
Flexible Protein Annotation with Sequence-
and Secondary Structure Information

Constantin Bannert

Thesis submitted to the

Faculty of Technology,
Bielefeld University,

Germany

for the degree of Dr. rer. nat.

Supervisor

Prof. Dr. Jens Stoye, Bielefeld University

Referees

Prof. Dr. Jens Stoye, Bielefeld University
Prof. Dr. Ina Koch, MPI for Molecular Genetics, Berlin

November 2008

.

Gedruckt auf alterungsbeständigem Papier nach DIN-ISO 9706
(Printed on non-aging paper according to DIN-ISO 9706)

Abstract

The number of known gene sequences is still rising at an increasing pace. A standard
task in sequence analysis is homology recognition, where a database is searched for
homologous sequences. Even though already several software tools for homology
recognition exist, there is still room for improvement. One possibility is to use more
of the information in the source data. Another possibility is to add new features to
support research on specific questions.

The Jumping Alignment algorithm (Jali) is a method for database searching. It
works on multiple sequence alignments. In contrast to previous approaches, Jali is
able to consider the information in the rows and the columns of a multiple align-
ment. Initial evaluations of Jali showed promising results. We evaluate Jali once
more to see if the good results can be reproduced and investigate the reason. We an-
alyze a set of jumping alignments with underlying secondary structure information
for cases of “structural significance”, where Jali seems to recognize the secondary
structure in the alignment. Even though we found a few examples, these cases are
rare. In a second experiment, we simulate the evolution of ten protein superfami-
lies and evaluate Jali on these families. The findings suggest that jumping offers Jali
more flexibility in homology recognition, especially in conjunction with suboptimal
alignments.

Many alignment-based approaches in homology recognition share certain limita-
tions. They are not well suited to cope with duplications or rearrangements in the
input sequences. In addition, their output is usually a list of scores that is not very
informative.
We develop a new method “Passta” that circumvents these limitations. The first
stage of the protocol (Pass One) serves as filter. Pass One tries to find a set of tar-
gets that are related to a given query. This candidate set is then submitted to Pass
Two, where the query is annotated with alignments of Secondary Structure Elements
(SSEs). In a graph-based approach, we select those alignments that reproduce the
query in an optimal way.
Prior to a systematic evaluation of Passta, we train some of its parameters and dis-
cover interesting differences in the behavior of the three SSE classes coil, helix, and
strand. We also calibrate the rearrangement cost parameter of Pass Two and use
our method to find SCOP families with rearrangements or duplications, with nice
results.
Finally, we present a comparative evaluation of Passta with Jali and BLAST. Unfor-
tunately the results show that Pass One is not working very well. The main reason
is that SSEs are short sequence fragments and alignments with SSEs are often un-
specific. We are however able to show the potential of Pass Two: When we add the
true positive targets missed by Pass One, Pass Two is able to compete with Jali and
BLAST.

.

Contents

I Introduction 1

1 Biological background 1

1.1 The building blocks of biological macromolecules 1
1.2 The central dogma of biology . 1
1.3 Mutations drive evolution . 2
1.4 Similarity and Homology . 2

2 Proteins 3

2.1 Protein composition and protein chemistry 4
2.2 Protein folding and structure . 5

2.2.1 Primary structure . 6
2.2.2 Secondary structure . 6
2.2.3 Tertiary structure and protein domains 7
2.2.4 Quaternary structure . 8

3 Biological Sequence Alignment 8

3.1 Score functions and substitution matrices 9
3.1.1 The PAM and BLOSUM substitution matrices 10

3.2 Pairwise alignments . 11
3.2.1 Global alignment and homogenous gap cost 11
3.2.2 Local alignments with affine gap costs 12

3.3 Co- and suboptimal Alignments . 13
3.4 Multiple Alignments . 14

4 Database searching by homology recognition 15

4.1 Homology recognition . 15
4.2 Statistics in database searching . 17

5 Motivation and goals of this thesis 18

II Material and Methods 21

6 Databases 21

6.1 The Protein Data Bank (PDB) . 21
6.2 PDBFinder II . 21
6.3 PTGL . 23
6.4 SCOP and ASTRAL . 23

6.4.1 ASTRAL . 24

7 External Algorithms and Methods 25

7.1 Phase4 . 25

7.2 ROSE . 25
7.3 BLAST . 25
7.4 DSSP . 26

III The Jumping Alignment Algorithm 27

8 Introduction 27

8.1 Motivation . 27
8.2 The Jumping Alignment (Jali) Algorithm 28

9 Projects 30

9.1 Biological Significance of Jumping Alignments 30
9.1.1 Overview . 30
9.1.2 Experimental setup . 31
9.1.3 Results and Discussion . 32

9.2 Experiments with simulated and natural protein families 34
9.2.1 Overview . 34
9.2.2 Experimental setup . 34
9.2.3 Results and Discussion . 36

9.3 Conclusion . 40

IV Passta 43

10 Introduction 43

10.1 Motivation . 43
10.2 Method outline and related work . 44

11 Integration of data into PasstaDB 48

11.1 Origin of the source data . 48
11.2 The structure of PasstaDB . 49
11.3 Data integration with PasstaBuild . 49

11.3.1 Integration . 49
11.3.2 Representative and redundant sequences 53

12 Protein Annotation with PasstaRun 53

12.1 The directed acyclic graph used in PasstaRun 54
12.1.1 Data structure . 54
12.1.2 The optimal path . 55
12.1.3 Related work . 55

12.2 Pass One . 55
12.2.1 Pass One targets . 56
12.2.2 SSE target set . 56
12.2.3 Valid alignments . 57
12.2.4 Acceptance of the target domains 57

12.3 Pass Two . 59
12.3.1 Computing suboptimal alignments 59
12.3.2 Two different edge definitions 60
12.3.3 The optimal path in Pass Two . 62

13 Projects 64

13.1 Optional secondary structure profile . 64
13.2 Pass One Training / Parameter settings 64

13.2.1 Choice of the Blosum62 threshold 66
13.2.2 SSE-alignments without a minimum length constraint 68
13.2.3 Secondary-structure specific gapcost 69
13.2.4 Choice of the MaxScoreRatio threshold 71
13.2.5 Conclusion . 73

13.3 Calibration of Rearrangement and Deletion costs 74
13.3.1 Motivation . 74
13.3.2 Model and Definitions . 75
13.3.3 Experimental approach and setup 76
13.3.4 Results and Discussion . 78
13.3.5 Conclusion . 82

V Comparative Evaluation of Jali, Passta, and BLAST 84

14 Experimental Setup 84

14.1 Choice of the evaluation model . 84
14.1.1 Passta . 86
14.1.2 Jali and BLAST . 87

14.2 Evaluation and calibration data . 88

15 Results and Discussion 88

15.1 Passta Pass One . 89
15.2 Passta Pass Two . 89
15.3 Jali and BLAST . 93
15.4 Comparative Discussion . 94

Appendix 100

Lists of Figures and Tables 103

Acknowledgements 104

References 105

Part I

Introduction

1 Biological background

1.1 The building blocks of biological macromolecules

DNA-, RNA- and protein molecules have one thing in common: They are all lin-
ear biological macromolecules, polymers composed of monomeric building blocks.
These building blocks are structurally similar within each molecule class, with only
minor chemical differences between them. They are almost identical in DNA and
RNA: each monomer is composed of a sugar molecule, a phosphate group, and a
cyclic base. The DNA bases are adenine, guanine, cytosine, and thymine. In RNA,
thymine is replaced by uracil and the sugar component ribose is slightly modified.
Both DNA and RNA were discovered in the nucleus of eukaryotic cells, hence they
were named nucleic acids. Their monomeric building blocks are called nucleotides.

The building blocks of proteins are the amino acids, simple molecules containing
an amino and a carboxyl group. Proteins comprise of many different amino acids,
but only about 20 of them are coded for by the genetic code (more details are given
in Section 2.1).

1.2 The central dogma of biology

Every living cell we know today stores its genetic information in one or several
double-stranded DNA molecules. All of those molecules that can be passed on to
its progeny form the genome of a cell. The genome is organized into coding and
non-coding segments. The coding segments are called genes. They can be defined
as single functional units. There are many different types of non-coding segments,
discussing them is out of scope in this thesis.

A gene can only express its function if it has been transcribed from its DNA state
into a single-stranded RNA molecule. During transcription, each coding nucleotide
in the DNA pairs with a specific RNA nucleotide. Some of the resulting RNA poly-
mers can now be used by the cell, but most are just an intermediate between the
DNA blueprint and the final gene product, the protein. Because protein molecules
are unlike from the nucleic acids, transferring the information from RNA into pro-
tein is not as straightforward as from DNA to RNA, it needs to be translated. Ba-
sically, each triplet of DNA/RNA nucleotides is encoding one specific amino acid.
The encoded amino acid is bound to the previous one until the gene translation is
complete. Proteins have many different functions; they are even a vital part of the
machinery that is transcribing DNA to RNA, and translating RNA into proteins.

The whole process is also known as the central dogma of biology: In all living
cells, the flow of information is from DNA via RNA to proteins (this excludes the

1

viruses, of which some are able to reverse transcribe their RNA genome into DNA).

1.3 Mutations drive evolution

All cells have sophisticated biochemical systems that prevent their genome from
taking damage. Ionizing radiation and mutagenic substances are possible sources of
such damage. Some organisms are extremely well adapted to hostile environments,
with an almost perfect DNA repair system. Deinococcus radiodurans is a very well
understood example, surviving even near atomic reactors [64, 26, 63]. However,
none of the repair systems is perfect, and the same holds for DNA replication and
recombination (in Eukaryotes). On rare occasions, a mutation event results in a modi-
fication of the genome. “Mutation” is a collective term describing permanent DNA
changes. The change of a single nucleotide is called point mutation; the removal of
one or more nucleotides is called deletion. Adding nucleotides is an insertion, and a
duplication is a special case of insertion where an existing DNA segment is copied
within the genome. When comparing two sequences for evolutionary events, an in-
sertion in one sequence can also be seen as a deletion in the other one. If the point of
view does not matter, this event is often abbreviated indel.

The effect of a mutation depends on its location, type, and size. A large dele-
tion in a non-coding DNA segment may be neutral, without any consequence. Even
mutations in coding segments are not necessarily harmful for the cell. For exam-
ple, a silent point mutation within a gene does not change the encoded amino acid
(→ degenerated code). Most mutations are disadvantageous for the cell, ranging from
unwanted up- or downregulations of gene expression to the lethal loss of essential
functions. However, mutations can also be beneficial for the cell. A mutation that
is improving the efficiency of an enzyme for example confers a selective advantage to
the cell or organism. This means, its offspring has better chances to survive, slowly
replacing less well adapted members of the population.

Nevertheless, all this does not explain the origin of a new species. If the less well
adapted members in a population are just replaced by better adapted ones, a new
species will not arise. Speciation is always linked to a population of organisms, not to
one individual. Within this population, a group of individuals emerges that is able to
live in a new way, at the same time acquiring a barrier to genetic exchange with the
remaining population (see, e.g. [40]). Usually, this is due to environmental changes
that lead to a spatial separation. After the separation of the two populations, both
diverge from each other during evolution.

1.4 Similarity and Homology

The phylogenetic tree in Figure 1 shows the main groups of organisms in the three
domains of life. Our current understanding is that all life on earth originated from
one source. Today, we believe that about 2.5 × 109 years have passed since this first
creature lived. Since then, its original genome was subject to countless evolutionary
events and has diverged far beyond reconstruction. Nevertheless, reconstructing our

2

Figure 1: The “Tree of Life”, showing the three major domains of living organisms: The
Bacteria, the Archaea, and the Eukaryota. It is based on their ribosomal RNA sequences
(16S and 18S).

biological history has always been a main goal of science. Basically, we assume two
organisms or characters to be related if there is enough supporting evidence at hand.
During the last centuries, this evidence had to be similarity in anatomy and function.
Today, we can directly compare and quantify the similarity of selected genes or even
whole genomes. If there is sufficient similarity and no contradictory facts present,
we assume a common ancestor. Then, the two compared characters are said to be
homologous, even though similarity does not guarantee homology. The last common
ancestor in the tree of life can often be determined with confidence today.

Beside speciation, duplication is also very important in evolution. A gene with
an important or even essential function can usually not mutate and aquire a new
function, because it has to maintain the old one as well. After a duplication of this
gene, however, one of the copies is free to evolve.

The term “homology” does not distinguish between relatedness by duplication
and relatedness by speciation. In the former case, two related genes are called par-
alogs, in the latter case, orthologs. This is however a simplified explanation, more
details can be found in introductury textbooks, or in the nice clarification by Walter
Fitch [33].

2 Proteins

Proteins are in quantity and quality very important biomolecules. They constitute
most of a cell’s dry mass and execute almost all cell functions. Their variety is re-

3

Figure 2: Amino acid prototypes: In both schemes, “R” refers to the variable portion of the
amino acid, the side chain. The left structure shows an amino acid in an aqueous solution at
a neutral pH value around 7 (“Zwitterion”).

markable: Embedded in the cell membrane, some form channels and pumps that
control the passage of small molecules. Others serve in signal transduction, either as
signal transmitters or as sensors with associated functions. Proteins can also be like
tiny molecular machines. One prominent example is myosine, which is driving mus-
cle motion. Another one is the enzyme topoisomerase, responsible for untangling the
DNA during replication. Enzymes are a large group of proteins with many different
biochemical functions. They catalyze chemical reactions, i.e. the reaction takes only
a fraction of the time it would take without the catalyst. Another important protein
function is structural stabilization of the cell, carried out by elastic fibers or ropes.
Besides, many other specialized proteins exist [2].

Such a large repertoire of different functions requires a high degree of struc-
tural variability. The following sections provide the basics on protein chemistry and
protein structure that are needed to understand the versatility of these fascinating
molecules.

2.1 Protein composition and protein chemistry

The building blocks of proteins are the amino acids. Aside from the rarely used
amino acid selenocysteine [113] and the recently discovered pyrrolysine [42], 20
“standard” amino acids are commonly used. Every one of them has the same gen-
eral chemical structure, except proline1. Each amino acid has an amino (-NH2) and
a carboxyl (-COOH) group connected to a central carbon atom, the Cα atom, see
Figure 2. Many more amino acids are used in proteins, but these are derived from
the standard amino acids subsequent to protein synthesis, mostly by posttranslational
modification.

A specific side group unique to every amino acid determines its physicochemi-
cal properties. Based on these properties, the standard amino acids can be loosely
grouped into classes. Three classes are commonly accepted: hydrophobic, polar,
and charged. Subclassifications based on other properties like size or pH value are
possible [18].

During the formation of a protein molecule, the amino acid monomers are joined
into longer units. The carboxyl group of one amino acid is joined with the amino

1Technically, proline is an imino acid. Nevertheless, it is commonly referred to as one of the standard
20 amino acids.

4

C

R2|

| |
||
O

N C

COOH

R1

|

| |

|
HH N2

H O2

C

COOH

COOH

R2

|

| |

|
HH2N C |

HR1

|

| |H N2 C
|
H

|

|

H

+

Figure 3: Peptide bond formation from two amino acids. The carboxy group of the first amino
acid is joined to the amino group of the second amino acid and a water molecule is released.
The bond in the newly formed dipeptide is the “peptide bond”.

group of the next in a condensation reaction, releasing a water molecule. The cova-
lent peptide bond formed by this reaction is part of the peptide backbone, the regular
part of the molecule without the side chains, see Figure 3. The first amino acid in the
growing polypeptide always retains his NH2 group; it is referred to as the N-terminal
end of the polypeptide. The other end of the chain is called C-terminal, because the
corresponding last amino acid always retains its carboxy group. The peptide bond
is a partial double bond that does not allow free rotation about it. Therefore it limits
the molecules flexibility. Other constraints like possible collisions between the side
chains and the backbone further restrict the steric freedom of the polypeptide.

Short peptides of up to a few dozen amino acids are referred to as oligopeptides,
longer ones as polypeptides. Once an amino acid is incorporated into a peptide, it is
referred to as “residue”, and the atoms involved in the peptide bond (the regular
part of the protein chain) are referred to as peptide “backbone” [18].

2.2 Protein folding and structure

Even though a polypeptide is a sequence of joined amino acids, its in vivo structure
does not remain linear. Depending on the amino acid sequence and on environmen-
tal parameters, it folds into a specific 3D structure. Only proteins with a correct fold
can fulfill their biochemical function. Long it was thought that all information re-
quired for folding is only contained in the amino acid sequence of the polypeptide.
Recent evidence however suggests that it can also be influenced by the codon usage
at the DNA level [55]. The folded polypeptide almost always adopts the energeti-
cally most stable conformation, i.e. the shape with the minimal free energy. The re-
sulting protein conformation is stabilized by several types of non-covalent (“weak”)
bonds and other forces. The hydrogen bond can be regarded as the most important
weak bond in proteins. It may form between an amino or hydroxy group (the donor)
and an adjacent electronegative atom (the acceptor, usually nitrogen or oxygen) if the
distance and the angle between donor and acceptor is convenient. A single hydro-
gen bond could not stabilize a proteins conformation, but the total contribution of
all hydrogen bonds is significant.

Most proteins are immersed in an aqueous solution. In terms of free energy, the
water molecules prefer to be in contact with other hydrophilic molecules. This leads

5

to the hydrophobic effect, another important force in protein folding [103]. Here, most
hydrophobic side chains associate and form a hydrophobic core, excluding the sol-
vent. Polar atoms and even ions can only be packed into the core if they are neutral-
ized, otherwise they are destabilizing the core.

Protein structure is a complex topic. To allow a concise description, we distin-
guish four different levels of organization: primary, secondary, tertiary, and quater-
nary structure. Each level emphasizes a certain view on a protein, while going into
detail from primary to quaternary. Each level is shortly described in the following
sections, with a focus on secondary structure.

2.2.1 Primary structure

A polypeptide is a large chain of amino acids. The unfolded linear sequence is called
the primary structure of a protein. All other levels of organization (secondary, ter-
tiary, quaternary) are results of protein folding. The folding process is guided by
physicochemical constraints, which limit the flexibility of the protein.

2.2.2 Secondary structure

The limitations imposed by the primary structure dictate the possible secondary struc-
ture or local structure of the polypeptide chain. It can be seen as the local 3D confor-
mation of a polypeptide, largely independent of the rest of the protein. One can
separate between regular secondary structure patterns and polypeptide segments
without regularity. The most dominant secondary structure classes with regular
conformation are the α-helix and the β-sheet.

The α-helix has the shape of a cylinder. It is the result of hydrogen-bonding within
the polypeptide backbone, not involving the side chains of the residues. Since the
formation of α-helices is not side-chain specific, many polypeptides are able to build
them. Other secondary structure patterns with helical structure exist as well (see
Section 7.4), but the α-helix is by far the most prevalent.

In contrast to the α-helix, β-sheets are built by two or more adjacent segments
of the polypeptide chain, forming a sheet-like, planar structure. The segments are
called β-strands, and the individual β-strands in a β-sheet are connected by hydro-
gen bonds. A β-sheet of only two β-strands is also called a ladder. One can separate
between parallel and antiparallel β-sheets. This depends on the orientation of the
adjacent strands, i.e. N-terminal with N-terminal (antiparallel) or N-terminal with
C-terminal (parallel). A schematic picture of an antiparallel β-sheet is shown in Fig-
ure 4. The arrow always points from the N- to the C-terminal end of the polypeptide.

Coils or loops are segments of the polypeptide chain that do not fold into a regular
local conformation. Loops are usually present at the surface of globular proteins, just
linking two regular structures. Other segments with irregular structure are called
coils. Random coils do not even have a stable structure, their secondary structure

6

Figure 4: Antiparallel β-sheet: The arrows show the direction of the sketched polypeptide
from N- to C-terminal, the dotted lines represent the hydrogen bonds. Picture by O. Lenz,
License: GNU Free Documentation License

state is not static [18]. Even though this may appear strange, a certain amount of
flexibility is an important property in protein structure. Especially enzymes depend
on flexible secondary structure elements (SSEs) to fulfill their biochemical function.
Therefore the exact length of a SSE is hard to determine, and methods that predict
secondary structure states have inherent limitations [47].

2.2.3 Tertiary structure and protein domains

The secondary structure elements can combine in a variety of ways during pro-
tein folding. Hydrophobic and neutral elements associate and form the core of the
polypeptide, while hydrophilic elements are on the outside and interact with the sol-
vent. The final 3D-structure of a polypeptide is the tertiary structure, as defined by
its atom coordinates. While the secondary structure is rather a result of local interac-
tions, the tertiary structure depends also on remote interactions: The corresponding
amino acids may be far apart in the sequence. Disulfide bonds between two cysteine
residues are such an interaction. Under certain circumstances, they form a covalent
bond that links two portions of the protein, stabilizing its fold and hence, tertiary
structure.

The tertiary structure of a polypeptide sometimes contains more than one struc-
tural domain. A domain is a compact unit of folding, an association of one to several
segments of a polypeptide chain. It is often self-stabilizing and folding indepen-
dently of the rest of the polypeptide. Aside from being a unit of structure, a protein
domain is usually also a unit of function and evolution. Some biochemical functions
are generally useful, e.g., DNA- or substrate-binding. Domains realizing these func-
tions were combined and reused in different functional contexts during evolution.
Many proteins consist of more than one domain, and some proteins contain the same
domains in different arrangements.

7

2.2.4 Quaternary structure

The level of tertiary structure decribes the structural organization of a single polypep-
tide chain, a monomer. However, many protein monomers are inactive. The active
form of a protein often requires the association of other polypeptides and one or sev-
eral cofactors. The complete, active protein is designated as the quaternary structure.

In summary, one protein can consist of n loosely associated polypeptide chains,
where each chain can contain m structural domains. The parameters n and m usually
take rather small values, often just “1”.

3 Biological Sequence Alignment

The biological macromolecules introduced in Section 1.1 are linear polymers, so each
of them can be written as a sequence of letters, in computer science also known as
string. The experimental determination of protein sequences is possible since 1950,
when Frederick Sanger determined the insulin sequence [88] and Pehr Edman de-
veloped the Edman degradation (see [75] for an overview). Both procedures are rather
complicated and time-demanding, so the number of sequenced proteins remained
low. In 1977, two independent groups published less demanding protocols to “read”
DNA sequences [67, 89]. Soon the number of known DNA sequences started to rise
exponentially, and has continued since then. With the sequencing technology be-
coming widely available, the interest to analyze and compare biological sequences
increased.

Sequence analysis is a sub-category in computational biology that deals with gain-
ing, transferring, and integrating knowledge from the analysis of biological sequences.
Sequence analysis is the foundation of computational biology, it is needed in such
diverse areas as structure prediction, gene finding, and inferring phylogenetic trees.
Most of its applications rely on a comparative analysis of two or more related se-
quences. The easiest way to compare two sequences is the dot matrix method of
Gibbs and McIntyre, which is also known as dot plot [37]. One sequence corresponds
to the horizontal axis of a twodimensional matrix, the other one to its vertical axis.
Whenever the same two letters intersect in the matrix, the field is marked with a
dot. The dot plot allows to compare one sequence against itself or to compare two
sequences against each other. Insertions, deletions, matches and repeats can be eas-
ily identified. Dot plots are suitable for manual inspections, showing all possible
mappings between two sequences. They do however not provide a measure of sim-
ilarity or distance between both sequences, because none of the possible mappings
is selected and fixed.

The mapping is also called alignment and its computation is an important stan-
dard task in sequence analysis. An alignment is an arrangement reproducing the di-
vergent evolution of the aligned sequences in the best possible way. If the evolution-
ary history is correctly reproduced, the alignment is biologically true. The alignment
in Figure 5 is made of two homologous sequences and could be biologically true.

8

... ...

... ...

LSMG----CGGALYAQDIVLTAAHCVSG
LYFDDQQVCGASLVSRDWLVSAAHCVYG

Gap

MatchBlank Mismatch

Figure 5: Excerpt of a pairwise alignment illustrating some important technical terms in
the alignment context. Both aligned sequences are serine proteases. The upper one is an
enteropeptidase from cow (Bos taurus, PDB id “1ekb”), the lower one is trypsin from
Streptomyces griseus (PDB id “1sgt”).

The matching characters show those positions that were conserved during evolution,
while mismatched characters correspond to mutations. Characters aligned with the
dash symbol “–” are called blanks, and each contiguous stretch of blanks is a gap, in-
dicating insertions and deletions. An alignment of two sequences is called pairwise,
while an alignment containing more sequences is called a multiple alignment. Multi-
ple alignments can be regarded as generalization of pairwise alignments. Both types
have much in common, requiring two or more sequences, a scoring function and an
alignment algorithm. Therefore, we first introduce pairwise alignments along with
some common concepts. In Section 3.4, we give a short introduction to multiple
alignments and some specific details.

3.1 Score functions and substitution matrices

The automatic computation of alignments requires scoring systems that can be easily
implemented in a computer program. The most convenient way is to rate matches,
mismatches, insertions, and deletions with numerical values. The goal is always to
compute the optimal alignment, either the one with the highest similarity score or
the lowest distance cost between the input sequences. Basically, it does not matter
whether similarity or distance is measured. It is often possible to transfer one into
the other.

