms of a reference system can be obtained. We start by specifying that
the minor axis of the reference ellipsoid should be parallel to the Z axis of a specified
reference system (such as the CTS). We also wish to have the initial meridian of the datum
system to be parallel to the XZ plane defined by some recognized reference system (again
such as the CTS). In order to implement such requirements we must consider the
measurements that are possible in order that we can gain access to our ideal coordinate
axes. We can measure astronomic latitude, @, astronomic longitude Ag, and astronomic
azimuth Ag. In addition, for the most general case we may observe a zenith distance z)
from the origin point to another point in the system. We can also have access to coordinate
systems implied by satellite positioning and VLBI measurements.

Now assume that we have the deflections of the vertical g and Mg in the meridian and
prime vertical respectively. (§o and no may be initially set to zero, or computed
gravimetrically, or estimated from adjustment techniques to be discussed later). We can
then connect the astronomic and geodetic latitudes and longitudes using the following
equations (Heiskanen and Moritz, 1967, equation (5-17), Rapp (1984, Section 7.2)

(P():(Do_go? Eo =Dy — Po (3.1
Ao=Ag—Tosec Qg Mo = (Ao - M) c’s @

These equations are valid if the axes of the astronomic and geodetic coordinate systems are
parallel and higher order terms are negligible. Higher order terms may be found in Pick et
al. (1973, Chapter XV, Section 4). For the case when the axes of the two systems are
rotated, equations corresponding to (1) are given in (ibid, Chapter XV, Section 6), in
Grafarend and Richter (1977) and in Vincenty (1985). Next we relate the astronomic and
geodetic azimuths through the extended Laplace equation (Heiskanen and Moritz, 1967,
equation (5-13), Rapp (ibid, eq. 7.25)):

a=A-ntan(p-(‘E_,sinoc-ncosa)cotz (3.2)
where z is the zenith distance. Substitution from (3.1) we have:

a=A-(A—l)sin (p—[(d)—(p)sina—(A—?L)coscpcosa]cotz (3.3)

An extended form of Laplace's equations when the axes are not parallel is given in Pick et
al. (1973, Chapter XV, Section 6).

An equation relating the astronomic and geodetic zenith distance is given in Hotine
(1969, equation 19.29) or Rapp (ibid, eq. 7.32):
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z=z'+cos(psina(A—7»)+cosa(<I)—-(p) (3.4)
or

z=z'+nsina+§cosa (3.5)

where 7’ is the astronomic zenith distance. Although equations (3.2), (3.3) and (3.4) hold
at any point in our network we are specifically interested in them at the origin point.

Using equation (3.1) at the datum origin and other points in the geodetic system will
impose two orientation conditions because of the assumptions made in their derivation.
The third condition (now involving a rotation about the ellipsoid normal) is introduced by
using the Laplace azimuth equation, (3.2) or (3.3). Hotine (1969) argues that the vertical
angle equation (3.5) must be fulfilled through separate observations but Vanicek and Wells
(1974) point out that (3.5) will be fulfilled if € and 1 are computed through (3.1). Since
the conditions are imposed through astronomic observations a parallelism attempt is not
exact being subject to observational errors. Using the needed equations at many points in a
geodetic network, and not just at a datum origin point, will reduce the effect of
observational errors in our alignment attempt.

At this point we have seen how we can relate the axes of our ellipsoid to a measurable
system. Specifically the rotation axis of the ellipsoid will be parallel to the "z" axis of the
astronomic system. The initial geodetic meridian will be parallel to the initial meridian of
the "astronomic” system. We now have to locate the center of the ellipsoid with respect to
a point located (typically) on the surface of the earth. If we consider the origin point as a
monument in the field we require the distance between the ellipsoid of the datum and the
monument measured along the normal to the ellipsoid through the origin point. This could
be specified as hg = Hp + Ng where Hy is the orthometric height of the origin and Ny is the
separation between the ellipsoid and geoid at the origin. If we consider the origin to be
defined as a point on the geoid then we need only specify Ng to determine the geoid
ellipsoid separation at the origin. In the case of the origin point on the geoid it is of course
necessary to reduce all astronomic observations from the height at which they were made
down to corresponding values on the geoid.

Now let us review the information in the past few paragraphs. We first list the
quantities needed at an origin point to determine a datum in the classical sense. These are:
D, A,A,H, &, 1, N, a, f and two equations (3.1 and 3.3) relating the astronomic
measurements to the geodetic coordinates. In choosing these parameters various
approximations can be made. For example, by specifying that the ellipsoid and the geoid
coincide at the origin point (on the geoid) we would have Ng = 0. We could also make the
deflections of the vertical zero so that the ellipsoid would be tangent (if Ng = 0) to the geoid
at the origin. Clearly if this is done the center of the ellipsoid and the center of mass of the
earth could be far apart, and the separation between the ellipsoid and the geoid could
rapidly increase as we get away from the datum origin. This is demonstrated in Figure 3.1.
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Figure 3.1

A Datum with the Ellipsoid Tangent at the Datum Origin Point

Now a somewhat different view of a horizontal geodetic datum can be taken if we
regard the datum as a system defined by an origin near the center of mass of the earth with
rectangular coordinates axes aligned parallel to the Conventional Terrestrial System (or
other suitable reference system). In this case we might specify an ideal datum as one such
that the shifts (Ax, Ay, Az) between the center of mass of the earth and the datum
(ellipsoid) center be zero, and that the three rotation angles wx, wy and ©; also be zero. If
these quantities are not zero then we would want to define our datum through specified
values of Ax, Ay, Az and @y, Wy and wz, which constitute 6 parameters needed to locate
the center of the ellipsoid of our datum and to orient the axes of the ellipsoid (Pick et al.
1973).

In practice it clearly is unrealistic to base the determination of a continental network on
measurements made at a single point (the origin). Consequently the procedure used for the
determination of a horizontal datum is one of adopting preliminary origin coordinates and
pertinent parameters sufficient to compute a geodetic network. This preliminary network is
then examined to determine better origin parameters and ellipsoid parameters determined
such that certain quantities may be minimized in a least squares adjustment. Such
procedures will be discussed in a later section. Clearly if the initial data is not the 'best’,
we would expect to see errors in our geodetic network as it is expanded from the origin.
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3.3 Datum Definition and Horizontal Networks Through the Use of Positions Derived
from Space Observations

3.3.1 Introduction

Space techniques enable us to determine rectangular coordinates (X, y, z) or coordinate
differences (Ax, Ay, Az) in some defined reference system. Given the x, y, z coordinates
and a set of ellipsoid parameters we can determine the latitude, longitude, and height of
points that are connected to our usual horizontal network. These coordinates refer to a
datum that is implied by the space system. Specifically we have axes orientation, scale,
and the origin (center) implied by the specific system we are clearly with. These
coordinates could, in a simple sense, be used as fixed points (or more correctly as
information with an error variance - covariance matrix) that can be incorporated into a
horizontal network. We can thus let the space system provided the ultimate datum origin
and no specific datum origin point, in the classical sense is involved.

The actual procedures to be used are not so simple. In practice we have a number of
different procedures that can be used for incorporating space positions in our horizontal
networks. In one procedure the space positions are first transformed into the datum system
using some or all of the transformation parameters treated in Chapter 2. The transformed
coordinates are then used in a two dimensional adjustment to combine the space and
terrestrial data. Such procedures have been used in the U.S. (Dracup, 1975); in Great
Britain (Ashkenazi, Crane, and Williams, 1981, Ashkenazi and Crane, 1985), in Australia
(Allman, 1981 Allman and Veenstra, 1984); in some aspects of the readjustment of the
European Datum, and most probably in other areas. Various assumptions are made with
these procedures depending on how the transformation is performed and what reference
system (scale and orientation) is implied by the terrestrial observations.

A somewhat different point of view can be taken that eliminates any reference to the
original geodetic datum. In this case various space positioning systems are used to define
the orientation, scale, and origin of the final system. This data is merged with the terrestrial
observations with due regard to the possible inconsistencies of the reference system
(orientation and scale) of the terrestrial observations. This general procedure has been used
in the definition of NADS83 (Bossler, 1987). Vincenty (1982) and Steeves (1984)
describes the various forms of observation equations that may be used on this type of data
merging.

It is important to note that the merger of space and terrestrial data is a merger of data
that yields different information. With space observations we deal almost exclusively with
three-dimensional observations. In our horizontal networks, we are dealing with two
dimensions. Various techniques have been described (e.g., Wolf, 1980, 1982a) to carry
these procedures out.

In the following two sections we will examine one specific merger procedure for each
type of combination procedure.

3.3.2 Space Positions to Horizontal Datum System

The method to be discussed here was proposed by Wolf (1981, 1982b) and has been
used in the new adjustments of the European triangulation (Ehrnsperger, 1985, Kelm,
1987).

As a first step assume that an adjustment has been made of the classical network type
where the usual geodetic datum has been defined. This adjustment is done with the
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projective method where the terrestrial observations are reduced to a defined ellipsoid. This
adjustment can be carried out with different scale factors for different distant measuring
equipment, or for distance measurements from different geographic areas or countries.
Orientation unknows for the azimuth (e.g., one per region or country) can also be
introduced to reflect different observational procedures. One such adjustment was ED79
(Hornik and Reinhart, 1980). Another adjustment holding the ED50 coordinates of station
D 7835 Miinchen fixed was carried out in 1985 (Ehrnsperger, 1985). The reference
ellipsoid was retained as the International Ellipsoid.

Now consider a set of stations whose rectangular coordinates are defined in a space
system (e.g., Doppler or laser positioning). Let the geodetic positions, in the local datum,
be 0g, Ag, hg where hg is the sum of the orthometric height plus the astrogeodetic geoid
undulation. From this data calculate the rectangular coordinates in the local datum. These
coordinates are compared to the coordinates of the points in the satellite system to estimate
one scale and three translation parameters. An adjustment procedure has been described
starting with equation (2.33). However we now set the rotation angles to zero and
establish the transformation parameters going from the space system to the local system. In
doing this one must decide if the space systems needs any scale or orientation corrections
of its own. (Such corrections were needed for the Doppler coordinate systems used prior
to WGS84). Using the notation of Wolf (1982a) we write:

where:

rg is the vector of x, y, z coordinates in the local datum;
T is the vector of X, y, z coordinates in the satellite system;

As is the scale parameter;

8ro is the shift vector (Ax, Ays, Az)T
d is the vector of the residuals;
BTis [1, 1, ... I], I = the identity matrix;

One forms the normal equations and solves for 1) and As.

We next turn to the "fusion” of the terrestrial data (actually reduced normal equations
from the local datum adjustment) with the satellite system normal equations. We start by
the comparison of the datum positions derived from the terrestrial network with the
corresponding positions from the satellite system. In doing this comparison we consider as
known As and 8rg determined previously, and we introduce three rotation angles that
represent bias between the satellite system and the terrestrial system. At a given station we
let the corrections (in a rectangular coordinate system) to the terrestrial network values be
dTg. The final coordinates of the station must be the same in the terrestrial side and from
the satellite system. The observation equation takes the form (Wolf, 1982e, eq. 9 and 10):

e, = 10 +8r, ~ (r, —~ ASe — B8L ~ 1As) (3.7)

=81, +1As + ASe +BS1§ + (10 - 1) (3.8)

Note that Ls is the position vector in the satellite system and As and &r) are known from the
previous adjustment. We then introduce the quasi-parameter vector drg as follows:

Or, =dr, +gAs+A§§+B8r8 (3.9)
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where € are the Wy, Wy, @, values as used in Chapter 2 and as given by (2.20). If we
introduce the rotations about the rectangular axes at an average location (Pg) in the system
the coordinate values in the U matrix of (2.20) are replaced by coordinate differences: Xj -
Xo. The normal equations from the satellite and common terrestrial stations stations are
now written as:

Nor, +C, =0 (3.10)

where Cg are the constant terms and N represents the reduced normals after any nuissance
parameters are eliminated.

We now introduce corrections to the geodetic coordinates of the terrestrial points: (80,

A, dh). The corresponding linear corrections will be designated 8ty where for a given
point:

SOM
Ot & =|8AN cosd
i

oh 3.11)
These values can be related to drg through (2.115). Formally we write:
—_Ccw-l
or, =CK™ 8¢, (3.12)

where the elements of C and K are clear from (2.115).

We now introduce rotations in a local coordinate system about axes passing through Pg
(60, A0). Such rotations were used in the Veis transformation method. Wolf (1982b, eq.
IL.5) represents this form as follows:

B = [SXO /Ro,8yq / RO’SAO] (3.13)
where Rg is a mean earth radius, and the three values in (3.13) represent rotations
analagous to &, 1, o used in the Veis procedure. Wolf designates 8%p and 850 as the
horizontal shift components at Pp and the azimuthal rotation angle at Pg. This was done to
reduce the correlations of the estimated rotation parameters. Values of 88 are related to 3¢
using (2.56). Specifically we have:

8¢ = 5, (3.14)
where:
—sinAg sin ¢gcosg cosdqy cosAg
S=|cosAg singgsinhg  cosdgsinig
0 —cosdg sindg (3.15)
We now substitue (3.9), (3.12), and (3.14) into (3.10) to obtain:
ES(QK-ISEg+ASSEO)+ES=O .16
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where:

~ i 0
C =C + XN (zAs+Bdr)) 3.17)
This system contains three unknowns per point plus the 3 rotation unknowns per satellite
system. Since we are dealing with a two dimensional terrestrial network we eliminate all
height parameters from 8ty. The resultant normal equations take the form:

M ot w’
un 1B g t =0
\M M ]\:8@ j]_{_w’]_
Bt Bp 0 B (3.18)

where the 8t” contains only latitude and longitude corrections.

We next consider the normal equations of the terrestrial data where a reduced set of
normal equations have been formed containing only the corrections to the positions at the
satellite stations. We write these equations as follows:

Ngdrg+Cy=0 (3.19)

We now add the two sets (3.18 and 3.19) of normal equations to find (Wolf, ibid, II, 10):

Mn + ﬁ’g M[B ‘:61 g:\_'_ Wf + Q,g =0

Mg, Mgg 8B,

W

(3.20)

This system is solved for §_té and 8Bp. These values are then used in the full set of normal
equations for the terrestrial system. The solution then yields the adjusted horizontal
coordinates for the stations at which no satellite positions are available.

This method of adjustment effectively uses a seven parameter transformation model
between the terrestrial and satellite system. However it does it in two steps. The first step
calculates four parameters while the second calculates three. We must realize that the
results are dependent on height information in the terrestrial system. But the sensitivity to
the heights (or actually geoid undulations) should be low. Preliminary results using this
combination procedure are given in Ehrnsperger (1985).

3.3.3 Horizontal Positions to Space Positions

We next consider the case in which terrestrial observations (directions, distances,
astronomic azimuths, etc.) are to be placed in a frame to be defined by a particular space
system, or a combination of several space systems. Such a procedure would be followed if
we wanted to define a geodetic system to have the attributes (e.g., a center of mass origin)
of the space system(s). We follow Vincenty (1982) in this section.

Let x, y, z be the coordinates in the ideal system and X, Y, Z be the "observed"
coordinates defined in a space system. The connection between these two systems is
represented by eq. (2.33). We now postulate residuals (v, vy, vz) on the "observed"
coordinates and corrections dx, dy, dz to the assumed approximate coordinates (xq, yo,
zp). We then write:
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X0 dx X Vx Wx dX X0
yo|+|dy|=| Y |+| Vy|+Uj®y|+| dY |+As]| Yo
Zo dz 7z Vg (OF) dz Zp (3.21)

Re-arranging this equation we have

Vx dx dX Wy X0 xgX
Vy|=|dy|-| dY |- U|®Qy|-As|Yo|+ | yoY
Vz dz dZ 1073 70 o2 (3.22)

This equation corresponds to (2.3) in Vincenty (ibid).

We now introduce a local coordinate system (u, v, h) at the point. The change in u
and v will depend on d¢ and dA.:

du=(M+h)do (3.23)

dv=(N+h)cospdr

We can write, using (2.115):

dx| |-sin¢ cosA -sinA cos¢ cosA||du
dy|=| -sin¢ sinA cosA cos¢ sinA ||dv
dz

cos ¢ 0 sin ¢ dh (3.24)
We introduce the R matrix in the following form:
dX du
dy | =RT| gy
dz dh (3.25)
Where RT follows directly from (3.24). We now substitute (3.25) into (3.22):
Vx du dX Wy X0 xo- X
vy|=RT|dv|-| dy [-U|@y|-As|yo|+| yoY
' dh dz , z9 z20Z (3.26)
Multiplying from the left by R we have:
Vx Vy du dX Wx X xgX
Rivyl=|vy|=|dv|-R| dy |-RU|®y|-AsR| Yy |+R]| yoY
V2] |vn) |dh dz 0, z 202 (3.27)

where the discrepency vector is expressed in the local geodetic horizon system.
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The product of R [x, y, z]T is effectively given by (2.123), (2.124), and (2.125).
Vincenty (ibid, eq. 2.14) writes this product in the following form:

[X} {- e’ sin ¢ cosq)}
Riy|= 0
2 T

where r is the geocentric radius to the point. The RU product is given by Vincenty (ibid,
eq. 2.13):

(3.28)

-yi/p xt/p O
RU=| xz/p yz/p -p
-eyz/r eXxz/r 0 (3.29)
where
p=(x2+y2)12 (3.30)

Equation (3.29) shows, (as did 2.126 and 2.128) that w; does not affect lattitude or
heights. From examination of eq. (3.28) we see (as also seen from (2.123, 2.124, 2.125))
that the scale change (As) does not affect longitude and has only a very minor affect on
latitude. These equations point out that in a usual 2 dimensional terrestrial network it is not
possible to determine As on the basis of terrestrial distances.

The du, dv corrections can be expressed in d¢ and dA by using (3.23). We define a
diagonal matrix D:

(M+h)
D= (N+h)cos ¢
1
(3.31)
Then (3.27) can be written as (with T=D-1R):

Vo d¢ dX Wy X0 ¢0_¢

vi |=| dr |-T| dy |-TU|®y|-AST| yo|+|Ag-A

Vh dh dz 98} Z -

hg-h
(3.32)

where 00, Ao, hg are the approximate coordinates and ¢, A, h are the "observed"
coordinates.

Equation (3.32) is the main form for introducing space positions into a geodetic
network. Several different types of systems can be used with various aspects of each
system selected to define the final reference system. For example, a laser system could be
used to define the origin of the coordinate system, while VLBI results may define the
orientation. In each case one or more of the seven transformation parameters are set to zero
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for that part chosen to define the system. For example, if a laser system is used to define
the center of the system, the values of dX, dY, dZ would be set to zero. Using the data
from the space positions, the observation equations (3.32) can be used to form normal
equations where unknowns are the values of the transformation selected for estimation for
each system.

We now consider the terrestrial network, the observation equations, and finally the
normal equations. The observation equations can take the forms described in Rapp (1984,
Section 9) or using the form where the ellipsoidal heights of points are considered known
(Vincenty, 1980) and Section 4 of these notes.

The astronomic azimuth will depend on the coordinate system to be used. If we let the
space system define the alignment of the system we must introduce terms into the azimuth
observation equation that takes into account that the astronomic system and the chosen
space system may not have (in general) parallel axes. Let these rotation angles be defined
by @,, @y, ®, where the prime is used to specify the  rotations that relate a space system
to the ideal system. We can write the form of the observation equation as:

A+dA+v=Ap+AA (3.33)

where A is the observed azimuth, dA is the correction for the changed orientation of the
axes, Ag is the approximate azimuth based on the approximate station coordinates, and AA
Eis the differential effect of the coordinate correction. The value of AA must be computed
recognizing A is an astronomic azimuth. Techniques for doing this are discussed in
Chapter 4. Equation (2.137) can be used for dA. Then (3.33) can be written as (Vincenty,
1982, eq. (4.4)):

v=a;dd, +a,dA, +azdd,+a,dA,

- (cos ¢ cos L +tan V (sin ¢ cos X cos o + sin A sin 1) ) @)

-(cos ¢ sin A +tan V (sin ¢ sin A cos o - cos A sin &) ) @,

—(sin¢ - cos ¢ cos attan V) @, + (Ag—A) (3.34)

Note that in the use of (3.34) the value of Ag must be computed using equations that will
require observed or estimated (through deflections of the vertical) astronomic positions.

The terrestrial normal equations are created for the whole network. Reduced normal
equations are formed eliminating all unknowns except for those related to the stations
common in the terrestrial system and in the space systems. These equations are merged
with the normal equations from the space systems. The solution of this system yields the
adjusted positions at the common stations, the orientation parameters, and the other
parameters relating the space systems. Back substitutions yield the remaining parameters
(including station positions) of the adjustment.