The simplest cost function defines the unit cost, often used in entry-level bioin-
formatics courses to explain sequence alignment. Here, the cost for an exact match
between two letters is zero, the cost for a mismatch and for an indel is one. An
example is shown in Figure 6a). In practice, more sophisticated scoring schemes
are used. Especially in the alignment of protein sequences a more fine-grained ap-
proach is necessary to consider the physicochemical properties of the amino acids.
Glutamic acid (Glu) and aspartic acid (Asp) are almost identical in size and polarity,
being small and negatively charged. They were preferably substituted for each other
during evolution, in contrast to amino acids that do not share the same properties.
For example, exchanges of Glu and tryptophane (Trp) are rare evolutionary events,
because Trp is uncharged and large. Substitution matrices capture the observed substi-
tution frequencies in a single likelihood value that also depends on the abundance of

9

L Y A Q D I V L T A A H
L V S R D W L V S A A H

Cumulative alignment cost / score

L S M G - - - - C G G A
L Y F D D Q Q V C G A S

c)

a)

b)

2

2

2

1

2

2

3

1

1

0

4

4

4

-1

-6

5

-3

-7

6

-5

-8

7

-7

-9

7

2

0

7

8

6

7

8

6

8

9

7

12

17

15

9

12

10

8

13

11

10

13

11

11

14

12

15

28

26

15

20

18

11

20

18

14

19

17

13

18

16

15

32

30

15

24

22

Figure 6: A pairwise alignment and the corresponding cost/scores of three different scoring
functions: a) unit cost; b) Blosum62 similarity scores with homogenous gapcost, g(l) = 2l;
c) as b), but affine gap costs with g(l) = −6− l.

the corresponding amino acid(s). For convenience, the substitution matrix contains
logarithms of the computed likelihoods. A substitution matrix P contains a numer-
ical score for every combination of characters from the sequence alphabet that can
be easily looked up. A very frequently used family of substitution matrices are the
BLOSUM matrices, shortly introduced in Section 3.1.1.

However, substitution matrices do not specify the treatment of gaps. Given a gap
of length l, an additional function g(l) specifies the penalty for this gap. The simplest
such function are homogenous gapcosts: Each position within a gap is penalized by
a constant value c ∈ IN , such that the costs for a gap of length l are g(l) = c · l. An
example alignment with homogenous gapcost is shown in Figure 6b). Clearly, this
concept has its limits. If c is set to a low value, many short gaps will be introduced
into the alignment. On the other hand, large indels are getting too expensive if c is
too high.

This problem can be alleviated by using affine gapcosts. Once a gap is opened, a
gap initiation penalty gi is subtracted. Every blank in the gap induces gap extension
costs ge. So, the complete gapcost are given by g(l) = gi + l · ge. Affine gapcost are
an intermediate between homogenous gapcost and general gapcost. General gapcost
functions are arbitrary, their implementation into the dynamic programming scheme
is usually computationally expensive. In practice, affine gapcost are often preferred,
because a considerable gain in quality is achieved by only a small increase in com-
putation time.

3.1.1 The PAM and BLOSUM substitution matrices

The first series of substitution matrices were the PAM matrices by Dayhoff and
coworkers [28]. They counted mutations in closely related sequences and constructed
a matrix under a certain evolutionary model. By matrix multiplication, other matri-
ces were extrapolated from the original, e.g. the PAM250 matrix for comparing evo-
lutionarily divergent sequences. However, this methodology turned out not to work
very well, because the changes over large evolutionary time scales differ sometimes
from those over short time scales.

10

The approach used to compute the BLOSUM (BLOck SUbstitution Matrix) [44]
series of matrices was more successful. Henikoff and Henikoff used multiple align-
ments of more divergent protein sequences, clustered by their sequence identity val-
ues. They identified the conserved “blocks” in the multiple alignment and com-
puted the matrix by the observed substitutions. For example, the Blosum62 matrix
is calculated from multipe alignments of proteins that share 62% sequence identity
or more.

3.2 Pairwise alignments

A naı̈ve approach to compute an optimal pairwise alignment is to enumerate all
possible alignments, evaluate their quality and choose the best one. However, even
for input sequences of moderate length and a small alphabet, this means countless
possibilities to choose from. The number of comparisons needed to compare two
protein sequences of length 300 is about 1088 if insertions and deletions are also
considered [107].

Luckily, a better solution is available. The idea is to process both sequences letter
by letter, storing the optimal alignment of any two prefixes. The solution of each
iteration depends on the optimal results of previous iterations, but not on all pre-
vious results simultaneously. In effect, this reduces the original problem of finding
the optimal alignment into smaller subproblems of the same structure that are eas-
ier to solve. This approach is known as dynamic programming. It was coined in the
1950s by the mathematician Richard Bellman [15], and the method has found many
applications since then.

3.2.1 Global alignment and homogenous gap cost

Let s and t be two sequences of length m and n that shall be aligned, the scores
for matches and mismatches are provided by a substitution matrix P . A global
pairwise alignment A(s, t) of s and t contains the complete sequences, i.e. s[1..m]
is aligned with t[1..n]. Pairwise global alignment is also called Needleman-Wunsch
alignment [74]. In conjunction with homogenous gap cost, it is the easiest way to
illustrate the application of dynamic programming to the alignment problem.

The central element is the edit matrix D. As in the dot plot, one sequence corre-
sponds to its horizontal axis, the other one to its vertical axis. Every field of D stores
the optimal solution for an alignment of s[1..i] and t[1..j], 1 ≤ i ≤ m and 1 ≤ j ≤ n,
i.e. an alignment of the sequence prefixes. The size of the edit matrix depends on
the length of the input sequences, being (m + 1)× (n + 1). The +1 is needed for the
empty prefixes in the first row and column. They store the scores for alignments that
start with a gap:

D0, 0 = 0

Di, 0 = i · gapcost for 1 ≤ i ≤ m

D0, j = j · gapcost for 1 ≤ j ≤ n

11

" " S P A N G E

" " 0 -2 -4 -6 -8 -10 -12

E -2 0 -2 -4 -6 -8 -4

N -4 -1 -2 -4 2 0 -2

G -6 -3 -3 -2 0 8 6

E -8 -5 -4 -4 -2 6 14

R -10 -7 -6 -5 -4 4

" " S P A N G E

" " 0 -2 -4 -6 -8 -10 -12

E -2

N -4

G -6

E -8

R -10
12

D (m,n)

b)a)

Figure 7: Global alignment with homogenous gapcost of -2. a) Edit matrix after the initial-
ization of the first row and column. b) The score of every entry outside the first row and
column depends on three predecessors. This is best illustrated by computing the last entry of
the edit matrix, Dm,n. The shaded area illustrates the path of the optimal alignment.

The initialization of the edit matrix is a necessary step before the dynamic program-
ming part of the computation begins. An example with homogenous gapcost is
shown in Figure 7a. Starting at D1, 1, the algorithm proceeds until the lower right
entry Dm, n of the matrix is reached. This entry holds the score of the optimal global
alignment. Obviously, the three adjacent predecessors Dm−1, n (horizontal), Dm, n−1

(vertical), and Dm−1, n−1 (diagonal) have to be computed before, see Figure 7b). The
optimal alignment score at Dm, n is the maximum over the three predecessors, plus
either the value for aligning s[m] and t[n], or the gapcost. This can be generalized
for every (i, j):

Di,j = max

Di−1, j−1 + P (si, tj),
Di−1, j + gapcost,

Di, j−1 + gapcost

(1)

After computing the entry Dm, n of the edit matrix, the score of the optimal global
alignment is known. However, to find the correponding optimal alignment itself,
the path that led to the optimal score has to be traced back. Starting at Dm, n, one
possibility is to iteratively determine the predecessor for each optimal value in the
3-way maximization, until D0, 0 is reached. Another possibility is to store the back-
tracing information in a second matrix while computing the alignment.

The time complexity of this approach is O(m · n), or O(n2) if m ≃ n. The same
holds for space complexity if the alignment is the desired result. However, some-
times the mere alignment score is sufficient. Then, the space complexity can be re-
duced to O(n + m).

3.2.2 Local alignments with affine gap costs

The global similarity between two sequences is often low, even though conserved
regions with high similarity exist. These conserved regions are usually more inter-

12

esting than variable regions with a high mutation frequency. If only a few conserved
sequence “islands” are present, a global alignment may even fail to reveal those
regions of biological interest. The local similarities between the sequences remain
hidden.

Smith and Waterman [96] recognized that it takes only a few changes to transform
the global alignment algorithm into a local alignment algorithm. A local alignment
is an alignment of two subsequences of s and t. The local alignment problem is to
find and align those subsequences whose score is maximal among the optimal align-
ments of all possible subsequences of s and t. The Smith-Waterman algorithm solves
the local alignment problem. It differs in 2 important details from the Needleman-
Wunsch algorithm:

1. The backtracing in the Smith-Waterman algorithm starts at the matrix entry
with the maximal score, not necessarily at Dm, n. It proceeds until an entry
with a value of 0 is encountered, marking the begin of the local alignment.

2. A fourth case “0” is added to the recursion (1). It guarantees that the edit ma-
trix does not contain negative values anymore, corresponding to the removal
of negatively scoring prefix alignments.

While being quite simple with homogenous gapcost, computing the alignment with
affine gap cost requires additional effort. The problem is to determine whether a gap
is initiated or extended. An approach using only the edit matrix needs to investigate
up to n previous positions, leading to exponential time complexity. This behavior
can be avoided by using two additional matrices, V and H , as proposed by Go-
toh [38]. V stores the optimal scores of all alignments that end with an insertion in s;
H stores those that end with a deletion. Obviously, V and H have to be considered
during the three-way maximization, effecting additional changes to formula (1). The
optimal score in V and H has to be computed prior to the maximization of Di,j :

Vi,j = max(Di−1, j + gapinit, Vi−1, j) + gapext

Hi,j = max(Di, j−1 + gapinit,Hi, j−1) + gapext

Di,j = max(Di−1, j−1 + P (si, tj), Vi, j , Hi,j)

3.3 Co- and suboptimal Alignments

Obtaining a local alignment is an important first step in sequence analysis. It shows
how the substrings with the highest similarity relate, and permits to speculate on
the homology status of the input sequences. However, if several regions with high
similarity exist, usually only one of them is reported in the optimal local alignment.
Computing co- and suboptimal alignments is often completing the picture. A coopti-
mal alignment has the same score as the optimal one, while the score of a suboptimal
alignment is lower.

Finding suboptimal alignments is not straightforward. Mostly, the alignment
with the next highest score in the edit matrix will largely overlap the optimal one. A

13

second drawback of this naı̈ve approach is that some suboptimal alignments can not
be found in this way, because they are shadowed by certain high-scoring segments.

Waterman and Eggert found a nice solution for this problem [108]. They de-
fined a suboptimal alignment as nonoverlapping or non-intersecting if it has neither
matches nor mismatches in common with any other alignment from the same input
sequences, i.e. si may only be aligned once with tj in all alignments of s and t. The
Waterman-Eggert algorithm computes the r best nonoverlapping local alignments
between two sequences. First, the optimal local alignment is computed with the
Smith-Waterman algorithm. During the backtracing in the edit matrix, all matches
or mismatches being part of the optimal alignment are marked as being used. Then,
a part of the edit matrix is recomputed. In the maximization of the used fields,
matches and mismatches are now forbidden, leading to many changes in the edit
matrix.

The time complexity of the Waterman-Eggert algorithm is O(mn +
∑r

i=1 l2i) time,
where li is the length of the i-th computed alignment. Huang and Miller [48] showed
that the quadratic space complexity of the Waterman-Eggert algorithm can be re-
duced to linear time.

3.4 Multiple Alignments

Many questions in computational biology can not be answered by comparing a pair
of sequences. The comparison of multiple sequences delivers much more informa-
tion. Multiple alignments are alignments with k > 2 sequences. They can be seen as a
generalization of pairwise alignments.

Multiple sequence alignment is a powerful tool in sequence comparison. If the
aligned sequences are related, even short conserved motifs can be reliably identified.
If k is large, even a statistical analysis of certain evolutionary events is possible. That
is one reason why multiple alignments are very important in the reconstruction of
phylogenetic trees, and also in database searching (see Section 4).

Several methods can be used to construct multiple alignments. The most accurate
method is to compare all sequences simultaneously. This requires the construction of
a k-dimensional matrix, one dimension for every sequence to be aligned. The time
complexity of this computationally challenging approach is exponential, O(nk), with
n being the length of the largest sequence to be aligned. Within a reasonable amount
of time, only few sequences can be aligned in this way. If a heuristic is applied,
their number can be increased. Two well-known heuristics are the Carillo-Lipman
heuristic [22] and the “Divide and Conquer Alignment” algorithm (DCA) by Jens
Stoye [100]. The Carillo-Lipman heuristic saves computation time by exploring only
those regions of the k-dimensional edit matrix that could actually be part of the op-
timal multiple alignment. In its default version, it is an exact or runtime heuristic that
guarantees the optimal result, but not a decrease in runtime. DCA is a true heuristic
that will not always deliver the optimal solution, but will almost always save com-
putation time. The DCA idea is to recursively divide the set of input sequences until
the sequence fragments are small enough to be aligned simultaneously. These align-

14

ments are then combined in the conquer step of the algorithm. The problem is to find
a family of score-optimal cut positions. Stoye used an heuristic approach based on
pairwise alignments (→minimal additional costs) to find the cut positions and showed
that they are often optimal or near-optimal.

Progressive methods are able to build multiple alignments from many sequences
within seconds or minutes. This is achieved by aligning not all sequences in par-
allel. A common protocol is to first compute a “seed” alignment of two or three
sequences, then adding a sequence in each subsequent iteration. This is usually
guided by a measure of sequence similarity, ensuring that sequences with higher
similarity are aligned first. The rather simple star alignments align each sequence
with a common consensus sequence. Tree alignment methods are often more sophis-
ticated. “Clustal” [105] is a widely used example: Before the sequences are actually
aligned, it computes a phylogenetic guide tree using the “Neighbor joining” algo-
rithm [86]. In each iteration, the two branches with the least distance are aligned.
Advanced techniques like sequence-weighting and position-specific gap penalties
are applied to improve the final multiple alignment.

As in pairwise alignments, several score functions can be applied in computing
a multiple alignment. Most frequently, the sum-of-pairs score function is used. For
a given alignment column, each pair of aligned symbols is scored, the scores are
added up to the sum-of-pairs score of that column.

4 Database searching by homology recognition

4.1 Homology recognition

The first step in the functional annotation of a newly sequenced gene is usually homol-
ogy recognition, the search for related genes. If related genes with known function
can be found, the function of the new gene can often be predicted. The easiest ap-
proach in homology recognition is to search a sequence database for sequences with
high similarity. The new gene is the query, the entries in the database are called
targets. High similarity between the query and a target usually implies a similar 3D-
structure of their gene products, a necessary prerequisite for sharing the same bio-
chemical function. A similar 3D-structure does however not imply sequence similar-
ity, because structure is more conserved than sequence. We assume two genes with
strong sequence and structural similarity to be related, because it is highly unlikely
that the observed similarities arose independently during evolution.

Pairwise and multiple alignment is not only very useful in the manual compar-
ison of a few sequences, but also for homology recognition. However, other ap-
proaches exist as well, and many of them do not rely alone on sequence information.
Shi et al. [93] define four categories that classify approaches in homology recogni-
tion:

1. Methods that do pairwise sequence comparison, usually by computing pair-
wise alignments. They are able to detect closely related homologs, but often

15

miss remote homologies.

2. Tools in the second group are also based on sequence comparison. However,
they use multiple alignments of related sequences and compute profiles or
probabilistic models from them to improve the detection of remote homologs.

3. The third group of methods uses structure- and sequence information.

4. Homology detection in the fourth group relies on structure information only.
Methods in this group are usually threading methods.

First group: This group contains well-known traditional methods like SSEARCH [78],
an implementation of the Smith-Waterman algorithm [96] for database searching,
FASTA [77], and BLAST [5].
Second group: Methods in the second group use information from multiple se-
quences, usually a multiple alignment. Many methods then transform the multi-
ple alignment into a profile or a statistical model. The easiest kind of profile is the
position-specific scoring matrix (PSSM). The frequencies of the letters in each align-
ment column are converted to log-odds scores in a |Σ| × N matrix, where Σ is the
alphabet and N is the length of the multiple alignment. When comparing a PSSM
to a sequence, indels can not be modeled. PSI-BLAST (Position-Specific Iterative
BLAST) [6] is using a PSSM during its search for related sequences. After an initial
search with a single query, it computes a PSSM of all targets that are assumed to be
related to the query. This profile is the input for the next iteration, where the addi-
tional information is used to find more related targets that are again added to the
profile, and so on. Similar approaches were also developed by other authors, e.g.
in [104].
Profiles are a rather simple way of using multiple sequence information, Hidden
Markov Models (HMMs) and profile HMMs (pHMMs) are more complex. A HMM is
a general statistical model describing a system that is producing a sequence of vis-
ible emissions, e.g. a string. The emission probabilities depend on the current state of
the system, which is invisible (or → hidden). A transition between the states of the
system is possible if the transition probability is greater than zero. HMMs can be used
to predict the hidden states by the sequence of observed emissions, see the book by
Durbin et al. [31] for more information.
Profile HMMs are a statistical description of a sequence family. The emission prob-
abilities at each position in the familycorrelate with the the observed letter frequen-
cies. A target sequence in a database search is considered as being emitted by the
pHMM. The maximum probability to emit the target sequence is used to decide if
the target sequence is related to the pHMM. A large advantage of pHMMs is that
indels can also be modeled. HMMer [31] and SAM [52] are standard software tools
to generate pHMMs and work with them. Profile HMMs are also used to model
protein domain families in PFAM [32] and SMART [91, 61].
Group three: Sequence and structure information is often used in complex protocols
that combine several methods in one pipeline. One interesting example is 3D-PSSM

16

by Kelley and coworkers [53]. The main idea is to combine profiles of multiple se-
quences with structure information The structure information originates from mul-
tiple structure alignments of related SCOP domains. The secondary structure states
and solvation potentials of the aligned residues are also known and used to aid in the
search process. FUGUE [93] uses also structural alignments, from the HOMSTRAD
database [69]. One of the main differences to 3D-PSSM is that FUGUE automatically
selects the alignment algorithm with structure dependent gap penalties to align a
target sequence to the structure.
Group four: Methods that rely on structure information as only source of infor-
mation are basically out of scope in this thesis, because they would require an in-
troduction to structure comparison. Nevertheless, we would like to mention four
methods [3, 11, 56, 66] based on the representation of secondary structure elements.
Only [11, 66] are tailored to database searching, but the other examples could easily
be adapted to it, too. These approaches show that secondary structure information
can indeed be a valuable source of information.
Many methods relying on structure information require sequential input structures.
A recent study by Shih and Hwang [94] investigated permuted alignments by struc-
tural comparison where the SSEs were not required to be sequential. Their results
indicate that this area is to some degree overlooked.
Intermediate group: Of course, not every method for database searching fits cleanly
into one of these four groups. Treesearch [82] is such an intermediate approach.
Treesearch fits best into the second group, because its input is a sequence family.
It constructs a phylogenetic tree of the family, to which each target sequence is tem-
porarily added. The length of the resulting new edge then determines the homology
status of the target. The method of Koretke et al. [57] is also an intermediate that
could be placed in group two. Even though their semiautomatic approach is mostly
based on multiple sequence information, predicted secondary structure is used un-
der certain circumstances.

4.2 Statistics in database searching

Searching a large database like Genbank2 requires millions of comparisons. The
probability that a random similarity scores higher than the similarity of two distantly
related sequences is increasing with database size [99]. Spang and Vingron [98]
express this very nicely from another point of view: “Scores resulting from gen-
uine evolutionary relationship obviously remain constant, while their credibility de-
creases as the database grows.”

It is therefore important to know if a score obtained in a database search is higher
than one would expect from two unrelated sequences. This expectation is expressed
in the e-value. For each search result, it describes the number of hits expected to
see by chance with the same score in a database of known size. A target sequence
from the database matching the query with a score s and a corresponding e-value

2 see http://www.ncbi.nlm.nih.gov/Genbank/index.html

17

of 1 means that in a database of the current size, one match with a score s can be
expected by chance. Karlin and Altschul [51, 4] compute the expectation value as:

e = K ·N · exp(−λ · s)

where e is the expectation value, K and λ are the “Karlin-Altschul” parameters, and
N is the product of the query length and the length of the database (i.e., the summed
lengths of all target sequences in the database). The random sequence model of Kar-
lin and Altschul does only approximate the situation in database searching, where
we are dealing with many short biological sequences. Therefore the effective lengths
of the query sequence (Qleneff) and the target database (DBleneff) have also to be
considered. The final equation to compute the e-value in BLAST is:

e = Qleneff ·DBleneff · exp(−λ · s + logK)

The lower the e-value, the higher is its “significance”. Database hits with an e-value
of 10−10 or less are usually considered to be reliable enough to indicate homology.
For example, a threshold of 10−30 was used in “SYSTERS” [58].

5 Motivation and goals of this thesis

As of today (November 2008), the complete genomic sequences of more than 700 dif-
ferent species are publicly available3. Many of those species were chosen because of
their commercial or medical significance. Even though the most interesting species
have already been sequenced, enough targets are still worth investigating. This is
supported by the ongoing improvements in sequencing technology [65] that allow
to obtain relatively cheap high-coverage reads within a short period of time. The
current and future sequencing efforts will result in many new genes with unknown
structure or function. Sequence analysis will therefore remain an important area in
bioinformatics research.

The need to characterize and annotate the enormous amount of genes from the
genome sequencing projects led to the development of many useful algorithms. A
common characterization approach is homolgy recognition, where a query sequence
is compared to one or many already characterized sequences or structures. If signif-
icant similarity between those can be found, we assume the existence of a common
ancestor, i.e., homology.

Database searching (see Section 4) is the standard method in homology recog-
nition. Early methods were mostly based on pairwise comparisons. Because of the
limited amount of information available in pairwise alignment, comparisons of mul-
tiple sequences became more and more popular. These methods are usually better
at remote homology detection and achieve on overall good results. However, even
they can not always detect remote homology between 20% and 35% sequence simi-
larity, in the so-called twilight zone [84].

3 see GOLD database at http://genomesonline.org/

18

Even though the statistical properties of pairwise-, and to some degree also multi-
ple alignments are well understood, it is getting more and more difficult to improve
on the existing methods. There are basically three possibilities to allow for further
improvements:

1. Increase the amount of available information: The intrinsic sequence informa-
tion is largely explored by modern approaches in homology recognition. Other
sources of information are available that could be used in more sophisticated
models, allowing to improve the existing methods. Examples are statistics on
codon usage in DNA and models that capture the information associated with
catalytic sites in enzymes. Protein structure is another source of information.
Existing knowledge about secondary and tertiary structure can be combined
with sequence information. Such approaches already exist [57, 93], often im-
plemented in the complex protocols for identifying homologous targets in the
CASP4 experiment. The goal however also requires to investigate the use of
information in existing methods. Otherwise it is not clear on how they can be
improved.

2. Add more flexibility to existing annotation pipelines. Genes and their products
are to some degree modular. Often, several domains are combined in different
ways during evolution. Below the domain level, the products of eukaryotic
genes can contain different combinations of exons if they are subject to alter-
native splicing. Most of the existing approaches in homology recognition are
unable to detect and work with sequence fragments. The detection of repeated
and translocated seuence fragments could also improve the search process.

3. Enhance the presentation of the available knowledge: The value of an annota-
tion approach is not only determined by its detection power, but also by the
way it presents the available information. The linear list of targets returned
by most methods in database searching answers basically only one question:
What is the optimal ranking of the targets from my database? Even though this
is the most important answer in this scenario, other questions may be asked,
for example: Which combination of targets could explain my query sequence?
Which part of my query is most similar to what part of the target? Answering
more of such questions may ease manual decisions if the automatic methods
do not provide enough evidence for deciding about homology.

The Jumping Alignment algorithm (Jali, see Part III) [97]) can be used to search a
sequence database for homologous targets. It aligns a single target sequence to a
multiple alignment of a sequence family. Each letter of the target is aligned to only
sequence of the multiple alignment, but Jali can “jump” or change to another se-
quence. Thereby Jali is able to use horizontal and vertical information from the input
alignment and can be regarded as method with an advanced use of information (see

4 Critical assessment of techniques for protein structure prediction, see
http://predictioncenter.org/

19

topic 1 above). An initial evaluation of the algorithm showed good results. To im-
plement further improvements, we first need to better understand it.

The goals of this thesis are to further investigate the jumping alignment algorithm
and to develop a new method for homology recognition. The investigation of the Jali
algorithm will focus on its jumping behavior, especially with respect to biological
properties of the aligned sequences. A part of the necessary data will be obtained
in a modified evaluation scenario with a newer version of the SCOP database and
artificial data. We want to ensure that the good results of Jali in the first evaluation
can be repeated with a newer version of the SCOP database. The insights won in
the investigation of the Jali algorithm will be used to develop a new method for
homology recognition. The design of the new method will implement some of the
strategies described above: An additional source of information shall be available to
the search protocol, aside from the pure sequence data. The method shall be flexible,
allowing to consider rearrangements and repeats within reasonable limits. Last not
least we would like to present the search results in an enhanced way, aiding the
scientist in his decisions rather than asking him to trust a single e-value.