A modification of this procedure does not require the estimation of the space system
relationships. This is done outside of the merger of the space and terrestrial systems. The
parameters of the transformations are then used to convert the space system coordinates
into the ideal system coordinates. These coordinates are then used, with an appropriate
variance-covariance matrix, with the terrestrial data. This procedure is desirable when it is
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doubtful the terrestrial data can yield information on the transformation parameters. For
example, Vincenty (1982) indicates that the three rotation elements in the azimuth equation
cannot be adequately separated, even in areas of continental extent.

3.4 Local Geodetic Datums of the World

Many different geodetic datums have been developed in the past geodetic history.
These datums have been used for continental areas or for special purpose applications in a
small region. Some datums have been superceded by later and move accurate datums.
Some datums have been in use for more than 60 years. A listing of 55 datums (with the
origin point and ellipsoid parameters) is given in Table 3.1. A listing of the names of 83
datums is given in Table 7.3 in the WGS84 report (DMA, 1987). Table 7.5 of the same
report lists datum transformations for 97 local areas to the WGS84 system (See Section
3.8). However, not all 97 translation sets represent different datums. The ellipsoid
parameters that are most often used with the different datums are given in Table 3.2.

Each datum has its own background. This background is given for some datums in
Appendix A. In the following sections we discuss a few selected datums.
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Table 3.1

Selected Geodetic Datums*

DATUM SPHEROID ORIGIN LATITUDE LONGITUDE (E)
Adindan Clarke 1880 STATION Z, 22°10°07°110 31°29'21%608
American Samoa 1962 Clarke 1866 BETTY 13 ECC -14 20 08.341 189 17 07.750
Arc-Cape (South Africa) Clarke 1880 Buffeisfontein -33 59 32.000 25 30 44.622
Argentine International Campo Inchauspe -35 58 17 297 49 48
Ascension Island 1958 International Mean of three stations -07 57 345 37
Australian Geodetic 1966 Australian Johnston Geodetic Station -25 56 54.55 133 12 30.08

National
Bermuda 1957 Clarke 1866 FT. GEORGE B 1937 32 22 44.360 295 19 01.890
Berne 1898 Bessel Berne Observatory 46 57 08.660 07 26 22.335
Betio Isiand, 1966 International 1966 SECOR ASTRO 01 21 42.03 172 55 47.90 -
Camp Area Astro 1961-62 USGS International CAMP AREA ASTRO -77 50 52.521 166 40 13.753
Canton Astro 1966 International 1966 CANTON SECOR ASTRO -02 46 28.99 188 16 43.47
Cape Canaveral* Clarke 1866 CENTRAL 28 29 32.364 279 25 21.230
Christmas Island Astro 1967 Internationail SAT.TRI.STA. 059 RM3 02 00 35.91 202 35 21.82
Chua Astro (Brazil-Geodetic) International CHUA -19 45 41.16 311 53 52.44
Corrego Alegre International CORREGO ALEGRE -19 50 15.140 311 02 17.250
(Brazil-Mapping)
Easter Island 1967 Astro International SATRIG RM No. 1 -27 10 39.95 250 34 16.81
Efate (New Hebrides) International BELLE VUE IGN -17 44 17.400 168 20 33.250
European (Europe 50} International Helmertturm §2 22 51.446 13 03 58.928
Graciosa Island {(Azores) International SW BASE 39 03 54.934 331 57 36.118
Gizo, Provisional DOS International GUX 1 -09 27 05.272 159 58 31.752
Guam 1963 Clarke 1866 TOGCHA LEE NO. 7 13 22 38.49 144 45 51.56
Heard Astro 1969 International INTSATRIG 0044 ASTRO -53 01 11.68 73 23 22.64
Iben Astra, Navy 1947 (Truk) Clarke 1866 IBEN ASTRO 07 29 13.05 151 49 44.42
Indian Everest Kalianpur 24 07 11.26 77 39 17.57
Isla Socorro Astro Clarke 1866 Station 038 18 43 44.93 249 02 39.28
Johnston Island 1961 International JOHNSTON ISLAND 1961 16 44 49.729 190 29 04.781
Kourou (French Guiana) International POINT FONDAMENTAL 05 15 53.699 -52 48 09.149
Kusaie, Astro 1962, 1965 International ALLEN SODANO LIGHT 05 21 48.80 162 58 03.28
Luzon 1911 (Philippines) Clarke 1866 BALANCAN 13 33 41.000 121 52 03.000
Midway Astro 1961 International MIDWAY ASTRO 1961 28 11 34.50 182 36 24.28
New Zealand 1949 International PAPATAHI -41 19 08.900 175 02 51.000
North American 1927 Clarke 1866 MEADES RANCH 39 13 26.686 261 27 29.494
01d Bavarian Bessel Munich 48 08 20.000 11 34 26.483
01d Hawaiian Clarke 1866 OAHU WEST BASE 21 18 13.89 202 09 04.2)
Ordnance Survey G.B. 1936 Airy, Herstmonceux 50 51 85.27N 00 20 45.882
0SGB 1970 (SN) Airy Herstmonceux 50 51 s55.271 00 20 45.882
Palmer Astro 1969 (Antarctica) International 1STS 050 -64 46 35.71 295 56 39.53
Pico de las Nieves (Canaries) International PICO DE LAS NIEVES 27 57 41,273 344 25 49.476
Pitcairn Island Astro International PITCAIRN ASTRO 1967 -25 04 06.97 229 53 12.17
Potsdam Bessel Helmertturm 52 22 53.954 13 04 01.153
Provisional S. American 1956 International LA CANDA 08 34 17.17 296 08 25.12
Provisional S. Chile 1963 International HITO XVIII -53 57 07.76 291 23 28.76
Pulkovo 1942 Krassovski Pulkovo Observatory 59 46 18.55 30 19 42.09
Qornoq (Greenland) Internatfonal No. 7008
South American 1969 South American | CHUA -19 45 41.653 311 53 55.936
1969 .
Southeast Island (Mahe) Clarke 1880 -04 40 39.460 55 32 00.166
South Georgia Astro International ISTS 061 ASTRO POINT 1968 -54 16 38.93 323 30 43.97
Swallow Islands (Solomons) International 1966 SECOR ASTRO -10 18 21.42 166 17 56.79
Tananarive International Tananarive Observatory -18 55 02.10 47 33 06.75
Tokyo bessel Tokyo Observatory (AZABU) 35 39 17.5148 | 139 44 40.90
Tristan Astro 1968 International INTSATRIG 069 RM No. 2 -37 03 26.79 347 40 53.21
USAFETR* Clarke 1866 PAD 3 28 27 57.7564 | 279 27 43.1180
Viti Levu 1916 (Fiji) Clarke 1880 MONAVATU (latitude only) -17 53 28.285
SUVA (1ongitude only) 178 25 35.835 |

Wake Island, Astronomic 1952 International ASTRO 1952 19 17 19.99] 166 38 46.294
Wake-Eniwetok 1960 Hough WAKE 19 16 19.606 166 39 21.798
WCT Vandenberg Adjustment* Clarke 1866 ARGUELLO 2, 1959 34 34 58.021 239 26 22.361
White Sands* Clarke 1866 KENT 1909 32 30 27.079 253 31 01.306
Yof Astro 1967 (Dakar) Clarke 1880 YOF ASTRO 1967 14 44 4).62 342 30 52.98

* Local datums of special purpose, based on NAD 1927 values for the origin stations.

+ from NASA Directory of Station Locations, 5th edition, Computer Sciences Corp.,

Silver Springs, MD, 1978
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Reference Ellipsoid Parameters

Table 3.2

%ﬁ%ﬁm computed) Axr?sl-(a) (m) 2 1/f =
Airy (1830) 6378563.396 299.3249646
Modified Airy 6377340.189 299.3249646
Bessel (1841) 6377397.155 299.1528128
Clarke 1866 6378206.4 294.9786982
Clarke 1880 (modified) 6378249.145 293.4663
Clarke 1880 6378249.145 293.465
Everest (1830)* 6377276.345 300.8017
Modified Everest 6377304.063 300.8017
International (1909) 6378388 297

Krassovski (1940) 6378245 298.3

Mercury 1960 6378166 298.3
Modified Mercury 1968 6378150 298.3
Australian National 6378160 298.25

South American 1969 6378160 298.25
Geodetic Reference System 1967 6378160 298.2471674273
WGS 60 6378165 298.3

WGS 66 6378145 298.25

WGS 72 6378135 298.26

WGS 84 6378137 298.257223563
Rapp (1987) 6378136.2 298.257222101
IAG Recommendation (1987) 6378136t1m 1/298.257
Geodetic Reference System 1980 6378137 298.257222101
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3.4.1 The European Datum

A number of different country organized datums were the rule in Europe prior to 1950.
After World War II a substantial effort was made to connect the separate country
triangulation networks. The original adjustment was for a Central European Network. A
total of 52 base lines and 106 Laplace azimuths scaled and oriented this system with no
particular point considered as a datum point. For convenience, for comparison purposes,
Helmert Tower, near Potsdam, is considered the origin. Two large networks, the
Southwestern Block and the Northern Block were added to the Central European Network.
The merged networks were referred to as the European Datum 1950. The reference
ellipsoid was the International Ellipsoid, although base lines were apparently not reduced to
this ellipsoid.

At the 1954 General Assembly of the International Association of Geodesy in Rome,
an agreement was reached to carry out a new adjustment of the European triangulation data
that would be "more complete and rigerous than ED50", (Kobold, 1980). The structure
under which this work was to be done was a commission, of IAG, on the "Readjustment
of the European Triangulation Network (RETrig)". The RETrig Commission became a
Subcommission of Commission X "Continental Networks"” that was established by IAG in
1975 at Grenoble, France. The RETrig work had been carefully planned to be carried out
in phases. Phase I was completed in 1975. Phase II, which was to incorporate Laplace -
azimuths and distances, had first results presented in 1977. A second part of Phase II was
completed in 1979 with the resulting adjusted system called ED79 (Hornik and Reinhart,
1980). To provide continuity with ED50 one station, D 7835 Miinchen, was held fixed in
ED79, at its ED50 coordinates and deflections of the vertical, and the International Ellipsoid
was retained as the reference surface. A classical two-dimensional adjustment was carried
out.

The basic method used was one of Helmert blocking where various countries (or
areas) carried out the normal equation computations for their respective areas. Reduced
normal equations were formed leaving only common (or border) stations in the reduced
system. The ten RETrig blocks were then combined to obtain the adjusted coordinates for
the junction points. Back substitution for the adjusted coordinates in each block was
accomplished by the separate responsible groups. The total number of observations in
ED79 were 25111 and the total number of unknowns was 11168. Figure 3.2 (taken from
Ehrnsperger et al. (1982)) shows the triangulation networks that formed ED79.
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Figure 3.2

European Triangulation Networks used in ED79
(Ehrnsperger et al. (1982))
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In 1985 a revised terrestrial solution was carried out (Ehrnsperger, 1985). This
solution incorporated additional data (from the ED79) solution and introduced additional
scale and orientation unknowns into the different blocks. The scale unknowns could be
applied for the usual baselines, and for Geodimeter and Tellurometer measurements. It
was found in the terrestrial solution that scale parameters varied by instrument and by
block.

A combined solution with Doppler stations was carried out with the terrestrial
network. The method used for the combination was that of Wolf (1982) as described
earlier in these notes. The resultant solution was described as the "Rough Solution" of
RETrig Phase 1II.

In 1987 the work of the RETrig Subcommission was completed with the calculation of
the European Datum 1987 (ED87). This solution combined a terrestrial network data with
positions derived from Doppler satellite tracking, laser tracking of Lageos, and with
rectangular coordinate differences derived from VLBI measurements. The details of ED87
are described by Kelm (1987) and Ehrnsperger (1987). The principles for the adjustment
of ED87 are as follows (Kelm, 1987):

A: The terrestrial observations are projected onto a rotational ellipsoid (Hayford).

B: The adjusted coordinates are defined as geographical latitudes and longitudes on
terrestrial points and additionally ellipsoidal heights on satellite stations.

C: Bias parameters for the scale of terrestrial distance and the rotation of azimuth
measurements are estimated.

D: The free net adjustment is relative to a local datum.

E: Three-dimensional Cartesian coordinate sets (satellite- or VLBI-derived) are
transformed to the local datum with respect to given ellipsoid coordinates before
entering the 3D adjustment on the local datum.

F: The adjusted coordinates on the local datum (ED87) are related to a satellite reference
system or a conventional terrestrial system by an appropriate similarity transformation
(3 translation, 3 rotation and 1 scale).

G: An approximated variance factor estimation is applied by standardizing the normal
equations of the national blocks by the variance of unit weight obtained by the internal
free adjustment of each block.

H: The linearized adjustment model will be iterated up to a significant convergence level.

The final phase, III, of the development of the new European datum (ED87) is
described by Ehrnsperger (1988). The final solution was carried out by combining the
terrestrial network normal equations with space positions through the Wolf procedure. In
doing this the terrestrial data from 16 European countries was merged with space data from
approximately ten systems. The scale of the system was taken from the space networks
and the terrestrial data. The overall orientation is defined by the space networks.

3.4.2 The Australian Geodetic Datum

The Australjan Geodetic Datum of 1966 (AGD66) was based on an adjustment of
terrestrial geodetic data fixing the coordinates of Johnston Geodetic Station as:
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latitude -25° 56 545515
longitude 133° 12/ 3010771
Ellipsoidal Height  571.2m

This station is located near the center of the country and the coordinates were based on a
previous solution. In the adjustment, leading to AGD66 there were 2506 stations of which
533 were Laplace stations. The distances were reduced to the geoid because of a lack of
knowledge of the geoid undulations at that time. The ellipsoid used for AGD 66 was: a =
6378160 m, f = 1/298.25.

In 1981 a proposal was made for the readjustment of the Australian Primary Network.
The new adjustment would take into account the additional geodetic data that had been
acquired since AGD66 had been calculated, and also incorporate space derived position
information. This latter information would include point-position Doppler values using the
precise satellite ephemeres; relative Doppler positions; satellite laser ranging distances; and
VLBI chord distances. The terrestrial and space data available as of, approximately, 1983
was used in the development of the new model. In order to have continuity with previous
models it was decided to retain the Johnston Geodetic Station at the coordinates specified
for AGD66 and to use the same ellipsoid as in AGD66.

A long wavelength geoid model based on a spherical harmonic expansion to degree 20
was used for distance reductions. However, before use, the geocentric undulations were
transformed to the AGD datum through a three parameter translation, and bias term,
transformation. Deflections of the vertical were also introduced for direction reductions.
This terrestrial data set was divided into 35 blocks containing 5,498 stations, 30063
directions, 12506 distances, and 1,292 Laplace azimuths. A preliminary adjustment of this
data was carried out.

The satellite laser ranging and very long baseline interferometry (VLBI) data were used
to compute eleven chord distances between a number of points in the network. Doppler
positions, in the coordinate system, were determined at 156 stations. A seven parameter
transformation was developed, in two stages, for converting from the NSWC 9Z-2 system
to the AGD system. This was done by first using the coordinates of the terrestrial data
adjustment. After a preliminary combination of the terrestrial and satellite data, a final set
of transformation parameters was developed. These transformation parameters are given in
Table 3.3 (Allman and Veenstra, 1984):

Table 3.3
Transformation Parameters Going From
NSWC 9Z-2 to AGD84 (GMAS2)

Parameter Initial Value Final Value Std. Dev.
AX 116.47 m 116.00 m +12m
AY 50.25 50.47 1.2
AZ -138.87 -137.19 1.5
0y 0:21 0:23 0.04
Wy 0.36 0.39 0.04
W, -0.47 -0.47 0.04
As -0.75 ppm -0.699 ppm 0.07 ppm




These transformation parameters were used to convert the NSWC 9Z-2 positions into the
AGD systems for a subsequent combined adjustment.

A classical adjustment procedure was used where there were two unknowns for each
free station plus one orientation parameter for each set of observations. The final merged
adjustment took place in March 1984. The model, called the Geodetic Model of Australia
1982 was adopted by the National Mapping Council in October 1984. This system was
also to be referred to as the Australian Geodetic Datum 1984 (AGD84).

3.4.3 The North American Datum 1983 (NADS83)

The NAD27 was developed in the 1920's on the basis of triangulation data available at
that time, fixing the coordinates of a single point (Meades Rarch) and retaining the Clarke
1866 ellipsoid that had been used in prior geodetic work in the United States. Over time
this network became inadequate due to improving accuracy of measuring devices, and due
to inherent weakness in the network saved by lack of data and incomplete data reduction.

In the early 1970's a decision was made to readjust the whole network using as much
data as possible, with as many stations as feasible, and with the introduction of space
positions so that the new system (to be called NAD83) would be essentially geocentric with
coordinates referred to a modern ellipsoid, that of the Geodetic Reference System 1980.

The task of data management and subsequent adjustment was immense considering
that approximately 1.8 million observation equations with 900,000 unknowns, involving
270,000 stations, were to be analyzed. The data involved came from the United States,
Canada, Mexico, Central America, some Caribbean Islands, and Denmark (for Greenland)
(Bossler, 1987).

Space information from Doppler positioning, laser ranging, and VLBI was
incorporated into this system. Details may be found in Schwarz and Wade (1990) and
Schwarz (1989).

3.5 Space Based Reference Systems

The determination of station positions through the observations of satellites is a
complex process involving the gstimation of many parameters (Malys, 1988). Such
parameters include force model components (potential coefficients, atmospheric drag,
radiation pressure, etc.), environmental factors (e.g., tropospheric and ionospheric
refraction), earth orientation changes (e.g., earth rotation and polar motion), and station
positions. Some of these quantities, as well as other quantities (such as precession and
nutation) can be held fixed in a solution, depending on what type of solution is being
sought. In some cases a simultaneous solution is made for all estimable quantities, while in
other cases only selected quantities are estimated. Basic to this process is the definition of a
coordinate system. In the most general case, the coordinate system is related to the
complete "description of the physical environment as well as theories under the definition
of the coordinates” (Malys, 1988). When some quantities, specifically station positions,
are considered fixed, the resultant system is said to define a reference frame. Positions of
points, other than the fundamental positions, are defined in the frame defined by the fixed
stations.
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Laser observations of Lageos have formed a basis for the determination of station
positions to an accuracy of 10 cm in a specific coordinate system defined by the group
that is carrying out the analysis of the data. The laser systems provide station positions that
conceptually refer to the center of mass of the Earth. A discussion of a number of these
systems may be found in BIH (1988). Very long line interferometry (VLBI) provides
precise coordinate differences in a well defined coordinate systems. By tieing a VLBI
station into a laser system the VLBI stations can be placed in a geocentric system. A
discussion of several VLBI analysis may be found in BIH (1988).

In the past a widely used positioning system has been the Navy Navigation Satellite
System (NAVSAT). This system has provided positions through the analysis of Doppler
data obtained from Doppler receivers. Since the start of the Navy program a number of
different reference frames have been used. Between June 1977 and December 31, 1986 the
reference frame was designated NSWC 9Z-2. The NAVSAT precise ephemerides were
calculated in this frame with the NWL/10E-1 gravity model (Malys, 1988). The position
accuracy for stations estimated in the NSWC 9Z-2 frame is approximately +1m. The
coordinates determined in this frame are consistently determined but they are not
determined with respect to the center of mass of the Earth, nor the ideal orientation, as we
shall subsequently see.

Starting January 1, 1987 the mean reference frame for the NAVSAT system became
the World Geodetic System 1984 WGS84 (DMA; 1987) (See Section 3.8). WGS84 is
also the coordinate system for the Global Positioning System (GPS).

3.6 The BIH Terrestrial System (BTS)

The information from the various systems for positioning and the determination of
earth-rotation parameters can be merged to form a single consistent reference frame to
which the individual system can be related. This merger can be done for sites for which
station positions are available in at least two networks (Boucher and Altamimi, 1985). One
example of the determination of such relationships is that of Hothem, Vincenty, and Moore
(1982). In this work the authors related certain space positions to a three-dimensional
geodetic network (the Trancontinental Traverse (TCT)).