20

Part II

Material and Methods

6 Databases

6.1 The Protein Data Bank (PDB)

The Protein Data Bank (PDB) was founded in 1971 as an archive of biological macro-
molecules with known 3D structure [17, 16]. The PDB entries contain the atomic
coordinates of the macromolecule and associated information. Most PDB entries are
proteins, but other molecules are stored as well, e.g. nucleic acids or complexes of
proteins and nucleic acids. The majority of protein structures was solved by X-ray
crystallography, followed by NMR spectroscopy and electron cryomicroscopy (also
called cryo-electron microscopy).

Until the 1990s, the PDB entries were stored as plain text or “flat” files. Figure 8
shows a few lines of PDB entry “1eft”, the procaryotic elongation factor “EF-TU”.
Each line or record contains 80 characters and starts with a keyword of at most six
characters. The keyword specifies the “record type” of stored information, i.e. the
PDB identifier Header or the Title of the entry. Position 7 to 80 contains the data,
although sometimes additional characters are used to mark certain subtypes of in-
formation. The SEQRESrecords store the complete sequence of the protein chain(s)
in the protein. The ATOMrecords contain the atom coordinates of every residue that
could be identified in the structure determination experiment. Sometimes not all the
residues can be identified, especially at the begin or end of a sequence. Therefore
the ATOMsequence is not necessarily equal to the SEQRESsequence. In the 1990s,
the PDB entries were gradually transfered into the modern Macromolecular Crystal-
lographic Information File (mmCIF) format (see [110] for an overview). However, the
flat files remained available because many legacy software tools use the plain text
format.

6.2 PDBFinder II

The PDBfinder database [46] contains a summary of each PDB entry. The database
is stored in one text file with an easy-to-interpret format and is regurlarly updated.
Besides PDB data, the PDBfinder database also stores data derived from DSSP [50]
and HSSP [30], and from the literature. Relevant statistical data (e.g. solvent acces-
sibility) are also included. The PDBfinder II database5 is a slightly extended version
of the PDBfinder database. The main difference is the added secondary structure in-
formation (computed with the DSSP method) that is available for each protein chain
in PDBFinder II. Table 1 shows an example entry.

5 available at ftp://ftp.cmbi.kun.nl/pub/molbio/data/pdbfinder2/ .

21

ATOM 1 N ALA A 1 75.082 -7.178 43.255 1.00 27.28 N
ATOM 2 CA ALA A 1 74.276 -6.678 42.092 1.00 34.44 C
ATOM 3 C ALA A 1 75.143 -5.790 41.184 1.00 33.12 C

SEQRES 1 A 405 ALA LYS GLY GLU PHE ILE ARG THR LYS PRO HIS VAL ASN
SEQRES 2 A 405 VAL GLY THR ILE GLY HIS VAL ASP HIS GLY LYS THR THR

JRNL AUTH M.KJELDGAARD,P.NISSEN,S.THIRUP,J.NYBORG
JRNL TITL THE CRYSTAL STRUCTURE OF ELONGATION FACTOR EF-TU

HEADER ELONGATION FACTOR 24-AUG-93 1EFT
TITLE THE CRYSTAL STRUCTURE OF ELONGATION FACTOR EF-TU FROM
TITLE 2 THERMUS AQUATICUS IN THE GTP CONFORMATION

1 10 20 30 40 50 60 70

Figure 8: A few selected records of PDB entry “1EFT” illustrating the two sources of possi-
bly different sequence information. Only ten out of all 3690 lines are shown.

Field and example entry Description

ID : 101M PDB identifier
Compound : myoglobin Name of the solved structure
Source : (physeter catodon) Species or vector
Exp-Method : X Structure determination method

(here: X-Ray crystallography)
Resolution : 2.07 Resolution of protein crystal (in Å)

Chain : A Chain identifier
Amino-Acids : 154 Number of amino acid residues in chain
Sequence : MVLSEGEWQLVLHVWAKVE... PDB “ATOM” sequence
DSSP : CCCCHHHHHHHHHHHHHHG...DSSP secondary structure states
Access : 2907693254025116413... Solvent accessibility (digits)

Table 1: PDBFinder II excerpt of PDB entry “101M”. The indented rows contain informa-
tion describing entries in the non-indented rows in more detail. For example, the specified
PDB chain “A” contains 154 residues. Most of the data shown here is stored in PasstaDB
(see Section 11.2). Using the information on solvent accessibility is an interesting option for
future refinements.

22

6.3 PTGL

The Protein Topology Graph Library (PTGL) [68] is a library of graphs representing
protein topologies. Each graph represents the regular secondary structure elements
(helices and β-strands) of a single PDB chain and the spatial contacts between them.
The vertices correspond to the SSEs. They are enumerated from the N- to the C-
terminus. An edge connects two vertices if the represented SSEs are in contact with
each other. The edges are labeled to indicate the relationship between those SSEs:
parallel, antiparallel, or mixed. The modeled proteins can be shown as 2D-diagrams
or in 3D (with an external structure browser like Rasmol [90]). The PTGL website6

also allows the search of toplogies and subtopologies and can therefore be used to
find proteins with similar (sub)structure.

The topology information is not used in this thesis. We use only the regular SSEs
of the decomposed protein chains, and some of the associated position information
in our project Passta (see Chapter IV). SSEs with irregular secondary structure, i.e.
coils and loops, are not stored in the PTGL.

6.4 SCOP and ASTRAL

The SCOP database (Structural Classification of Proteins) [73, 9, 10] classifies protein
domains with known 3D-structure. Protein domains are suitable units of classifi-
cation, because they can be defined as the working unit of structure, function and
evolution. The SCOP classification is a hierarchy with four main levels:

• Class: The different folds are grouped into classes according to the main type of
secondary structure that occurs within them. For example, folds that contain
only α-helices are placed in the class “all-alpha”.

• Common fold: Protein domains have a common fold if their main secondary
structure elements have the same arrangement. Protein domains in the same
fold are however not necessarily homologous.

• Superfamiliy: Protein domains related at the superfamily level are remotely re-
lated. They usually have a low percentage of sequence identity, but high struc-
tural and/or functional similarity.

• Family: Families contain closely related protein domains usually sharing at
least 30% sequence identity. Members of the same family are also very similar
in terms of structure and function.

A given protein domain may be found in different species, and in different isoforms
(enzymes are known examples). To group these almost identical “protein domain
species” together, there is another level below family, called “Protein” in [10]. The
focus of this term is on protein function. However, we believe this term may be

6 http://sanaga.tfh-berlin.de/ ˜ ptgl/ptgl.html

23

Class ()7

Fold ()971

Superfamiliy ()1589

Family ()3004

Domain

Root

Related

Unrelated

Figure 9: Hierarchy of the SCOP classification: Protein domains related above the dashed
line are assumed to be unrelated. Those below the line share significant structural similarity
and are assumed to be related. The brackets contain the number of entries on each hierarchy
level in SCOP 1.71.

misleading, and call this level “Protein/Domain” (we admit this is only slightly less
misleading).

The classification process in SCOP is manual. A team of experts first identifies all
domains in each PDB (see Section 6.1) entry, and then classifies them into the SCOP
hierarchy. The main property used in the classification is structural similarity, but
sequence similarity and biochemical function are also important. SCOP is available
online7.

6.4.1 ASTRAL

The SCOP team is only responsible for the classification itself. The ASTRAL consor-
tium [20, 24] provides databases and tools bridging the gap between SCOP the PDB.
One example are the “Spaci” and “Aerospaci” scores that the ASTRAL team assigns
to each PDB entry. They indicate the stuctural quality of the PDB entry.

The ASTRAL website8 also provides certain subsets of the SCOP database. These
subsets are filtered by sequence similarity or e-values. For example, the “PDB SE-
QRES 40” subset contains only domains that are less than 40% identical and corre-
spond to the PDB “SEQRES” data.

7 http://scop.mrc-lmb.cam.ac.uk/scop/
8 http://astral.stanford.edu/

24

7 External Algorithms and Methods

7.1 Phase4

Phase4 [81] is a semi-automatic evaluation environment for sequence database search-
ing. The evaluation protocol is basically split into four distinct phases: “Model Con-
struction” (1), “Execution” (2), “Evaluation” (3), and “Report” (4). During the first
phase, the user has to choose a database with known homology relationships and
an evaluation model. The evaluation model defines the queries and targets in the
database search and divides the corresponding data into test and training sets. For
example, if the SCOP database is chosen, all superfamilies can be divided into test
and training sets. The members of the test set have to be found by the method(s)
under evaluation, while the training sets provide the queries, e.g., a multiple align-
ment or HMM. The second phase executes the considered method, searching the
test sets of the database for related entries. After the execution phase, the evaluation
method has to be specified. While the numbers of true and false positives or nega-
tives is known, there are several methods to assess the quality of the search result,
e.g. the minimum false positive count “minfpcount” or the receiver operating character-
istic “roc50”. Several kinds of plots and tables are available in the fourth phase to
report the results of the third phase.

7.2 ROSE

ROSE (Random Model of Sequence Evolution) generates families of random protein
or DNA sequences guided by an evolutionary tree. The root of that tree is a com-
mon ancestor sequence, which can be generated by Rose or may be provided by the
user. The program mutates the root sequence by insertion, deletion and substitution
events along the tree edges, until a predefined distance has been reached. During
this artificial evolutionary process, the ‘true’ history is logged and the ‘correct’ mul-
tiple sequence alignment is created simultaneously [101]. ROSE is available online9.

7.3 BLAST

BLAST (Basic Local Alignment Search Tool) [5] and FASTA [77] were the first widely
used tools capable of searching a sequence database in a reasonable amount of time.
Especially BLAST was very successful and became the standard in sequence database
searching. Since the original publication in 1990, the software has been enhanced
several times and distributed in different flavors.

BLAST is well covered in many introductory bioinformatics books (see e.g. [71]).
Here, we describe only the central idea and some aspects of blastp , the BLAST
excutable used in the evaluations of Jali and Passta (see Chapters III and IV, respec-
tively).

9 http://bibiserv.techfak.uni-bielefeld.de/rose

25

The time savings achieved by BLAST are due to a clever heuristic search strategy.
First, the query sequence is transformed into a set Q of overlapping k-mers (usually,
k = 3 in proteins). Given a word q ∈ Q and a substitution-matrix dependent thresh-
old T , BLAST determines all sequence fragments of size k that score above T in a
gapless alignment with q. Looking up these sequences in the database can be done
in linear time.

The k-mers from Q and their counterparts from the target database are the so-
called seed alignment. Depending on the BLAST version, the seed alignments are
extended in various ways. At last, the significance of the final alignment is assessed
by computing e-values.

7.4 DSSP

The 3D-structure of a protein can be experimentally determined. After the successful
experiment, the atom coordinates of the protein are known. However, the secondary
structure states are not yet assigned. If the assignment was made on the basis of a vi-
sual inspection made by researchers and scientists, secondary structure assignment
would be highly subjective. An objective algorithm is therefore a much better choice.
One of the first algorithms for secondary structure assignment was the DSSP algo-
rithm [50]. Even though newer and slightly better approaches exist (e.g., [36]) DSSP
is still the accepted standard. The correctness of secondary structure assignments
is anyway a difficult issue. Proteins are dynamic macromolecules that often require
some flexibility to perform their function in vivo [47].

DSSP detects certain patterns of hydrogen bonds and geometrical features in the
data and assigns one out of eight secondary structure states to each residue. These
states are coded for by the characters T, G, H, I, B, E, S and the blank character “ ”.
There are two basic patterns recognized by DSSP, turns T and bridges B. The more
complex patterns are modeled by sequences of turns and bridges. The letters G,
H, I are helical patterns, the α-helix H being the most fequent helical pattern. β-
strands E are extensions of the bridge pattern. The letter S is used to indicate bends
in the protein backbone, all other cases are left blank.

26

Part III

The Jumping Alignment Algorithm

8 Introduction

8.1 Motivation

A protein family is composed of closely related proteins similar in sequence, struc-
ture, and function. A multiple alignment of the protein family reveals variable and
conserved regions. The larger the family, the more information is contained in the
multiple alignment. The additional information allows to identify new family mem-
bers in a sequence database search more easily. Figure 10 shows a multiple align-
ment of a query sequence and a hypothetical protein family. The scores at the bottom

A... S H V C P E K N F L R YQ S...

Q S...

A

S

Score Q S... 1 2 0 1 3 1 3 1 1 1 1 5

... ...M H F V P D - N Y I K Y

... ...T H F V P E G Q F I K Y

... ...S N W C L T K G Y I K Y

... A G - - G T K G W L K Y

... A A - S P T K G Y I R Y

Q S...

Q S...

Figure 10: Excerpt of a multiple alignment A and an aligned query sequence S. The “Score”
row lists the number of occurrences of each letter in the corresponding alignment column.
The score does only depend on the vertical information in each column.

of the figure show that the query and the multiple alignment are globally similar: all
except one of the query letters appear at least once in the same alignment column.
The observed similarity is however distributed among all sequences of the family. In
a database search with a large and variable family, this kind of column-based scor-
ing could lead to the acceptance of unrelated query sequences. The reason is the
column-based point of view illustrated in Figure 10. Only the vertical information of
the multiple alignment is used in the scoring. Figure 11 shows the same alignment,
however illustrating the opposite viewpoint. The comparison of the query sequence
and the protein family is rowwise, the highest score indicating the family member
with the highest similarity to the query. Only horizontal information is used in the
scoring. Figure 12 shows that the alignment contains horizontal and vertical informa-
tion. The five sequences subdivide into two subfamilies (shaded bars) with certain
conservation patterns (dotted boxes). These patterns are not seen by column-based
approaches, and row-based approaches are not flexible enough to switch between
them. This lead to the development of the Jumping alignment algorithm (Jali) [97].
This intermediate algorithm is able to exploit both sources of information from the

27

A... S H V C P E K N F L R YQ S...

Score

Q S4

Q S5

Q S4

Q S3

Q S4

... ...M H F V P D - N Y I K Y

... ...T H F V P E G Q F I K Y

... ...S N W C L T K G Y I K Y

... A G - - G T K G W L K Y

... A A - S P T K G Y I R Y

Q S...

Q S...

A

S

Figure 11: Alignment between a query sequence S and a multiple alignment A. Only
horizontal information is used to compute the score for each row.

... ...M H F V P D - N Y I K Y

... ...T H F V P E G Q F I K Y

... ...S N W C L T K G Y I K Y

... A G - - G T K G W L K Y

... A A - S P T K G Y I R Y

Q S...

Q S...

A

Figure 12: The family divides into two subfamilies, indicated by the shaded bars. The three
dotted boxes show fully or highly conserved motifs, two of them being specific for one of the
two subfamilies.

multiple alignment. It basically aligns the query to one sequence of the multiple
alignment. The algorithm may however change this reference sequence and “jump”
to another one. The resulting “jumping alignment” shows the score-optimal align-
ment of the query and the aligned family under the given parameters. The details
are described in the following Section 8.2.

The results of an initial evaluation were promising and illustrated the power of
the approach. The reasons for the good results were however not obvious. Most
probably, the jumping capability is the responsible component, but how exactly does
it contribute to homology recognition? A thorough investigation will help us to an-
swer this question and aid in improving the algorithm. Beside experiments on sec-
ondary structure recognition by Jali, we also collect quantitative data with families
of biological and random origin.

8.2 The Jumping Alignment (Jali) Algorithm

The Jali algorithm [97] is based on the dynamic programming paradigm. It can be
seen as an extension of the Smith-Waterman algorithm (see Section 3.2.2), which
computes a pairwise local alignment of two sequences. The input of Jali is a query
sequence S of length n and multiple alignment A of length m, with 1 ≤ i ≤ n and
1 ≤ j ≤ m, respectively. The multiple alignment A consists of K sequences or rows,
1 ≤ k ≤ K . The Jali algorithm aligns the query S with A, the result being a jumping

28

?

Figure 13: Each plane symbolizes an edit matrix for the query and one of the K sequences
in the multiple alignment. During the computation of a given entry Dk(i, j) (→ question
mark), the Jumping Alignment algorithm considers not only the three predecessors in the
same plane k, but also those in the other ones, adding up to 3K altogether.

alignment, a special kind of a local alignment. Here, every character Si of the query
is aligned with a symbol Ak,j in a specific row of the multiple alignment. This row
may however change from k to k′, k′ 6= k. We call this event a change in the reference
sequence, or shorter a jump. In this case, Si+1 is aligned with Ak′,j′ , unless a new gap
is introduced into the query.

The quality of the jumping alignment is expressed by the jumping alignment score.
The score function of the standard Smith-Waterman algorithm for pairwise align-
ments has been generalized for multiple sequences. Instead of the single edit matrix
D as in Smith-Waterman, Jali employs K edit matrices D1, . . . ,DK , one for each
alignment row in A. For 1 ≤ k ≤ K , the cell Dk(i, j) holds the maximal score of all
alignments between the query sequence and the multiple alignment that end with
positions Si and Ak,j . The computation of Dk(i, j) requires to maximize over 3K
predecessor cells (see Figure 13). The three predecessors have to be considered in
Dk and in the other K − 1 matrices where k 6= k′. The latter cases are penalized
by subtracting the jumpcost from the alignment score. This decrease is necessary to
avoid wild “hopping” between the sequences of A during the computation of the
jumping alignment:

Dk(i, j) = max

0
Dk(i− 1, j − 1) + w(si, Ak,j)
Dk(i− 1, j) − gapcost

Dk(i, j − 1) − gapcost

Dk′(i− 1, j − 1) + w(si, Ak,j)− jumpcost

Dk′(i− 1, j) − gapcost− jumpcost

Dk′(i, j − 1) − gapcost− jumpcost

(2)

Equation (2) illustrates a basic version of the Jali algorithm with a time complexity

29

of O(nmK2). Since every jump has the same cost, the time complexity can easily
be reduced to O(nmK): The maximal alignment scores obtained from the diagonal,
vertical, and horizontal predecessors can be precomputed in O(K) time, reducing
the time complexity by one order of magnitude. The space usage however remains
O(nmK) (see [97] for further details).

The placement of gaps, especially in connection with affine gap costs, poses more
complications. One has to distinguish between gaps that already existed in the in-
put alignment and new gaps introduced by the Jali algorithm. Spang et al. describe
five cases for the placement of a new gap. The gap penalties depend on where the
gap is introduced (into S or A) and if it runs in parallel to a character or to an al-
ready existing gap. The time complexity of the basic algorithm can be maintained
under affine gap costs if the auxiliary matrices V and H are included, as proposed
by Gotoh [38]. The idea is shortly explained in Section 3.2.2. To save memory, the
Jali implementation includes also the space saving technique of Huang et al. [48]. It
reduces the space complexity of the algorithm to O((n + m)K), if the alignment as
such is not needed.

The initial Jali implementation featured two executables: The first one, Jali ,
computes a jumping alignment from a query sequence and a multiple alignment.
The second one, Jsearch , is used for database searching. Its input is a multiple
alignment and a database of sequences in Fasta [77] format. Early in this project
we developed a third executable “Jscan ” that completed the functionality of the
suite. Jscan compares a single sequence against a database of multiple alignments
in the ProDom [92] file format. All executables are available online10 for different
UNIX-based operating systems.

9 Projects

9.1 Biological Significance of Jumping Alignments

9.1.1 Overview

The results of the first evaluation in the original publication [97] were promising. In
terms of quality, Jali could compete with HMMer [31], an established HMM-based
method in homology recognition. In [12], we confirmed these results with a newer
version of the SCOP database. The former results also showed the influence of the
jumpcost: In conjunction with the Blosum62 score matrix, the Jali performance was
poor at zero jumpcost, while being good at infinite jumpcost. The best results were
however obtained at a jumpcost value of 22. The additional degree of freedom in-
troduced by the jumping capability of Jali clearly makes a difference. We wondered
whether the good results are due to the increased flexibility of the algorithm, or if
the jumps indeed reflect structural properties of the aligned protein domains. For in-
stance, one would expect more jumps within variable segments of the protein family

10 http://bibiserv.techfak.uni-bielefeld.de/jali

30

Figure 14: Phase4 construction of the “family halves one per family” model (fhopf), step 1:
Each family of every SCOP superfamily is split into two parts, the “odd” and the “even” set.

than in conserved segments. The regular secondary structure elements α-helix and
β-strand are needed to maintain the structure of the protein. They are therefore
more conserved in terms of sequence space and less variable than coils and loops.
Coils and loops are nevertheless indispensable parts of the protein, even though be-
ing less constrained. We expect to observe more jumps disrupting a loop element
than an α-helix or β-strand if Jali can indeed detect structural features within ho-
mologous proteins. Therefore we define a Jali jump as structurally significant, if it
occurs between adjacent secondary structure elements, not disrupting the involved
secondary structure segments. If a coil or loop is involved, this strict requirement
is slightly loosened. The jump may be within the coil or loop, but it has to be close
to its border (one residue), because secondary structure is not absolutely rigid. We
would appreciate to find many such cases, because this would suggest a connection
to protein structure. In this case, Jali might be further improved by incorporating
structure information in the jump strategy.

9.1.2 Experimental setup

We constructed the evaluation environment with Phase4 (described in Section 7.1).
Each family within a given SCOP superfamily was split into an odd and an even half,
applying the Phase4 “family halves one per family” (fhopf) model (see Figure 14).
The sequences in the odd set are the query sequences. They are pooled into one large
set (see Figure 15). The sequences in the even sets are aligned with ClustalW (version
1.81) to serve as input for the Jali algorithm. Jali computes jumping alignments from
these multiple alignments and each query sequence in the odd set (see Figure 16).

We applied this procedure to two SCOP subsets of sequences that were obtained
from the ASTRAL website (see Section 6.4.1). One contained sequence families with
at most 40% sequence identity, the sequences in the second one were up to 70%

31

Figure 15: Phase4 construction of the “fhopf” model (see text), step 2: The odd sequences are
pooled. The sequences in the “even” family sets are aligned with ClustalW.

Figure 16: Phase4 construction of the fhopf model (see text), step 3: A jumping alignment is
computed in an all-against-all approach from every (query, multiple alignment) pair.

identitcal. Each jumping alignment was computed with three different Blosum62
jumpcost values: 14, 18 and 22. After that, the secondary structure information was
added in a semiautomatic fashion. It was parsed from the “PDBfinder II” database
(see Section 6.2). Then we checked the jumping alignments manually for cases of
structural significance.

9.1.3 Results and Discussion

We checked almost 40 different jumping alignments from both SCOP subsets at three
different jumpcost values for structural significance. Only one alignment with struc-
tural significance was found, from the “astral40” subset (see Figure 17). The struc-
tural significance was present at jumpcost values of 18 and 22. At jumpcost 14, the
number of jumps increased by one and the jump position changed, losing the struc-
tural significance.

In this experimental setup, the Jumping Alignment algorithm does rarely detect
the secondary structure underlying the protein multiple alignment. Some of the

32

d1gks__
d1c75a_ cischggdltg--asapaidkaganys-----eeeildiilngqgg-----------mpg
d451c__ cvachaidtk---mvgpaykdvaakfagqagaeaelaqrikngsqgvwgpi-----pmpp
d1cc5__ gln--------ampp
d1ctj__ caachagggn---nvipdhtlqkaaieqfldggfnieaivyqien
d2mtac_ csgchghyaeg--kigpglndaywtypgn-etdvglfstlyggatg----------qmgp
d1ql3a_ ckachkldgnd--gvgphlngvvgrtvag-vdgfnysdpm-kahggdwtpe-----alqe
d1c52__ cagchqqngqgipgafpplaghvaeilakeggreylilvllyglqgqievkgmkyngvms

d1gks__
d1c75a_ --giakgaeaeava-----awl
d451c__ --navsddeaqtla-----kwv
d1cc5__ k-gtcadcsddelk-----aai
d1ctj__
d2mtac_ mwgsltldemlrtm-----awv
d1ql3a_ fltnpkavvkgtkm-----afa
d1c52__ sfaqlkdeeiaavlnhiatawg

CSSCHDRGVA....GAPELNAP.~~~EDWADRPSSVDELVESTLAGKG........AMPA

CNACHGTGLL----NAPKVGDS-AAWKTRADAKGGLDGLLAQSLS
GKG--------AMPA

YDGRADREDLVKAI.....EYM

WDGRLDEDEIAGVA-----AYV

Shaded Structure codes:

= 4-Helix (” ”,)

= 3-Helix (” ”,) or

5-Helix (” ”,)

a

p

H

3 10 G

I

_

Figure 17: Jumping Alignment of length 82, score 96: Sequence of Cytochrome C551 vs.
a multiple alignment of sequences from the same family (monodomain cytochrome C). The
secondary structure annotation shows the hypothesized “structural significance”.

reasons lie in the algorithm itself: Jali jumps as soon as the gain in the Jali score
exceeds the jumpcost penalty. There are cases where co-optimal alternative jumps
are also possible, but the current version of Jali can not compute co-optimal jumping
alignments. There may be cases of structural significance we have missed because
of that.

The quality of the input alignments is another factor whose influence is diffi-
cult to assess. We believe that some of the errors within a multiple alignment can be
avoided by Jali due to its jumping capability. The overall alignment quality however
matters even for Jali. Especially the multiple alignments from the astral40 subset are
far from perfect, because of the low sequence similarity between the sequences. This
is easy to see when structure information is also available: The syntenic secondary
structure segments are not always found in “blocks”. The few cases of structural
significance we observed are therefore not surprising. But even at better alignment
quality, we would probably not have observed many more cases. What we basically
tried to do here was detecting sequence-structure relationships with a sequence-
based algorithm. The difficulty of this task is generally accepted.

The relevance of our results is hard to discuss. Statistical considerations were
totally left out, because they are very hard to obtain. The null hypothesis for this
investigation would have been to assume that the Jali algorithm does not recognize
secondary structure. Then we could have compared the number of structurally sig-
nificant alignments found in this investigation with those in a setup with random
sequences, yet with simulated secondary structure. If both numbers were not signif-
icantly different, the null hypothesis was confirmed. The difficulties in this scenario
are obvious: Generating families of random sequences being similar enough to real

33

families is a problem by itself. Modeling the secondary structure in these random
sequences is even more difficult. This would require to understand protein folding,
something we are still far away from. Therefore statistical considerations were not
possible in this experiment.

9.2 Experiments with simulated and natural protein families

9.2.1 Overview

Our work concentrates on understanding the good results of the Jali algorithm. In
the previous project, we manually investigated a few jumping alignments for struc-
turally significant jumps. This resulted in interesting insights, but not in reliable
answers. One reason is that the investigated cases deliver not enough evidence to
justify assumptions. So the next step is to obtain and compare quantitative data
from a different experimental setup. We have set up experiments involving protein
domains of biological and artificial origin. They are described in Section 9.2.2. We
ran the Jali algorithm in these settings and monitored several parameters. The main
objectives were (a) to see the behavior of the jumpcost parameter, (b) to observe sig-
nificant tendencies, and (c) to investigate interesting jumping alignments, indicated
by outliers in the generated data.

Parts of this work have been published at the German Conference of Bioinformatics
in 2003 [13] and in a technical report [12] that is available online11. It supplements
this work and describes material, methods, and the evaluation procedure in greater
detail.

9.2.2 Experimental setup

Biological setting and evaluation procedure. The experimental setup is similar to
the one described in the previous project (see Section 9.1.2). We apply Phase4 to treat
all SCOP superfamilies as shown in Figures 14 to 16: Each family containing at least
eight sequences is split into an odd and an even half. This ensures that the multiple
alignments computed from the even family halves contain at least four sequences.
The even sets are then multiply aligned with ClustalW (version 1.81). The odd se-
quences are query sequences, they are pooled in one file. After these preparations,
Jali is run with all queries in the odd set against all family alignments in the same su-
perfamily. We record the values for three parameters: The jumping alignment score,
the number of jumps, and the length of the jumping alignment.

This experimental setup was varied in several ways. We used two different SCOP
subsets, astral40 and astral70. The numbers indicate the maximal percentage of se-
quence identity between any two sequences in each subset. In some experiments,
several jumpcost penalties were applied. In addition, the hierarchical structure of
the SCOP database allows to distinguish two kinds of jumping alignments. A jump-
ing alignment where query and multiple alignment come from the same SCOP fam-

11http://www.cebitec.uni-bielefeld.de/ ˜ bannert/pubs.html

34

A
B C

BA
Superfamily

Inter

AA

IntraBB

AA

EvenOdd

Figure 18: An example superfamily (left) consists of three families A, B and C that are split
into halves (center left). All measurements within one family have an intra relation (center
right), between two different families we speak of an inter relation (right).

ily (“intra”) and a jumping alignment where the query is from family A and the
multiple alignment is from family B (“inter”), see Figure 18.

If a superfamily consists of only one family, an inter setting does not exist. If at
least two families A and B are present and both contain eight or more sequences,
the evaluation is straightforward. If a family has less than eight sequences, its odd
sequences are nevertheless put into the set of query sequences. A multiple alignment
of the even sequences is however not constructed. The idea behind this is to generate
more data in the inter setting. However, it would make no sense to include the
evaluation results of a superfamily whose family B consists of only one sequence. At
least three sequences with an inter relationship had to be present in each superfamily
to contribute experimental data.

All runs were made with the VTML160 score matrix [72], gap initiation cost of 12
and gap extension cost of 4, if not otherwise specified.

Artificial setting. The data obtained with the natural sequences in the biological
setting is complemented with data from random sequences. The advantage in creat-
ing artificial sequence families is that we know their evolutionary history. We used
the program ROSE [101] (see Section 7.2) to create ten “superfamilies”, every one
containing three “families”. For each superfamily, we first generated a random se-
quence S of length 200 as common ancestor. Two more sequences were derived
from S, see also Figure 19: The sequence Sp has a length of 180 amino acids. The
twenty missing residues are due to two deletions of size ten. Besides being short-
ened, another ten-residue segment of S was substituted with an equally sized seg-
ment of random sequence. Similarly, the longer sequence Sq is 220 amino acids long
and it differs from S by two insertions and one substitution. The positions of these
simulated evolutionary events were the same for all sequences. We call these three
sequences a seed set. We derived twenty sequences from each seed sequence in a ran-
domized evolutionary process with ROSE. The average evolutionary distance was
160 PAM, with an insertion/deletion probability of 2%. The ten obtained superfam-
ilies finally contained three families of 20 sequences each, with average lengths of
180, 200, and 220 amino acids. They were treated with Phase4 as described in the
biological setting in (a), resulting in the same final all-against-all Jali runs within
each superfamily. We made several experiments with slight modifications: In our

35

in

dl

180

200

220
su

su
dl

S

S

S

p

q

in

Figure 19: Creation of the protein superfamilies used in the artificial setting: The original
sequence S (length 200, center) served as template in the creation of Sp (length 180, top), and
Sq (length 220, bottom). Sp differs from S by two deletions (dl) and one substitution (su)
with random sequence. The difference between S and Sq is due to two insertions (in) and
another substitution.

first experiment, we collected data at jumpcost values of 14, 18, and 22. We call this
experiment the random200 setting. In a second experiment, we generated 90 ran-
dom sequences of length 200, unrelated to the families in the random200 setting.
By Jali runs of these 90 sequences against the ten families of 200 amino acids aver-
age length, we obtained data for unrelated sequence-to-family comparisons. Since
there is no structure in the 90 sequences mentioned before, we call this experiment
unstructured.

9.2.3 Results and Discussion

Biological setting. In our biological setting, we compared both SCOP subsets (as-
tral40 and astral70) at jumpcost 18. The values were calculated from all superfami-
lies with an inter setting (at least two families being present, one of them with eight
or more sequence, the other one with at least three sequences). All of those families
always have an intra setting as well. The results are shown in Figure 20.

The astral70 score measured in the intra setting is twice as high as the correspond-
ing astral40 score. The inter scores are roughly equal, but three to six times lower
than the intra scores. The values measured for the local alignment length also show a
good distinction between the intra and the inter setting. The difference between the
astral40 and astral70 subsets seems to be less important here. The intra alignment
length is about twice the inter alignment length. Those characteristics also hold for
the average number of jumps. The standard deviation for all observed parameters
is high, in case of the number of jumps it is about as big as the value itself.

The higher average score and alignment length in the intra setting can easily be
explained. The SCOP definition for a family states that two sequences in a family
share a certain degree of sequence identity. The 40% maximal identity between two
family members in the astral40 subset can be detected by our method, the up to
70% identity in the astral70 subset even better. But why are both inter scores almost
equal? Would one not expect a higher score for the astral70 subset? Mostly no. It
must be kept in mind that astral70 and astral40 are only subsets of the full sequence
set within a SCOP family. The only difference involved is the subset size. The dis-

36

Biological experiments at jumpcost 18

%

s
u

c
c
e
s
s
fu

l
s
e
a
rc

h
e
s

Avg. alignment length Avg. number of jumps

0

150

300

450

Intra Inter

astral70

astral40

0

100

200

300

Intra Inter

astral70

astral40

0

1

2

3

Intra Inter

astral70

astral40

Intra InterIntra Inter

Avg. alignment score

Intra Inter

Figure 20: Results of the biological setting using the astral40 and astral70 subsets. Shown
are the averages for three jumping alignment parameters: the alignment score (left), the
alignment length (center), and the number of jumps (right). The standard deviation is indi-
cated by the error bars.

tance to other families remains the same in sequence space (see Figure 21). The only
reason for a higher score in the larger astral70 subset is the extended choice that a
sequence has to find similar sequences.

The number of jumps observed in the alignments is partly dependent on score
and alignment length, and vice versa. Lower scores and shorter alignments allow for
less jumps, which explains the fewer jumps in the inter setting. On the other hand,
the score and length difference between the astral70 and astral40 datasets in the intra
setting do not seem to affect the jumping behavior, or the effect is compensated by
other influencing factors. A closer look at the individual jumping alignment results
from this evaluation (not shown) explains the high standard deviation. Even within
a family, the collected values distribute over a broad range. If different superfamilies
are compared, the distribution range changes and/or the values distribute around
different arithmetic averages. One reason is that the distances (in sequence space)
between the SCOP domains are not uniform. The classification itself can be another
reason: Sometimes a sequence with an inter relationship scored unexpectedly high
in our Jali runs, whereas an intra sequence scored rather low. We investigated one
of these cases, the corresponding jumping alignment is shown in Figure 22. The
query is a Trypsin from Streptomyces griseus. In SCOP version 1.55, where we made
these experiments, the query is classified into the SCOP family 2.47.1.1 “Prokaryotic
proteases”. The multiple alignment is from family 2.47.1.2 “Eukaryotic proteases”,
corresponding to an inter relationship. Figure 22 shows the query to be quite similar
to the aligned family, so one may inquire why it was not classified into the same
SCOP family. The difference in this classification is the evolutionary origin of the

37

astral 40

astral 70

A
SCOP
family

B
SCOP
family

Superfamily
sequence space

odd

odd

even

even

40
70

interintra

Figure 21: Illustration showing why the intra distances between the astral40 and astral70
SCOP subsets differ in sequence space. In comparison with the astral70 filter, the astral40
filter has an increased radius (left). This is causing the larger intra distances in the astral40
subset (center, top). The inter distances are much more pronunced (right). The differences
imposed by using the two astral subsets are therefore negligible.

sequence. In spite of the different origin, the sequence similarity and the secondary
structure patterns in Figure 22 are remarkably similar. We believe this classification
to be at least unfortunate. So far, it has not been revised in SCOP up to version 1.73.
As long as classification problems like this occur in biological databases, no database
search method will be able to show its full strength in an evaluation.

Artificial setting. Figure 23 shows a comparison of the intra and inter random200
settings at three different jumpcost values. The variation of the jumpcost parameter
within this range has little effect on the score (Figure 23, left) and the local alignment
length (Figure 23, center). However, the average number of jumps is noticeably
decreasing with increasing jumpcost (Figure 23, right). Aside from the effect of the
jumpcost variation, the intra scores are much higher than the inter scores. It seems
that the differences in the seed set suffice to account for a drop of about 75% in
score. Figure 24 shows the results of the unstructured setting in comparison with the
random200 results at jumpcost 18. All values in the unstructured setting are clearly
below the random200 inter values. For example, the unstructured average score
and alignment length are only about one fourth and one third of the corresponding
random200 values, respectively.

A comparison of the artificial and biological setting shows that our random model
is partly sufficient to simulate SCOP families. The ratio between the artificial intra
and inter scores is in the same range as in the SCOP astral70 subset. The absolute
scores in the artificial setting are however clearly higher than the biological ones, in-
dicating less sequence similarity within the SCOP superfamilies. The average SCOP

38

d1sgt__ VVGGTRAAQGEFPFMVRLSMG......~~~CGGALYAQDIVLTAAHCVSG.......SGNNTS
BT EE TTSSTTEEEETTT EEEEEEETTEEEE GGGSS SEE

d1sgt__ ITATGGVVDLQSGAAVKVRSTKVLQAPGYNGTG....KDWALIKLAQP....~~INQPTLKIA
EEEES SBTT TT EEEEEEEEEE TT SSS EEEEESS S EE

d1sgt__ TTT.....~~AYNQGTFTVAGWGANREGGS......QQRYLLKANVPFVSDAACRSAYG.NEL
SSS TTSSSEEEEEESS SSTT SB EEEEEEEE HHHHHHHHG GG

d1sgt__ VANEEICAGY..PDTGGVDTCQGDSGGPMFRKD.NADEWIQVGIVSWG..YGCARP
TTTEEEES TTT B TT TT EEEEE TTS EEEEEEEEE SSSS T

d1sgt__ GYPGVYTEVSTFASAIASAAR
T EEEEEHHHHHHHHHHHHH

d1ekbb_ --dqq--vcgaslvsrdwlvsaahcvyg----rnmepskwk
TEE EEEEEE SSSEEEE HHHHTT SSGGGEE

d1buia_ vvggcvahphswpwqvslrtr---fgmh-fcggtlispewvltaahclek-----sprpssyk
BSSEE TTS TTEEEEEET TS E EEEEEESSSSEEEE TTTTSS S GGGEE

d1azza_ ivggveavpnswphqaalfidd
BS EE TTSSTTEEEEEETT

d1a7s__ ivggrkarprqfpflasiqnqg-----rhfcggaliharfvmtaascfp----------gvst
BS EE TTSSTTEEEEEETT EEEEEEEEEETTEEEE GGG SEE

d1ekbb_ avlglhmasnltspqietrlidqivinphynkrr-knndiammhlemk----vnytdyiqpic
EEES BTT TT EEEE E TT BTTT TBS EEEEESS SS B

d1buia_ vilgahqevnlephvqeievs-rlfleptr---
EEES SBSSS TT EEEEEE EEEE TT

d1azza_ i--sndiavirlpvp----vtltaaiatvg
T BS EEEE SS SSS B

d1a7s__ vvlgaydlrrrerqsrqtfsissmsengydpqqn--lndlmllqldre----anltssvtilp
EEES SSTTS TTT EEEEEEEEE SS BTTTT BS EEEEESS BTTB

d1ekbb_ lpe---enqvfppgricsiagwgaliyqgst------advlqeadvpllsnekc-qqqmpeyn
TT TT EEEEEESSBSSTTS B SB EEEEEEB HHHH HHH TTS

d1buia_ -pnyvvadrtecfitgwgetqgtfgag-------llkeaqlpvienkvcnryeflNGR
TT SS EEEEEE SS S S B EEEEEEEE HHHHTSTTTTTT

d1azza_ lpst-----dvgvgtvvtptgwglpsdsalg-----isdv
SS TT EEEEEESS SSTT SS S SB

d1a7s__ lplqn- prfvnvtvtpedqcrpnn-----
TT EEEEEEE GGGS TTE

d1ekbb_ -------itenmvcagy---eaggvdscqgdsggplmcqe--nnrwllagvtsfg--yqcalp
TTEEEE TT B TT TT EEEEEE TTEEEEEEEEEE SSSS T

d1buia_

d1azza_ ------ivtdgnicids----tggkgtcngdsggplnyng------ltygitsfgaaagceag
TTEEEE TTT B TT TT EEEETT EEEEEEEEEETT TTS

d1a7s__ -------vctg--vltr----rgg--icngdggtplvceg------lahgvasfslgp-cgrg
EEEE SSS S B TT TT EEEETT EEEEEEEEE SS TTSS

d1ekbb_ nrpgvyarvprftewiqsflh
T EEEEEGGGTHHHHHTT

d1buia_

d1azza_ y-pdaftrvtyfldwiq---t
EEEEESGGGHHHHH H

d1a7s__ --pdfftrvalfrdwidgvln
EEEEEGGGGHHHHHHHHH

IVGGSDSREGAWPWVVALYFD-
BS EE TTS TTEEEEEET

-----MYFCGGSLISPEWILTAAHCMDG--------AGFVD
TEEEEEEEEETTEEEE HHHHTT S EE

----KDIALLKLSSP----AVITDKVIPAC
S EEEEESS BTTB B

VVLGAHNIREDEATQVTIQSTDFTVHENYNSFV
EEES SBSSS TT EEEEE EEE TT BTTT

LPS--

LRQVDVPIMSNADCDAVYG----
EE EEEE HHHHHHHHS

--ATVEAGTRCQVAGWGSQRSGGR------LSRF
TT EEEEEES SSTT SS

-------VQSTELCAGH---LAGGTDSCQGDSGGPLVCFE--KDKYILQGVTSWG--LGCARP
TTEEEE TT S B TT TT EEEEEE TTEEEEEEEEEEE SSSS T

NKPGVYVRVSRFVTWIEGVMR
T EEEE GGGTHHHHHHHHH

EEEEE

Figure 22: Jumping alignment showing a questionable classification in SCOP 1.55. The
query “d1sgt ” (blue and boldfaced) is quite similar to the multiple alignment. This is
supported by the underlying secondary structure. Nevertheless, the query was classified into
a different family. The reference sequence is shown in boldfaced, red capital letters.

39

Artificial protein families at three jumpcost values

0

300

600

900

14 18 22

Intra Inter

0

100

200

300

14 18 22

Intra Inter

0,0

1,5

3,0

4,5

14 18 22

Intra Inter

Avg. alignment length Avg. number of jumpsAvg. alignment score

Figure 23: Results of the random200 setting at jumpcosts 14, 18, and 22: Shown are the
averages for alignment score (left), the local alignment length (center) and the number of
jumps (right) for the inter and intra settings. The error bars in each diagram display the
standard deviation.

domain is about ten percent shorter than the average domain in our artificial setup,
which justified slightly increased artificial scores. The scores in our experiment can
not be explained with this length difference, because they are far too high, at least
twice the biological ones. This also shows that especially inter-related SCOP do-
mains are far apart in sequence space. The average score and local alignment length
are close to the random similarities observed in the artificial unstructured experi-
ment. The signal intensity seems to be so low that the promising results achieved by
Jali in an earlier evaluation are somewhat surprising [97].

9.3 Conclusion

We have made another step in understanding the Jali algorithm as a database search
tool. It largely behaved as we expected, we encountered no surprises. Jali is just
sensitive enough to separate between remote homologs and unrelated sequences, as
shown by the “inter” results in Section 9.2.3. This separation is however not reliable,
because the amount of detectable evolutionary information is low. The “unstruc-
tured” results show that the inter scores are often close to random similarities.

We wondered about the impact of the input alignments. Section 9.1.3 already
showed that certain structural features are sometimes lost in multiple alignments
computed with ClustalW. In a similar experiment (“random300”) in [12], we used
the evolutionarily correct ROSE alignments as input to Jali, to compare the results
with those of ClustalW. Even though the random300 setup is slightly different from
the random200 setup, the results should be similar in quality. We report them in
Figure 25. The intra results show that the re-alignment with ClustalW leads to a sig-
nificant loss of evolutionary information. The corresponding Jali scores are much

40

Artificial experiments at jumpcost 18

Avg. alignment length Avg. number of jumpsAvg. alignment score

0,2

0

1

2

3
Intra

Inter

Unstr.

42,2

0

250

500

750
Intra

Inter

Unstr.

58,0

0

100

200

300
Intra

Inter

Unstr.

Figure 24: Comparison of the unstructured (Unstr.) results to those of random200, at jump-
cost 18: Shown are the averaged values for alignment score (left), local alignment length
(center), and number of jumps (right). Since the unstructured values are so low, exact val-
ues are provided. Please note that no intra or inter setting exists for the unstructured setting.

lower than the scores obtained with the ROSE alignments.
Jali is able to detect the additional sequence similarity in the ROSE alignments and
we conclude that the alignment procedure is the limiting factor when the input
sequences are closely related. This does not hold in the inter setting with more
distantly related sequences. Here, the Jali scores are roughly equal for both align-
ment sources. The additional evolutionary information in the ROSE alignments can
hardly be used. At this low level of sequence similarity, Jali is (under the given
parameters) the limiting factor to a more pronounced separation.

The evolutionary model for the artificial protein families featured a large evolu-
tionary distance of 160 PAM and two percent indel probability. The SCOP domains
however seem to be even more distantly related. Can the differences only be ex-
plained by the number of mutations and indels? Another possibility is that the used
mutation model does not cover all evolutionary events that occur in practice. For ex-
ample, it does not model rearrangements of sequence segments, e.g. circular permu-
tations. It would be nice to use more refined models in the future, and to incorporate
them into algorithms for homology recognition.

The overall influence of the jumping behavior is hard to judge. It does often, but
not always, correlate with the alignment score and length. Within a certain jumpcost
range, it surely offers more flexibility to Jali than algorithms without this capability.
Figure 25 shows that if Jali is run on evolutionarily correct input alignments, the
number of jumps is lower than with alignments with estimated evolutionary his-
tory. The correct alignments allow Jali to use less sequences of the input alignment.
The ROSE alignments are probably more consistent than the ClustalW alignments.

41

That supports our earlier assumption that jumping is useful to cope with subopti-
mal alignments. Here, it promotes longer alignments with higher scores. Most of
the score units won by changing the reference sequence are then however traded in
for jumping. In conclusion, jumping offers more flexibility to homology recognition,

Artificial protein families from ROSE and ClustalW

0

450

900

1350

Intra Inter

ClustalW

ROSE

0

150

300

450

Intra Inter

ClustalW

ROSE

0,0

1,5

3,0

4,5

Intra Inter

ClustalW

ROSE

Avg. alignment length Avg. number of jumpsAvg. alignment score

Figure 25: Comparison with multiple alignments from ClustalW and ROSE at jumpcost
18. The results are from a slightly different experimental setup and can only qualitatively
compared to the “random200” results. The comparison shows that ClustalW loses a signif-
icant amount of information during the alignment of intra-related sequences, because Jali is
able to reach much higher alignment scores with the ROSE alignments (left). The average
number of jumps (right) supports the importance of the input alignments. With the ROSE
alignments, it is lower than with the ClustalW alignments. The evolutionary changes seem
to be more accessible with intra-related sequences, Jali can often pick the alignment row with
the fewest evolutionary differences. In contrast, the corresponding inter values are almost
equal, regardless of the used alignment source.

if the jumpcost are within a reasonable range. Nevertheless, the current concept is
not as flexible as it could be. It would be interesting to implement an algorithm that
could leave out whole regions of the input alignment that do not fit to the query at
all. Then, one had to use certain constraints that allow to separate a few blocks of
random similarity from real homology. In Part IV of this thesis we will develop a
method that implements some of these ideas.

42

Part IV

Passta

10 Introduction

10.1 Motivation

Algorithms for local and global alignment are the foundation of many methods that
search a sequence database. Both approaches are suitable in the detection of closely
related sequences that are separated by only few mutations. The picture is chang-
ing with increasing evolutionary divergence. The many additional point mutations
in combination with other evolutionary changes often result in poor sequence sim-
ilarity. Sometimes it is so low that only a few conserved “islands” remain within
seemingly unrelated sequences. When one is searching for such remotely related
sequences, global alignment is not the method of choice. The reason is that positive
contributions to the alignment score are easily evened out through mismatches or
gaps. Local alignment does then often achieve better results, because it requires the
presence of only one reasonably conserved segment of sequence.

However, local alignments are often short, close to the length of high-scoring
alignments reflecting random similarities between unrelated sequences. This situ-
ation can be improved if several local alignments contribute to a combined align-
ment score. A well-known example of such a method is Gapped BLAST [6], which
can be seen as a prototype of advanced methods in sequence database searching. It
produces neither global nor local alignments, its result is usually an intermediate
depending on the quality of one to several local hits. Under certain conditions, they
are extended and joined into a longer alignment. If two local hits are however too
far apart, separated by a region with little sequence similarity, the result will again
be a collection of local hits.

Other advanced methods in sequence database searching include probabilistic
approaches like HMMs, which were shortly discussed in Section 4 together with
other classic approaches for sequence database searching. Most of these approaches
share the following characteristics:

1. The aligned sequences have to be collinear to achieve optimal results: Classic
alignment approaches do not explicitely model rearrangements of gene seg-
ments. Rearrangements are less frequent modifications that happen during
evolution. A two-step mechanism is proposed to explain them [79]. A com-
plete or partial duplication of a gene is followed by certain deletions and/or
mutation events, finally leading to new start and stop codons. Another mecha-
nism to obtain rearrangements is posttranslational modification, the rearranged
protein fragments are cleaved and ligated in reversed order [23]. The result of
these events corresponds to the relocation of a gene or a gene segment. Clas-
sic methods in database searching can either align the relocated portion or the

43

stable portion of the gene, but not both simultaneously (see Figure 26). These
methods lose much of the available information during the alignment of rear-
ranged sequences.