The development of the Bureau International de I'Heure (BIH) Terrestrial Systems
(BTS) is described in a sequence of papers by Feissel (1985), for BTS84 and by Boucher
and Altamimi (1985, 1987, 1988). The basic method is to adopt a seven parameter
similarity transformation between the various systems. Based on co-located, or connected
stations the estimates of the transformation parameters are determined after agreeing on
what quantities are to be considered fixed by one or more systems. The calculations use
data over a period of time that is of sufficient accuracy that plate motion models are
required. Because of this motion the BTS system is defined at an epoch 1984.0. In the
1987 solution information from 13 systems involving 64 co-located stations was used.
The data was from lunar and satellite laser ranging; VLBI; and Doppler measurements. We
give in Table 3.4 the transformation parameters (BIH, Table 3, 1988) from the individual
systems into the BTS 87 system. A value given as zero means the system is defined by
that quantity. The orientation was fixed to the BTS 86 system.
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Table 3.4

Transformation from the individual system to BTS 87

Network* SSC+ -Ax Ay -Az  -As Wy @y W,
cm cm cm 108 "001 ".001 ".001
NGS (VLBI]) 88 R 01 -89 143 -1.6 0.9 -4.3 9.3 -33
GSFC (VLBI) 88RO01 | 167.1 -1054 400 -2.3 -7.2 5.0 -3.6
JPL (VLBI) 83R 05 242 -121 -183 -39 -1.4 -4.8 -5.7
JPL (Lunar) 88 M 0t 0.0 0.0 00 -24 -5.6 -0.8 -3.8
CSR (Lageos) 88 L 01 0.0 0.0 0.0 0.0 -4.7 2.3 -10.5
GSFC (Lageos) | 87L 14 0.0 0.0 00 0.0 -1.8 6.2 -7.5
DMA (Doppler)t} 77 D 01 7.1 -50.9 -466.6 58.3 17.9 -0.5 -807.3
WGS 84+** 7.1 -509 -16.6 -1.7 17.9 -0.5 6.7

*NGS = National Geodetic Survey

GSFC =NASA Goddard Space Flight Center

JPL. = Jet Propulsion Laboratory

CSR = Center for Space Research (University of Texas at Austin)
DMA = Defense Mapping Agency (NSWC 9Z-2)

** see discussion in Section 3.8

*+ Station coordinate identification
T NSWC 9Z-2 system

The large translation values for GSFC (VLBI) occur because the stations had not been
moved to a geocentric system. The Az value for the Doppler system shows the well known
z bias while the large , represents the 0.8 longitude bias of the NSWC 9Z-2 system.
(The origin of the Doppler system is 0.8 to the east of the BTS system.)

3.7 The IERS Terrestrial System

In 1988 the International Earth Rotation Service (Mueller, 1988, IERS, 1988) became
operational. This service replaces the International Polar Motion Service (IPMS) and the
earth-rotation section of the Bureau International de I'Heure (BIH). The activities of IERS
have led to the definition and maintenance of a conventional terrestrial reference system
(CRTS). This system will be analogous to the BIH CTS (BTS). The new system, in its
first reference frame implementation, is described by Boucher and Altamimi (1989). The
initial TERS Terrestrial Reference Frame is designated ITRF-0 and has a reference epoch of
1988.0. Transformation parameters between the individual systems and ITRF-0 are given
in Table 3 of Boucher and Altamimi (ibid). Analysis on a yearly basis is carried out in
defining the ITRF. The ITRF89 is described by Boucher and Altamimi (1991).

3.8 The World Geodetic System 1984 (WGS84)

WGS84 (DMA, 1987) is a successor to three (WGS60, 66, 72) prior global systems
defined by the Defense Mapping Agency. The WGS system includes a coordinate frame
definition, a gravity field model defined by a set of potential coefficients, a reference
ellipsoid, and related quantities. The WGS84 coordinate system was defined by applying
selected transformation parameters to the NSWC 9Z-2 coordinate system. The parameters
used were close to those calculated by Boucher and Altamini (1985). The non-zero
parameters adopted for the transformation were Az =4.5 m; w, =-0.814; As = -0.6X10-6.
Because of this procedure the conversion from WGS84 to a BTS system can be derived
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using the DMA (Doppler) transformation parameters minus the defining parameters of
WGS84. Other defining parameters of WGS84 are shown in Table 3.4.

Table 3.5
WGS 84 Parameters
Quantity Value
a 6378137
GM 3986005 x 108 m3 s-2
C20 -484.16685 x 10-6
® 7292115 x 10-11 radians s-!
c 299792458 m s°1
f* 1/298.257223563

* a derived quantity

The WGS84 values are the same (except for f) as GRS80 (Moritz, 1980). (Cz,() was
derived from the J, defined as part of GRS80.)

Malys (1988) has studied the relationship between WGS84 and NSWC 9Z-2 by using
station coordinates that had been determined in NSWC 9Z-2, and in WGS84 through the
precise orbits that were computed in the WGS84 system. The differences found were quite
similar to the values shown in Table 3.4.

The DMA WGS84 report provides the three translation parameters that can be used to
convert local geodetic systems to WGS84. Because only three parameters are given for
some datums, one can expect that, in large networks, there will be residual distortions that
can be related to the neglected transformation parameters (three rotations and one scale), as
well as distortions in the geodetic network. This is demonstrated by considering the
variations of Ax for the NAD27 to WGS84 conversion shown in Figure 3.3. The table of
transformation parameters as taken directly from DMA (1987) is given in Appendix B. The
transformation from the local datum to WGS84 using multiple regression formulas (see
Section 2.33) has also been developed for several datums. An example of such a
transformation is given in Appendix B for NAD27 to WGS§84.

We finally note that NAD83 and WGS84 are in the same coordinate system as both

NGS and DMA adopted the same transformation parameters in going from NSWC 9Z-2 to
the "ideal” system.
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3.9 The Estimation of the Datum Origin Coordinates and Ellipsoid Parameters

In the previous sections we have considered global coordinate systems and their
relationship to local geodetic systems. In the following sections we examine how most
geodetic datums were established in the past. We also consider how ellipsoid parameters
are estimated, simultaneously with datum positions, and separately using space
measurements. Allan and Audson (1987) describe a number of techniques that have been
used historically for the determination of the size and shape of the Earth.

3.9.1 The Determination of a Best Fitting Datum and Reference Ellipsoid
We now consider the case where we wish to define a datum where the ellipsoid is

matched, in some specified way, to the true geoid, in a given region (G). The condition
that can be specified, in analogy, to a least squares adjustment condition is:

f f N2 do = a minimum
c (3.35)

In practice the integral is replaced by a summation:
2 N = a minimum
° (3.36)

The precise interpretation of N will be discussed later although we can start by interpreting
N as an astro-geodetic undulation with respect to the ideal datum and ellipsoid.

An alternative specification to (3.37), and a more convenient form to apply, is the
following:
-2 22

Z Eact Nac
° (3.37)

= a minimum

where EaG and Mag are astro-geodetic deflections of the vertical with respect to our "best"
datum. Equation (3.37) indicates that we try to minimize the square sum of the deflections
over the area for which the datum is to be determined. Equation (3.37) does not determine
(3.36), but (3.36) does imply (3.37) on a global basis (Heiskanen and Moritz, 1967, sect.
5-11).

Consider an existing triangulation network where we have values of £aG, and NaG
throughout the system. They will depend, in part, on the geodetic coordinates of these
stations. In turn these geodetic coordinates will depend on the adopted origin parameters
and the parameters of the original reference ellipsoid. If we wish to use a condition such as
(3.37), we must relate it to these origins or ellipsoid changes. We thus may interpret our
condition such that:

EAG= E.»AG+ d&
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Then using equation (2.107) and (3.38) we have for an observation equation:
Eag=E pq+ Eq dEg+ By dng +E3 AN + B4 da +E5 df

Nag=MNag+F1d8y+ Fydng +F3dNg + Fyda +Fs df (3.39)

In principle we use (3.39) as observation equations given astrogeodetic data in a network
and determine the parameters subject to the minimization condition expressed by equation
(3.37). We may also express d§ and dr needed in (3.38) using equation (2.108). We
have:

Eag=E o+ By dx + Eydy +B3 dz + B, da +E df

Nag="Mag+ F1dx+F,dy +F3dz + F4da +F5df (3.40)

In applying these projective transformation formulas, however, we cannot determine
(accurately) the da correction. To show this we first write the E3, E4 and F3 and Fy4
coefficients. We have:

’

E,=- Mi_hi [sin(po COS( - COSQP,, SinQ cos A?\,]

E, = [ (singg cos@ (1-e2) - cos@g sin@ cos AR) + e sinQ cosQ
‘o (M+h) (1) )W (3.41)
’ 1 .
Fjy= m[coscpo sin Al]
F, -1 [coscpo sin Al]
(N+h) Wo (3.42)

Comparing E3 to, E4 and F; to F4 we find that the coefficients are very close to being the
same, and in a spherical approximation they are equal. This means that we cannot
determine dNg and da separately. Rather we must solve for dNg or da regarding one as
known or solve for the sum dNg+da.

If we consider equation (3.40) we can express E3 and Fj as:

E = 1 ezsin(pcosq)
47" [M+h) W

Fy4=0 (3.43)
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In this case the coefficient of da is very small because of the €2 in the top equation of
(3.43), and exactly zero in the second equation. This then indicates that we cannot
effectively determine an equatorial radius using the projective method equations with
deflection of the vertical data.

If our geodetic network has been computed using the development method, then the d§

and dn values in (3.38) must be taken from equations (2.152) and (2.153). We have in
this case:

-_— ’ ’ ’ ’ ’ da ’
Eag= &AG+ p1d§0+ p,dn,+ p3dsi+p4da0+p5-?+p6df

— ’ ’ ’ ’ 'da ’
= +q,dE,+ q,dNg+ q,ds;+ q, dog+ s — + qg df
Nac=MNac+d1d50+ Q2 dNg+ g3 ds;+ qudog+qs—+ e (3.44)

These equations are then used in a best fitting ellipsoid determination using (3.37). In such
a procedure ds; may be set to zero or it may be determined through (2.151). If we assume
that the astronomic azimuth is correct at the origin, then (3.44) should be rewritten usmg
(2.154). Examination of the coefficents p5 and qs indicates that there is no problem in
determining an equatorial radius from these equations. Based on our previous discussion
in Section 2.32.1 we could use our projective equations for an equatorial radius
determination, in analogy to that obtained from the application of (3.44) if we assume that
dNp = 0, and restrict that analysis to data not too distant from the datum origin.

To this point we have considered deflections of the vertical. If we have astro-geodetic
undulations in the projective system we can write that the new undulation, NoG, should be
equal to the original values, NaG, plus a correction due to the datum changes. We have:

Njc=Nug+dN (3.45)

Using (2.107) or (2.108) we have:

Nag=Nag+Gdeg+Gydng+ Gy dNg+Gyda + Gy df (3.46)

or

'I\TAG=NAG+G;dx+G;dy+G;dz+G;da+G;df (3.47)

where the best fitting ellipsoid condition is given by (3.36). Examination of the
coefficients Gz and Gy indicate that  they are sufficiently different to allow a determination
of both dN and da. In addition Gy is not close to zero, also indicating that an equatorial
radius can be determined using the astro-geodetic undulation information.

Once the correction terms are found using (3.39), (3.44), (3.46) and (3.47) the new
datum origin coordinates and the new ellipsoid parameters are found by adding the
corrections to the starting values.

We note that no specification has been made that would make the center of the best
fitting ellipsoid coincide with the center of mass of the earth. In general it will not.
Consequently the interpretation of a best fitting ellipsoid does not lead to one whose center
is at the center of mass of the earth.
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3.9.1.1 A Modified Best Fitting Ellipsoid

The condition expressed by (3.36) must be reconsidered noting that the forcing of
sums of the astrogeodetic deflections squared to be a minimum is somewhat unwarranted
because, at each point in our network, there is a deflection of the vertical. This deflection
may be estimated through the computation of topographic-isostatic deflections (Heiskanen
and Vening-Meinesz, 1958, pp. 252-255) or through the computation of gravimetric
deflections (Heiskanen and Moritz, 1967). In this section we consider the topographic-
isostatic deflections €1 and 1. These deflections are those implied by the topography
and its isostatic compensation.

We now express our modified best fitting ellipsoid as one where:
Eac =Em + ve=Eac +dE
MAG =NTI+ vy =Nag +dN (3.48)

with the specific condition that:

2(v2+v2)—aminimum
£ 'n T

¢
(3.49)
If we use the development method equations for d and dn we can write from (3.48):

’ ’ ’ ’ ’ da ’
Ve=8ac— &mt P1d8g+ padng + padsi+ pydey+ ps—+ pedf

, , , ’ *da
V= Tlag— T+ A1 0o + apdNlg + a ds; + q dorg + 45 G-+ g df (3.50)

The limitations discussed in the previous sections all apply here. The advantage of this
method over that of the previous section is simply that we are now trying to add some
additional data (§T1 and MyT7) to our datum determination problem. This method of using
topographic isostatic deflections was carried out in the United States by Hayford (1909,
1910). Note that we do not consider the case of topographic-isostatic undulations as they
are not generally computed.

3.9.2 A General Terrestrial Ellipsoid Based on Astro-Geodetic Data

The ellipsoid determined using the methods considered in the previous sections will
not have their centers at the center of mass of the earth since no information concerning the
earth's gravitational field has entered the discussion. Now a general terrestrial ellipsoid or
mean earth ellipsoid (Heiskanen and Moritz, 1967, Section 2-21) is one whose center is at
the center of mass of the Earth and whose parameters meet certain conditions related to the
minimization of astro-geodetic deflections or astro-geodetic undulations.

In order to obtain a general terrestrial ellipsoid using the methods being discussed in
this chapter we compute the gravimetric deflections of the vertical (§g, Ng) and the
gravimetric undulations (Ng) using the Stokes' and Vening-Meinesz equations (Heiskanen
and Moritz, 1967). These quantities will refer to an ellipsoid whose center is at the center
of mass of the earth. In carrying out such computations we will need to adopt a flattening
of the reference ellipsoid for use in determining the gravity formula used in computing the
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anomalies that were used to determine &g, g, Ng. The simplest case arises if we assume
that this flattening is the value we wish to consider fixed for our new system. If this is not
the case we will have to consider the change in &g, Tig, N caused by a flattening change
using equations given, for example, by Pick et zfl. (%973, equation 862). In our
subsequent discussion we will assume that the flattening of the general terrestrial ellipsoid
is adequately known from satellite data, for example, so that the gravimetric terms are
considered without any dependence on the flattening:

We now can write:
Eac=Eg+ ve=Epgt db
Nag= Mg+ Vqy =M+ dn

N_AGzNg+VN=NAG+dN

(3.51)
Using the projective transformation formulas, (3.51) can be expressed as:
ve=Epg— B+ Ey d§0+E;dn0+E'3dNO+E;da+[E;df]
Vo= Tag— M+ FydEg+ F’zdn0+F'3dN0+F;da+[F;df]
vN=Npg— N, + Gy dE+ Gpdng+ GadNg+ Gy da +[G'5df] .

where the term in brackets is considered known. Equation (3.52) can also be expressed in
terms of dx, dy and dz as unknowns as follows:

ve=E g §g+E1dX +E,dy + E;dz + E, da+[E; df]
vn=T]AG—T]g+F1dx+F2dy+F3dz+F4da+[F5df]

VN=NAG_Ng+Gldx+GZdy+G3dZ+G4da+[G5df] (3.53)

We should point out that we could have also written the deflection of the vertical equations
(but not the undulation equations) using the development transformation equation.

We should finally note that in imposing our conditions on the adjustment we can use:

2 2) . .
2:(V€+V,ﬂ = a mnimum
(o)
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or

Z(V%\]’) = a minimum

but we cannot impose both conditions as the astrogeodetic undulation data is not
independent of the astrogeodetic deflection data.

3.9.3 Remarks on the Area Method

The discussion in the previous sections has revolved around geodetic data given in a
geodetic network. Since this data is considered to be distributed in an area in which the
datum is to be established the method is often called the area method of best fitting ellipsoid
determination. This will be contrasted in a subsequent section to the arc method where data
is given along a meridian or a parallel.

Clearly, if we are determining a datum for an area, whether this area is a local region
or a continent, we should use data as widely distributed in this area as possible. If we do
not do this, the extension of the datum into areas where no data was used in the datum
determination, may lead to large astrogeodetic deflections and undulations in such areas.
We also have to note that these astrogeodetic techniques are generally only applied to land
areas because of the difficulty in determining astrogeodetic information in oceanic areas.

We need also to discuss the advantages and disadvantages of a best fitting ellipsoid as
opposed to a general terrestrial ellipsoid. In the former case we determine a datum in an
area such that the ellipsoid comes as close as possible to the geoid in the area. In the case
of the general terrestrial ellipsoid our primary concern is to obtain a geocentric ellipsoid
after which a best fitting principle is applied. For a given area or country arguments can be
presented for a best fitting ellipsoid or for a general terrestrial ellipsoid. A review of some
of them may be found in Mueller (1974).

Basically the argument for a best fitting ellipsoid is that the astro-geodetic deflections
and undulations are smaller than in the case of a general terrestrial ellipsoid. Thus any
errors caused by the neglect of deflections of the vertical or geoid undulations in the
reduction of geodetic data will be smaller with a best fitting ellipsoid. On the other hand, if
we determine best fitting ellipsoids for each area of interest we will have a large number of
datums in the world which will make the comparison of geodetic coordinates in different
parts of the world difficult at best. In the general terrestrial ellipsoid system a system of
coordinates that is unique and that may be used on a global basis can be established, thus
determining a unique set of coordinates consistent throughout the world.

In order to demonstrate the geoid undulation behavior with respect to a global system
and a local system two maps have been prepared for the Australia area. Figure 3.4 shows
the geoid undulations computed from the OSU86F (Rapp and Cruz, 1986) potential
coefficient model to degree 180. These undulations refer to a geocentric ellipsoid whose
dimensions are those of the ideal global ellipsoid. Figure 3.5 shows the geoid undulations
referred to the local Australian datum (GMARS82) described in Section 3.4.2. These values
were calculated from the undulations shown in Figure 3.4 plus the differential height
change given by equation (2.89) using the following translations (Aliman and Veenstra,
1984): Ax =116.5m, Ay =50.3 m, Az = - 138.9m. Assuming the ideal ellipsoid radius
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to be a = 6378136 m and knowing the a (6378160 m) of GMAS82 we have Aa =24 m. The
Af value was taken as zero.

Figure 3.4 shows the strong geoid slope across Australia when in the geocentric
system. Figure 3.5 shows the much different character of the undulations when the local
system is the reference. The undulations are now much smaller without the massive slope
apparent in Figure 3.4. The undulations in Figure 3.5 are similar to those calculated from
astro geodetic deflections of the vertical by Fischer and Slutsky (1967).

One final note relates to the role of datum definition and extension through satellite
positioning techniques. Positions determined by such techniques are related to the satellite
reference frame. These positions can be used in the datum defined by the satellite frame, or
converted to a previously existing geodetic datum through datum transformation
procedures. In some applications such as with the Global Positioning System, relative
positions are determined. The relative positions may be in the local geodetic datum system,
or in the satellite frame. Although the satellite datum definition gives a more consistent
coordinate determination the advantages and disadvantages of geocentric and local datums
still need to be addressed.
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3.9.4. The Molodensky Correction to Development Computed Astrogeodetic Data

We now consider the conversion of astrogeodetic data computed on the basis of
development procedures in the geodetic network to corresponding values that would apply
if the projective reduction system had been used. Such a conversion would be used if we,
for example, wished to process development computed astro geodetic undulations with the
projective formulas for a best fitting ellipsoid determination, or if we were constructing an
astrogeodetic undulation map that was to refer to a projective system using development
deflections.

The procedures to be used were developed to Molodensky in 1944 with details given
in Molodensky et al. (1962, p. 29). Practical implementation of the Molodensky correction
procedures has been discussed by Fischer (1966) and Fischer et al. (1967). Obenson
(1971) reviews the derivation and discussed the application.

3.9.5 The Arc Methods for Datum and Ellipsoid Parameter Determination

The previous discussion has considered geodetic data acquired in an areal sense. Prior
to having such data it was of geodetic interest to analyze data acquired along an arc of a
meridian (primarily) or along an arc of a parallel (sometimes). This information was
primarily used to derive parameters of an ellipsoid that was a "best fit"” to the geoid along
the given arc. Although such procedures now are of historic interest, it is instructive to
examine how such determinations were made.

To a certain approximation, the meridian arc, s, between two latitudes, ¢1, and ¢ is:
—— — 1 3 — -2

s = a((pz-(pl)(l - (Z+ 7 €08 2 (pm)e )

(3.54)

If we consider a similar distance, sg, based on approximate parameters a and e2 of the
reference ellipsoid we may write:

s=so+9—s—da+iszde2
da  de (3.55)
os (— — 1.3
== ((p2-¢1)(1 - (Z + 7 cos 2 (pm) ez)
da
s — —\[1 3
“‘2‘=‘a(‘P2"P1)(Z+2°°52‘Pm}
de (3.56)

Now (3.55) can be written:

s = (0,9, (1 - ke?) + da (0,9, (1 - ke) - a () ce? 3.57)

where
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1 3
k—z"l‘zCOSZ(Pm

We may also recall the radius of curvature in the meridian at the mean latitude of the arc.
Thus computing this radius based on the original ellipsoid values we write:

M, = a(l-ez) 3=a(1-e2)

1+ %—ez sin’ (pm)
2., 2
(1 - € sin ‘Pm) (3.58)

Using:

.2 11
sin (pm=§-70052(pm

we have:
M, = a(l - (%+%cos 2 cpm) c2)= a(l - kez)
(3.59)
If we divide each side of (3.57) by (3.59) we have:

S 2

Mm-=(62'61)*'(62'—(‘;1)%-(62-61)@6 (3.60)

where the last term is approximate but sufficiently accurate for this derivation.