2. The target sequences in the database can not be split into reusable segments:
Rearrangements are not the only challenge that classic methods in sequence
analysis face. Intragenic duplications or even repeats cause similar problems.
They are probably caused by intragenic duplication and recombination events [8].
In terms of sequence analysis, they can be regarded as re-insertions of already
existing sequence segments into the parent sequence. If the target sequences
could be split into reusable fragments, those fragments could be several times
aligned with the query, conveniently modeling such repeats. Classic methods
for database searching have to model these cases as indels, because most of
them can not detect the repeat(s) and reuse the corresponding sequence seg-
ment.

3. Classic approaches answer only a few questions: The result of a database
search is usually displayed as a 1:n list of target scores or e-values that spec-
ify the similarity to the query. Often the corresponding alignments are also
available. Clusters of closely related sequences in the target list are a common
observation, because many sequence databases contain highly similar or even
redundant sequences.

If there is no global similarity between the query and any target, the result is
essentially a list of partial hits. Without additional effort, it is neither obvious
whether the unaligned parts of the query bear similarities to other targets in the
database, nor which combination of targets could “explain” the query in the
optimal way. Besides, experience shows that most users of tools in sequence
analysis are only interested in a small number of promising candidates.

We propose a method in homology recognition that is able to circumvent these lim-
itations. The concept is outlined in the following section, where we also describe
related work. The implementation details are provided in Sections 11 and 12.

10.2 Method outline and related work

The purpose of our method is to allow homology recognition without the limitations
described in Section 10.1. Our method is called Passta, short for Protein annotation
by secondary structure based alignments [14]. A schematic overview is given in
Figure 27. The core of Passta is our database “PasstaDB”. It stores sequences corre-
sponding to secondary structure elements12 (SSEs) and associated data from three
secondary databases. The origin of the data and the integration procedure are de-
scribed in Section 11.

12This term is often used when the atomic structure of these segments is focused on. If not otherwise
specified, we always refer to the sequence of these elements.

44

OR

Figure 26: Classic methods in database searching are not well suited to align sequences with
rearrangements. They can either align the blue portion (left) or the pink portion (right), but
not both. This may affect their search quality.

The annotation of a user-provided query sequence is in two phases. In the first
phase, we compute local alignments of each SSE and the query to select a set of
promising targets from the database. The resulting candidate set is the input of the
annotation protocol “Pass Two”. Here, we use the Waterman-Eggert algorithm [108]
to compute one to several alignments of each candidate SSE with the query. Each
valid alignment is represented by a vertex in a directed acyclic graph (DAG). These
vertices are associated with the alignment score and other information. Any path
of vertices corresponds to a set of non-overlapping alignments. Under certain con-
straints, we compute an optimal path with the highest weight, i.e. with the highest
sum of alignment scores.

The final result is a HTML file showing the query with the aligned SSEs of the op-
timal path. Each site in the query can only be aligned with one SSE at a time, but we
display all such alignments simultaneously, however ordered by protein- and do-
main source. The aligned SSEs can originate from arbitrary proteins, thereby show-
ing which part of the query is best explained by what database target. Rearrange-
ments can also be modeled, because the aligned SSEs can be arbitrarily ordered.
Using the Waterman-Eggert algorithm provides the co- and suboptimal alignments
that we need to model repeats. The structural and functional annotation is provided
by links to the SCOP classification, which provides the annotation for the query se-
quence. The details of the “PasstaRun” protocol are explained in Section 12.

Passta can be seen as a new combination of ideas, with a focus on protein domains
and secondary structure in homology recognition. Some of its components were
already implemented in other approaches. These approaches are however neither
restricted to homology recognition nor to proteins. All of them compare their input
molecules in different ways and with different goals. In the following discussion,
it does not matter whether this goal is genome alignment or homology recognition.
Nevertheless, we describe only approaches that are able to work with fragments

45

PDBFinder II

PTGL

SCOP

PasstaBuild

PasstaRun

Pass One

Pass Two

SSEs

Candi-
date setPasstaDB

Query

Result

SSEs

Figure 27: Overview over Passta: The left side of the figure (“PasstaBuild”) shows the
integration of the three source databases into PasstaDB (center). The right side illustrates
the main steps of “PasstaRun”. Details are provided in the text.

of the input molecules, because that is a prerequisite to model rearrangements and
repeats.

Many sequence-based approaches in genome alignment can handle sequence frag-
ments. Their purpose is to align two or more genomic sequences, even if the ge-
nomic layout is not collinear. One characteristic of these approaches is to divide
the experimental protocol into a filtering and an alignment phase, similar to our
approach in Passta. In the first phase, long exact or approximate matches of the
genomes are seeked, and in the second phase a common layout of the fragments
is computed [21, 27, 60]. When this layout is required to be a compatible (i.e. non-
overlapping and collinear) sequence of the fragments from the first phase, this pro-
cedure is called chaining [1]. Sometimes the relationships between the sequences are
more complex and a collinear alignment of the given sequences is impossible. This
may even be true for closely related genomes [29]. Then rearrangements need to be
considered in a more general chaining procedure [21, 27].

These methods are customized to work well on genomic scale, but they are usu-
ally not suited for the alignment of gene-sized segments. Especially protein-coding
genes can cause problems if they are composed of multiple protein domains. Many
proteins share a complete set or a subset of domains, often however in different or-
der. A robust way to deal with such cases of rearranged building blocks is to identify
each domain independently. This also allows to detect domain duplications and new
domain combinations. SMART [91, 61] is an example of such a method. It was ini-
tially developed to detect signalling domains in proteins. Newer versions also allow
the detection of domains with other functions. SMART uses HMMs based on manu-
ally curated multiple alignments of domain families. Another example is PFAM [32],
a database of domain families. Each PFAM family is represented by two multiple

46

alignments and two profile HMMs. The PFAM website13 offers a service for domain
identifications by sequence. Two special kinds of rearrangements are domain swaps
(AB→ BA) and circular permutations (ABC→ CABor ABC→ BCA). In comparison
with the rather rare swaps [35], circular permutations (CPs) of complete domains
are more frequent. Weiner et al. [109] developed RASPODOM, a special method to
detect CPs in a database of known domains or shorter motifs. They use a modified
version of the Needleman-Wunsch algorithm [74] to align the sequences in question.
Instead of the usual setup, both sequences are duplicated prior to the alignment,
resulting in an edit matrix with four quadrants. If the aligned sequences are circu-
larly permuted, the resulting patterns are recognized by RASPODOM. Depending
on the dataset, the method is not limited to CPs between complete structural do-
mains, it can also detect rearrangements within protein domains. Even though such
cases are less frequent, intra-domain rearrangements exist as well as intra-domain
repeats. They occasionally cause problems during the alignment process. A possi-
ble solution was proposed by Sammeth and Heringa in [87]. Their multiple align-
ment approach first identifies and temporarily removes repetitive regions from the
sequences that are aligned. They are later re-inserted after the intervening regions
were subjected to a standard alignment procedure. This approach is in principle not
restricted to DNA sequences, it could also be applied to proteins. DIALIGN and its
recently improved reimplementation DIALIGN-TX [70, 102] do also construct mul-
tiple alignments. Even though working with sequence segments, the approach is
not specially suited to deal with repeats and rearrangements, because it is unable to
reuse or reorder aligned segments. A great advantage of DIALIGN is however that
low-similarity segments are not forced to align with the target sequence, they are
left unaligned. The method usually produces an intermediate between a local and a
global alignment, depending on the input sequences.

Protein SSEs are the next smaller unit below protein domains. They are useful
in modeling intra-domain events. For example, some domains contain long inser-
tions of several SSEs or repeats of some motif, others contain circularly permuted
SSEs. Several methods with different purpose are based on real or predicted SSEs,
either as sequence- or as structural fragments. SEA [112] is an approach for pairwise
protein comparison at sequence level. For both proteins, SSEs are predicted with
several secondary structure prediction methods and represented in two unweighted
graphs. Ye et al. then solve a network matching problem: They search for a path in
each graph/network, such that the corresponding SSEs in both paths are maximally
similar. One main difference between their concept and Passta is that we represent
residue-level alignments from many different proteins simultaneously in one graph
and search for those that best explain the query, while Ye et al. use one graph for each
target. Therefore, the SEA approach can not detect similarities to different database
hits at the same time. MAP [85] is also based on predicted SSEs, its purpose is how-
ever fold recognition. MAP derives a “map” to represent the secondary structure
elements of the input sequence. This map is used to find the most likely fold from
a database of domains with known structure. An and Friesner [7] propose another

13http://pfam.sanger.ac.uk/

47

method for fold recognition. Their two-staged protocol also relies on predicted SSEs
from several prediction servers. In the first stage, the predicted SSE pattern is com-
pared to the known ones from the PDB. Database targets with a different secondary
structure pattern are excluded, similarly to MAP. In the second stage, promising
targets are chosen by means of a residue-based alignment.

Approaches working with SSEs are not restricted to using sequences. On the con-
trary, most SSE-based methods work with structural SSE data in a 3D context. One
example is given by Alesker et al. [3] in protein comparison. Their method represents
SSEs as vectors and can detect substructures made of these vectors in other proteins.
Rosetta [83, 95] is another method in that realm. It predicts the structure of a protein
sequence de novo by inserting short protein fragments with known structure into the
growing model. Even though these fragments are often smaller than complete SSEs,
secondary structure is here also important in choosing the best fragments.

Some approaches try to use the “best of both worlds”, in terms of sequence and
structure. These approaches often have several stages and combine their results
from multiple sources of data. Some of them can be found in remote homology
recognition. For example, FUGUE [93] is trying to detect remote homologues by
sequence-structure comparison. Among other features, FUGUE can choose between
two different alignment algorithms, where the gap penalties depend on the sec-
ondary structure class of the compared protein structure.

11 Integration of data into PasstaDB

11.1 Origin of the source data

Passta works on a set of SSEs with known secondary structure class. The secondary
structure can be reliably determined if the 3D structure of the protein is known, oth-
erwise it has to be predicted from the protein sequence. Even though secondary
structure prediction is quite advanced today [45], we prefer to use proteins with
known structure. This makes the Protein Data Bank (PDB) our primary source of
data. However, parsing our data from the PDB is disadvantageous, because many
of the old entries contain mistakes in the data format or in the annotation. It is
esasier to retrieve the needed information from secondary databases (see Section 6
for more details). The PTGL provides SSEs with helical and strand conformation, but
unfortunately no coils or loops. We extract these missing SSEs from the PDBFinderII
database. The PDBfinderII contains the complete chain sequences and the corre-
sponding secondary structure states, but not split into SSEs. The separation requires
knowledge about secondary structure in general, and about the DSSP algorithm. By
using both the PTGL and the PDBFinderII database, we get the SSEs of all three
secondary structure classes and do not need to separate them ourselves.

The SCOP database was chosen as our source of structural and functional anno-
tation. First, it allows to map the SSEs in our database to SCOP protein domains.
This is an important feature if rearrangements are to be modeled. Second, we can

48

compare the Passta evaluation results to that of the Jumping alignment algorithm.

11.2 The structure of PasstaDB

The structure of PasstaDB is shown with some additional information in Figure 28.
Aside from the primary key in each table (“PK”), foreign keys and additional indices
(“FK”, “IX”) are also included. The two shaded areas bsaically divide the database
into a PDB and a SCOP part. The only table that can not be assigned to either SCOP
or the PDB is the MaxScore table. It keeps the exact match score for each SSE, com-
puted with several substitution matrices. The SSE table is the central element of the
database, it links the SCOP, PDB and MaxScore tables. Some important fields of the
database are explained in Table 2.

11.3 Data integration with PasstaBuild

All of the source databases are available as well-structured text files. Most of the
information is also available online. The PTGL database was kindly provided as
“dump” file by Patrick May. Accessing the data is easy, but its integration into
PasstaDB is not straightforward at all. This section contains a short outline of the
integration procedure, along with some problems and the corresponding solutions.

11.3.1 Integration

The PDB entries in each of the source files are not in the same order. Prior to the ac-
tual integration, we therefore index the begin of every PDB entry in the PDBfinderII
file.

The integration of the data is chain-wise. For each protein chain in the source
files, we read all SSEs from the PTGL. As pointed out in Section 6.3, these are only
helices and strands. The PTGL however provides other important information as
well. One example is the position of the SSEs in their original PDB chain. We use
this information to find the coils in the PDBFinderII chains. We try to map the PTGL-
SSEs to the PDBFinderII chain sequence, nearby the indicated position. If all SSEs
can be mapped to the PDBfinderII chain sequence, the intervening regions are stored
as coils. If the mapping does not work out, we exclude the whole chain from the
database.

SSE irregularities: Before the SSEs are actually stored in PasstaDB, they are checked
for certain irregularities: Some SSEs in the PTGL contain lower letters symbolising
cysteine residues that form a disulphide bridge with other cysteines. This important
information is not stored in PasstaDB because the search protocol does currently not
consider it. The lower letters are replaced by uppercase C’s before the SSEs are stored
in the database.

As already explained in Section 6.1, a PDB entry contains the protein sequence in
twice. The ATOMrecords store the sequence as determined from the atom coordinates

49

FK

PK sse_uid

chain_uid

blosum62

blosum50

pam160

MaxScore

FK

FK

IX

PK sse_uid

chain_uid

part

class

sse_len

seq

dssp

begin

end

pxid

srep_id

SSE

PK pdb_uid

exp_meth

resolution

spaci

aespaci

Protein

PK clid

Class

FK

PK dmid

faid

Domain

FK

PK sfid

cfid

Superfamily

FK

PK faid

sfid

Family

FK

PK cfid

clid

Fold

FK

PK pxid

dmid

Px

Chain

FK

IX

PK chain_uid

pdb_uid

chain_id

chn_len

seqatom

dsspatom

crep_id

SCOP

PDB

“
“

“

Primary Key
Foreign Key
Index

PK”:
FK”:
IX”:

Symbols

Figure 28: Schematic view of PasstaDB. The tables Protein, Chain, and SSE contain the
PDB data, parsed from the PTGL and PDBFinderII databases.

50

Table Field Comment

Protein

“pdb uid” PDB unique identifier: Holds the unique alphanumerical
four-byte ID given to each PDB entry. Its uniqueness
makes it also a good primary key (PK).

“exp meth” Experimental method: One letter code indicating the method
used in structure determination. ‘X’ means crystallogra-
phy, ‘N’ stands for NMR, and ‘O’ for other methods.

“resolution” Resolution of the protein crystal in a crystallographic ex-
periment. Could not be used as measure of quality be-
cause this value is not available in NMR experiments.

“spaci” and Value describing the structural quality of a PDB entry.
“aerospaci” See Section 6.4.1 for more details.

Chain

“chain uid” Chain unique identifier: Generic ID used as PK for each
chain.

“chain id” One byte labeling the chain within the PDB entry. Alpha-
betically ordered in multichain entries, single chain entries
are often labeled ‘ ’.

“seqatom” Protein sequence as determined from the atom coordinates
of the protein structure (→ PDB “ATOM” records instead
of “SEQRES”). This is necessary because otherwise the se-
quence of secondary structure states may not fit the pro-
tein sequence.

“dsspatom” Sequence of DSSP secondary structure states.
“crep id” Chain representative ID: If the sequence of this chain is re-

dundant and the structure quality is suboptimal, this field
stores the “chain uid” with the best spaci value.

SSE

“sse uid” SSE unique identifier: Generic ID used as PK for each SSE.
“part” The SSEs in each chain are numbered starting at one.

Needed to check if two aligned SSEs are consecutive.
“class” Secondary structure class of this SSE: “C”, “H”, or “E” for

coil, helix, and strand.
“seq” Amino acid squence of this SSE.
“dssp” Secondary structure state sequence of this SSE.
“pxid” Provides the link to the SCOP domain classification. Most

SSEs are assigned to SCOP domains.
“srep id” SSE representative ID: If the sequence of this SSE is redun-

dant and the structure quality is not the best, this field
stores the “sse uid” with the best spaci score.

MaxScore “blosum62” Contains the Blosum62 exact match score for every SSE in
the database.

Px (SCOP) “dmid” Domain ID: The structure of all SCOP tables is the same (ex-
cept class). The primary key entries are unique, the foreign
keys link upward in the classification hierarchy.

Table 2: Description of selected tables and fields in PasstaDB.

51

of the protein structure, whereas the SEQRESrecords contain the complete sequence.
Both sequences may differ. This is important because the ATOMrecords are the input
for the DSSP algorithm that defines the secondary structure. We are bound to use the
ATOMsequence, because our approach depends on the exact correspondence with
the secondary structure. Some sequences in PasstaDB are therefore incomplete with
respect to the SEQRESrecords. Other problems during the experiment can cause
further problems in the sequence data: If the resolution of the protein structure is
too low, sometimes not all amino acids can be reliably identified. This results in
positions with unknown amino acids or chain breaks. Unknown amino acids are
marked by an ‘X’. If more than twenty percent of a SSE sequence is made up of
‘X’s, we discard the SSE. If more than twenty percent of SSEs are discarded, the
whole chain is excluded from the database. Chain breaks (‘−’) are spots with missing
electron density, where the distance between successive Cα atoms indicates a gap in
the chain. This gap can span more than one residue. Chain breaks can occur in
proteins with multiple chains, when one chain ends close to a different one. This
is no error. However, a chain break within one chain indicates insufficient data. In
this case, we split the SSE at the chain break into two SSEs with the same secondary
structure class.

Precomputed maximum scores: The “MaxScore” table stores the maximal score that
each SSE sequence can reach in an exact alignment against itself. This score is com-
puted under several substitution matrices. We use these values to compute a rough
estimate on alignment quality (“MaxScoreRatio”, see Section 12).

Integration of the SCOP classification: The SCOP classifcation is available in four
text files. The filenames have the form dir. X.scop.txt Y, where “X” is either
des , cla , hie , or com. The “Y” is the SCOP version, e.g. 1.69. We parse our data
from the des and the cla files. The file format is well defined and allows to reli-
ably integrate the corresponding data into PasstaDB. The des file contains all SCOP
unique identifiers14 together with an abbreviation that shows their level in the SCOP
classification hierarchy, e.g. domain (dm) or family (fa). A short domain identifier15

and the PDB identifier are also included. By crosslinking the common information
in the des and the cla file, we can rebuild the SCOP classification tree and transfer
this information to PasstaDB.
The cla file also contains the range(s) that a domain spans in its chain. Connecting
the SSEs in PasstaDB to the individual domains in SCOP is a prerequisite for se-
quence annotation in PasstaRun. We identify all SSEs that lie within the given range
and assign them to the corresponding SCOP domain. If a SSE is almost in range,
with a small part of it slightly exceeding the domain boundaries, it is also assigned
to that domain if it exceeds the domain boundaries by up to two positions. Unfortu-
nately, the domain ranges are sometimes inconsistent with the sequence. We tried to
repair these chains by mapping the SSE sequences to the domain sequence, but the
database contains a small number of cases that could not be repaired.

14called “sunids” by the SCOP team
15the “SCOP concise classification string (sccs)”

52

After the integration, PasstaDB contains most of the data available in the source
databases. The last version contained 21571 proteins, 44047 chains, and about 1.52
million SSEs, about 90% of the available data.

11.3.2 Representative and redundant sequences

Many chain sequences in PasstaDB are not unique. Including these duplicates in the
search protocol could only increase the number of covered PDB entries and the run-
time of Passta, but not the annotation quality. We therefore mark redundant chains to
exclude them from the search protocol. We compute a temporary index on the “se-
qatom” field of the “Chain” table and check each (distinct) sequence for duplicates.
If multiple instances exist, we identify the one with the best structural quality, i.e.
spaci score. This is the representative chain, and the value in its “crep id” field is set
to zero to indicate that no better instance exists in PasstaDB. The “chain uid” of the
representative chain is stored in the “crep id” fields of all duplicates. This scheme
allows us to search with the representative sequences only, and to retrieve the du-
plicates only if they are needed. Finding the representative chain from one of the
duplicates is also easy. In both cases a simple SQL query is sufficient.

Beside the redundant chains we have already dealt with, many chains with high
sequence similarity exist as well. They share many sequence-identical SSEs. In
analogy to the procedure described above, we mark also the SSEs in representa-
tive chains as representative or redundant: We select all equal sse sequences and
compare the spaci scores of their ‘parent’ proteins. The SSE sequence with the best
spaci score is marked as being the representative, i.e., its “srep id” is set to zero. The
“srep id” fields of the remaining SSEs are set to the “sse uid” of the representative
SSE.

12 Protein Annotation with PasstaRun

PasstaRun is the annotation part of Passta. As explained in Section 10.2 and shown
in Figure 27, it has two stages, Pass One and Pass Two. Both stages rely on alignments
of SSE sequences with the query. The alignments are computed with secondary-
structure specific gapcost to consider the properties of the three secondary structure
classes.

PasstaRun sports two different working modes, “fast” and “default”. The work-
ing mode affects a set of thresholds that control the behavior of PasstaRun. In the
current Pass One protocol, changing the working mode has only a small effect. This
is different in Pass Two, where the working mode also affects the annotation quality.

To use a directed acyclic graph in the annotation of the query is one of the central
ideas in Passta, and a simplified version of it was also used in the first implemen-
tation of Pass One (see the Appendix for a short description). The DAG is not an
integral part of Pass One or Pass Two, therefore we formally describe it at the be-

53

gin of this chapter. This is followed by a short discussion of similar graphs used in
genome alignment.

12.1 The directed acyclic graph used in PasstaRun

12.1.1 Data structure

Let R be a query sequence of length n and A be a set of SSE alignments with R. We
define a directed acyclic graph G = (V,E) with V being the vertices and E being
the edges. The set of vertices V represents the alignments in A and contains two
additional vertices head and tail, such that V = A ∪ {head, tail}. Each alignment
α ∈ A is represented by a 5-tuple (b, e, s, t, p) of information. The elements b, e and
s are parameters of α: s is the alignment score, b and e mark the begin and end of
the alignment with respect to the query R, where 1 ≤ b ≤ e ≤ n. The elements t

and p are associated with the aligned SSE, with t (“target”) identifying the SSE and
p being its position in the parent chain (“part” in PasstaDB). For a given alignment
α = (b, e, s, t, p), we refer to the individual components of the 5-tuple as

b(α) := b,
e(α) := e,
s(α) := s,
t(α) := t, and
p(α) := p.

The two additional vertices head and tail represent artificial empty alignments out-
side the query range, i.e. e(head) < 1 and b(tail) > n:

head = (0, 0, 0, 0, 0)
tail = (n + 1, n + 1, 0, 0, 0).

The edge definition determines the number of edges and the possible paths in the
graph, and therefore has a strong effect on the search algorithm. The easiest edge
definition was to connect every vertex with each other. This fully connected graph
would result in a vast number of edges and hence, slow runtime. Our basic edge
definition guarantees a small number of edges that connect only non-overlapping
alignments: An edge exists between two vertices u,w ∈ V , u 6= w, if and only if

1. u and w do not overlap (and u is before w), i.e. e(u) < b(w), and

2. there is no alignment v between u and w, i.e. 6 ∃ v ∈ V : e(u) < b(v) and
e(v) < b(w).

A path P in G is a sequence of vertices (v1, v2, . . . , vk) such that vi and vi+1 are con-
nected by an edge for all 1 ≤ i < k. Any path from head to tail corresponds to a
selection of non-overlapping alignments. Without additional constraints, the weight

of a path P = (v1, v2, . . . , vk) is given by weight(P) :=
∑k

i=1 s(vi).

54

12.1.2 The optimal path

Our goal is to find a combination of non-overlapping alignments that explain the
query sequence in the best possible way. The scores of these alignments indicate the
matching quality of the aligned SSE to some degree. Therefore our problem is to find
a path with maximum weight in G. On any directed graph with non-negative edge
weights, this single-source shortest path problem can be solved with the Dijkstra algo-
rithm (see e.g. [25]). Our setting allows an even simpler solution, because the known
alignment positions allow to topologically sort the vertices before the optimal path
is computed. The linear order of the vertices is the reason why G is directed and
acyclic. It is therefore unnecessary to maintain a priority queue as suggested for the
Dijkstra algorithm. Our problem can easily and efficiently be solved in Θ(|V |+ |E|)
time [25].

12.1.3 Related work

Similar graphs and problems are known in genome alignment. Lippert et al. [62]
present a framework to find a set of reliable anchors for genome alignment. They
describe a chaining graph with parameters for diagonal shifts between parts of the
input genomes, reversals, and translocations. Brudno et al. [21] build a 1-monotonic
conservation map of local alignments to allow chaining with rearrangements. Their
chaining procedure uses four different gap penalties under an affine gap model, and
they emphasize the need to find good values for those and other possible parame-
ters.

12.2 Pass One

Pass One serves as a filter. Its purpose is to retain the homologous candidates, while
discarding as many unrelated candidates as possible. The Pass One protocol is sim-
ilar to that of classic filters in sequence analysis, except that we are dealing with
multiple sequence fragments instead of complete sequences. Given a query, the tar-
gets from PasstaDB (see Section 11.2) are treated sequentially by the search protocol:
every target is associated with a set of SSEs that are aligned with the query. The
quality of each SSE alignment is subsequently assessed. Valid alignments are kept,
while invalid alignments are discarded. Finally, we know the number of valid align-
ments and their scores for every target. Depending on this information, we decide
whether to accept a target or not. The Pass One result is a set of accepted candidates
for Pass Two. The protocol can be divided into the four steps we describe in this
chapter along with some necessary definitions and clarifications.