We now make two substitutions. First define: (92 - ¢1) = s/Mp,. In addition using
the deflections at the two points we have:

¢ =D, -&;

0,=D,-&, (3.61)

so that (3.60) may be written:
(o-00)=](0-2)- (018 + (- ) 2, )]
(3.62)

or simplifying and noting to sufficient approximation in the coefficients of da, and de2 that:
(92-91) = (92 - 1) we write:
da 2
82=§, +[(‘D2 - ‘Dl)’ (‘Pz - ‘Pl)] + (‘Pz - ‘Pl)?‘ (‘Pz - (Pl)k de (.63)

or rewriting:
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§,=8,+ (‘Pz - ‘Pl)%' (sz - ‘Pl)k de” + (¢2 - (P2) i (q)l - (pl) (3.64)

Recall that ¢ and @2 would be considered as the geodetic coordinates computed from the
observed triangulation using the existing ellipsoid parameters. If we let:

L=(®,- ¢))-(®, - 0,) (3.65)
p= (‘Pz - ‘Pl)
qQ=- (‘Pz - ‘Pl)k

we have

E,=8,+ p——+qde + (3.66)

Now suppose we consider an arc that consists of n points for which we can write an
equation of the type (3.66). At the first point, however, we specify the deflection as &1.
Then:

§1=§1
da 2
§2=§1+P1?+Q1de +L,
da 2
§3= §2+P2'5"+q2d° +L,

) da 2
=§ . + Z '—+ - de +L a
&n n-1 T Pna a qn-1 n-1 (367)

Next we eliminate the reference to a preceding deflection in all equations of (3.67). For
example, we may write:

da 2
€3= §1+(P1+P2)-a"+(<h +qgde”+L;+L,
Then:

E,4=§1+(p1+p2+p3)%+(q1+qz+ q3)de’+ Ly +Ly+ Ly

Or for a general term:
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da 2
§n= &1 + (Pl +py+... Pn-l)"a_+ (hl +qz+... Qnol)de +L;+Ly+..Lyy (3.68)

If we insert into (3.68) the values of p, q, and L we have for the ith deflection:

§;=&,+ [(<Pz-¢1)+ (<P3'<P2)+ --~(‘<Pi-¢i-1)]%

1
o|-Lloro- oo - Lloco)

- % Zz’ (kpk'(pk -1) cos 2‘Pmk] de’ +{b2‘¢2) = (‘Dl“Pl) + (‘Ds‘%)

- ((Dz“Pz)' ¥ (bi'%) - ((Di-l"‘Pi-l) (3.69)

Noticing the large cancellation of terms we now have:

&=t +(o;- ¢1)%€+ 'AIT(‘Pi’ 91)- 2 (0c- )

i
k=2

. %—cos 20« de’+ (‘D1 - (Pi) - (bl - ‘Pl) (3.70)

Noting that there are three unknowns, &, da, and de? a least squares solution may be
found by specifying (in analogy to (3.37)):

X §;&;=a minimum (3.71)

A more exact equation than 3.70 has been given by Chovitz and Fischer (1956):

§i=‘51+(¢i‘¢1)%§ I((Pi'<P1)’ ((Pk'(Pk-l) :

i
k=2
2
. [n cos 29, - III cos 4¢,,, + IV cos 6(Pmk]de +@;- 9)- (2, - ) (3.72)

where:
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N=€4—e

Equation (3.70) is valid for arc segments up to 3° in length.

If prime vertical deflection data is available along a parallel the following observation
equation can be used (ibid, 1956) or see Zakatov (1962):

n="M +%(li-ll)cos (p+de2()»i-kl).

.2
. Rl Al 4 (chos ? ( 1+ ezsinzq) + e4 sin4(p)

+ (Ai - 7‘1) cos @ - (Al - 7»1) cos @ (3.74)

Chovitz and Fischer (1956) provide results from the analysis of meridian and parallel arcs
from several different geographic areas. Also incorporated in their studies is the use of
topographic-isostatic deflections of the vertical in a manner similar to that used in Section
3.9.1.1.

3.10 The Determination of the Parameters of a General Terrestrial Ellipsoid

An equipotential ellipsoid of revolution is a standard reference figure for problems of
geometric and gravimetric geodesy. This ellipsoid and its gravity and gravity potential can
be defined by four quantities. Although a number of different combinations can be used
the most common are the following:

GM - the geocentric gravitational constant;
Jo - the second degree zonal harmonic;

a - theequatorial radius;

o - the angular velocity of the earth.

Knowing these quantities, other quantities such as the ellipsoid surface potential, Up,
normal gravity, ¥, or the ellipsoid flattening, may be derived.

The parameters are said to define the general terrestrial ellipsoid when the values have
some defined relationship with the Earth. For example, GM should be that of the actual
Earth, including the mass of the atmosphere (in most cases). The Jo harmonic should be
that of the Earth as derived, for example, from the analysis of satellite orbital perturbations.
And ideally the potential (Up) on the surface of the ellipsoid should be equal to the potential
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of the geoid (Wg). In addition the angular velocity () should be equal to some average
velocity of the Earth, defined over some time period such as one year.

In some determination of these parameters the values are solved separately while in
other cases simultaneous solutions of some of the parameters can be made. We now
consider a number of these methods using different types of space data. We first remark
about the estimation of GM and J».

3.10.1 GM and J; Determinations

The value of GM can be determined from the analysis of laser ranging to the satellite or
lunar laser ranging. Determination of GM are usually made simultaneously with other
parameter (e.g., station positions) estimations. Estimates of GM from satellite solutions
have been given by the Goddard Space Flight Center and The University of Texas as
3986004.40 + .02 x 108 m3 s-2 (see Chovitz, 1987 and Bursa (1991)). Note that the
values of GM include the mass of the atmosphere (3.5 x 108 m3 s-2) since the satellite
orbits the Earth outside the atmosphere. We also note that the value of GM depends on the
velocity of light, ¢, adopted as a fundamental constant. The standard value of c is:
299792458 ms-1. As the value of ¢ changes so will GM but in a non-linear way.

In some satellite solutions the value of GM is held fixed. This GM then scales the
orbit and any station positions derived from the orbital analysis. If the GM is changed so
will the station coordinates.

The value of J2 is usually determined in a general geopotential modeling effort.
Knowing J; the flattening of the reference ellipsoid can be derived having approximate
values for the other three quantities (Heiskanen and Moritz, 1967, p. 73). The precise
interpretation of J2 must be considered in light of a special tidal consideration and
considering the time variations of J3 (i.e., J2).

The tidal concern arrises from the consideration of the permanent deformation of the
Earth's surface by the gravitational attraction of the sun and moon. In some orbital analysis
it is customary to remove the indirect deformation (see Moritz, (1979)) while in other
solutions this deformation is included. Moritz (1979) shows that the relationship between
the second degree zonal harmonics of the two cases is as follows:

J» (with indirect deformation) = J (without indirect deformation) + 9 x 10°  (3.75)

In the definition of the Geodetic Reference Systems of the International Association of
Geodesy it has been customary to calculate the flattening with a Jp defined without the
induced deformation. As pointed out by Engelis (1985) and others, for oceanographic
applications, a flattening derived from the corrected J is appropriate. This effect is small.
The flattening for GRS80 is 1/298.2572 (derived from J = 1082 63 x 10-8) while the
flattening corresponding to the Jp with the indirect deformation 1/298.2566. Chovitz
(1988) gives a representative value of J2 as (1082 626 * 2) x 109 which excludes the
indirect deformation. More details on the role of permanent tidal deformation in geodetic
parameter definition are found in Rapp et al. (1991a).

3.10.2 The Angular Velocity ®
The Earth's angular velocity fluctuates in a regular and irregular way. Fortunately the

fluctuation 1s sufficiently small so that a value given to seven digits is suitable for the
definition of the complete general terrestrial ellipsoid. Annual values of an average w are
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given in the IERS annual reports from which the values given in Table 3.5 have been
taken.

Table 3.6
Year Average Angular Velocity of the Earth by Year

Year (]
1978 7292114.903 x 10-11 rads-!
1979 4,925
1980 4,952
1981 4964
1982 4964
1983 4954
1984 5.019
1985 5.025
1986 5.043
1987 5.032
1988 5.035
1989 5.018
1990 4.983

The value adopted for GRS 80 is 7292 115 x 10-11 radians s-1.
3.10.3 The Equatorial Radius

The Earth's equatorial radius can be derived through a number of different techniques
involving space related data. In most of these determinations the equatorial radius is not the
only quantity being estimated. We now consider two such methods.

3.10.3.1 The Determination of the Equatorial Radius from Space Derived Station Positions

Assume we are given a set of rectangular coordinates defined in some space related
reference frame. At each station we have the orthometric height (H) which we assume is
refered to the same datum for all stations. (Because of vertical datum inconsistencies the
assumption is not precisely correct.) In addition we define the equatorial radius and
flattening of a reference ellipsoid so that the geometric height (h) of each station can be
determined. We then calculate the geometric geoid undulation:

NGge=h-H (3.76)

Note that the value of NGg will depend on the scale of the satellite system, as well as the
dimensions of the adopted reference ellipsoid.

The value of NGg can now be compared to the undulation computed from a set of
potential coeffcients or from a combination of potential coefficient information and
terrestrial gravity data as described by Despotakis (1987), for example. We deal here only
with the potential coefficient determination of N through the following:

N =M

n
> (%) i)(ﬁnm cos m\ + S, sin mk) P, (cos 0)
n= m=

3.77)
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where:

1 is the geocentric radius to the point on the geoid.

C, S are fully normalized potential coefficients;

a is the scaling parameter associated with the potential coefficients;
0, A are the co-latitude and longitude.

The summation to infinity in (3.77) is replaced by a summation to a finite degree varying
from 36 to 360. Note that N from (3.77) will refer to a geocentric system and an ellipsoid
whose parameters are those of the general terrestrial ellipsoid. The values of the Caq o will
be referred to a specified flattening.

We now formulate a mathematical model under the assumption that the corrected
geometric undulation and the gravimetric undulation should be the same. We use (2.89) to
represent the charge in the undulation calculated via h from (3.76). We write (introducing
the residual v):

N +v =Ngg +cos ¢ cos A Ax +cos ¢ sin A Ay
-f) sin2
a (1-f) sin®¢ Af
w (3.78)

We have retained a df term on the right hand side of (3.78) for generality. Since N will
also depend slightly on the flattening an iterative solution may be necessary.

+ sin ¢ Az - WAa +

Given a set of stations equation (3.78) constitutes an observation equation that is used
in the formation of normal equations such that a least squares solution for the parameters in
(3.78) are determined. Grappo (1980) describes solutions for the parameters of interest
using Doppler derived positions for various stations configurations and various quantities
constrained.

Rapp and Cruz (1986) used a technique where the translation parameters for the
Doppler stations were defined through the BTS85 reference system. In addition the scale
correction of 0.6 ppm was applied to the Doppler coordinates (See Section 3.6). The
resultant equatorial radius using a global, but not uniformly distributed station set, was
6378136.2 m. An accuracy assesment is difficult because of the many factors affecting its
estimates. A nominal value of + 1 m is not unreasonable. Using the same Doppler station
file Rapp et al (1991b), using the OSU91A potential coefficient model to degree 360,
obtain an equatorial radius of 6378136.35, using the ITRF-0 transformation parameters.

3.10.3.2 The Determination of the Equatorial Radius from Satellite Altimeter Data

A satellite altimeter determines the distance from the satellite to the instantaneous ocean
surface. Given the position of the satellite in a specified reference frame the sea surface
height ({) with respect to a defined reference ellipsoid can be determined. Now define a
sea surface height, {, with respect to an ideal, geocentric ellipsoid. Since the original sea
surface heights (£g) may not be in a geocentric system we introduce coordinate translations
Ax, Ay, Az. Since the original ellipsoid may not be the optimal one we define changes Aa
and Af to the approximate ellipsoid parameters. Using (2.89) we may transform {g to { as
follows:

: , o all) 2
§=Cy+cosdcosA Ax +cos ¢ sinA Ay + sin ¢ Az - WAa + wSin ¢ Af (3.79)

We now define sea surface topography {r, as the difference between the sea surface
height, {1 and the ideal (geocentric) geoid undulation (also see Section 3.13.2):
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{1=0-N={,-N+cosdcosA Ax +cos ¢ sin A Ay

. aflf) . 2
+sm¢Az—WAa+—w—Sln ¢ Af (3.80)

We now define our adjustment model as one where the sum of the squares of {T becomes a
minimum. With this interpretation, (3.80) becomes an observation equation which, given
estimates of N from (for example) potential coefficient models, can be used to form normal
equations and then the estimation of the parameters Ax, Ay, Az, Aa and Af. With these
values new ellipsoid parameters may be determined. This new ellipsoid will have an
overall least squares (via {) fit to the sea surface. Although N may not be precisely
known on a point by point basis the analysis taken over the whole oceans will average out
missing high frequency effects in N. The analysis suggested in this section has been
discussed by West (1982), by Engelis (1985) and others.

Rizos (1980) and Engelis (1985) have discussed other ways in which the ellipsoid
may be defined. One procedure is to define the ellipsoid such that the mean sea surface
topography is zero over the oceans. Specifically we introduce the condition that M ({1) =0
where M is an averaging operator over the oceans. Taking Ax, Ay, Az, and Af to be zero,
and W to be one in (3.80) our condition implies

Aa=M ({o-N) (3.81)
where high frequency effects are assumed to average to zero.

Engelis (1985) described calculations using the (3.80) observation equation and also
(3.81) using different models for N. Using Seasat altimeter data as adjusted by Rowlands
(1981) using the original JPL geophysical data records, Engelis found (from both (3.80)
and (3.81) an equatorial radius of 6378136.0 m. This value is dependent on the scale of
the Seasat orbits which depends on the GM used in the orbit calculation.

Global modeling efforts incorporating Seasat data have been described by Marsh et al.
(1989). The equatorial radius computed from the Marsh et al. analysis was 6378136.14 m
which is quite close to results from the Doppler station analysis described in Section
3.10.3.1. Denker and Rapp (1990) found an equatorial radius of 6378136.4 m based on
Geosat altimeter analysis while Rapp et al (ibid, p. 27) report on equatorial radius of
6378136.38 m.

3.11 Other Considerations on Ellipsoid Determination

Bursa and Sima (1985) have discussed ways in which the dimensions of celestial
bodies can be determined given the harmonic coefficients that represent the gravitational
potential of the body. The authors define an equipotential boundary surface S with a
geocentric radius-vector ps. Let pg be the radius vector to the actual topographic surface.
The surface S should be chosen such that

ffs (p.- pz)zdS = a minimum

The ps is expressed in terms of a parameter Rg (= GM/W) and dimensionless coefficients
that are assumed known.

(3.82)
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3.12 Future Determinations

3.13 Vertical Datums

The height above the ellipsoid, the geodetic height, although rigorously defined, is not
the height conventionally used for mapping. Instead, it is common practice to introduce, as
a vertical reference datum a surface that is associated in some average way with mean sea
level or the mean ocean surface. Heights, now called orthometric heights, are measured
with respect to this mean sea level surface. There are different ways in which mean sea
level may be defined and determined, and various ways in which heights, given with
respect to this surface can be defined. The following gives more specific details on the
definition nad realization of vertical reference systems.

3.13.1 The Geoid

A fundamental surface of gravimetric geodesy, and of high importance to vertical
reference systems, is the geoid. The geoid is a specific equipotential surface of the earth's
gravity field. In this discussion we will adopt a geoid definition that excludes the direct
effects of the Sun and Moon although for some applications (e.g., in oceanography) it is
appropriate to consider such effects. The gravity potential on the surface of the geoid is
defined to be Wo. By definition, there should be only one geoid, although the estimation of
the location of the geoid yields many values. The geoid can be located with respect to a
reference ellipsoid through geoid undulations, N. These undulations can be determined
from knowledge of the gravity field of the earth. Calculation of N with such data can only
be done up to some constant value which is known within one meter. Since the geoid is
determined by variations in the gravity field, the geoid is an irregular surface with a
maximum positive geoid undulation of 78 meters and a maximum negative undulation of
-108 m.

The gravity potential on the geoid is not directly observable. However, it can be
computed given knowledge of the Earth's gravity field, and the position of a point on the
geoid. One could write:

Wo=£[r, V. A, Copmy S s GM. ) (3.83)

Here, 1, y, A are the geocentric radius, geocentric latitude, and longitude of a point on the
geoid. Cpm and Spm are potential coefficients of degree n and order m in a spherical
harmonic expansion of the Earth's gravitational field (see eq. (3.77)); GM is the
gravitational constant times the mass of the Earth, and o is the rotational velocity of the
Earth. The calculation of W is hindered by the lack of knowledge of the physical location
of the geoid (so that r, W, A cannot be accurately determined) and lack of knowledge of the
potential coefficients. If one could identify points on the geoid, on a global basis, the
averaging of many W values could lead to an estimate of the potential of the geoid where
random errors have been reduced but systematic effects remain.

3.13.2 The Mean Sea Level

Mean sea level is a surface defined by averaging sea level over time and in some cases
spatially. Tide gauge stations are the principal source of information on sea level. Such
stations continually monitor the rise and fall of sea level. The largest signature will be that
of tides. Averaging, at a point, over appropriate time intervals (one year to 18 years) yields
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an average location of local mean sea level. Mean sea level is not constant as it can be
affected by ice cap melting, wind variations and changing ocean current (e.g., El Nin6)
patterns. The determination of mean sea level in coastal regions may be sensitive to the
location of the site. For example, the location near a river discharge to the ocean could give
unreliable readings in time of drought or excessive rainfall.

Mean sea level is not an equipotential surface. This is due to the fact that currents exist
in the ocean where water will flow from one equipotential level to another. The geoid can
now be defined as the equipotential surface that has the same physical location as a global
mean sea surface when tidal, atmospheric and current effects are removed. The separation
between the mean sea level and the geoid is called sea surface topography (SST). Sea
surface topography can be estimated from oceanographic information (such as water
density, salinity, pressure, current flow, etc.) in conjunction with assumptions on a level of
no motion in the oceans. However, its determination on a global basis is complex due to
the need for substantial information that is difficult to collect on a large, ocean-wide scale.
The estimation of long-term sea surfce topography has been discussed by Lisitzen (1974),
Levitus (1982), and others. The estimates of SST made by these authors indicate the
separation between the geoid and mean sea level to be on the order of £1m. At this time
there is no uniform agreement on the deep reference levels in the oceans to be used in SST
computations. In addition, SST is especially difficult to compute in the coastal waters
where tide gauge measurements are made. Future prospects for SST determination would
be enhanced with improved gravity field information from special satellite missions (e.g.,
using a gradiometer) and through the direct measurements to the ocean surface from
satellite altimeters.

To summarize this discussion, consider Fig. 3.6 which shows a meridian section of
the ellipsoid and various surfaces of interest. The ellipsoidal (h) and orthometric (H)
heights are shown. The orthometric height is formally measured along the curved vertical
between the point P and the reference equipotential surface, the geoid. Fig. 3.7 portrays
the information at a tide gauge station and its connection to a reference benchmark.

SEA SURFACE

= ELLIPSOID

Figure 3.6. Location of ellipsoid height (h), orthometric height (H), geoid undulation (N),
and sea surface topography (SST).
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Figure 3.7. Measurements at a tide gauge site.

3.13.3 Determination of Orthometric Heights

In order to determine orthometric heights, we must determine a reference surface from
which these heights are measured. Ideally, this surface should be the same for the whole
world; and, therefore, conceptually the geoid is the appropriate surface. Since it is
essentially impossible to physically determine the geoid, mean sea level is used. There are
several ways in which MSL is introduced into a vertical network. The simplest procedure
is one in which mean sea level, at one site, is transferred to a nearby fundamental
benchmark. The elevation of this benchmark is found by measuring the small elevation
difference between the MSL determination at the tide gauge and the benchmark. This
benchmark then becomes the fundamental point of the vertical network. That is, the
reference equipotential surface is that surface passing through the benchmark. This surface
is traceable to the MSL at the nearby tide gauge site.

Starting from this point, vertical control measurements, consisting of leveled height
differences and gravity measurements, are made. With this information, the potential
difference or orthometric height, with respect to the reference surface can be determined.

Consider the determination of the elevation of MSL at a site some distance form the
fundamental tide gauge. The elevation at this new point would not be expected to be zero
because we have previously noted that mean sea level at various locations does not define
an equipotential surface.

In contrast to using a single tide gauge station to define the fundamental reference
surface, an alternate technique incorporates multiple tide gauge determinations of mean sea
level. In this case, a vertical network is adjusted to maintain consistency betweeen the
various loops of the network. In addition, constraints are imposed on the adjustment to
force the equivalent of a zero elevation at each of the local mean sea levels. This procedure
has the advantage that elevations near coast line will be close to zero. However, it has the
disadvantage that the datum surface is no longer associated with a single station. In fact,
the reference surface is no longer an equipotential surface due to the warping necessary to
uphold the constraints of the adjustment.

Another procedure for beginning a vertical datum is to carry out a preliminary
adjustment with one station held fixed. At the completion of the adjustment, the heights of
the local mean sea levels throughout the network are examined. A mean discrepancy is
computed and applied to the station originally held fixed. This procedure forces the
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average elevation of all local MSL determinations to be zero. It does leave the reference
surface unattached to any specific station.

We should finally emphasize that this discussion has ignored the time variations of
mean sea level determinations. As noted earlier, mean sea level can change with time so
that it is appropriate to associate a vertical datum with a mean sea level at a specified epoch.
An alternative is to refer the datum to a defined elevation at a specified datum benchmark.
Another complication relates to the motion of the crust, which for this discussion is
assumed fixed.

With this discussion in mind, it is clear that there will be many vertical datums in the
world. Each datum may be traced to some local mean sea level determination, or to some
fixed reference point, or to some implicit surface defined by an adjustment procedure.
Each country (or region) may have its own datum.

3.13.4 Specific Vertical Datums

The vertical datum now used in the United States is called the National Geodetic
Vertical Datum of 1929 (NGVD 29). The date reflects the time at which the leveling data of
the United States and Canada were adjusted. At that time there was 75,159 km of leveling
in the U.S. and 31,565 km in Canada. The adjustment was carried out by holding local
mean sea level at zero elevation at 21 tide gauge stations in the U.S. and five in Canada.
This procedure led to a datum that is warped to local mean sea level. The development of a
new vertical network for North America will take into account the fact that local mean sea
levels do not fall on the same equipotential surface.

The height system in Australia is called the Australian Height Datum (AHD). It was
developed in 1971 through the adjustment of 97,320 km of leveling, holding mean sea
level, for the 1966-68 epoch, fixed at zero at 30 tide gauge sites around the coast of
Australia. This procedure was analogous to that used in the development of NGVD 29.
The reference surface for the AHD is not an equipotential surface, but a surface warped to
mean sea level around the continent.

In Europe one finds two types of vertical datums. The first type is that associated with
a particular country or region. This type has grown from the historical need for height
information. The second type of datum is that associated with the development of the
United European Levelling Net (UELN).

In 1973, a new subcommission of the International Association of Geodesy was
formed with the task of continuing the work of prior groups involved with the United
European Levelling Net (Ehmsperger et al. 1982). The purpose of the Net was to combine
all leveling data from the European countries into one consistent system. For datum
definition purposes, a single point was held fixed at a specified elevation (or geopotential
number). This station is No. 4019, Normal Amsterdam Piel (NAP). The datum for the
UELN-73 network is the equipotential surface which is a defined potential below the
surface that passes through NAP. Since no other constraints have been imposed at tide
gauge stations, the UELN-73 datum is free of internal distortions caused by the departure
of local mean sea levels from the same equipotential surface.

Arur and Baveja (1984) have discussed the vertical datum for India. The First Level
Net of India was adjusted in 1909 holding the elevation zero at mean sea level at nine tide
gauge stations. Later preliminary adjustments between local mean sea levels between the
east and west coast of the country. It was then decided to define the vertical datum origin at
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a single tide gauge station in Bombay based on a local mean sea level determined from 38
years of observations.

It should be clear from these discussions that most countries have adopted varying
procedures for the definition of their vertical datums. Such procedures make it impossible
to have a vertical datum that is truly global in nature at this time. Fortunately, since vertical
datums are tied to local mean level, the inconsistency of the reference levels should not
exceed 2 meters, which is the range of sea surface topography described by Lisitzen or
Levitus.

3.14 Future Vertical Datums

The above discussion indicates the variety of vertical datums that exist in the world.
This leads one to ask two questions:
1) Is it possible to determine the height (or potential) difference between two or more
vertical datums?
2) Is it possible to construct a world vertical datum? A general discussion of possible
solutions to these questions is found in (Rapp, 1983).

The calculation of a potential difference between two datums has been discussed by
Colombo (1985), Hajela (1985), and others. In these discussions, several different types
of information are brought together. This information includes the geocentric position of
fundamental benchmarks as derived from laser tracking of satellites; global gravity field
models; detailed gravity surveys within several hundred kilometers of the benchmarks
whose geocentric coordinates are known; and potential difference determinations between
the geocentrially positioned benchmarks. The simulation studies of Hajela indicated that it
would be possible to determine the height difference between Europe and the United States
to an accuracy of about £ 0.5 m. Since this is about the accuracy we could obtain with
existing oceanographic data, it appears that we need to wait for more accurate gravity field
models to determine the height difference more accurately.

Of great future interest is the need for a common surface that is ultimately accessible to
all countries for vertical reference purposes. Cartwright (1985) has suggested that such a
surface may be a surface of no motion in the oceans. Such a surface may exist at locations
where the pressure reaches some defined value. One such surface might be the 4000
decibar surface. Using oceanographic measurements, it is possible to calculate the sea
surface topography in the open oceans with respect to this reference surface. This
information is then brought into the tide gauge stations through stellite altimeter
measurements and geostrophic leveling using current measuring devices.

This proposal would enable the local mean sea level heights to be converted to refer to
the deep pressure surface. This method could be an important step in defining a world
vertical datum. An error analysis of the procedure needs to be done to verify that the
accuracy would be substantially better than that which could be accomplished using
ellipsoidal heights and geoid undulations.
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4. Fundamentals of Three Dimensional Geodesy

4.1 Introduction

The classical techniques of geodetic control are divided into the solution
of two separate networks: the horizontal control network and the vertical control
network. The object of the horizontal control network was to establish the geo-
detic coardinates of points on a reference ellipsoid that have a correspondence to
points on the surface of the earth. In order to do this, measurements were made
on the surface of the earth and reduced, in theory, to corresponding values with
respect to the ellipsoid. This required corrections for skew normals, normal
section to geodesic, and most important, deflections of the vertical, for the
angular or direction measurements. In addition it was required that all measured
distances be reduced to the ellipsoid. This latter requirement yielded a need for
the orthometric heights of the baselines, and the geoid-ellipsoid separations, or
astro-geodetic undulations, In practice the orthometric heights can be determined
accurately, but the astro-geodetic undulations are not known accurately until
an accurate horizontal control network is available. We thus can see that the
processing data observed on the surface of the earth to obtain geodetic contwl is
a difficult one requiring at many stages certain approximations and assumptions.

Since there is no direct requirement for determination of heights of sur-
face points in the usual horizontal control network, it was reasonable to separate
the vertical control and carry out an adjustment independent of horizontal control
data using primarily the results of the usual geodetic leveling.

If we now re-consider the problem in the light of current observational
data, it is apparent that an adjustment of all such data would be a goal recognizing
that the observational material is generated from the surface of the earth. Thus
we wish to use some or all of the following measurements: horizontal direction
or angular measurements; zenith distance or vertical angle observations; chord
distances such as determined from electromagnetic distance measuring equipment,
astronomic latitude, longitude and azimuth measurements; leveled height dif-
ferences as determined through usual geodetic practices. x, y, z positions

from satellite or lunar data, chord distances from very long line baseline
interferometry (VLBI) etc. This data could be processed without a reference
surface such as a reference ellipsoid, or we caild use such a surface if the results
are needed with respect to such a system. The method that incorporates some

or all of the data types into a single adjustment of geodetic data to determine

the position o points is known as three dimensional or spatial geodesy.

The original suggestion of computing a triangulation network in space is
attributed to Bruns (1878). In 1957 Hotine developed equations that could be used
for the adjustment of a three dimensional network and Brazier and Windsor (1957)
described a test network in which an adjustment of a simulated three dimensional
network was carried out and compared with the adjustment of a conventional
horizontal control network. Subsequent papers by various authors have refined

147



the mathematics involved in three-dimensional geodesy and have carried out
adjustments using real data. Especially important in this respect is the paper
of Wolf (1963) where the differential equations needed for the adjustment process
are derived in a manner different from Hotine, and the discussions on three
dimensional geodesy and vertical refraction by Hotine (1969). Additional discus-
sion on the background and principles of three-dimensional geodesy may be found
in Ramsayer (1972).

In the following sections we will derive the more important concepts in
establishing the mathematical model of three dimensional geodesy, and we will
discuss some of the practical implementation techniques and results.

4.2 Coordinate Systems and Coordinate Relationship

We first introduce the rectangular coordinates, x,y,z for some point of
interest. This rectangular coordinate system is defined such that the z axis is
parallel to the mean rotation axis as defined by the CIO pole, and the x axis ‘
passes through the mean Greenwich astronomic meridian as defined by the BIH.
x is perpendicular to z and y is perpendicular to x and z. We may also define
the origin of the rectangular coordinate system as being at the center of mass
of the earth.

If we were to introduce an ellipsoidal surface for reference purposes we
would have as usual:

x= (N+h)cos ¢ cos A
y = (N+h)cos ¢osinA (1)

z= (N(1-e°)+h)sin¢

where © and A are the geodetic latitude and longitude of a point on the ellipsoid
through which a normal to the ellipsoid is passed through the point in question.
h is the geometric height of the point above the ellipsoid measured along the nor-

mal.

We next define a local coordinate system whose axes areu, v and w,
The origin of this system is at a point from which observations might be made.
The w axis coincides with the local vertical and is positive up. The u axis point
along the astronomic meridian (positive north) and v points east being perpen-
dicular tou and w. The actual directions involved in u, v, and w must be related
to the same mean astronomic system used in defining the x, y, z coordimate
system. These local coordinates are shown in the rectangular coordinate system
in Figure 4-1 for a point whose astronomic latitude and longitude are ¢' and A"'.
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Figure 4-1

The Local and Rectangular Coordinate System

Now let the observations from point P to another point be designated
a’ for the astronomic azimuth, V* for astronomic vertical angle and s for the
chord distance between the points. The observed quantities are illustrated in
Figure 4-2 in the u, v, w coordinate system.

b,

Figure 4-2

a', V' and s in the u, v, w System
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In terms of the measured quantities at P,, the u, v, w coordinates of P, can be
seen from Figure 4-2 to be as follows:

z /7
u=scosV cosn
' . 7
v=scosV sinv (2)
. /
w=s8sinV

We can solve equations (2) to express the measured quantities in terms of the u, v
and w coordinates. We have:

(3)

The rectangular coordinate difference between points 1 and 2 can now be
written as:

Ay =¥z =¥y (4)

We now need to convert these spatial coordinate differences into the local astro-
nomic (u,v,w) system.,

To dothis we consider Figure 4.3 drawn with an origin atthe point in
question. The translated x, y, z axescorrespond to the coordinate differences
Ax, Ay, Az of the two points being considered . For convience we introduce a
V axis so that ¥ = -v, There are two rotations involved. The first is a R,
rotation about the z axis of -(180° -~ A') and the second is a Rg rotation of -
-(90°-¢"). We then have:

u Ax
(5) <-v >= Ra (©' - 90°) Ry (X' - 180°)<Ay )

w Az
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11Z
y )

A {i80°-Y)

11Y

v
(¥%)

11X

Note that there are only two rotations involved because the u and w axes form a plane that, by
definition is parallel to the z axis. Multiplying out the rotation matrices and considering the sign on
v, equation (5) can be written as:
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. 4 s . / 4
u Lsin@'cosd” -sing sind’ cose Ax

v F ~sin)\’ cos A’ 0 Ay (6)

4 ! . / . 7
w cosp'cos\” coso'sin\’  sing Az

We may use equation (6) to determine unit vectors along the u,v, w axes
in terms of the unit vectors along the x,y, z axes. We can write:

- . land . o T Epd
u= -sin¢ cosA'i - sin® sinX j+ cos’k

bd . i 1=

v=-sin M T+cosA'T , )
- / 37 A Iy . ;7

W= Cc0S® cOoSX\ i+ cosp sinX'j + sinov k

- - -

where l_l,, ;, w are unit vectors along the u, v, waxes and i, j, k are unit vectors
along the x, y, z axes. If we wished to determine unit vectors along a local geo-
detic system we would simply replace the astronomic coordinates in (7) by the
corresponding geodetic coordinates.

Next we express (6) in the following form:
u Ax

(VL R (0, k’)(Ay) (8)
w/ Az

Where R is the coefficient matrix in (6). We then solve (8) for 4x, Ay, Az:

Ax u
(Ay>= R (o, \) <v> %)
Az \\ '

Carrying out the inversion or noting that R equals R" we can write (9) as follows:

Ax -sing’ cosA’  -sin)\’ cos¢ cos)’ u
Ay |=| -singdsin)’ cos\’ coso’ sin\’ v (10)
Az cos © : 0 sing’ - w

We can express the rectangular coordinates differences in terms of the measured
quantities by substituting (2) into (10) to find:

Ax= s[cos)\’ (cos¢ sin V' -sin&’ cos of cos V')-sin)’ sin o cos V'] (11)
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Ay=s[sin\’(cos® sinV'-sino cos a’cos V')+cos X sinn’ cos V'] (12)
Az=s[cos cos V' cos o'+ sing sin V'] (13)
We can also re-write (3) by substituting equation (6). We find:
. / " '
n' = tan~t -sin A" AX+ cos A'Ay ] (14)
-sin® cosX Ax-sine sin A Ay + coso’ Az

V'= sin™ -;— (cos @ cos\'Ax + cos @ sin\ Ay + sin©’ Az) (15)

(16)

s =V AXZ + Ay? + 4z°

Equations (14) and (15) may be used to compute the geodetic normal section azimuth,
and geodetic vertical angle, simply by replacing the astronomic coordinates by the
geodetic coordinates of the point at which the azimuth and vertical angle are being

computed.

In some-cases it is convenient to express (14) and (15) in terms of geo-
detic coordinates by replacing Ax, Ay, Az with corresponding values computed
from equation (1). In this case we can write (Mitchell, 1963):

n'= cot“lf_[(Ng +hg) (cosgz sincpl' cos(‘)\'1 - Az) -sings coscpl')

(17)
-(N; +h,)(cose, sing; cos(A] - A;) -sing, cosg )
2 / : .
+e® cosgp, (N; sing, - N, sin ¢ )] :]
(Nz +hz)cosgs sin 04 - Az) - (N, +hy) cosg, sin@] - A,)
V'= sin™? 1 '/(N + hy)(cosp, cosg; Ao = AL )+ si !
s\ ) @4 cos(Ag 1) T sing; sing;)
(18)

- (N + h;)cosgp, cosg) cos(y - A{) + sing, simp{)

- @ sing] (N, sing, - N, singol)>
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At this point we can recognize the general functional relationships between
the quantities discussed so far:

a'=f(Xyy Y1, 21y Xgs Yoo Za» G A)
V’=fe(X1, Yis Z1s X3y Y2 23, ¢’1,’ >\1I) (19)
S=f3(X1, .YIa 219 xe, YE’ Zz)

or \

a'= fi(o0, Ay, by, g, Az’ by, ‘Dlly Xl)
Vi (@1, Ay by, D2, Az, ey 01, AY) (20)

S=f5((01, Al, hy, ©a, >\29 he)

The equations derived in this section may be used for several different
purposes as well as providing the basic equations to be used for deriving the obser-
vation equation needed for a three-dimensional geodesy adjustment. For example,
if we know the geodetic coordinates (v, A, h) of one point, the geodetic coordinates

“of a second point can be computed if we observed ¢, A, @', V' and s, compute the
rectangular coordinate differences from (11), (12), and (13), find the rectangular
coordinates of the second point by adding the coordinate differences to the
rectangulr coordinates of the first point and then solving for ¢, A, h of the second
point from the x, y, z value. In addition, equations such as (14), (15) and (16) may
be used to compute the approximate values of the observed quantities based on the
approximate coordinates of the stations involved when we are considering an
adjustment procedure.

4.3 Differential Relationships

At this point we need to develop the differential relationships that relate
the changes in the quantities given in the functions of (19) and (20) to the corres-
ponding changes in a’, V' and s. To do this we first consider the variation of
a’, and V' through equation (3). For do’ we have:

udv - vd
do'=5—, + (21)
vV +u u

Using equation (2), (21) reduces to:

do'= -1 (cos a'dv-sine’ du) (22)

scosV’
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In a similar fashion the arcsine expression for V' in (3) yields:

av’= 8dw-wds (23)

!
s®cosV

We next find the variation of the local coordinates by differentiating (8). We have:

du dax Ax Ax
_ 3R . 3R '
dv |= R| dAy { + 30" by '+3X Ay | dx (24)
dw \dAz Az Az
We find:
Ax -W
AR
2o’ ay =l o (25)
Az u
and:
Ax ~vsing
3R
S Ay |= | -cosX Ax-sin)aAy (26)
Az v cos @

We now can write (24) as follows:

du dax -W -vsing
dv | = Rl day |+| o | do'+| -cosX ax-sin)'ay | A\’ (27)
dw. daz u vcos ¢

We can also compute ds from (16):

ds= 1 (AxdAx+ Ay dAy + Az dAz) (28)
S
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We now substitute equations (27) into (21), and (27) and (28) into (23), and using
(2) we determine the following equation:

da'=a, (dx,-dx, )+ ag (dy-dyy) + a3(dz,-dz,)

(29)
+a,dp)+agd\]
dV’ = by (dxg - dx, ) + b, (dyg - dy; )+bs(dza-dz,)
(30)
+b, d¢} + bgdA]
ds=cy (dXg- dx; ) + ¢, (dyz - dy1) + ca(dzz -dzy) (31)
The coefficients in (29) through (31) are as follows (Wolf, 1963):
sino’ cos\’ sina’-sin)\ cosa’
a =
' scosV’
as = sing sin X' sina’ +cos X’ cosa’
scos V'
o = -cos¢ sina’ (32)
° scos V'’
a,=sina’ tan v’
ag = (sin®’'-cos ¢ cosa’ tan V')
b = scoso”cos\ -sinV‘Ax
! s®cosV’
scos® sm)\ -sinV’Ay
by = - ;
) s“cosV
. / . 4
b3=ssm“§_smY Az (33)
s“cosV
b, = cosa’
bs = sina’ cos¢’
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c =
! 5
Va-¥
Ca= Je7 1 (34)
S
Z3-2y
03 =
s

In these coefficients the astronomic coordinates refer to the point at which the
observations are made, &' is the astronomic azimuth from the first point to the
second point, and Vv’ is the vertical angle from point 1 to point 2. In practice,
if the astronomicobservations are not available, the corresponding geodetic

values may be used in the above coefficients.

Equation (29) through (31) may also be re-written with the variable quantities
on the right hand side in terms of dg, dA, and dh by using equation (2.109, 110, 111) to
replace dx, dy, and dz. After considerable algebraic manipulation we find (Mitchell,

1963, Wolf, 1963):

dal= dl d(Dl"' dzd).l'*' dadhl -+ d4d@3+d5dkg+ dedh.e

(35)
+ d,doy + dgd);
dv'=e; do, +e,dX, +esdh; + e, dp, + esd) ;s + esdhg
(36)
+e,dipy +egd\]
ds=fydo,+f,dA, + f3dhy + f,do; + f5dA + fedhy (37)

The coefficients in (35) through (37) are as follows:

d, = (M1+h1)sma1
=
scosVi

_—(Ny h,)cosp, cos o

da

scosV,
d3= 0
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-£M2+ Ea)
d,= s cos v sin @, (sin@, sing, cosdA + cota; sing, sin Al +
1
(38)

+COS (01 COS(Pg)

_ (Ng+ hz)coso, cosa, (cosAX - sing, sinA)\ténal)
5=

scosV,

dg = €05 P2 cos @, [tan @y (Sinw, cosAX - tan @, cos ¥, )+ sin AM]
' scos V,

d7 = tan Vl sinal

dg = siny, -cos ¢, tan vV, cos &,

(My+h)sinV; cosoy
s

€ =

_ (Ny+hy)sin V; sinay coso,

2

s

_=-cosV,
3= ——1
s

- +h .
e,= —(-N—Ie-—i)— (sing, cos®, cosAA - coso, sing, - sinV, cos V, cos a,)
scos V;
(39)

- + s ‘
= (NZ hﬂ)co QO3 (cos(pl sinA A\ -sinV1 COSV; Sinag)

€s
s cos V,
1 . . . .
€g = ———— (COS(0; COSQPz COSAA+ 8in®; sinY, + sinV, sinV,)
scos V;
e, = Ccos(,

es = COS(D]_ Sind1
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f, = -(My+hy)co8 V, cos oy

fa= -(N;+ hy)cosV, sing; coso,

f3= -sin Vl
(40)
f,= -(My+ hy)cos V; cos 03
fs= -(No+ hy)cos Vy sina, cos @,
fe = "'Si.DVz
In these expressions AA=Az- X;, @4 is the azimuth from point 2 to point 1 and
V, is the vertical angle from point 2 to point 1. In addition, no distinction has
been made in these coefficients between astronomic and geodetic quantities.
In some cases simplification of certain of the above coefficients is
possible under certain assumptions (for example, short lines), We have (Ram-
sayer, 1971) for lines of less than 20 km:
dd = -dl
ds = =d,
€, = €
(41)
65 - -ea
f,=-h
£ = -1

In addition dg is very close to zero and is in fact taken as zero by
Vincenty (1974). Some alternate approximations to the rigorous coefficients may
also be found in Vincenty.
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4.4 General Adjustment Procedures

Now having available the differential relationships derived in section 4. 3,
we are in a position to develop the observation equations needed to perform a
least squares adjustment. To start, we write a general observation in the form:

oF
F(Xo)+ 3% dX=Loss +V (42)

where F is the function relating the observations, Lgsss, and the parameters, X of
the problem. d X are the corrections to the approximate values Xo of the para-
meters and v is the observation residual. From (42) we can write:

AF
v=F{ -L + —— dX 43
Xo) o8BS AX (43)

oF
In section 4.3 we have developed the expression for 3x dX and we now proceed to

apply them for each possible observation. Before an adjustment is started the

observations may be reduced to corresponding observations between reference
marks on the ground. If this is not done the final adjusted poditions of the mark
must be found by reducing the adjusted positions of the observation instrument.
There are a number of arguments for not first reducing the data to the marks. For
-example, Vincenty (19792) points out that any reduction assumes heights which

may not accurately be known, and such re-computation after each iteration of
adjustment may slow down the convergence of the process.