In contrast to the first implemetation of Pass One (see Appendix), the new pro-
tocol does not require suboptimal alignments anymore. This allows us to use the
Smith-Waterman algorithm [96] to compute the alignments, instead of the Waterman-
Eggert algorithm [108]. We can also omit the backtracing through the edit matrix,

55

because the current Pass One does only depend on the alignment scores. The final
Pass One implementation is therefore significantly faster than the first one.

12.2.1 Pass One targets

So far, the Pass One “targets” were not clearly characterized. At first sight, PasstaDB
offers “Proteins” and “Chains” as possible targets. Proteins can be easily ruled out,
because they are often associations of several gene products, while queries are usu-
ally genes corresponding to the “Chain” level. Even though protein chains would
therefore make good targets, protein domains are the better choice. The reason is the
special characteristics that protein domains possess (see Section 2.2.3). Especially
their reuse in different genes during evolution makes them a better target than pro-
tein chains.

12.2.2 SSE target set

Short SSEs of a few amino acids in length align well with many sequences of dif-
ferent origins. They are therefore useless in discriminating between related and un-
related targets. SSEs of length three or less are even unspecific in their secondary
structure conformation. Many of them can be found in either of the three classes [59].

Let S be the set of SSEs associated with a target domain d in PasstaDB. Our prob-
lem is to choose a target set S′ of S that we can align to the query. The set S′ has
to contain as few unspecific SSEs as possible. However, every SSE we remove from
S reduces the amount of information available to Pass One. This is no problem for
large domains with many SSEs, e.g. chain “A” of PDB entry “1ukl ” (93 SSEs), but
many sequences in PasstaDB are rather short. More than 3% of the (non-redundant)
chains in PasstaDB have less than 50 residues. Many of them are composed of just
one long SSE and a few short ones, an example is displayed in Table 3. If we re-
moved all SSEs below length six, the SSE subset S′ of this domain would contain
just one SSE.

Therefore, we use a variable threshold t on SSE length to select the target SSEs for
S′. We initialize t with a value t0 and add all SSEs with equal or greater length to
S′. If |S′| is smaller than a predefined constant, e.g. three, t is lowered by one unit
to add shorter SSEs. For example, we build S′ for the domain shown in Table 3 and
assume t0 = 6. The set S′ then contains just one SSE of length six. Hence, we lower t

to 5, and add the first SSE “NEPVS” to S′. In the next iteration, t is lowered to 4 and
the SSE “CIRN” is added.

However, we have to ensure that the short SSEs we add are not too unspecific.
The amino acid composition of a SSE can serve as a rough measure for being spe-
cific. If it is composed of rare amino acids, it is usually more specific than a SSE com-
posed of very common amino acids. Therefore we define a last, substitution-matrix
dependent constraint wmin to discard SSEs that are entirely composed of common
amino acids. We define a minimal maxScore M = t0 · wmin, where wmin is the min-
imal log-odds score for an exact match in the substitution matrix. In case of using

56

Part Length Sequence Class MaxScore

1 5 NEPVS C 26
2 4 CIRN H 24
3 2 GG C 12
4 3 ICQ E 18
5 17 YRCIGLRHKIGTCGSPF C 100
6 3 KCC E 23
7 1 K C 5

Table 3: PasstaDB excerpt showing the SSEs of PDB entry “1e4r”, chain “A”. If a minimum
length of six was applied to select the target SSEs, only SSE number 5 would qualify.

the Blosum62 matrix and t0 = 6, M = 24. SSEs below length four are never added,
because of their aforementioned secondary-structure unspecifity.

12.2.3 Valid alignments

Most alignments computed during Pass One are unrelated to the query. We try to
discard them by keeping only valid alignments. An alignment is valid if it fulfills
two constraints: (a) The alignment score exceeds a substitution-matrix dependent
threshold. (b) The ratio alignment score / maxScore has to reach and exceed another
threshold, the so-called MaxScoreRatio. The maxScore is the maximal score that an
SSE sequence can reach if it is aligned to itself with a given substitution matrix.

12.2.4 Acceptance of the target domains

For every target domain d, the number of valid alignments l(d) and their associated
scores are known. We basically accept d as Pass Two candidate, if l(d) ≥ m(d), where
m(d) is the number of needed alignments for d. We define the number of needed align-
ments simply as m(d) := ⌈0.1 · |S′|⌉, i.e., one out of ten SSEs in S′ has to produce a
valid alignment. For example, if 23 SSEs qualify for being aligned, i.e. |S′| = 23,
we accept d as Pass Two candidate if at least three of the 23 SSEs lead to valid align-
ments. In that case, we add d to the candidate set C . However, the set of accepted tar-
gets is often quite large, and the running time of Pass Two depends on the number
of candidates. This relationship is not linear, leading to high time demands espe-
cially in the “default” mode. Therefore, we introduce a heuristic that selects a subset
of promising candidates C ′, C ′ ⊆ C , usually restricting their number to less than a
constant value k. Our heuristic depends on two ideas: (1) Every valid alignment is
increasing d’s probability of being related to R. (2) The higher the alignment scores,
the more likely is d being related with R.

The heuristic runs on a candidate matrix Cmat that contains the number of ac-
cepted domains at the given parameters. More precisely, every field in Cmat con-
tains the size of a subset of C depending on the number of valid alignments at a min-
imal alignment score. The values along the x-axis are l(d) − m(d), i.e. the number

57

i Score thresh-
old (B62)

0 1 2 3 4 5

230 41 15 7 1

68 17 8 1 0

27 15 5 0 0

143 18 10 2 0 0

81 17 8 1 0 0

46 14 7 1 0 0

0

1

2

3

4

5

20

22

24

26

28

30

l(d) - m(d)

j

Figure 29: Real-world example of a candidate matrix with a desired number of at most
100 candidate domains. Each field shows the number of domains with a certain number of
valid alignments (x-axis) at a given minimal alignment score (y-axis). The variables i, j are
displayed to ease the understanding of the algorithm that selects a combination of promising
candidates from the matrix. Some of the fields at j = 0 are deliberately empty: The algorithm
does not compute them because it will never use them (see text for more details).

58

of valid alignments exceeding m(d). Along the y-axis are alignment score thresh-
olds, larger than the basic threshold explained in Section 12.2.3a). A real-world
example is shown in Figure 29. The simplified pseudocode of the algorithm fol-
lows:

1: C ′ = ∅
2: for all j = jmax . . . 0 do

3: i← imax

4: C ′

tmp = Merge(C ′, Cmat[i, j])
5: while |C ′

tmp| < maxCand do

6: C ′ = C ′

tmp

7: i = i− 1
8: C ′

tmp = Merge(C ′, Cmat(i, j))
9: end while

10: end for

11: C = C ′

Basically we start at the rightmost column of the matrix and the bottom row, i.e. the
last row that contains values larger zero. The fields are traversed row-wise from
bottom to top. At each field the heuristic checks if the specified domains can be
added without exceeding the desired threshold. For clarity, we have left out code of
minor importance in the above algorithm. For example, if all fields contain values
exceeding the threshold, the heuristic picks the smallest one. It never returns an
empty candidate set, except if there are no accepted candidates at all.

Basically, one could think of many other ways to assemble the final candidate set
or to decide about the acceptance of the target domains. Even though the proposed
heuristic may seem somewhat arbitrary, we believe this approach to be feasible and
well comprehensible.

12.3 Pass Two

The goal of Pass Two is to annotate the query with the best selection of targets from
the Pass One candidate set. Multiple targets can be used for the annotation of the
query, although Pass Two tries to keep their number to a minimum. The number of
rearrangements and other rare evolutionary events are also minimized according to
several parameters that are introduced in this chapter.

12.3.1 Computing suboptimal alignments

For each target t in the Pass One candidate set C , Pass Two retrieves all SSEs from
PasstaDB, regardless of redundancy status or sequence length. In order to model
repeats and duplications, we occasionally need more than one alignment between a
SSE and the query R. Therefore we compute these alignments with our own imple-
mentation of the Waterman-Eggert [108] algorithm (described in Section 3.3) with
affine gapcosts.

59

Unfortunately, we face the problem to align SSE sequences between length 1 and
14316. If we aligned R and small and unspecific SSEs with the Waterman-Eggert
algorithm, the number of alignments would explode and lead to huge runtimes.
Therefore, we divide the alignment phase into an align and an extend part, to treat
small SSEs with a more suitable protocol.

Align: Let l(SSE) be the length of an SSE sequence. If l(SSE) = 2, we compute
all exact matches between the SSE and the query R and insert the corresponding
alignments into the alignment set A. If l(SSE) ≥ 3, we use the Waterman-Eggert
algorithm to compute the optimal local alignment, possibly followed by a few co-
or suboptimal alignments. We continue to compute alignments as long as they are
valid. An alignment α between SSE and R is valid whenever its MaxScoreRatio ratio
(see Section 12.2.3) is larger than a predefined constant.

Extend: Each time we insert an α into A in the align phase, we consider the adjacent
SSEs as well, SSEL to the left and SSER to the right. If SSEL exists and l(SSEL)
is less or equal to four, we try to match it left of α without allowing insertions or
deletions. The position of the new alignment is b(αL) = b(α)− l(SSEL) and e(αL) =
b(α)−1. If the score s(αL) is positive, we include it into A. The procedure for the right
neighbor SSER is analogous: We try to insert a new alignment αR at b(αR) = e(α)+1
and e(αR) = e(α) + l(SSER).
We can however not be sure that α is a global alignment. If it is local, αL and αR

will rarely fit beside α. In that case we also try to insert alignments of SSEL and
SSER beside the borders of the global alignment, as if it existed. Figure 30 shows a
real-world example.

12.3.2 Two different edge definitions

The main difference between the “Fast” and the “Default” modes in Pass Two is the
edge definition used in the directed acyclic graph G = (V,E). The edge definition
in the fast mode is equal to the one introduced in Section 12.1. For convenience, we
repeat it here. An edge exists between two vertices u,w ∈ V , u 6= w, if and only if:

1. u and w do not overlap (and u is before w), i.e. e(u) < b(w), and

2. there is no alignment v between u and w, i.e. 6 ∃ v ∈ V : e(u) < b(v) and
e(v) < b(w).

This definition reduces the number of edges to a minimum, leading to a decrease in
the Pass Two runtimes. While actually every vertex is reachable in a traversal start-
ing at the head vertex, there is one unwanted side effect. It can be best explained
with query sequences that are not well covered by PasstaDB, i.e. where only a few
SSEs are similar to the query. Some areas in G will represent only a few valid align-
ments then. In that case, it is possible that the optimal path contains artifact vertices
that had to be selected because of missing alternative connections.

16a coil in PDB entry “1K28”, chain “A”.

60

01 60 70 80 |R|

align

extend

align

extend

align

extend

.. ..Q EVLL GANGGVL V FE PN DFTV K SGE T

FL 4

-2FL

EVLL DFSVGGDDGSL FL

EVLL GGDDGSL

GGDDGSL AEVLL

EVLL GGDDGSL

GGDDGSL PGFLEVLL

PG

FL

EVLL DFSVGGDDGSL FL

////

Iteration 2

Iteration 3

Iteration 1

Figure 30: Real-world example illustrating the align & extend strategy in Pass Two. Aligned
SSEs with full height are from an ‘align’ phase, aligned SSEs with half height are from an
‘extend’ phase.
Iteration 1, align: A local alignment of the SSE sequence ‘GGDDGSLA’ and the query is
computed, yielding (‘GGDDGSL’, ‘GANGGVL’).
Iteration 1, extend: The SSE left of ‘GGDDGSLA’ is already aligned, so no extension is
performed here. However, the right SSE qualifies for extending, and we match it (a) at the
end position of the local alignment and (b) at the position where the global alignment would
have ended. Only the latter is accepted here because its score exceeds zero.
Iteration 2, align: ‘PG’ is of length two, and there is no exact match with the query, so it is
not aligned.
Iteration 2, extend: No valid alignment was produced in the alignment phase, so nothing is
to be extended.
Iteration 3, align: The SSE sequence ‘DFSV’ is aligned to the query.
Iteration 3, extend: Now it is possible to extend with ‘PG’ to the left of ‘DFSV’.

61

h
e
a
d

t
a
i
l

Q u e r y

X

Figure 31: Example graph illustrating the two edge definitions used in Pass Two. The solid
black edges and the dotted blue edges exist in both working modes. In the “Fast” mode of
PasstaRun, the two dotted edges are in the optimal path and thus have to be used if the
algorithm wants to pick up the green alignment marked with an “X”. In that case, it does
also pick up the yellow alignment in the center, even though this causes two jumps and is
penalized accordingly. The red dashed edges are added in the “Default” mode of PasstaRun
and allow to pick up the marked alignment without additional jumps.

The reason for this problem is that the first edge definition does not consider the
origin of the aligned SSEs. Therefore we have modified the edge definition in the
default mode. Here, an edge also exists between two vertices u,w ∈ V , if and only
if:

1. c(u) = c(w) i.e., both SSEs come from the same chain,

2. e(u) < b(w) (the no-overlap condition), and

3. there is no other alignment v between u and w, where the SSE in v comes from
the same chain as the one in u and w: 6 ∃ v ∈ V : c(u) = c(v) = c(w) and
e(u) < b(v) and e(v) < b(w).

An example graph illustrating the effect of the two edge definitions and the problem
with the first one is shown in Figure 31.

12.3.3 The optimal path in Pass Two

After the alignment set A is complete, the directed acyclic graph G is built as de-
scribed in Section 12.1. We compute the optimal path in G, starting with the first ver-
tex head. To obtain biologically feasible results, we have added certain constraints
to the search algorithm:
A path P = (v1, v2, . . . , vk) in Pass Two can contain jumps, rearrangements, deletions,
and repeats. Each such condition corresponds to a rare biological event and is pe-
nalized accordingly. If two aligned SSEs in P originate from different targets, i.e.
t(vi) 6= t(vi+1), we call this a jump. Jumps are in spirit similar to the jumps described
in the “Jumping Alignments” part of this thesis. If the two aligned SSEs are from

62

the same target, i.e. t(vi) = t(vi+1), there is no jump. Then they are checked for dele-
tions, repeats, and rearrangements. Those events can be detected if the aligned SSEs
are not consecutive, i.e. p(vi+1)− p(vi) 6= 1.
If one or more SSEs are “missing” between the aligned SSEs, that is p(vi+1)− p(vi) >

1, we speak of a deletion. If the position of the second aligned SSE is before the
first one, i.e. p(vi+1) − p(vi) < 0, we speak of a rearrangement. A special case is
p(vi+1) − p(vi) = 0, corresponding to a reuse of the same SSE. This event is called a
repeat. For reasons of simplicity, repeats are currently treated like deletions.

Let j(P) be the number of jumps in a path P , r(P) the number of rearrangements,
and d(P) the number of deletions and repeats. We penalize those events by three
parameters, jump cost (jc), rearrangement cost (rc), and deletion cost (dc). The weight
of a path P is then given by

weight(P) =

k
∑

i=1

s(vi) − j(P)× jc − r(P)× rc − d(P) × dc.

If these penalties are chosen well, the annotation of the query with small chance
alignments from different chains is unlikely. Finally, the alignments in the optimal
path are visualized in a HTML page.

63

13 Projects

In this chapter, we describe smaller projects associated with Passta. The projects are
in chronological order. The two larger ones have their own results and discussion
sections, preceded by a section describing preliminary work.

13.1 Optional secondary structure profile

Knowing the secondary structure of a protein is important information that can be
helpful in answering a variety of questions in sequence analysis. For example, the
presence of about seven α-helices is characteristic for transmembrane proteins [].
Secondary structure information can also be the input for methods in fold recogni-
tion, a good example is MAP [85].

During Pass One, we usually compute several hundreds and thousands of align-
ments. The secondary structure class of each aligned SSE is known. This valuable
information can be used to generate a simple secondary structure profile (SSP) of
the query sequence. For each position in the query, it shows the percentage of valid
alignments where this position is in coil-, helix-, and strand conformation. An ex-
ample is shown in Figure 32.

Implementation: Most of the terms used here were introduced in Section (12.1),
where we described the directed acyclic graph. The conditions which qualify an
alignment as valid are reported in Section 12.2.3. Basically we maintain a two-dimensional
array AQ of size 4× n, four fields per query position. All fields in AQ are initialized
with zero. For each alignment α in the alignment set A, we increment all fields from
AQc,b(α) to AQc,e(α)−1, 0 ≤ c ≤ 2 by one, where c depends on the secondary struc-
ture class of α, i.e. coil, helix, or strand. This corresponds to counting the number of
alignments with a specific secondary structure conformation covering a given posi-
tion of the query. Finally we compute the sum of all alignments per query position,
i.e. AQ3,k =

∑2
p=0 AQp,k for all k, 1 ≤ k ≤ n.

In contrast to more sophisticated approaches in secondary structure prediction (a
comprehensive overview is given in [18], Chapter 28), the prediction accuracy of
this simple profile will usually be lower. The extra information can nevertheless
be useful in understanding a Passta result, and to decide whether to believe it or
not. Computing the profile is increasing the Pass One runtime somewhat, because
knowing the alignment position requires to do the backtracing, which is otherwise
omitted. The user can decide about computing the profile by using the -n option of
Passta. If set, the profile is not computed.

13.2 Pass One Training / Parameter settings

Many kinds of filters were designed for sequence database searching. A filter work-
ing with multiple sequence fragments affords even more design decisions than a fil-
ter using a single sequence, because each fragment can be seen as a single sequence.

64

Figure 32: Excerpt of a secondary structure profile from Pass One. The query sequence is
displayed at the top and the bottom of the profile, it is the same plastocyanin from rice that is
shown in other examples of this thesis.
The grey rectangles that abound at the bottom of the profile show the percentage of valid
alignments with coil SSEs covering the respective column. Helical SSEs are represented in
the middle area by orange rectangles, and the purple ones at the top code for β-strands. The
highest number of alignments is set to 100%.
The amino acids around this peak are quite common and can often be found in helical con-
formation, as the profile also suggests. While helical SSEs prevail in the left half of the
sequence, coils and strands seem to be increasingly likely in the right half of it. The first
part of this “prediction” can not be verified, because this part of the gene is missing in other
plastocyanins with known structure (this one from rice is not in the PDB). The second part
definitely shows the correct tendency, because this part of the gene is classified as “mainly
beta” (CATH) and “all beta” (SCOP) in other closely related genes.

65

Even worse, our sequence fragments originate from three different secondary struc-
ture classes with different properties. The whole setup has several parameters, too
many for their simultaneous optimization in a systematic approach.

Therefore, we made several experiments to answer some design questions and
to optimize the Pass One parameters. Each of the Pass One parameters was trained
with only a few samples of its parameter space. Even though our experiments are
not comprehensive, we present the results in detail, because few data with respect
to alignments of secondary structure elements (SSEs) is available in the literature.

13.2.1 Choice of the Blosum62 threshold

Every SSE alignment is required to reach a minimal, substitution-matrix dependent
score to be valid. Since we use the Blosum62 substitution matrix, the minimal score
is called Blosum62 threshold. If it is too high, only alignments with well conserved
SSEs will be valid. If it is too low, there will be too many “Unrelated” alignments,
compromising the quality of the filter as well as its speed. Our goal is to find a good
trade-off between sensitivity and speed.

Preliminary tests had shown that a Blosum62 alignment threshold of less than 18
resulted in too many “Unrelated” alignments. Therefore, we measured the percent-
age of valid SSE alignments at Blosum62 thresholds of 18, 20, and 22. The cost for
gap initiation were 11, those for gap extension were 1, for all three secondary struc-
ture classes. As in the evaluation described in the next part of this thesis, we sepa-
rated between “Close”, “Distant”, and “Unrelated” homology relationships. These
relationships are illustrated in Figure 40 on page 86. The results are shown in Fig-
ure 33. It shows the percentage of valid alignments for the three homology relation-
ships and each secondary structure class.

At a Blosum62 threshold of 18, the average sensitivity is good, almost 40% in
“Close” to about 25% in “Distant”. Unfortunately, the percentage of “Unrelated”
valid alignments reaches 20%. Therefore, many “Unrelated” targets are likely to be
accepted at threshold 18. At threshold 22, only seven percent of the “Distant” align-
ments are valid (except in the helix class), hardly more than the five percent “Un-
related” alignments. In combination with the low sensitivity, this weak distinction
between “Distant” and “Unrelated” is a problem. Either we sharpen this distinction
by improving the Pass One parameters, or we use a lower Blosum62 threshold.

Comparing the results at the different thresholds shows an unwanted effect: A
decrease by two units doubles the percentage of “Unrelated” alignments, while this
factor is smaller in “Close” and “Distant”. This means that in this range of Blosum62
thresholds, a larger threshold worsens the distinction between “Distant” and “Unre-
lated”. Therefore, we can not use a threshold exceeding 22. However, the threshold
should exceed 18, otherwise the sensitivity of Pass One will be too low. We decided
to use a threshold of 22 in the “Fast” mode of Pass One, because the relatively small
number of alignments will improve its runtime. In the “Default” mode, a value of 20
should be a good choice.

66

Figure 33: Percentage of valid alignments at Blosum62 thresholds of 18 (top), 20 (center),
and 22 (bottom). The results are grouped by their experimental relationship (“Close‘”, “Dis-
tant” and “Unrelated”, from left to right). The first colum (“All”) summarizes the results of
all three secondary structure classes. The next three columns display their data separately in
(“Coils”, “Helices”, and “Strands”). The cost for gap initiation/extension were 11 and 1.

67

The bias in the results of the three secondary structure classes is interesting, not
only with respect to the training of Pass One, but also in conjunction with sequence
analysis on proteins. The Blosum62 substitution matrix could to some degree be re-
sponsible for this bias, but we believe that the biological properties of the different
SSE classes are important as well: Helical SSEs always make up the largest pro-
portion of valid alignments, regardless of the experimental group in question. The
reason is that helical SSEs have to satisfy certain biochemical constraints, otherwise
they are not stable. Some amino acids are rarely seen in α-helices, because they have
a destabilizing effect. In addition, helices are often located at the protein surface,
interacting with the water phase (see e.g. [18]). These physicochemical constraints
result in a reduced “helical” sequence space that increases the probability for better
alignment scores.
Coils are underrepresented in “Close”, their occurrence in the other two groups is
in balance. This might be explained by the many coils/loops that serve as “linkers”
between protein domains, which are in general not well conserved. The mutation
frequency of these linkers is probably higher than in the other two SSE classes, which
would explain their lower frequency in “Close”. This does however not explain their
balance in “Distant” and “Unrelated”.
Strand SSEs are underrepresented in “Distant” and “Unrelated”, while in balance
at “Close”. We believe that this can be explained with the usual association of sev-
eral β-strands to a β-sheet. This interdependency will often require the co-evolution
of two or more β-strands. This is a rare evolutionary event, but with the power to
introduce effective changes into the strand sequences.

13.2.2 SSE-alignments without a minimum length constraint

For each target SSE, Pass One computes a local alignment with the query. Many
of these alignments are very short, and the percentage of “Unrelated” alignments
among them may be high. We could discard all alignments that are shorter than
a predefined minimum length. If and how would Pass One benefit from this con-
straint? To answer this question, we have measured the length distribution of valid
alignments up to a length of 100. The results are shown in Figure 34. It displays the
percentage of valid alignments at Blosum62 thresholds of 18, 20, and 22 for up to a
length of 30.

There are zero valid alignments at length one, which is easy to explain with the
scores in the Blosum62 substitution matrix. The highest entry in the matrix is a
score of 11 for a W-Wmatch. However, this score is below all of our tested Blosum62
thresholds; 18, 20, and 22. Therefore, every valid alignment has at least a length
of two. Figure 34 shows that the percentage of short alignments is increasing with
lower Blosum62 thresholds. This is because these thresholds mainly affect the valid-
ity of alignments between length 3 and 7. The majority of longer alignments remains
unaffected.

The distribution shows that defining a minimum alignment length is not easy. If
it was set to a small value like two, less than one percent of alignments would be dis-

68

0

4

8

12

16

2 6 10 14 18 22 26 30

Alignment Length

P
e

rc
e

n
ta

g
e

18

20

22

0

1

2

3

1 2 3 4

Alignment length distribution

Figure 34: Alignment length distribution at Blosum62 thresholds of 18, 20, and 22. For
clarity, only alignment lengths of up to 30 are shown. The dashed area to the right is a
magnified cut-out of the diagram to the left. The displayed data is dicussed in the text. The
cost for gap initiation and gap extension were 11 and 1.

carded, with almost no effect on the Pass One results. Then the constraint will have
no effect. At a moderate minimum length of four or five, Pass One would however
lose up to a third out of all alignments, depending on the applied Blosum62 thresh-
old. This would mean a substantial loss of sensitivity, something we do not want.
Besides, determining the alignment length results in additional computational ef-
fort, because the alignment has to be backtraced in the Smith-Waterman edit matrix.
This increase in runtime will not necessarily result in improved detection quality,
because we either discard too few or too many alignments. To use a probabilistic ap-
proach would probably be the better choice. Therefore, we do not employ a length
constraint in Pass One.