4.41 Astronomic Azimuth Observations.

In this case we assume we have measured o’ and that we compute a
corresponding approximate value o’ based on the approximate values adopted
for the unknown quantities which are the quantities listed on the right hand side
of the first equations in either (19) or (20). Using (35) (for example) and (43) we
can write:

V! =Qo-0+d doy +dydXy + dydhy + d,do, +dsdA g +de dhy + dr do] +dg Ny

(44)
4.42 Horizontal Direction Measurements
Let a set of directions referred to an initial direction D, be designated
by Dy,...Dy. The astronomic azimuth of the initial line is &/ which may be only
approximately known (& lo) so that we write:
o= a6+ Z (45)

where Z is known as the orientation or station correction. @5 can be computed
given the approximate coordinates of the two points involved with the initial line
using (14). The "observed' astronomic azimuth for some direction would then be:

160



ay= @ +Dy- D= Ay + Z+ Dy~ Dy (46)
Using & as the observed quantity in (43) we can write:
Yo =0g- (Afo+Dy-D )- Z+do’ (47)

where da’ is given by (35) or (29). Note that no corrections for deflection of the
vertical are to be made to the observed direction. The discussion here can be
compared to that given for classical direction observations equations as described
in section 7 of Rapp (1984).

4,43 Vertical Angle Measurements

In deriving equations in this chapter we have assumed that no refraction
of the light rays has taken place. In fact it does, with the greatest effect occurring
on vertical angles. Consequently before we can finalize the vertical angle obser-
vation equation it is necessary to consider the effect of vertical refraction.

4.431 Vertical Refraction Modeling

We start by designating the measured vertical angle by v’ recalling that

the corresponding value unaffected by refraction has been called V’'. We write:
Vi=vV'+av (48)

as may also be seen in Figure 4-3

zenith A

Figure 4-3

» horizon plane Vertical Refraction Effect
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A general discussion of vertical refraction may be found in Hotine (1969, Chapter
24) and Bomford (1971, Sections 3.19 and 3. 20).

To start we first express the angle of refraction at P in terms of the curvature of
the light ray and the length of the line. We have (Bomford, 1980, e.g. 3.49):

ay=1 iy s-4 a4 (49)
S o o

where s is the length of the line from P to @, and ¢ is the radius of curvature of the light
path. The value of o can be expressed as (Bomford, eq. 3.44, Hotine, eq. 24.59):

1__la
s " na cos V -(50)

where n is the refractive index and h is the geodetic height. The refractive index for
optical wavelengths can be expressed as follows (Bomford, eq. 1.70; Hotine eq. 24.54):

(ng~ 1) P 0.000000042¢
(n=1)= ' - (51)
aT 1013.25 oT

where:

n, is the refractive index for a specific wavelength at standard atmos-
pheric conditions;

¢ is the coefficient of expansion of air;

T is the temperature in °K;

P is the total air pressure in millibars;

e is the partial pressure of water vapor in millibars,

Differentiating (51), neglecting the small effect of e, and substituting nominal
numerical values we have from (50) (Bomford, eq. 3.48):

Q=

dT
= 16.3 % (.0342+ I ) cos V seconds/meter (52)

IfP, T, and %were known along the light path we could substitude (52) into (49)
to determine AV. Alternalely we can postulate some average conditions in the
evaluation of (49). Thus, if we assume o is constant over the ray path we can
evaluate (49) to give:
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S
pv=2 (59)

or using (52) we have:

16.3 P dT
=5 | = (.0342+ — 54
AV s[z 2 (-034 dh)} cos V (54)

We could insert nominal values at sea level of P (1000 millibars); of T (300°K);
and of dT/dh = -0.0055°C/m to find from (54): :

AV=10.'00265cosV (s in meters) ' (55)
At this point we have developed a model that can be used to compute the effect of
refraction on the measured vertical angle. Thus from (54) or (55) we could write:
AV=gscosV (56)
where q is a constant that is to be determined in an adjustment starting from a
nominal value for q such as given in (55) as 0"0026/meter. Additional refine-
ment could be made, for example, by assuming that q is composed of two parts:

one a constant part and another part dependent on h in an inverse manner. Thus
we might write:

_ 9%
= Q. + 57
q=q h (97)
where q; and qz will be quantities to be determined.

Another analysis of vertical angle refraction has been carried out by
Pfeifer (1973) where he obtained the following expression for AV:

K-H H+K+s

H+K-s

.
_| (58)

AV =% Gs/2(U+V) - (U-V)3-1 [ + B+ U—V)Qm;

where: H=h+R
K=hg+R
U= (H/s)?
V= (K/s)?

R = mean earth radius,
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and G is the vertical gradient of the index of refraction which is regarded as constant
throughout the local airmass of the station from which the observations are made.
Equation (58) has been transformed into its present form from a form in which there
was a dependence on cosV such as we have seen in equation (56). Equation (58) is
then used as the refraction model where G is the parameter to be determined.

Saito (1974) also discusses models for vertical refraction assuming a two
parameter model for the curvature in equation (53).

In some literature the concept of the coefficient of refraction, k, is
introduced in this subject through the defining equation:

AV=k® (99)

where 6 is the angle subtended by the line PQ at the center of the earth, With 8 \
given by s/R and AV by (54) we can write (Bomford, eq. 3.52):

p dT
k=252 ?3 (.0342-*-?}1") cos V (60)

Inserting the normal values used in obtaining (55), into (60) yields a normal
k value equal to 0.080. We can write (60) in the general form:

k=k1+k3.%'g' (61)

If dT/dh is constant then the second term can be combined with the first. If we
assume dT/dh is an inverse function of height we can write:

k=k,+ -l;i . (62)

where k;, and k; become parameters of the vertical refraction model through
equation (59). Such a model has been used by Hradilek (1968).

For the purposes of this section we will regard our vertical refraction
model to be given by equation (56) leaving the use of more sophisticated models
to the reader.
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4.432 Vertical Angle Observation Equations

From (48) and (56) we write:
V'=V'-av=V'-gscosV (63)

Regarding V' as the observed quantity consistent with our previous derivations we
write using (43)

v, = Vs - (V'-q scosV)+dV (64)

where V, is the vertical angle (without refraction effects) based on the assumed data
and computed through equation (15). Letting g be an approximate value of q and
dqg the correction to this approximate value we can write:

vy = Vo'- (V' - qo s cos V)+dgscos V+dV (65)

where dV would be given by equation (30) or (36). In some computations over
non-steep lines it may be permissable to set cosV equal to 1, but in general the
cos V should be retained. Hradilek (1973) reports however no correlation be-
tween the vertical angle and the magnitude of residuals when adjustments were
made with cosV equal to one.

Clearly we can not consider a g value as an unknown quantity for each
vertical angle since we would introduce too many unknowns into the problem. We
can make certain reasonable assumptions, however, the most widely accepted
being one where q is regarded as unique for all vertical angle measurements
made from a given station during a specific observation session.

Another procedure for handling refraction effects on vertical angles
is to make reciprocal vertical angle measurements between two stations, either
simultaneously or at the same time of day such that refraction effects are the
same. We then assume that the refraction unknown (q) is the same from both
ends of the line. Then we form the vertical angle observation equation (equation
65) for the two reciprocal measurements, and subtract these two equations
forming a single observation equation in which the refraction unknown has been
eliminated through cancellation. This new observation equation is then used
with a weight based on the weights of the initial reciprocal observations.
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Other procedures such as adopting a known q value or a unique q value
adjusted for a whole network are described by Hradilek (1972). A discussion of the
various effects of different refraction models used in three dimensional geodesy
adjustments may be found in Korner (1968).

4. 433 Measurement of the Vertical Refraction Angle

Clearly if it were possible to measure AV we would have no need to try
to model it, or to carry out special observation techniques to cancel out model
parameters. Tengstrom (1967) has described a method of measuring AV using
measurements made at two different known wavelengths. This technique is also
discussed theoretically by Hotine (1969, p.226).

The principles of this technique start with the fact that AV can be ex-
pressed in the following form:

AV=(ns-1) R+ Q (66)

where R and Q 'meteorological integrals' since they are quantities dependent on
the integration of functions which depend on the atmospheric conditions over the
-line, We next consider AV values dependent on two different wavelengths of
light so we have:

AV(A1)=(no (A1)-1) R+ Q (67)

AV@Az)= (o (Az)-1)R+Q (68)

We difference (67) and (68) to write:
6=[mo(A1)-m(X2)IR (69)

Now assume that we can measure 0 so that we can determine R since n()\) is
known. Using this R we can evaluate (66), (67), or (68) to determine AV pro-
vided Q is known. Tengstrom shows that Q can be estimated from:

Q=-5.5x107° (§>  T60R (70)
\F/a

where e is the absolute humidity pressure in mm H, and p is the total air pres-
sure in mm H; . Fortunately Q is 2 very small term and in many cases can be
neglected if no information is available for its approximate computation through
(70).
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This technique requires a highly accurate measurement of the dispersion
angle § for the satisfactory determination of AV. For example Tengstrom indicates
that 0 needs to be measured to 0!'003 which places a stringent criteria on the in-
strumental techniques needed for this method of determining AV. Prilepin (1973)
indicates that the standard deviation of AV determined from the two wavelength
method is 6000 times the standard deviation of the measurement of the dispersion
angle, again pointing out the need for a very accurate measurement of 0.

A technique somewhat analogous to the method described here can be
used to correct distances measured with optical distance measuring equipment,
Recent results indicating satisfactory implementation of a two wavelength equip-
ment is described by Bouricius and Earnshaw (1974).

4,434 Weighting of Vertical Angle Measurements

Because of the problems involved with vertical angle measurements
and refraction modelling there is a need to carefully consider the proper weighting
of the vertical angle observation equations. Thus the weighting itself may not de-
pend solely on the actual observational accuracy of the vertical angle measure-
ments. For example, in some cases it has been suggested to down weight the
vertical angle observation equations because of the uncertainty due to refraction.
Hradilek (1973) suggests that the a priori variance m* (V') be assigned by the
following equation:

m*¥’) =m®(@@)+ [CEem (k)] (71)

where m(a) represents the accidental observation errors that are associated with
the instrument used to measure the vertical angle, m(k) is the mean square

error of the coefficient of refraction; and C is a quantity between 0.5 and 1.5

that depends on the number of observations made and the variation of their
changes with time. Typical values of C are:number of observations: >3, C =0.5 to
0.8; 3, C=1.3; 1, C=1.5. Values of m(k) gre given by Hradilek for various
regions based on past adjustments and vary from +0,011 to +0.028,

Equation (71) is directly applicable when a refraction model is assumed
known in the adjustment. When a refraction model is being determined in the
adjustment, the standard deviation of the vertical angle observation equation
should be based only on the first term on the right hand side of (71).

4,44 Distance Measurements

We let s, be the observed chord distance between two stations after the
measurement has been corrected for refraction and instrumental correction terms.
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Then we write the distance observation equation as:
Vs= So=~Sy + ds (72)
where ds is given by equation (31) or (37).

4,45 Astronomic Latitude and Longitude

Let ¢¢ and A} be the observed astronomic latitude and longitude of the
actual station on the surface of the earth referred to the mean astronomic system
used in defining the basic coordinate system. Now let ¢, and A’, be corresponding
~ approximate values so that equation (43) can be written:

V! =Gr0p+do’ (73)
Vyr = No= AL+ ax’ (74)

These equations are then simply used as observation equations with appropriate
weighting. ¢, and X', may be chosen the same as the observed quantities or they
may be chosen as the approximate geodetic coordinates of the station.,

An alternate procedure for incorporating this astronomic information is
to regard it as "a priori" parameter data such that the usual normal equations
are modified by adding the weight matrix of the 'observed' parameters to the
elements of the normal equations in a procedure such as described by Mikhail
(1970). This procedure allows the very simple fixing of one or any number
astronomic coordinates.

4.46 Height Differences from Spirit Levelling

We let H be the orthometric height of a point, and N the geoid undulation
so that the geometric height of the point above the ellipsoid is essentially given

by:
h=H+N (75)

If we write this equation for two stations and take the difference we have:
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hy- by = Hy-Hy + No-N; (76)

Now H,-H, is a quantity that is accurately determined by standard leveling pro-
cedures. If we were working with lines sufficiently short such that N;- N, is
zero, we could form a simple observation equation from (75) by writing:

AH: ha_ h]_ (77)
v, = (he=hy)o - AH + dhy - dby (78)

Over longer lines where N;-N,; can not be assumed zero we must develop
a more complex observation equation. Hotine (1969, p. 245) indicates, and Chovitz
(1974) proves that under the assumption that the vertical angles involved are
small, the following equation can be used to connect the measured orthometric
height differences and vertical angles:

V,+V,

SH= s cos 112 SinE(V,-V,) ~ £s(V;-V,) (79)

where V, is the vertical angle of the line from point 2 to point 1. We
use (79) to form the following observation equation:

Viw = (OHo- OHy) + % sdV, -#sdV, (80)

where AH, is the approximate orthometric height difference computed from (79)
on the bass of the assumed approximate coordinates. dV, and dV, are taken from
(30) or (36) being evaluated for the two points involved.

A somewhat similar procedure has been suggested by Vincenty (1974, 19792a)
where the following observations equation has been given assuming that the
astrogeodetic deflections varyuniformly between the two stations and that the
preliminary astronomic coordinates are set to the corresponding most recent
geodetic values,

Vau = -dh; +dh; + (s cos @,y cos V /2)d0, + (S coS ¢, Sin &y 08 Vy /2)d)t'1

(S COS (L, £0S Vg /2)d0’z - (S cOS 0, Sin OlgcosV, /2)dAY (81)

+ (hQ" hl)c - AH
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The weights for the various observation equations discussed here would be
computed on the basis of the standard deviation of the measured elevation dif-

ference.

4.5 The Use of Three-Dimensional Adjustment Procedures in Horizontal
Networks

The previous discussion has been related to the use of many different
types of observations in a three dimensional sense so that no distinction
between a horizontal and vertical network was made. It is possible however, to
apply our three dimensional equations to just data acquired in a horizontal
network. Such a procedure has been discussed by Vincenty and Bowring (1978)
with a computer program discussed by Vincenty (1979b, 80a) and additional
information in Bowring (1980).

We start by assuming that both heights and astronomic coordinates are
known and are to be held fixed in the adjustment. The observations will be the
usual horizontal directions, astronomic azimuths, chord distances ete. These
observations are not reduced to the ellipsoid as is done in the classic horizontal
network adjustment.

The adjustment can be carried out in geographic coordinates or rectangular
coordinates. Consider first the geographic coordinate adjustment. For the
direction observation equation we can write from (47) and (35):

(82) vp = Ay '(sz"c +Dy -Dy) -2 +dydo, +dg dA; +dydeg +ds d g
The chord distance observation equation would be (from 72 and 37):

(83) ve =80 -8 +f dg +f3 d\ +f, dag +fs d)g

Note that in the computation of the approximate values of the observations the
values of the terms to be held fixed are used.

A more complicated procedure takes place when an adjustment in
rectangular coordinates is to be carried out. Here the general form of the
observation equation is (see 29, 30, 31 and 43):

(84) v =TF(Xo) - Loss +a(dxs - dx,) + b(dys - dy,) + c(dzz - dz,)

where the a, b, ¢ coefficients are readily identified withthe coefficients given

in equation (32), (33) and (34). Note that no d¢' and d \' appear in these expres-
sions as these quantities are to be held fixed. We now need to consider the
constraint imposed by saying the height is to be held fixed in the adjustment.
Several ways have been discussed in the literature.
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Vincenty and Bowring (1978) and Vincenty(1980b)discuss a procedure
to eliminate one coordinate unknown per station from (84). To do this an
auxillary ellipsoid is introduced so that the normal at the point in question is
the same as the normal to the usual reference ellipsoid. This implies that the
rectangular coordinates of the point with respect to tle auxillary ellipsoid are:

x = Ngcosp cos A
(85) y =NpcospsinA
z = No (1 -€4) sino

where Ny=N+h and e, is the eccentricity of the auxiliary ellipsoid.
Equating (1) and (85) Vincenty(1980b)finds:

2 e
(86) e3°= € P
1+l 1+-—h
N a

The equation of the auxiliary ellipsoid is
87) £ +y° z &
+ v + =
(87) y (—1-_?; 0
which in differential form is:

z dz
(88) XdX+Ydy+(1_-—-e-z°—)- =0

This equation can them be used to eliminate one of the unknowns at a given station
that will assume the fixing of the height. As an example consider the elimination
of dz; and dz, appearing in (84). Our observation equation will now become:

(89) v = F(X) - Loss +B; dx + B d y;+ B, dx, +B, dya

where (Vincenty, 1980b)

Bl=—a+Ck1 X1 By=a - c ks X,
(90) 21 Za
5‘a=_b+9_£1_11 E4=b.._°__k2_la
_ Zq Z3
with k=1-¢&

The coefficients where other unknowns are eliminated are given in Vincenty and
Bowring (1978) and Vincenty (1980b). Once the adjustment is completed the elim-
inated unknowns can be found from equation (88).

Another approach to solving the rectangular coordinate adjustment is described
by Bowring (1980) and Vincenty (1980b). Here equation (10) of Section 4 is
differentiated where the height (w) is held fixed. Then (10) can be written:
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dx du
(91) (dy) = Q (dv>
dz 0

where Q is the obvious coefficient matrix in (10) but with geodetic ¢ and A.
If we substitute (91) into (84) we can write:
(92) V = F(Xo) ~ Loss + F duy + Gdvy - F dug - G dva
where F a
93 |e|=-=Q|b
H c

with a similar expression for F and G . The corrections du and dv appearing
in (92) are related to dpand dA by:

(94) du =(M +h) do
dv=(N +h) cospda

Thus the use of (92) in the adjustment effectively inforces the height. Simplified
coefficients appearing in (92) for both azimuth and chord distance are given in
~ Bowring (1980):

For azimuth;

Fl_ _-1 -D
(95) [GJ— 5 QTP[C]

Fl_ -1 =1 -D
['G]' 9 P[CJ

For chord distance:

. [4x ]
Fl = 2 Q |oy
96) |G] | &z |
r o i R2=C24p2
- Ax
F -1 ..t
[a] a4
[ &z |
The P matrix is Q evaluated with astronomic coordinates; S is the chord distance and;
! :
97 [CJ =P |4
D AZ_]
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The implications for horizontal network adjustments are several. First and
foremost we are not required to carry out reductions to the ellipsoid of our
data. Second it is possible to formulate a computer program (Vincenty, 1979b, 1980a)
that can be significantly faster than the classical network adjustment program
because of a considerable reduction in computational effort.

4.6 Summary and Conclusions

The techniques developed in this chapter allow the incorporation of a
variety of different measurements into a coherent system relating position
information to this data. Thus we have achieved the goal of determining simul-
taneously the vertical and horizontal position of a point in a geodetic network.

The observation equations were developed with either rectangular (x,

'y, z) coordinates, or geodetic (0, A, h) coordinates as the unknowns, along with
the astronomic values of (o', X’. The choice of which type of unknown to use should
be arbitrary because either choice should yield the same final coordinates. In
actual application of these equations it may be convenient to alter the units so
that angular unknowns are in seconds of arc, for example. Careful attention
needs to be paid to magnitudes of various numbers so that significant digits
are not lost, which may cause errors on the observation equations or instability
in the normal equation matrix to be inverted. Since there are 5 to 7 unknowns or more
per station, the matrix to be inverted in a three dimensional geodesy adjustment
is considerably larger than that found for a corresponding horizontal network in
a classical adjustment. In some respects this represents a disadvantage of this
type of model, but it is a penalty we have to pay for the consistency that we ob-
tain.

One interesting point related to our adjustment model is that we can ob-
tain the astronomic latitude and longitude of a point without having to make actual
astronomic observations at the point. Unfortunately the determination of ©’ and
X’ in this manner is not accurate because such determinations depend primarily
on the vertical angle measurements. Using realistic vertical angle standard
deviations, the simulation studies of Fubura (1972) showed average standard
deviations of ¢ and X’ varying from 4" to 20" at points where no astronomic
determination of ¢’ and A’ were made.

We note that the method of three dimensional geodesy can easily
be incorporated with satellite determinations of the coordinates of points on the
surface of the earth. If such coordinates are given as x, y, z values the adjust-
ment of the three dimensional network can proceed with the rectangular coordin-
ates being considered as data with an a priori known variance-covariance
matrix. A similar procedure could be used with ¢, A and h simply by adopting
a reference ellipsoid and finding the o, A, h values corresponding to the
satellite derived x, y, z coordinates, Alternate to using the a priori weighting
of the parameters (p, A, h or x, y, z) separate observation equations for
each coordinate might be used. This may cause some problems because of
the correlation between the determinations of ¢, A and h using satellite techniques.
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Several computer programs for the evaluation of three dimensional
networks have been published or described (Vincenty, 1979a, Sikonia, 1977).

Large continental networks will probably never be adjusted by
three dimensional geodesy techniques. However its applicaton to
special net adjustments seem to be a much more feasable approach, Such
applications are described by Torge and Wenzel (1978), Carter and Pettey
(1978) and in Sikonia (1977).

We should note that the discussion in these pages has generally ignored
information on the gravity field and equipotential surfaces to some extent. There
are more general theories available that may be useful in certain cases. These
cases are discussed by several authors including Moritz (1978), Grafarend (1980)
Reilly (1980},
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Appendix A

Historical Information on the Development of Major Horizontal Geodetic Datums




The following is taken from the "NASA Directory of Station Locations"
prepared by T. Gunther of the Computer Sciences Corporation, February 1978,

SECTION 3 - DEVELOPMENT OF THE MAJOR GEODETIC DATUMS

3.1 INTRODUCTION

Much of the inhabited area of the world is covered with geodetic networks con-
sisting mostly of triangulation, aithough some are in the form of traverse sur-
veys such as those established by Australia in the 1960s or Shoran trilateration
as established by Canada in the 1950s. The most notable voids of great extent
are the interior of Brazil; portions of west, central, and northern Africa; much

of China; and northern Siberia.

These geodetic operations date back to the last part of the 18th century, and it
was common practice from that time to the early 20th century to employ sep-
arate origins or datums in each country, and even more than one origin in some
countries, e.g., the United States. Even in the early days astronomically
determined latitudes were rather easily established as one coordinate of the
origin. But longitudes were another matter for two reasons: (1) there is no
natural common plane of reference like the equator for latitude, and 2) even

if a common plane, such as that of the Greenwich meridian, were agreed upon,
there was no accurate method of observing longitude before the electric tele-
graph and the associated lines of transmission, including submarine cables,

were developed.

The longitude problem taxed the ingenuity of the astronomers in the first half

of the 18th century. Lunar culminations, occultations, and distances were
observed along with solar eclipses in an attempt to determine differences of
longitude of widely separated points. These methods depended on '"fixing' the
Moon as it moves among the stars, but because of the relatively slow movement
of the Moon among the stars and the irregula.rity of the Moon's limb, this ap-
proach was inherently inaccurate. It gave way to the transportation of chron-~
ometers for timing observations of the stars. This method, which reached its

peak about the middle of i:he 19th century, was replaced by telegraph and, later,
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radio time signals. With the recent development of portable crystal and atomic
clocks, transportation of time is again in use for correlations of the highest

precision.

In the early days, longitudes of a geodetic system were often based on the
position of an astronomic observatory situated in or near the capital city of a
country., A reference ellipsoid was chosen for the datum, and the latitudes and
longitudes of all other geodetic points were derived by computation through the
triangulation. This meant that the many datums, computed on different ellip-
soids and based on astronomic observations at separate origins, were not ac-
curately related to each other in a geodetic sense, although the astronomic

latitudes were of high caliber.

There was a.»slow trend toward accepting the Greenwich meridian as the basis
for longitude, and by 1940 practically all important geodetic networks were
based on it. But there still remained the separate geodetic datums employing
a variety of ellipsoids and methods for determining the coordinates of the
origins. The only computations of extensive geodetic work of an international
nature, based on a single datum, were those for long arcs done in an effort to

improve the knowledge of the size and shape of the Earth.

Since World War II, much has been accomplished in combining separate datums
“on the continents and in relating datums between the continents. The advent of
artificial satellites has made possible the tremendous task of correlating all
datums and, ultimately, of placing all geodetic points on a single, worldwide
geodetic system. The first step in this prbcess, taken after World War II, was
the selection of several so-called ''preferred datums, !' into which many local
geodetic systems were reduced. The more important datums appear on the

accompanying map.
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3.2 THE NORTH AMERICAN DATUM G¥F 1927

Most extensive of the preferred datums, the North American Datum of 1927 is
the basis of all geodetic surveys on the North American Continent. This datum
is based ultimately on the New England Datum, adopted in 1879 for triangulation
in the northeastern and eastern areas of the United States. The position of the
origin of this datum, station Principio in Maryland, was based on 58 astronomic

latitude and 7 astronomic longitude stations between Maine and Georgia.

At the turn of the century, when the computations for the transcontinental tri-
angulation were complete, it was feasible to adopt a single datum for the entire
country. Preliminary investigation indicated that the New England Datum might
well serve as a continental datum. In 1901 the New England Datum was offi-
cially adopted and became known as the United States Standard Datum. A sub-
sequent examination of the astrogeodetic deflections available at that time at
204 latitude, 68 longitude, and 126 azimuth stations scattered across the entire
country indicated that the adopted datum approached closely the ideal under

which the algebraic sum of the deflection components is zero.

A later test was applied to the U.S. Standard Datum. Using Hayford's observa-
tion equations based on astronomic observations for 381 latitude, 131 longitude,
and 253 azimuth stations available in {909, a solutio?. was made for the shift

at Mt_aades Ranch, the chosen datum point, to best satisfy the observed data.
Observed deflections uncorrected for topography were used, and the elements
of the Clarke Spheroid of 1866 were held fixed. The computed corrections to
the latitude and longitude were, respectively, only 0141 and 0!'11. In 1913,
after Canada and Mexico had adopted the U.S. Standard Datum as the basis for
their triangulation, the designation was changed to "North American Datum"

with no difference in definition. ’

Beginning in 1927, a readjustment was made of the triangulation in the United
States, and the resulting positions were listed on the North American Datum
of 1927. In this readjustment, the position of only Meades Ranch was held
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fixed. As a matter of fact, this is really all that sets Meades Ranch apart
from all other triangulation stations. Its choice as the datum origin was purely
arbitrary and was made because it was near the center of the United States and
at the intersection of the Transcontinental and 98th Meridian Arcs of the trian-
gulation. The deflection at Meades Ranch is not zero, as is sometimes as-
sumed; in fact, it was not determined until the late 1940s. Its deflection
components in the meridian and prime vertical are, respectively, approxi-
mately ~1!'3 and +1!'9, in the sense astronomic minus geodetic, with latitude

and longitude measured positively north and east.

Loop closures and corrections to sections in the 1927 readjustment of the tri-
angulation in the United States indicate that distances between points separated
by at least 2000 kilometers are determined to an accuracy of 5 parts per mil-
lion, and transcontinental distances are known to 4 parts per million, Gr_:av—
imetric and other studies suggest that the position of the datum origin is within
1 arc~second in an absolute sense, and recent satellite triangulation indicates
an accuracy of better than 1 arc-second in the overall orientation of the 1927
adjustment. (These statements do not necessarily apply to the extension of

the North American Datum of 1927 into Mexico, Canada, and Alaska.)

In summary, the North American Datum of 1927 (NAD 27) is defined by the
following position and azimuth at Meades Ranch: latitude 39° 13' 261'686 N,
longitude 980 32! 30!'506 W, azimuth to Waldo (from south) 750 28' 09164,

Although a geodetic azimuth is included in the fundamental data of Meades
Ranch, this is of only minor importance, since the orientation of the triangu-
lation is controlled by many Laplace azimuths scattered throughout the network.
The latitude is based on 58 astronomical latitude stations, the longitude is based
on 7 astronomical longitude stations, and the aiimuth is based on nearby
Laplace azimuth control. The basis for computations is the Clarke Spheroid

of 1866. All measured lengths are reduced to the geoid (mean sea level), not

to the spheroid.
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Revision of NAD 1927 is long overdue. Local distortions of 10 arc-seconds in
azimuth are known to exist, and closures within limited areas may be as poor
as 1/20,000. An entirely new adjustment, which will include geodimeter and
satellite observations, is underway. When completed in 1983, it is expected
to have an overall accuracy of 1/ 106, with errors between adjacent stations no

greater than 1/ 105, an improvement in accuracy by a factor of 3 or 4.
3.3 EUROPEAN DATUM (1950)

Uatil 1947 each country in Europe had established its own triangulation, com-
puted on its own datum, which usually consisted of a single astronomic latitude
and longitude of a selected origin. Moreover, at least three different spheroids
were used. This situation, coupled with the inevitable accumulation of errors
in the networks, led to differences at international boundaries of nearly 500

meters in extreme cases.

Althoﬁgh considerable thought was given to unification of the European triangu-
lation, no results became available until after World War II. For several years
before the war, extensive surveys were conducted to connect many separate
national triangulations; thus, the groundwork was laid for a general adjustment
of the major European networks. Under the supervision of the U.S. Army Map
Service and with the assistance of the U.S. Coast and Geodetic Survey, the
Land Survey Office at Bamberg, Gernia.ny, commenced the adjustment of the
Central European Network in June 1945 and completed it 2 years later. This
triangulation network roughly covers the region that lies between 47o to 56o
North latitude and between 6° and 27° East longitude, and is generally in the
form of area, rather than arc, coverage. The basis for the computation is fhe

International Ellipsoid.

To expedite the work, triangles were selected to form a few strong arcs of the
parallel and meridian to build a network susceptible of the Bowie junction
method of adjustment. A scheme was selected which included 23 junction fig-

ures, each of which contained at least one base line and one Laplace azimuth.
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A total of 52 base lines and 106 Laplace azimuths scaled and oriented the Cen-

tral European Network.

The datum of this network depends on the study of 173 astronomic latitudes,
126 astronomic longitudes, and 152 azimuths, of which 106 are the Laplace
type. No one station can be logically designated as the datum point. The
Central European Datum has been referred to as a "condition of the whole, !
not to any single point. However, as a matter of convenience, Helmert Tower
near Potsdam is often referred to as the origin for comparison of the Central

European Datum with other datums.

The Central European Network was extended by the addition of two separate
adjustments of large networks of triangulation known as the Southwestern Block
and the Northern Block. The Central Network was substantially held fixed and,
with the addition of the two blocks, forms the European Triangulation based on
what is now designated as the European Datum 1950.

The Southwestern Block comprises 1230 triangulation stations in Belgium,
France, Spain, Portugal, Switzerland, Austria, Italy, and North Africa; the
Northern Block includes 822 stations in Finland, Estonia, Latvia, Denmark,
Norway, and Sweden. As in the Central European Adjustment, arcs were
selected and adjusted in loops, not by the Bowie junction method but by a mod-
ified simultaneous approach. Triangle and loop closures indicate that, on the
average, the accuracy of the Central Network and the Northern Block of tri-
angulation is somewhat greater than that in NAD 1927, possibly 3 parts per
million for determination of distances of several hundred kilometers. On the
average the accuracy of the Southwestern Block is not as high, probably nearer
5 or 6 parts per million. These are average estimates: the accuracies vary
considerably within the blocks. There is no evidence that any of the base lines

were reduced to a common spheroid, certainly not to the International Ellipsoid.

Since the completion of the original adjustment of the European triangulation

networks, the European Datum has been connected to work in Africa and, upon
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completion of the 30th Meridian Arc, as far as South Africa, as well as to the
Indian Datum through ties made in the Middle East. It is also possible by com-
putation to carry the European Datum to the North American Datum of 1927 by

way of the North Atlantic Hiran connection. N

It has long been apparent that the European 50 adjustment falls short of meeting
current needs. In 1954 the International Association of Geodesy initiated a more
rigorous combination of the triangulations of Europe. Called RETrig, itis
being undertaken in three phases. In Phase I, completed in 1975, the national
nets were independently adjusted after being strengthened with newly observed
distances and directions. RETrig II will be a quick computation of the adjusted
junction points between the national nets, with the addition of long base lines

and Ldplace azimuths. Phase III will follow the procedure of Phase II, but
using all scientific and mathematical sophistication available. The results will

be compared with satellite solutions and may be blended with them.

All stations will be reduced to the International Spheroid (using the 1975 geoid
of Levallois and Monge), from which transition to a world datum can be made.
An inverse solution from the adjusted junction points will position the stations
within the national blocks. Completion of the adjustment, perhaps in the 1980s,
should fix the area of Western Europe with precision and stability.

3.4 INDIAN DATUM

A brief history of the Great Trigonometric Survey of India and of the Indian
Datum is of interest, if for no other reason than that geodetic operations were
commenced at such an early date in an area so remote from any similar activity
and from the country responsible for conducting them. Operations were begun
about 1802, and the Madras Observatory was first selected as the origin of the
trigonometric coordinates because it was the only institution equipped with pre-

cision instruments.
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It was, however, many years before any real progress was made on what is
now known as the primary triangulation. Colonel George Everest, who was
appointed Surveyor General of India in 1830, decided in 1840 to adopt as the
origin the triangulation station at Kalianpur H.S. This station was selected
because it is on a broad plateau at what was thought to be a safe distance from

the Himalayan mass and its adverse effect on the plumb line,

In 1847 a value of 77° 41' 44175 E was accepted as the astronomic and geodetic
longitude at Kalianpur. It was based on a preliminary value of the position of
Madras Observatory. But in 1894-1895, a reliable determination of the longi-
tude of Karachi was made possible by telegraphic observations, and it was
learned that the Indian longitudes should be corrected by -2' 27!'18, Thus, the
corrected longitude at the origin is 7 7° 39! 17157 E. Buf because this was con-
sidered as the astronomic longitude and a deflection of +21'89 in the prime
vertical had been adopted, a further correction to the geodetic longitude was
needed to maintain this deflection. These modern longitudes were introduced
in India in 1905; prior to this, the mapping longitudes of India were off by about

4 kilometers.

The first comprehensive adjustment of the Indian triangulation was undertaken
about 1880. There were no Laplace stations in the strict sense of the word at
this time, but expedients were adopted to approximate the Laplace correction
from telegraphic longitudes available at certain cities. There appear to have
been only about 11 base lines at the time.

After the recommendation of the International Spheroid by the I,U,G.G. in 1927,
it was decided to use this spheroid in India for scientific purposes. The Everest
Spheroid which was used had long been known to be unsuitable. A least squares
solution was accomplished to best fit the geoid in India to the International
Spheroid. In this adjustment the deflections at Kalianpur were 42142 and +3!'17
in the meridian and prime vertical, respectively, and the geoid height was

31 feet. In 1938 a detailed adjustment of the Indian triangulation was made on
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the Everest Spheroid, but it lacked the rigor of least squares; it employed de-
tailed diagrams of misclosures in scale, azimuth and circuit closures, and

personal judgment in the distribution of these errors of closure.

The Indian work comprises about 9400 miles of primary arcs of triangulation
and nearly as many more miles of secondary arcs. In the primary work, the
mean square error of an observed angle ranges among the various sections
from 0!'15 to 1!1'00, and averages about 0!'5. Thus the angle observations are
of very high caliber, but the number of base lines and Laplace azimuths is
deficient. There are now about 127 Laplace stations ?.vailable in India, which
will greatly strengthen any future readjustment of the work. Before this is
done, however, the plan is to raise the accuracy of the secondary work to
primary standards by reobservation and to provide additional work in many

of the existing gaps.

It has been the custom in India to give the deflections rather than the position
cqordinates at the origin. For Kalianpur, in the 1938 adjustment, these were
-0!"29 in the meridian and +2!"29 in the prime vertical (a plus sign indicates

that the plumb line is south or west of the spheroid normal). The geoid height
is zero at the origin by definition. The spheroid is the Everest: f =1/300.8017,
a =6 377 301 meters. This value for a, used in India and Pakistan, is based

on the ratio of 0.304 7996 meters to the Indian foot, rather than Benoit's ratio
(0.304 798 41), for which a =6 377 276 meters. The Benoit ratio continues to
be used in U.S. and U.K. tables for historical convenience, with a scale factor

introduced when appropriate.
3.5 TOKYO DATUM

The origin of the Tokyo Datum is the astronomic position of the meridian circle
of the old Tokyo Observatory. The adopted coordinates were: latitude 35° 19t
1715148 N, longitude 1390 44' 4019000 E; reference surface: Bessel Spheroid,
1841. The latitude was determined from observations by the Tokyo Observa-
tory, and the long'itﬁde by the Hydrographic Department of the Imperial Navy by
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telegraphic submarine cable between Tokyo and the United States longitude
station at Guam. This datum is known to be in considerable error as related
to an ideal world datum because of large deflections of the plumb line in the
region of Tokyo.

The primary triangulation of Japan proper consists of 426 stations and 15 base
lines established between 1883 and 1916. The mean error of an observed angle
is 0166, which is roughly equivalent to a probable error of 013 as applied to

an observed direction. This puts the accuracy of the work about on a par with

that of the United States in this respect.

After completion of the primary work in Japan proper, the Tokyo Datum was
extended in the mid-1920s into the Karahuto portion of Sakhalin, The Manchu-
rian triangulation, established by the Japanese Army after 1935, has been
connected through Korea to the Tokyo Datum. The quality of the primary tri-
angulation in Korea and Manchuria is believed to be about, though not quite,

equal to that of Japan proper.
3.6 AUSTRALIAN GEODETIC DATUM (1966)

Until 1961 the spheroid generally used in Australia was the Clarke of 1858.
Because the triangulation in Australia was initiated in several separate areas,
there were several distinct origins rather than a single national datum. The
most important were Sydney Observatory, Perth Observatory ~ 1899, and

Darwin Origin Pillar.

During the early 1960s an ambitious geodetic survey was started to establish
complete coverage of the continent and connect all imbortant existing geodetic
surveys. For a short period of 1962 computations were perfbrmed on the so-
called "NASA' Spheroid (a = 6 378 148 meters; f = 1/298. 3) with the origin at
Maurice, but these have been completely superseded. The first comprehensivé
computation of the new geodetic surve.y was made on the '"165'" Spheroid (a =

6 378 165, f =1/298.3). This was based on the "Central Origin, " in use since
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1963, and depended on 155 astrogeodetic stations distributed over most of

Australia except Cape York and Tasmania.

It appeared at this time that there might be international agreement on one
spheroid, which Australia mighi adopt officially. Many modern determina-
tions had been made for which the ranges in a and f were so narrow as to have
no practical significance. On the strength of the acceptance of a spheroid by
the International Astronomical Union, it was adopted in April 1965 as the
Australian National Spheroid, with the only difference that the flattening of the
spheroid used for astronomy was rounded to 1/298.25 exactly. The semimajor

axis is 6 378 160 meters.

Holding the Central Origin, which was defined by the coordinates of station
Grundy, a complete readjustment of the geodetic network was made in 19686,
using the Australian National Spheroid. The mean deflection, uncorrected for
toﬁography, at 275 well-distributed stations was +0!'12 in meridian and -01'33
in prime vertical. Although the Central Origin has in effect been retained,
instead of being defined as originally in terms of station Grundy it is now de-
fined by equivalent coordinates for the Johnston Geodetic Station. These are:
latitude 25° 56' 541'5515 S, longitude 133° 12 30!'0771 E. The geoid separation

at this point is -6 meters, as of 1 November 1971.

A study of the observations of satellite orbits indicates there is a rather uniform
and relatively heavy tilt of the geoidal surface over Australia, which would in-
troduce a bias to the astrogeodetic deflections determined on the Australian
Geodetic Datum (AGD) of 4!'7 and 4!'4 in the meridian and prime vertical, re-
spectively. This tilt is in such a direction that the astronomic zenith is pulled
approximately 6!'5, on the average, southwest of where an ideal or absolute

geodetic zenith would be.