13.2.3 Secondary-structure specific gapcost

The Blosum62 substitution matrix has been widely used. Several projects investi-
gated the optimal affine gapcost to use with it. Green and Brenner [39] recently
found a small range of good values for gap initiation and extension: If the gap ex-
tension cost is 1, gap initiation should range between 9 and 13, if the gap extension
cost is 2, the gap initiation costs should be 6 to 11. These values were determined in
traditional pairwise alignment of complete protein chains or domains. Here, we are
dealing with local alignments of short sequence fragments, SSEs. Long gaps within
a SSE alignment are unlikely. Therefore, the cost for gap extension should exceed
one. We set it to two for all secondary structure classes. This value is probably
not optimal, but it is definitely better than 1. We also believe that the gap initiation
penalties should be class-specific, because of the different biological characteristics

69

SSE class Gapcost Increase in % valid alignments
From To Close Distant Unrelated

Coil
11/1

9/2 0,67 0,99 0,84
Helix 10/2 0,73 1,20 0,46
Strand 8/2 1,64 0,61 0,55
All 1,01 0,86 0,62

Table 4: Increase in the percentage of valid alignments by changing the affine gapcost in
Pass One to a secondary structure specific model. The changes result in a slight advantage
for Passta, because the increase in “Unrelated” alignments is in general lower than in the
two related groups.

the secondary structure classes possess. For example, the structure of helical SSEs
is very well conserved, gaps should be a less frequent event than in coils. This sug-
gests to increase the cost for gap initiation in alignments with helix SSEs. On the
other hand, decreased penalties for gap initiation could improve the low sensitivity
observed in Section 13.2.1 at Blosum62 thresholds exceeding 20. Besides, secondary-
structure specific gapcost may contribute to reducing the observed bias between the
secondary structure classes.

After a few tests, we decided to use secondary-structure specific gapcost penal-
ties of 9/2 (coils), 10/2 (helices), and 8/2 (strands). The positive effect of the low gap
initiation cost in strands can be seen in Table 4. Here, the percentage of valid align-
ments is compared between the former gapcost of 11/1 and the new values. The
reduced initiation cost for strand SSEs leads to an increase of 1.64% of “Close” align-
ments, while the percentage of “Unrelated” alignments is only increased by 0.55%.
The new gapcost also lead to positive effects in the helix class, while the effects on
the coils are rather neutral. Because the coil sensitivity in “Distant” is slightly better,
we will use the new gapcost in Pass One.

Another question we wanted to assess is the effect of the changed gapcost on the
number of alignments with gaps. Table 5 lists the percentage of alignments with
at least one gap at two different gapcost combinations and Blosum62 thresholds of
18, 20, and 22. A comparison among the 11/1 values shows similar results, with
fewer gaps at smaller Blosum62 thresholds. This can be explained by the increase
in short, mostly gapless alignments at smaller thresholds (see Section 13.2.2). Their
increase results in a smaller relative percentage of alignments with gaps. However,
being around five percent, the values show that the effect of the old gapcost is of
minor importance.

The picture is different with the new gapcost of 9/2, 10/2, and 8/2. Here, the
percentage of “Close” alignments with gaps has increased to almost five percent,
while these values are at about eight percent for “Distant” and “Unrelated” align-
ments. This may seem much, but the MSR constraint discussed in Section 13.2.4 is
discarding many of these alignments, leading to the decreased values of about three
percent in the bottom row of Table 5.

70

Gapcost Blosum62 Gapped alignments in %
Coil Helix Strand threshold Close Distant Unrelated MSR

11/1 all
18 2,67 3,05 3,32 -
20 3,30 4,46 4,78 -
22 3,54 5,66 6,20 -

9/2 10/2 8/2 20 4,73 7,42 8,09 -
9/2 10/2 8/2 20 2,50 3,81 3,92 0.30

Table 5: Percentage of alignments with at least one gap. The modified gapcost lead to an
increased number of gaps, if no futher constraints are applied (4th row).

Figure 35: Average SSE lengths in valid alignments at Blosum62 thresholds of 18, 20, and
22. The costs for gap initiation and gap extension were 11 and 1.

13.2.4 Choice of the MaxScoreRatio threshold

SSEs are very short in comparison with whole protein chains. Nevertheless, they
are also sequences, where all of the rules and problems associated with database
searching also apply. The longer the SSE sequence, the more likely is a local simi-
larity to the query, even if the query and the SSE are not related. The distribution
of the alignment lengths in Section 13.2.2 in combination with the data in Figure 35
clearly show this effect. Figure 35 displays the length of the average input SSE17 in
valid alignments. It is especially high in “Unrelated” SSEs, up to 16, while the length
of the average input SSE is 10.1. This means that even in the “Close” setting, longer
SSEs are more likely to produce valid alignments. The average alignment length
of about 7 (see Figure 34) further implies that up to about one third of the average
input SSE is lost. Therefore, the alignment score is often well below the possible
maximum, because only a fraction of the SSE sequence is actually used. This is espe-
cially true for “Unrelated” alignments, and we try to remove them by applying the

17the SSE sequence before the local alignment

71

Figure 36: Percentage of valid alignments at four different MSR thresolds: None, 0.27, 0.30,
and 0.33. The results are grouped by SSE class (top: coils; center: helices; bottom: strands)
and experimental relationship (“Close”, “Distant”, and “Unrelated”, from left to right). The
Blosum62 threshold was 20. Alignments with helical SSEs are much affected by the MSR
thresholds, while the percentage of strand alignments remains almost constant.

MaxScoreRatio constraint (explained in Section 12.2.3).

We investigated a small range of MSR values to select a good threshold for Pass
One. Figure 36 shows the percentage of valid SSE alignments at a Blosum62 thresh-
old of 20 without a MSR, and at MSR values of 0.27, 0.30, and 0.33. The costs for
gap initiation and extension were the secondary structure specific values chosen in
the preceding Section 13.2.3. The obtained results are considerably different in the

72

SSE-Class Hom. relationship % alignments at MSR-Thresh.

0.27 0.30 0.33

Coil
Close 80.7 7.2 73.5 7.6 65.9
Distant 72.3 9.2 63.1 8.7 54.5
Unrelated 63.2 10.8 52.4 7.8 44.6

Helix
Close 74.7 10.8 63.9 9.6 54.3
Distant 69.4 13.6 55.8 11.3 44.5
Unrelated 57.4 12.4 44.9 10.1 34.9

Strand
Close 99,7 1.7 98.1 0.7 97.4
Distant 97.0 3.0 94.0 2.6 91.4
Unrelated 92.3 7.9 84.4 6.4 78.1

Table 6: The table shows the percentage of alignments that remain valid at MSR-thresholds
of 0.27, 0.30, and 0.33. A value of 100% corresponds to the percentage of alignments without
the MSR constraint. The columns in between display the difference between the adjacent
values. A comparison of the results reveals remarkable differences between the secondary
structure classes coil, helix, and strand. It is obvious that there is no common, ideal threshold.

three SSE classes. The number of strand alignments is hardly affected by the MSR
thresholds, the opposite is true for helix alignments. The coil results are somewhere
in between. Table 6 allows a more precise overview by listing the MSR-dependent
percentages of the remaining valid alignments. A value of 100% corresponds to a
setup without the MSR constraint. For convenience, the difference between adjacent
columns is also displayed.

Among the different SSE classes, the MSR value for strands can be set near 0.33
or even larger, because only a few percent in “Close” and “Distant” are lost in this
range, while about 20% in “Unrelated”. However, the MSR value for helices should
be less or equal to 0.30, otherwise the separation between “Distant” and “Unrelated”
is getting worse. The same holds for coils. A perfect MSR threshold for all secondary
structure classes is not available. We choose a value of 0.3, which is a good compro-
mise for all three classes.

13.2.5 Conclusion

We have investigated and set most of the Pass One parameters. The obtained values
are probably not the optimal ones that would result from a simultaneous optimiza-
tion of all parameters. However, even a simultaneous optimization could just lead
to a compromise. Our experiments have shown that the characteristics between the
individual SSE classes can not be covered with single Blosum62- or MSR thresholds.
For example, the sampled MSR thresholds have a strong effect on the number of
valid helix alignments, but not on the number of strand alignments.

73

Even though there will still be many “Unrelated” entries within the Pass One
candidate set, we could sharpen the distinction between “Distant” and “Unrelated”
by a few percent of valid alignments.

13.3 Calibration of Rearrangement and Deletion costs

13.3.1 Motivation

Most methods for biological sequence alignment produce a linear layout where sim-
ilar regions of the input sequences are identified with each other. Several dynamic
programming algorithms have been developed to address the various flavors of this
approach. The main application is database searching, with the goal to identify ho-
mologous protein or DNA sequences of a given query.

The quality of a sequence alignment, and hence also the result of a database
search, critically depends on the choice of parameters used in the alignment pro-
cedure. For traditional collinear, and especially pairwise, local alignments, this re-
lationship and the underlying statistics have been studied extensively and are well
understood (see e.g. [4, 41, 106]). The parameters of interest are the score matrix
for the substitution of single characters and, for most popular alignment methods,
the affine gap cost parameters gapinit for opening and gapext for extending a gap.
Values for both parameters have to be calibrated for each substitution matrix sepa-
rately, although there is a range in which good values overlap for similar matrices
[39]. Calibration was done for the most popular substitution matrices under differ-
ent test environments [4, 39, 43].

In some more recent applications, however, a collinear alignment of the given
sequences is not possible because the relationships between the sequences are more
complex. As in Passta, these applications often follow a two-phase strategy. In the
first phase a set of local candidate alignments is computed, and in the second phase
a collection of good candidates is selected and arranged according to some global
optimization criterion. Some approaches in genome alignment are examples of this
strategy. We have already discussed them in Section 10.2.

These approaches occasionally introduce new parameters in conjunction with
their chaining model. The calibration of the new parameters requires a reliable eval-
uation setting, usually in a repeated database search context. A testset is split off
the database, and the parameters are optimized such that the method recognizes
as many true and as few false hits as possible. This requires an annotation of the
data that allows to distinguish between ‘true’ and ‘false’ hits. When dealing with
protein sequences, often protein structure information is used to form such a “gold
standard”. The most prominent databases for such an approach are SCOP [9, 73],
which has been used in different evaluation and calibration scenarios [49, 97], and
CATH [76].

Here, we present a variation of the existing approach that can be used to calibrate
some of the new parameters arising in generalized chaining methods. Passta [14] can
be seen as a simple version of such an algorithm. The local alignments it computes

74

are passed to a generalized chaining algorithm that allows for the deletion and rear-
rangement of segments. The corresponding parameters are deletion cost (DC) and re-
arrangement cost (RC). Under the assumption that most protein domains in the same
SCOP family are collinear, we measure the minimal rearrangement cost needed to
suppress rearrangement events, which we term collinearity threshold. Then, we iden-
tify SCOP families with high collinearity thresholds and try to find the cause by
manually investigating them. Finally, we collect Passta results with validated circu-
lar permutations and compare their collinearity thresholds and alignment scores. In
conclusion, we discuss the choice of suitable rearrangement costs.

To the best of our knowledge, absolute RC values were never determined before.
Biologically justified deletion and rearrangement costs could be useful to estimate
similar values for DNA-based approaches, and for comparison of protein structures,
when sequence information is also used.

13.3.2 Model and Definitions

In this section we describe the simple model of a generalized alignment procedure
that we use to explain and calibrate the new parameters DC and RC. The model is to
some degree similar to the one given in [62]. However, we do not consider sequence
reversals and assign no distance-dependent penalty for two adjacent matches sepa-
rated by a gap.

Our procedure is asymmetric with respect to the two given sequences. We con-
sider one sequence as a user-provided query and the other sequence as target from a
given database. This allows us to preprocess the target sequence. Because our ap-
plication is protein sequence annotation, we preprocess the target by splitting it into
secondary structure elements (SSEs), but in theory there are also other possibilities
like using the gene or repeat annotation of a genomic sequence.

Our model is derived mainly from Pass Two, the necessary definitions are pro-
vided in Sections 12.1 and 12.3. For convenience, we briefly repeat the most impor-
tant definitions here and highlight necessary changes. The main difference to Pass
Two is that we use this model for one target only, therefore jumps between different
targets are impossible and no jumpcost penalty exists.

In the first phase of the general alignment procedure, each fragment of the tar-
get is locally aligned to the query. The particular method is of secondary impor-
tance, while multiple and suboptimal hits should be allowed. The result of this
first phase is a set A of pairwise alignments with the query, where we assume that
the following information is available for each alignment α ∈ A: b(α) and e(α),
1 ≤ b(α) ≤ e(α) ≤ n, are the begin and end indices of an aligned sequence fragment
w.r.t. the query sequence of length n; p(α) ≥ 1 is the position of the fragment in
a consecutive enumeration of the fragments of the target sequence; and s(α) is the
alignment score.

The goal of the second phase is to find the best combination of non-overlapping
alignments that explain the query. Therefore we define a directed, acyclic generalized

75

alignment graph G = (V,E) whose set of vertices V consists of the alignments in A

plus two additional vertices head and tail, such that V = A ∪ {head, tail}. Two
vertices u, v ∈ V are connected by a directed edge (u, v) ∈ E if and only if e(u) <

b(v), that is, the alignment represented by u ends before the alignment represented
by v begins.

A path in G is a sequence of vertices P = (v1, v2, . . . , vk), such that (vi, vi+1) ∈ E

for all 1 ≤ i < k. A path is complete if it starts at vertex head and ends at vertex tail.
The aligned target fragments in a path are not necessarily numbered consecutively
w.r.t. their order in the target sequence. Given two adjacent vertices vi and vi+1 in a
path:

• if p(vi+1)− p(vi) < 0, we call this a rearrangement;

• if p(vi+1)− p(vi) > 1, we call this a deletion.

To control the number of rearrangements and deletions in a path, these conditions
are penalized by rearrangement cost (RC) and deletion cost (DC). Let r(P) be the num-
ber of rearrangements and d(P) the number of deletions in a path P . The weight of
P is then given by

weight(P) =

(

k
∑

i=1

s(vi)

)

− r(P) ·RC − d(P) ·DC.

Any complete path corresponds to a selection of non-overlapping alignments. The
generalized chaining problem is to find a highest-scoring complete path in a given gen-
eralized alignment graph G.

13.3.3 Experimental approach and setup

While the generalized alignment approach can be and has been applied in several
areas of biological sequence comparison, our experiments are applied in protein se-
quence annotation. A multi-domain protein can easily lose its function if a rear-
rangement event disrupts the structure of its domains. However, within a correct
alignment of two closely related domains, one would expect no rearrangements.
The protein domains within a SCOP [9, 73] family are closely related, and they have
the same overall 3D-structure (see Section 6.4). Most of them are also collinear at
the sequence level. Following our model definition, we expect most of the target
fragments to be aligned consecutively. If we observe a rearrangement between two
collinear SCOP domains, it should be artificial.

We use this property in our calibration setting. Our queries are SCOP domain
sequences with up to 40% identity between each other, which we obtained from the
ASTRAL [20, 24] website. The targets are other domains from the same family, either
with an ‘intra’ or with an ‘inter’ relationship. Each target is split into fragments cor-
responding to DSSP-derived [50] secondary structure elements (SSEs). The setting is
outlined in Figure 37. Given the data sets thus prepared, we measure the rearrange-

76

Extract Inter

Family X

Intra
SCOP /
(PDB)

P1

P2

P3

P1

P2

P3

P1

Figure 37: Given a hypothetical query from “protein/domain” entry P1 of some SCOP family
X, the targets are either domain sequences from the same protein/domain (intra), or domains
from other protein/domain entries (inter, P2 and P3).

ment cost (RC) that is necessary to remove all rearrangements from an alignment of
the query with the target fragments. For each alignment we record the RC where
the number of observed rearrangements drops to zero, the collinearity threshold. If
there is no rearrangement at all, the result is omitted. In our first experiment, we
apply four different deletion cost (DC) values to determine their influence on the
collinearity thresholds we obtain.

We compute the alignments and the optimal path, then we plot the resulting
family-specific collinearity thresholds for all SCOP families. For each query domain
we record the maximum collinearity threshold that it reached (a) with all intra and
(b) with all inter targets. All maximal collinearity thresholds are averaged for (a)
and (b) within one SCOP family. These values are far above the average collinearity
threshold of each family.

In our second experiment we manually investigate individual query-target combi-
nations with high collinearity thresholds, i.e. that maintain one or more rearrange-
ments even at high RC values, and identify their families. The annotation of each
family is looked up in SCOP, to find a reasonable explanation for the high values.
We also check whether the results produced by our model algorithm are consistent
with the SCOP annotation.

Finally, in our third experiment we study the RC distribution of circularly permuted
alignments. We collect the collinearity thresholds of all verified query-target combi-
nations, where either the query or the target is circularly permuted. We compute the
family-specific average alignment scores and their ratio to the possible maximum
score. Again, we separate between intra and inter data.

We used the following parameters throughout our experimets: An alignment is ac-
cepted if a certain length-dependent score percentage is reached. These values are:
length 2, 100%; length 3, 50%; length 4, 33%; length 5 and more, 25%. The SCOP
and ASTRAL versions were 1.69. The substitution matrix was Blosum62, unless

77

0

12

24

36

48

0 16 32 48 64 80 96

DC__0

DC_10

DC_20

DC_30

0

12

24

36

48

0 16 32 48 64 80 96

DC__0

DC_10

DC_20

DC_30

%
 R

e
m

a
in

in
g

 F
a

m
il

ie
s

RC

Inter

%
 R

e
m

a
in

in
g

 F
a

m
il

ie
s

RC

Intra

Figure 38: Influence of the DC on the RC: The y-axis shows the percentage of SCOP families
that still have at least one rearrangement at a given RC-value (x-axis). The left part shows
the intra results, the right one the inter results.

otherwise indicated. Penalties for gap initiation and extension were −11 and −1,
respectively.

13.3.4 Results and Discussion

Deletion Cost Influence and Selection: We measured the family-specific collinear-
ity thresholds for all SCOP families in the query set with four different DC values:
0, 10, 20, and 30. The RC value was varied between 0 and 256, in steps of two. The
results are shown in Figure 38. Almost 50% of the 2829 families in the query set
contributed to the intra data shown in Figure 38 (left). That means, those families
have an intra setting and the comparisons lead to collinearity thresholds > 0. After
a RC value of 8, the four curves decline rapidly. Most families lose all their rear-
rangements between RC 8 and RC 40. After RCs of 50 (for DC 20), 56 (for DC 10 and
DC 30), and 86 (for DC 0), only one percent of the remaining families contain still at
least one rearrangement.

The inter curves in Figure 38 have a similar shape. However, only about 35% of
the families contributed to the data. Rearrangement costs between 0 and 8 do not
reduce the number of remaining families, the values decrease mainly between 10
and about 50, except for DC 0.

We sampled the collinearity thresholds at four different DC values, to find the
combination of DC and RC that is most effective in suppressing rearrangements.
The results show the importance of the DC parameter. If it is set to 0, the collinearity
thresholds are very high. More than 40 families (about 1.5%) need RC values above
100 to lose all their rearrangements in the inter setting. Just increasing the DC value
by 10 has a large effect on the measured data. At DC 10, only three families have a
collinearity threshold of 100 or more. A further increase of the DC value continues
to decrease the collinearity thresholds, but the effect is quite small.

78

Although not by much, the curve for DC 30 is clearly above that for DC 20, which
means that we observe more rearrangements at DC 30 than at DC 20. This behavior
can easily be explained with our model: The increase of the deletion cost from 20 to
30 leads to an increased use of rearrangements. Sometimes, one or more deletion-
causing fragments are replaced by others that cause a rearrangement. For example,
assume an optimal complete path P . When the deletion cost is increased by ∆DC ,
another, formerly suboptimal, complete path P ′ will become optimal if and only if

weight(P) − weight(P ′) < (d(P)− d(P ′))∆DC.

The results show that setting the DC value higher than zero is necessary. If it is
however too high, the number of rearrangements will increase again. To set the
deletion cost to 20 is therefore the best choice among the sampled DC values.

Alignments with high Collinearity Thresholds: We identified 50 families based
on the highest collinearity thresholds of single query-target combinations. The top
20 were further investigated, they are shown together with an excerpt of the SCOP
annotation in Table 7.

Not all of the rearrangements are due to noise. In fact, few of the high collinearity
thresholds seem to be present by chance. Seven of the 20 families contain protein
domains with circular permutations. Many of them are well conserved and can be
easily identified in our results. However, as always when dealing with real biologi-
cal data, there are interesting borderline cases. E.g., the methionine aminopeptidase
protein in SCOP family 55921 (“Creatinase/aminopeptidase”) contains several do-
mains that have an additional inserted domain. And the circular permutation is
actually in this insert.

Most of the other families also contain domains whose sequence and/or struc-
tural properties explain the detection of highly conserved rearrangements. In a se-
quence database search, we would like to find those instances. Figure 39 shows an
example result with a circular permutation, where the rearrangement is still main-
tained at RC 160.

Some of the identified families with circularly permuted protein domains are well
known in the literature (see [109], and references therein). However, other cases of
circular permutations are known in the literature that are not included in Table 7.
One example are the “Swaposin” (Family-ID 47866) and the “Saposin B” (ID 81806)
families [79]. The reason is that those cases are classified into different families, whose
circular permutations can not be detected in our calibration setting.

The SCOP annotation was our primary source of information in validating our re-
sults. However, its main focus being classification, we were not surprised to see that
it is not always complete. For example, when we investigated the high collinearity
thresholds of family 50263 (“Single strand DNA-binding domains”), only one query
was responsible for the high thresholds, the “ssDNA-binding protein” of Deinococcus
radiodurans, an extremely radiation-resistant bacterium. The corresponding SCOP
entry does not include specific information, however, the N-terminal DNA-binding
domain of the protein does indeed occur twice in tandem [111].

79

Family RCA RCE SCOP Annotation Rem.

49925 >256 70 β-glucanase. Many known CPs. CP
53057 >256 - β-carbonic anhydrase. Duplication. DP
53749 >256 - Phosphoglycerate kinase. One entry: CP. CP

100953 >256 - DsbA-like. One target (99645): CP. CP
49900 136 228 Legume lectins: several natural CPs. CP
51323 228 - Cyanovirin-N. One target (79717): CP. CP
47502 164 134 Calmodulin. DP: two pairs of EF-hands. DP
56602 162 74 β-Lactamase. One target (42707): CP. CP
50877 158 - Streptavidin. Two targets: CP. CP
48696 - 154 Cytochrome c3-like. Repeated motif. DP
52059 - 154 Internalin LRR domain. Variable repeats. DP
49696 142 108 Crystallin. Duplication: Two domains. DP
48404 - 138 Ankyrin repeat. Badly conserved. ??
50263 116 - SSB DNA-binding domain. Duplication. DP
48372 110 88 Armadillo repeat. ??
81902 - 110 HCP-like Cysteine-rich protein. DP
48453 - 104 Tetratricopeptide repeat (TPR). DP? ??
89299 100 - MBT repeat. Tandem repeat. DP
47875 - 98 Annexin. Possible DP, badly conserved. ??
50979 - 98 WD40-repeat. Badly conserved. ??

Table 7: The top 20 SCOP families with the highest collinearity thresholds of individual test
cases, at deletion cost 20. The collinearity thresholds are displayed separately for test cases
with intra (RCA) and inter (RCE) relationships. The “SCOP annotation” column contains
the family name, and in most cases an additional remark.
Abbreviations: ‘CP’: circular permutation. ‘DP’: (multiple) duplications. ‘-’: results are
impossible here, or, all results were without a CP/DP. ‘??’: We could not confidently validate
a CP/DP.

80

Figure 39: Passta alignment result from SCOP family 49900, “Legume lectins”. The
query domain (23928) is circularly permuted and has an inter relationship to the target
domain (24039). The rearrangement and deletion costs in this example were 160 and 20,
respectively. The score is 213 (of at most 1223). The alignment shows one rearrangement
between the target fragments 41 and 7, and three deletions (between fragments 25 and 31,
33 and 36, and 13 and 15). The different shades coloring some fragments of the query cor-
respond to the score of the aligned target fragments. Orange target fragments are α-helices,
purple ones are β-strands.

Collinearity Thresholds of Circularly Permuted Alignments: The collinearity thresh-
olds of test cases with validated circular permutations and their associated scores
are subsumed in Table 8. Not all families contributed to both settings, and there are
only 44 intra results, in contrast to 281 cases with an inter relationship. Aside from
the seven families that were identified in Table 7, we also included data from the
G-proteins (ID 52592). Two queries of the G-proteins are circularly permuted (88294
and 107552).

The average intra collinearity thresholds range from 62.0 to 230.0, and the aver-
age score ratios from 14.2% to 69.7%. Most inter values are lower. Here, the average
collinearity thresholds are between 34.7 and 133.8, and the average scores are be-
tween 5.12% and 13.91% of the possible maximum.