The survey net for AGD 1966 consists of 161 sections which connect 101 junction

points and form 58 loops. Virtually all the surveys were of the traverse type
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in which distances were determined by Tellurometer. There are 2506 sta-
tions, of which 533 are Laplace points, and the total length of the traverse is
53,300 kilometers.

Measured lengths were reduced to the geoid, not the spheroid, because of lack
of knowledge of the separation of these surfaces at the time of the general ad-
justment. Development of the geoid for the continent by 1971 showed its effect
on the adjustment to be insignificant. The method of adjustment may briefly
be described as follows: each section was given a free adjustment by which the
length and azimuth between the end points were determined; these lengths and
azimuths were then put into a single adjustment to determine the final coordi-
nates of the junction points connected by the sections; each seétion was then
adjusted to the final coordinates of the pertinent junctions. The average loop
length is about 1500 kilometers; the average closure is 2.2 parts per million,

with a maximum closure of 4.3 parts per million.

Tasmania has been connected by two new sections across Bass Strait via King
and Flinders Islands. A connection to New Guinea and the Bismarck Archipelago
has been effected by a Tellurometer traverse up Cape York and the USAF Hiran
network of 1965. A large section in eastern New South Wales and the Australian
Capital Territory has been strengthened and adjusted into AGD 1966. Similar
substitution of new work into the AGD is planned in Victoria, around Adelaide,

and around Perth.

While AGD 1966 remains the basis for normal surveying and mapping at this
time, in 1973 a new adjustment called the Australian Geodetic Model 1973 was
made. It incorporated many new observations, including more accurate
heights, accurate geoid-spheroid separation, and more recent high-precision
traverses, for which the AGA 8 Geodimeter is (with the Wild T3) the principal
instrument. Comparison with AGD 1966 showed no shift at any station of as
much as 5 meters. Annual mathematical readjustments using all suitable data,

including satellite observations, continue to be made.
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3.7 SOUTH AMERICAN DATUM

By 1953 the Inter-American Geodetic Survey of the U.S. Corps of Engineers
had completed the triangulation from Mexico through Central America and down
the west coast of South America to southern Chile. This was done in coopera-
tion with the various countries through which the work extended, and marked

the completion of the longest north-south arc of triangulation ever accomplished.

It had an amplitude of over 100 arc degrees through North and South America.

In 1956 the Provisional South American Datum was adopted as an interim
reference datum for the adjustment of the triangulation in Venezuela, Colombia,
a.nd the meridional arc along the West Coast. Instead of depending on one astro-
nomic station as the origin and assuming its deflection components to be zero,
or attempting to average out the deflections at many astronomic stations by the
astrogeodetic method, one astronomic station was chosen as the datum origin,
but its deflection components were determined gravimetrically. The gravity
survey covered an area about 75 kilometers. in radius centered on the origin,
station La Canoa in Venezuela. The reference figure was the International
Ellipsoid, and the geoid height at L.a Canoa was zero by definition. A major
portion of the South American work was adjusted on the Provisional South
American Datum, including the extensive Hiran trilateration along the north-
east coast of the continent., The principal exceptions were the networks in

Argentina, Uruguay, and Paraguay.

Considering the geographic location of La Canoa, with all of the continent on
one side and the Puerto Rican ocean trench on the other, the gravity coverage .
was insufficient to produce a deflection for a continentally well-fitting datum.
From the astrogeodetic deflections based on this datum it can be inferred

that the geoid drops about 280 meters below the spheroid in Chile at latitude
41° South. This drop is more or less uniform in a southerly direction for a

distance of roughly 5500 kilometers. In 5500 kilometers, 280 meters is very
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nearly 10 seconds of arc; such a correction to the meridian deflection compo-~
nent at La Canoa would produce a better fit of the International Ellipsoid to the
area of the South American adjustment. But the La Canoa Datum has not been
corrected for this large and increasing geoidal separation, and thus contains
large distortions. For example, cross—continental distances may be several
tens of meters too short. In addition, the Hiran net has also been shown to be

tens of meters too short.

An investigation of the astrogeodetic data from the long meridional arc in the
Americas and the 30th Meridian Arc from Finland to South Africa led to the
conclusion that the equatorial radius of the International Ellipsoid should be
reduced by at least 100 meters (a subsequent change in the flattening inferred
from satellite observations suggested another 100-meter reduction), and that
the North American and Europ'vean Datums were not at all well suited for the
continents to the south. Thus it became apparent that consideration must be

given to the selection of another datum for South America.

A Working Group for the Study of the South American Datum was asked in 1965
by the Committee for Geodesy of the Cartographic Commission of the Pan
American Institute of Geography and History to select a suitable geodetic datum
for South America and to establish a coherent geodetic system for the entire
continent. This was achieved, and the South American Datum 1969 (SAD 1969;)
was accepted by the Cartographic Commission in June 1969 at the IX General
Assembly of PAIGH in Washington, D.C. This new datum is computed on the
Reference Ellipsoid 1967, accepted by the International Union of Geodesy and
Geophysics in Lucerne in 1967, with the minor difference that the flattening is
rounded (a = 6 378 160 meters, f =1/298.25 exactly). Both Chua and Campo
Inchauspe, the National datum points of Brazil and Argentina, respectively,
were assigned minimal geoid heights (0 and 2 meters). Chua is taken to be

the nominal origin. A vast amount of recent triangulation, Hiran, astronomic,
and satellite data were incorporated in the solution, and SAD 1969 now provides

the basis for a homogeneous geodetic control system for the continent.
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3.8 ARC DATUM (CAPE)

The origin of the old South African, or Cape, Datum is at Buffelsfontein. The
latitude at this origin was adopted after a preliminary comparison of the astro-
nomic and geodetic results, rejecting those stations at which the astronomic
observations were probably affected by abnormal deflections of the plumb line,
The longitude of this origin depends upon the telegraphic determination of longi~
tude of the Cape Transit Circle, to which was added the difference of geodetic
longitude computed through the triangulation. Computations were based on the
modified Clarke Spheroid of 1880, The geodetic coordinates of Buffelsfontein
are latitude 33° 59' 321000 S, longitude 25° 30' 441622 E. .

Over the years this datum has been extended over much of south, east, and
central Africa. Through the 30th Meridian Arc, completed in the 1950s, it has
been connected to the European Datum, Because the 30th Meridian Arc is the
backbone of this work, which also includes triangulation in Zaire and former
Portuguese Africa, the published geodetic coordinates are now referred to the
Arc Datum. The whole comprises a uniform system from the Cape to the equa-

tor.

The accuracy of the South African work and of the 30th Meridian Arc compares
favorably with that of the other major systems of the world, but some of the

related triangulation requires additional length control and Laplace azimuths.
3.9 PULKOVO DATUM 1942

The development of the triangulation network in the U.S.S.R. parallels to some
extent the development of the network in the United States. The Russian work
began in 1816 in the Baltic states, and was gradually extended by the Corps of
Military Topographers (KTV) as well as by provincial organizations. An im-
portant early accomplishment was the establishment of the Struve-Tenner arc
of the meridian from Finland to the mouth of the Danube, the results of which

were used for figure-of-the~-Earth studies.

A-17




These early surveys were established independently and were based on differ-
ent ellipsoids and datum points, 'By the turn of the century, over 20 independent
sets of coordinates were in use. About this time the first effort was made to
unify the many systems and place them on the Bessel Ellipsoid, with the Tartu
Observatory as the initial point. Not much was done until a new plan was formu-
lated by the KTV in which ares of triangulation were to be observed along par-
allels and meridians, spaced from 300 to 500 kilometers, with Laplace azi-
muths and base lines at their intersections. The Bessel Ellipsoid was chosen
again, but the initial point was changed to the Pulkovo Observatory. The coor-
dinates assigned to Pulkovo are now referred to as the Old Pulkovo Datum.

This plan was implemented in 1910 and, after interruption by World War I and
the Revolution, was pursued vigorously until 1944, at which time 75,000 kilo-
meters of arc and associated astronomic observatibns and base lines were
completed. In 1928 Professor Krassovski was commissioned to augment the
original plan., He called for closer spacing of arcs, Laplace stations, and base
lines, and a breakdown between primary arcs by lower order work. The stand-

ards of accuracy were comparable to those in North America.

During this period triangulation had begun in the Far East, and by 1932 two
basic datums were in use, both on the Bessel Ellipsoid but with different initial
points--Pulkovo and an astronomic position in the Amur Valley of Siberia. The
coordinates of Pulkovo were changed slightly (less than 1 second) from those
of the Old Pulkovo Datum. When the two systems were finally joined, a dis-
crepancy of about 900 meters in coordinates of the common points naturally
developed. This was due principally to the use of the Bessel Ellipsoid, now

known to be seriously in error.

In 1946 a new unified datum was established, designated the '"1942 Pulkovo Sys-
tem of Survey Coordinates.'" This datum employs the ellipsoid determined by
Krassovski and Izotov and new values for the coordinates of Pulkovo. The ellip-

soid is defined by an equatorial radius of 6 378 245 meters and a flattexiing of
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1/298.3. The coordinates of Pulkovo are latitude 590 46' 18!'55 North, longi-
tude 300 19' 4209 East of Greenwich. Deflections at the origin are +0.'16 and

-1!"78 in the meridian and prime vertical, respectively.
3.10 BRITISH DATUM

The original primary network of Great Britain was the result of a selection of
observations from a large amount of accumulated triangulation done in a piece-
meal fashion. The selected network covered the whole of the British Isles, was
scaled by two base lines, and was positioned and oriented by observation at the
Royal Observatory, Greenwich. The adjustment was accomplished in 21 blocks,

computed on the Airy Spheroid.

In the Retriangulation of 1936, only the original work in England, Scotland, and
Wales was included. Original stations were used when practicable, and many
stations were added, including secondary and tertiary points. The adjustment
was carried out in seven main blocks. The scale, orientation, and position
were an average derived from comparison with 11 stations in Block 2 (central
England) common to the two triangulations. Other blocks were adjusted sequen-
tially, holding fixed previously adjusted blocks. The result, known as OSGB
1936 Datum, has not proved to be entirely satisfactory. No new base lines
were included, and subsequent checks with Geodimeter and Tellurometer indi-
cated that the scale of the Retriangulation was not only too large, but varied
alarmingly.

To correct this situation a new adjustment has been made, described as the
Ordnance Survey of Great Britain Scientific Network 1970 (OSGB 1970 (SN)).
This is a variable quantity and consists, at any moment, of the best selection
of observations available. It consists now of 292 primary stations connected

by 1900 observed directions, 180 measured distances, and 15 Laplace azimuths.
Published positions of all orders on the OSGB 1936 Datum (given as rectangular
coordinates on the National Grid) are not altered, nor is the grid on Ordnance

Survey maps to be changed, under present policy. Initially only the values of
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the first-order stations will be available on OSGB 1970 (SN). More accurate
conversions to the European Datum became available when Block 6 of the Euro~

pean readjustment was completed.

The Airy Spheroid was used for all three British datums. The origin is the

Royal Observatory at Herstmonceux.

3.11 ADINDAN DATUM

Between 1967 and 1970, a precise traverse was run across Africa roughly fol-
lowing the Twelfth Parallel North., Starting at the Chad-Sudan border, it ex-
tended 4654 kilometers of traverse length to Dakar, Senegal, passing through
Nigeria, Niger, Upper Volté., and Mali. The portion in Nigeria was done by

the U.S. Defense Mapping Agency Topographic Center (USDMATC) in coopera-
tion with the Nigerian Survey Department; the remainder was done by the French
Institut Geographique National (IGN) under contract to DMATC, with the cooper-

ation of the countries through which it passed.

All distances were measured with a Geodimeter and checked with a Tellurom-
eter. First-order angles were used. Trigonometric elevations carried between
stations were referred frequently to first-order bench marks. Because first-
order astronomic observations with a Wild T-4 were made at every other sta-
tion (about 40-kilometer spacing), a geoid profile across the continent made it
possible to adjust the traverse to the spheroid. The final adjustment by DMATC
of April 1971 indicates an accuracy of better than one part in 106, or nearly

that of the U,S. precise transcontinental traverse.

All triangulation, trilateration, and traverse work in Sudan and Ethiopia has
subsequentl& been computed in this datum. The Adind3n base terminal ZI was
chosen as the origir: latitude 22% 10 07:'1098 N, longitude 310 29' 21V6079 E,
with azimuth (from North) to YY 58° 14' 2845, The Clarke 1880 Spheroid is
used (a = 6 378 249. 145 meters, f = 1/293.465). ZI is now about 10 meters

below the surface of Lake Nasser.
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3.12 WORLD GEODETIC SYSTEMS

A world geodetic system may be defined as that in which all points of the system
are located with respect to the Earth's center of mass. A practical addendum to
this definition is usually the figure of an ellipsoid which best fits the geoid as a
whole. In such a system the locations of datum origins with respect to the cen-
ter of mass are expressed by rectangular space coordinates, X, Y, and Z.

This implies three more designations to specify the directions of the axes un-
ambiguously. Conventionally, in reference to the Earth-centered ellipsoid, X
and Y are in the equatoi'ial plane, with X positive toward zero longitude, Y
positive toward 90° East, and Z positive toward North. The relationship be-
tween the X, Y, and Z coordinates and the ellipsoidal coordinates of latitude,

longitude, and height is expressed by simple transformations.

The preferred datums provide satisfactory solutions to large areas, even conti-
nental in extent. The points within each datum are interrelated with a high order
of accuracy. Some connections have been made between these datums by terres-
trial surveys, but these are often tenuous. Part of the difficulty in extending
datum connections is that the chosen spheroid is usually not suitable for areas
remote from the datum proper, which results in excessive deflections and geoid
separations. These can seriously distort the triangulation if the geoid heights
are not taken into account in base line reduction, and even when the geoid heights

are taken into account, the result is not satisfactory.

Realizing that a world geodetic system is desirable for scientific purposes, some
of which are of a practical nature, geodesists attacked the problem. Observation
of satellite orbits from points around the world require better approximations of
the coordinates of the observing stations on a world basis; worldwide oceano-
graphic programs demand accurate positioning at sea; and such approaches as
Loran C and Doppler satellite navigation need a coherent worldwide geodetic

framework,
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A brief assessment of the uncertainties in positioning geodetic datums by clas-
sical methods may be made by considering the North American Datum of 1927,
the European Datum, and the Tokyo Datum. The uncertainties are given in the
two-sigma sense, or twice the standard error. Such a figure approaches the
outside error, and might be considered a practical limit of uncertainty. The
relative positionls of the datum points of North America and Europe were prob-
ably known within 300 meters, whereas the figure for North America and Tokyo
was 600 or 700 meters, The positions of an island determined astronomically
at a single point may be in error, in an absolute geodetic sense, by 1 or 2 kilo-

meters.

In recent years the satellite develc;pment of world geodetic systems has greatly
reduced the uncertainties of the relative positions of the major datums. The

goal of the National Geodetic Satellite Program in positioning primary geodetic
points with 10-meter accuracy (standard deviation) in an absolute sense was in

general achieved, and in 1978 a 1- to 3-meter accuracy is probably possible.

3.12,1 Vanguard

The first operational world geodetic system was the Vanguard Datum, developed
by I. Fischer of the U.S, Army Map Service in 1956, It combined the results
from the two long individual arcs of 30o East and down the west coast of the
Americas with shorter arcs (35°W, 24°E, and Struve's 52°N among them),
corrected by geoid heights instead of by deflections. Vanguard was used to
position early satellite tracking stations., The Hough spheroid was derived from

the study and used for the system (a = 6 378 270 meters, f = 1/297).

3.12,2 Mercury Datum

With an early determination of the Earth's ellipticity (1/298.3) from observa-
tions on the Sputnik I and Vanguard satellites, Army Map Service geodesists
proposed in 1960 that by minimizing the differences between astrogeodetically

and gravimetrically derived geoid heights, the major datums could be placed in
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proper relative position. Through terrestrial ties, other datums--South Amer-
ican, Cape, and Indian--could be connected to the system. This datum was
selected by NASA to position the original Project Mercury tracking stations,
and from this took its name. The semimajor axis for its spheroid is

6 378 166 meters.

In 1968 it was modified to reflect the accumulation of new data, particularly
dynamic satellite results, which provide a superior method for determining
the reia.tionships of isolated datum blocks to the Earth's center of mass. The
Modified Mercury Datum retained the 1/298.3 flattening, but had a shorter
semimajor axis (6 378 150 meters). Translation components for 24 datums

were published.

3.12.3 SAO Standard Earth I

The Smithsonian Astrophysical Observatory has long been engaged in satellite
observations. Its original world network of 12 (now 8) Baker-Nunn cameras is
supported with lasers, and the several solutions published since 1966 have been
based on increasing amounts and types of data. Orbital elements derived from
single photographic observations were strengthened with paired observations
for geometric support. Laser data from GSFC and French stations as well as
their own contributed to the results. Data from the BC-4 camera network,
from individual observatories, and from the Jet Propulsion Laboratory deep
space observations have been incorporated in the later solutions. Suljface

gravity data were utilized for determination of the geopotential.

Solutions C5, C6, C7, and Standard Earth IT were followed in 1973 with SAO
Standard Earth IIT. The analysis of satellite data combined with surface meas-
urements has resulted in a reference gravity field complete to 18th degree and
order and the coordinates of 90 satellite tracking sites. The values adopted
for the reference ellipsoid are: a =6 378 155 meters, f = 1/298.257.
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3.12,4 NWL-9D, -10F

The U.S. Naval Surface Weapons Center (formerly the Naval Weapons Labora-
tory) has conducted research in satellite geodesy since 1959 in the development
of the Navy Navigation Satellite System. Objectives have included connecting
the major datums and isolated sites into a unified world system, relating this
system to a best fitting Earth-centered ellipsoid, refining the gravity field,
and determining the motion of the pole. The system is now used routirely by

other domestic and foreign agencies.

Several solutions have been published. The latest, NWL-9D, includes the posi-
tions of 40 stations with worldwide distribution and the shifts of 26 datums to
the system. Because the longitude origin of the Doppler system is arbitrary,

a rotation may be applied to NWL-9D so that it agrees with the gravimetric
deflection in longitude of NAD 1927, and a correction may be applied for a dis-
crepancy in scale with respect to independent determinations. The resulting
system is termed NWL-~10F and is consistent with datum transformations of

the DOD WGS-72 system. For NWL-9D, a = 6 378 145 meters, f = 1/298,25;
for 10F, a = 6 378 135 meters, f = 1/298.26.

3.12.5 World Geodetic System 1972

WGS 72 was developed to meet the mapping, charting, and geodetic needs of
the Department of Defense. It repfesents 5 years of data collection; its de-
velopment involved primarily the U.S, Air Force (USAF), the Defense Mapping
Agency, the Naval Weapons Laboratory, and the Naval Oceanographic Office.
It is characterized by the formation of a large-scale matrix by combining nor-
mal matrices from each of the major data input sets. It is referenced to the

WGS 72 Ellipsoid (a = 6 378 135 meters, f = 1/298.26).

3.12.6 Spaceflight Tracking and Data Network System

STDN is a worldwide geodetic system with transformations available to most

major or local geodetic datums. It is an outgrowth of the Mercury 1960 Datum
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and is referenced to its spheroid (a = 6 378 166 meters, f = 1/298.3). Results
from Apollo, Mariner-Mars, Landsat (ERTS), GEOS, and other missions have
contributed to the definition of the geodetic locations within the system. Con-
tinuing analysis of tracking and geodetic data causes revisions to be made to
this system as new tracking and geodetic data are obtained and additional geo-
detic refinements are made. STDN positions are those currently used by NASA

for space flight operations and are tabulated in this directory.

3.12.7 Other Systems

In addition to the systems mentioned above, primarily for historical reasons,
other solutions have been developed in recent years based on different instru-
mentation, different satellites, and different mathematical techniques. Among
them are the National Geodetic Survey's BC-4 solution, Ohio State University's
WN-14, the Goddard Space Flight Center 1973 system, and the Goddard Earth
Model (GEM) series up to GEM 9/10. (Reports on these programs were pub-
lished in the Journal of Geophysical Research of 10 December 1974 and 10 Feb-
ruary 1976.) Although differences between the results of the different solutions

have narrowed, agreement on a single system is not yet at hand.
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Appendix B
WGS-84 Datum Transformation Information
The following information is contained in this Appendix:

1. Transformation Parameters - Local Geodetic Systems to WGS84, Table 7.5 of WGS84
Report.

2. Local Geodetic System to WGS84, Datum Transformation Multlple Regression Equations,
NAD27 to WGS84, Table 7.6 of WGS84 Report.

Note: The information in this appendix has been taken from DMA Technical Report TR 8350.2,
1987. The original page numbers have been left on for convenience.
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