The results show that the determined collinearity thresholds are largely family-
specific. If two domains have a low degree of sequence similarity, most target frag-
ments do not align well with the query. The inter results show three cases of such
families, where the average score ratios reach only five to six percent. The circular
permutations in these cases are only supported by a few low-scoring alignments.
Here, a low RC value is often sufficient to suppress the rearrangements.

The results of the “β-Crystallin” family (49900) further support this view. It is
the only family whose values are similar in both parts of Table 2. Obviously, the
sequence similarity within a SCOP family is large enough to reliably find circular
permutations, which may not be the case for two different families.

81

‘Intra’

Family k RC Score MaxScore Ratio [%]

49925 9 151.6 563.6 1234.7 45.6
53749 12 161.5 908.5 2076.7 43.7

100953 2 189.0 452.0 958.5 47.2
51323 1 230.0 243.0 525.0 46.3
49900 10 121.2 173.1 1222.0 14.2
50877 5 150.8 445.4 639.0 69.7
56602 5 62.0 351.4 1363.4 25.8

‘Inter’

Family k RC Score MaxScore Ratio [%]
49925 17 38.4 85.4 1418.3 6.02
49900 30 133.8 164.7 1184.4 13.91
52592 227 34.7 65.3 1276.5 5.12
56602 7 41.4 90.1 1569.7 5.74

Table 8: The table shows the intra and inter results for query-target combinations with
validated circular permutations. The RC column contains the average rearrangement cost
reached in the experiment. Column k shows the number of results that contributed to the
averages for “Score”, “MaxScore” and the ratio of Score/MaxScore (“Ratio”).

The properties of the rearrangement-causing event are also important. A large
duplication (e.g., of a domain) is generally easy to detect, because many alignments
will support it. However, if a rearrangement is caused by a circular permutation
of a short fragment, the signal may easily drown in the noise introduced by chance
alignments.

13.3.5 Conclusion

The complex structure of biological sequences lead to the development of two-phased
alignment strategies able to deal with rearrangements. Those algorithms require the
introduction of new parameters, which have to be calibrated to meaningful values.

We introduced a simple algorithm for generalized sequence alignment. Its input
is a query sequence and a set of pairwise, local alignments. From those alignments,
the algorithm selects the combination of highest weight in a graph-based approach.
A path in the graph, i.e., a combination of alignments, may contain deletions and
rearrangements. These events are penalized by two parameters, deletion- and rear-
rangement cost (DC and RC).

We proposed a calibration setting to systematically determine good values for
both parameters. In the calibration on SCOP families, we used four different DC
values and varied the RC value between 0 and 256. The results show that the model
algorithm is able to detect well-conserved rearrangements or duplications. How-
ever, if query and target have diverged so far that only very few segments are con-
served at all, the method has reached its limits. The limiting factor is mainly the

82

amount of information that pairwise alignments can provide.

The choice of the RC parameter depends on the application scenario. If one needs
just to find a few “safe” hits with rearrangements, the RC parameter can be set to a
value of 48 or higher in conjunction with the Blosum62 substitution matrix. This
value will also be good for an application on multidomain proteins. If one is looking
for “new” sequences with rearrangements in a database search scenario, a value of
34 or more may be used. This will remove most of the noise and reveal interesting
candidates, which must be investigated further, however.

Our experiments measured the collinearity thresholds necessary to remove re-
arrangements within domains (except for the SCOP multidomain class). What we
actually measured is the minimal RC/DC values that are needed to eliminate the
background noise introduced by biologically unsignificant alignments of short se-
quence fragments.

However, these values are probably not very useful in another context, e.g. in
genome alignment. Even though the additional noise introduced by the use of
longer sequences does not rise linearly with the sequence length [99], the collinearity
thresholds should increase here. Besides, a rearrangement of 100,000 base pairs in
genome alignment is not due to the same biological process as a circular permuta-
tion within a gene. Therefore, we believe new parameters should be defined and cal-
ibrated in connection with the underlying biological process. However, this requires
model-dependent modifications of the calibration setting to measure corresponding
collinearity thresholds.

83

Part V

Comparative Evaluation of Jali, Passta,
and BLAST

Early during the development of a new method, major flaws and problems are easy
to detect. This gets increasingly difficult in later stages of the project. Finally, only a
systematic evaluation can reveal the strengths and weaknesses of the new method.
An evaluation should compare the method under development to at least one other
established and well understood method from the same scientific realm.

We compare Passta to BLAST [5] and to the Jumping Alignment algorithm Jali
(see Part III). Even though advanced methods for homology recognition were re-
cently developed [54, 80], BLAST is still the standard tool used in practice. The
BLAST algorithm is a heuristic that conveys a good tradeoff between speed and
sensitivity (more details are given in Section 7.3). Due to the well defined statis-
tical background, BLAST is able to use much of the information available in pair-
wise sequence comparison. Its heuristic approach makes it however less sensitive
than approaches exploring the available sequence space completely, e.g. the Smith-
Waterman algorithm [96]. Passta does also rely on pairwise sequence comparison,
sacrificing some of the available sequence information as well. These analogies make
BLAST a good choice for evaluating Passta.

Finally, the Jumping Alignment algorithm is evaluated once more. The latest Jali
evaluation was done in 2003 [13]. Since then, the databases have continued their al-
most exponential growth and it will be interesting to see whether Jali‘s performance
is affected, and how. We compare Jali at three different jumpcost values to Passta,
even though a jump in Passta is somewhat different to a jump in Jali. In contrast to
all previous evaluations of Jali, we use a modified experimental setup that allows
us to compare the three methods in close homology detection as well. Most earlier
evaluations specialized only on remote homology detection.

14 Experimental Setup

14.1 Choice of the evaluation model

Every evaluation requires a reliable standard of truth, i.e. a data set with confirmed
homology relationships. If these homologies were inferred by sequence similarity
alone, the evaluation would face the “Chicken and Egg” problem described by Bren-
ner et al. [19]. The problem occurs when the standard of truth was determined with
the same type of information used to evaluate the developed method.

The homology relationships in SCOP (see also Section 6.4) are mainly defined by
structural similarity. When SCOP is used as standard of truth in sequence analysis,
the “Chicken and Egg” problem can not occur. Therefore we use the SCOP classifi-

84

cation as standard of truth, as in the previous evaluations.

Most previous evaluations with SCOP concentrated on distant relationships and
ignored close homologies within the same SCOP family. We therefore extend the
evaluation setup by intra-family close homology detection. This requires a classi-
fication level below the “family” nodes of the SCOP tree : the “protein/domain”
nodes. They contain groups of closely related protein domains with defined bio-
chemical function. For simplicity, we will refer to this SCOP layer as domain level,
except where the difference to real SCOP domains, i.e. the leafs of the SCOP tree
hierarchy, is of special importance.

In previous evaluation setups, the entries in each family were treated alike, re-
gardless of being from different domain levels or not. The evaluated methods were
therefore not characterised on the domain level. This is no problem with single-
domain families, but the results with multidomain families may be slightly biased.
The reason is that one domain of a multidomain family can be close to all queries
in the test set and this domain will always deliver the best result in the evaluation,
shadowing the results of the other available domains.
The missing separation may also affect methods working with multiple alignments,
e.g. Jali. The multiple alignments used as its input may differ in certain character-
istics if they are sometimes composed of one domain, and sometimes of multiple
domains. Even though these arguments are of minor importance, we prefer to in-
vestigate close and remote homology relationships at the domain level.

Given a query sequence in domain A of an arbitrary family with multiple do-
mains, the task in close homology detection is to find the entries of other domains
in the same family. This is illustrated in Figure 40. Finding closely related SCOP do-
main entries is relatively easy, because the sequence similarity within a SCOP family
is at least 30%. However, close homology detection is not always easy. Some SCOP
domains have received modifications at the sequence level, which have however not
changed their overall 3D structure by much. These modifications are mainly repeats,
insertions, and rearrangements. The affected sequence portions range in size from
small motifs to complete domains.

The sequence similarity of remotely related sequences is often lower than 20%,
close to that of unrelated sequences [84]. Therefore remote homology detection is the
supreme discipline for methods in sequence analysis. As shown in Figure 40, close
and remote homology detection can be easily combined. Our experimental setup
separates three different homology relationships: “Close”, “Distant”, and “Unre-
lated”.

We compare the three methods by computing minimal false positive counts (minFP
counts) on their database search results. The result of a database search with a sin-
gle query sequence (Passta, BLAST) or multiple alignment (Jali) is a list of targets
ranked by their scores or e-values. The minFP count determines the number of false
positives (FP) that occur before the first true positive (TP) in the target list. At best,
the first target in the list is a true positive. The minFP value is then zero. At worst,
there is no TP among the ranked targets at all. In that case, the minFP count is set to

85

sf

root

fa 2fa 1

dm C dm D

Close

dm Edm A dm B

Unrelated

Distant

Figure 40: The three different homology relationships in our experimental setup: Given a
query domain (dm A) from an arbitrary SCOP family, the compared methods may find a
domain from a) the same family (“Close”); b) the same superfamily, but not the same family
(“Distant”); and c) another superfamily (“Unrelated”).

the smallest value exceeding the preferred size of the candidate set, i.e. 101 or 1001.
A database search is basically successful if a true positive target can be found. In
practice, it is important to know when to expect the first TP for a given method. To
compare the evaluated methods, we define a cutoff value c ∈ IN . A search is consid-
ered successful if the minFP count is less or equal to c. In our experiments, we plot
the percentage of successful searches for minFP cutoffs up to 100.

We believe that our proposed evaluation setup is well suited to test a new method
in database searching. The data we produce will lead to a more refined picture, not
only for Jali, but also for Passta and BLAST.

14.1.1 Passta

As described in Section 10.2, Passta has two phases: Pass One collects a subset of
promising targets then used by Pass Two in the annotation of the query. If the can-
didate set does however not contain any related, i.e. true positive targets, they are
obviously not available in Pass Two. Therefore we characterize the strengths and
weaknesses of Pass One and Pass Two separately.

Pass One: In the evaluation of Pass One, our primary interest is the percentage of
related targets that remain in the candidate set after Pass One has finished. We count
the percentage of “Close”, “Distant”, and “Unrelated” targets before and after we
apply the selection algorithm/heuristic introduced in Section 12.2.4. The mentioned
selection heuristic tries to restrict the candidate set to a user-provided preferred size.

86

Parameter Fast Default

Gapcost Coil 9 / 2 9 / 2
Gapcost Helix 10 / 2 10 / 2
Gapcost Strand 8 / 2 8 / 2
Blosum62 thresh. 22 20
MSR 0.333 0.30
Needed alignment rate 1/10 1/10

Table 9: Parameters used in the evaluation of Pass One, as determined in the project Sec-
tion 13.2. The parameters are explained in Section 12.2.

We use two different preferred sizes in this evaluation to judge the quality of the
heuristic, 100 and 1000. In case it does not work as well as we expect, we also supply
all missing true positive targets to the “Single” setup of Pass Two (see below), to
allow Passta a second ranking at 100% sensitivity.
The other parameters used in the evaluation of Pass One are those derived from the
training in Section 13.2. They are shown in Table 9.

Pass Two: Jali and BLAST consider one target at a time. The optimal result for each
target is known and co-optimal hits are visible. By sorting the raw scores (Jali) or
e-values (BLAST) of the target hits, a ranking of the targets can be easily produced.
Passta may actually use multiple targets in the annotation of the query. Here, several
target sequences contribute to the final score. Decomposing the final score into the
partial contributions of each target is problematic. Especially in the “Fast” mode of
Passta, the optimal path is influenced by the available edges, and to evenly divide
the jumpcost between two targets seems unfair (see Figure 31 on page 62). Besides,
only a subset of the candidate set is actually used for annotation. Unused co-optimal
targets in the candidate set receive no score and therefore remain hidden. A direct
comparison of Pass Two in its native mode with Jali or BLAST is not possible in this
way.

Therefore, we evaluate Pass Two in two distinct setups. The setup with the com-
plete candidate set described above is called “Full”. A “Full” result is called success-
ful if at least one of the targets used in the annotation is closely or remotely related to
the query.

The second setup is called “Single”. Here, Pass Two is iterated over all targets in
the candidate set, but only for one target at a time. Each target receives the maximal
score that it can reach in Pass Two with the given parameters. The targets in the
candidate set can then be ranked by these scores, allowing us to compare the Pass
Two results to that of Jali and BLAST.

14.1.2 Jali and BLAST

The setup for the evaluation of BLAST is similar to the “Single” setup in Pass Two
(see previous paragraph). The BLAST targets are however provided in a file with

87

all SCOP domains that are available in PasstaDB. Targets that are also contained in
the query set are removed before the minFP counts are computed. We sample three
different combinations of affine gapcost: 9/2, 10/2, and 11/1 cost for gap initiation
and extension.

The Jali setup requires multiple alignments as input. We construct multiple align-
ments of all query sets with ClustalW, each alignment containing between three and
ten sequences. The alignments are the queries for jsearch , the Jali executable for
database searching. We use three jumpcost values in the experiments with Jali: 22,
34, and 46. A jumpcost value of 22 was determined as the optimum in the initial
evaluation of Jali in [97]. The other two values were chosen because we use identical
jumpcost values in the evaluation of Passta (see above). The ClustalW version used
was 1.82.

14.2 Evaluation and calibration data

A superfamily has to contain at least two families to have a “Distant” relationship
that we can evaluate. A “Close” relationship requires a family with at least two dif-
ferent protein/domain entries. Any family can contribute queries to the evaluation
if it has either of these homology relationships. That is however not the only condi-
tion: every “Close” or “Distant” test case is required to have at least four query- and
three target sequences. One of them was used in training Passta (see Section 13.2),
the remaining ones are queries in this evaluation. We use at most ten queries of each
test case, even if it contains more than ten sequences. The main reason for this con-
straint is to limit our results being biased by large domains with many entries. A
welcome side effect is the reduced runtime of the evaluation protocol.
All SCOP domains that either have a “Close” or a “Distant” relationship to a given
query are putative targets. We say putative targets, because not all SCOP domains
are represented in PasstaDB. We have to restrict the query and target sets to those
domains covered in PasstaDB, even for Jali and BLAST, otherwise a comparison is
not possible.

We used the Blosum62 [44] substitution matrix throughout our experiments. To
avoid redundant and almost identical sequences, we restricted our experiments to
the “P90d” subset of SCOP version 1.69 instead using the complete database. Every
two entries in the P90d share at most 90% sequence identity. The subset is available
from the ASTRAL website (see Section 6.4.1).

15 Results and Discussion

The following Sections 15.1-15.3 contain experimental results with a short, method-
specific discussion. In Section 15.4, we compare and discuss the results of all three
methods together.

88

15.1 Passta Pass One

Table 10 summarizes the Pass One results. The upper set of values was measured
before the selection heuristic was applied, we therefore call them “native”. The val-
ues in the lower set were measured after the selection heuristic was applied, we call
them “filtered”. The filtered values are displayed for both candidate set sizes used,
1000 and 100 preferred candidates. We refer to to them as the “large” and the “small”
candidate set.
The three central columns in Table 10 show the percentage of targets accepted by
Pass One for each homology group. These percentages are based on the sum of tar-
gets in all experiments, not on the average candidate set. That is the reason why the
values do not add up to 100%, they can be better compared in this way.

The native results in Table 10 show that about 70% (“Fast” mode) and 80% (“De-
fault” mode) of the “Close” targets are basically accepted by Pass One. The filtered
values below show the percentage of “Close” candidates that remained after the se-
lection heuristic was applied. Here, most of the “Close” targets are retained in the
large candidate sets (around 70%), and about 28% in the small candidate sets. The
results of the “Distant” and “Unrelated” columns can be read in the same way.

The size of the average candidate set is displayed in the rightmost column of
Table 10, “Avg. cand.”. The values show the number of accepted targets before
and after the selection heuristic was applied. The native “Default” value (2022.9
targets) is twice as large as the native “Fast” one (921.7 targets). This variation is less
pronounced among the filtered sets: the average sizes of the large candidate sets are
small candidate sets are 84.2 and 89.7, less than ten percent different.

The differences between the “Fast” and the “Default” modes must be attributed
to the slight variation of the Pass One parameters (see Table 9). Lowering the Blo-
sum62 threshold to 20 and the MSR threshold to 0.30 in the “Default” mode obvi-
ously results in more accepted targets and larger candidate sets. In the upper part
of the table, the portion of accepted targets is increased by 10% “Close”, 20% “Dis-
tant”, and almost 14% “Unrelated” targets. In the lower part of the table, the differ-
ences between “Fast” and “Default” are almost negligible with a candidate set size
of 100. It ranges from less than 0.1% in “Unrelated” to about 0.6% in “Close” and
“Distant”. The differences in the large candidate sets are more remarkable, ranging
between 1.5% in “Unrelated” to 5% in “Distant”.

Unfortunately, the dynamic selection of the Pass Two candidates is rather ineffi-
cient. Even though finally less than 1% “Unrelated” domains are accepted by Pass
One, their absolute number is too large.

15.2 Passta Pass Two

As explained in Section 14.1.1, a direct comparison of Pass Two with Jali and BLAST
is not possible. Therefore, we have split the evaluation into two parts, “Single” and
“Full”.

89

% accepted targets

Mode Close Distant Unrelated Avg. cand.

Native
Fast 70.14 19.73 11.05 921.7

Default 80.56 40.16 24.75 2022.9

Filtered
Fast (1000) 68.31 16.86 7.72 651.7

Default (1000) 71.75 21.86 9.37 787.3

Fast (100) 27.84 3.38 0.91 84.2

Default (100) 28.45 4.04 0.98 89.7

Table 10: Pass One results: percentage of accepted candidate domains before (“Native”) and
after (“Filtered”) the selection heuristic was applied. We have covered both candidate set
sizes of 100 and 1000 in the bottom part of the table.
Even though the portion of related targets (“Close”, “Distant”) is always higher than those
of the “Unrelated” targets, the separation between “Distant” and “Unrelated” is not reliable.

Single: In the “Single” setup, we compute a score for every target of the candidate
set and rank the targets by these scores. If the ranking contains at least one true pos-
itive target within the first “cutoff” values (minimal false positive count), the search
is considered successful. The percentage of successful searches depending on the
given cutoff value is shown in Figure 41. The diagrams on the left side show the
results for candidate sets of size 100, the ones on the right side those for the large
candidate sets with size 1000. The “Close” results are displayed at the top, the “Dis-
tant” results at the bottom of Figure 41. The diagrams to the right show four curves
instead of two. Here, the dashed lines (“Extd.”) represent the data with 100% sen-
sitivity, where all true positive targets were submitted to Pass Two, even if some of
them were not present in the Pass One candidate set.
“Close”: About two thirds of the test cases are successful at a cutoff of zero, in the

small candidate sets as well as in the large ones. With increasing cutoff values, the
curve is rising to maxima of about 80% (100 candidates) and 86% (1000 candidates).
“Distant”: The two “Distant” curves start with slightly less than 20% successful
searches. The initial rise of the curves is steep, reaching about 40% at a cutoff near
ten. The slope is then decrasing, reaching 60% of successful cases in the “Default”
setting at 100 candidates, and slightly less in the “Fast” setting. The large candidate
sets of 1000 preferred targets make almost no difference between both modes, both
curves reach close to 70%. The “extended” curves in the diagrams to the right reach
values close to 90% in the “Distant” setting, and about 95% in “Close”.

Full: In the second part of our experimental setup (“Full”), we evaluate Pass Two
in its native mode. It annotates the query with a few targets from the candidate
set. At least one true positive domain has to be among those targets to consider the

90

50

60

70

80

90

100

0 20 40 60 80 100

Normal

Fast
50

60

70

80

90

100

0 20 40 60 80 100

Normal

Normal (Extd.)

Fast

Fast (Extd.)

0

20

40

60

80

100

0 20 40 60 80 100

Normal

Fast
0

20

40

60

80

100

0 20 40 60 80 100

Normal

Normal (Extd.)

Fast

Fast (Extd.)

Distant, 1000 candidatesDistant, 100 candidates

minFP cutoff minFP cutoff

minFP cutoff minFP cutoff

Pass Two, Single: Successful searches at given minFP cutoffs

P
e
rc

e
n

ta
g

e

o

f
 s

u
c
c
e
s
s
fu

l
s
e
a
rc

h
e
s

Close, 100 candidates Close, 1000 candidates

Default

Default

Default

Default
Default

Default

Figure 41: Pass Two minimum false positive (minFP) counts at candidate set sizes of 100
(left) and 1000 (right). The “Close” results are shown at the top, the “Distant” results are
displayed at the bottom of the Figure.
The dashed lines in the right diagrams show the results of Pass Two at 100% sensitivity.
Here, we supplied the true positive targets that were missing in the respective candidate sets.
They show the potential quality of Passta if Pass One was improved.

91

Setting % successful searches

Fast Default
Jumpcost RC 32 RC 40 RC 32 RC 40

34 59.83 60.26 58.08 58.08
Close only 40 58.08 57.21 55.90 55.90

46 56.33 56.33 55.46 55.46
34 25.97 26.41 31.60 31.17

Distant only 40 23.38 23.38 29.87 29.87
46 22.08 21.21 27.27 27.27
34 76.53 77.04 75.17 75.00

Both 40 72.79 72.79 73.64 73.81
46 70.24 69.05 72.96 72.79

Table 11: Pass Two “Full” results, first part. A search is considered successful if at least
one true positive target is used in the annotation of the query. The percentage of successful
searches is shown for all parameter combinations in the experimental setup. The results are
discussed in the main text.

search successful. The results are summarized in Tables 11 and 12. Both tables display
the data for all combinations of jump- and rearrangement costs in our experimental
setup, and also separate the “Fast” from the “Default” mode of Passta.

Table 11 shows the percentage of successful experiments in three categories: “Close
only” relates to test cases without “Distant” targets; “Distant only” relates to cases
without “Close” targets. “Both” groups of targets were available in the third cate-
gory. The highest percentage of successful searches was realized in “Both”, between
69% and 77%. The values in “Close only” are between 55% and 60%, and those
in “Distant only” between 21% and 32%. The differences between rearrangement
costs of 32 and 40 are negligible, mostly below 1%, but the differences between the
“Default” and the “Fast” mode can be clearly seen. Especially the “Distant only”
results improve in the “Default” mode by about 5% more successful searches. Sur-
prisingly, the “Close only” values decrease by about 2%. There is a global tendency
of increased jumpcosts leading to less successful searches.

The data in Table 11 is complemented by those in Table 12. It shows the sum of all
targets used by Pass Two for the annotation of the query, which is between 1723 and
4367. This clearly explains the decrease of successful searches observed in Table 11.
It is indeed due to the increased jumpcost, which lowers the number of Pass Two
targets that can be used for annotation.
Besides the number of annotation targets, Table 12 also displays the portion of “Close”
and “Distant” targets contained in that number. The portion of “Close” targets is be-
tween 23% and 42%, that of the “Distant” targets ranges between 3% and 5%.
The majority of annotated targets is unrelated to the queries and the low portion of
“Distant” targets is rather disappointing. On the other hand, the “Distant only” re-
sults in Table 11 imply that Pass Two managed to include at least one distant target

92

Setting Annotation targets

RC 32 RC 40
Jumpcost nTarg % Close % Distant nTarg % Close % Distant

34 4178 23,91 2,97 4367 23,31 2,95
Fast 40 2654 32,93 3,58 2810 31,85 3,67

46 1827 42,36 3,94 1827 41,40 3,86
34 3421 24,64 4,18 3437 24,53 4,10

Default 40 2343 31,46 5,04 2358 31,30 4,96
46 1723 38,42 5,46 1759 37,58 5,46

Table 12: Pass Two “Full” results, second part: The table shows the number of target
domains used in the annotation process by Pass Two (nTarg, along with the percentage of
contained “Close” and “Distant” targets.

in about a quarter of the test cases, which is rather pleasing. It shows that once Pass
Two gets the correct information, it is able to use it. Another positive observation is
the increase in the percentages of related targets with rising jumpcosts. It shows that
Pass Two rather discards “Unrelated” than related targets.

15.3 Jali and BLAST

The results of the Jumping Alignment algorithm can be easily described and ex-
plained. Figure 42 shows the percentage of successful searches at given minimal
false positive cutoffs. In “Close” homology detection, the curves start at about 87%
successful searches and reach more than 95% at a cutoff of 100. The “Distant” curves
start at about 43% and rise quickly to 70% at a cutoff of 20. They finally reach 80% of
successful searches.
The effect of the three different jumpcost values is negligible, the three curves are al-
most congruent. That is in accordance with earlier evaluations of Jali. They showed
the minor effect of the jumpcost parameter when working on protein domains. It
can be expected that the effect would be much more pronounced with multidomain
proteins.

The BLAST results are shown in Figure 43. The “Close” homology curves start at
slightly below 85% and reach 95% at a minFP cutoff of 100. That value is however
only reached by the curve with the 9/2 cost for gap initiation and extension, the two
other curves reach about 2% less successful searches.
The results show why BLAST is such a popular tool: Given the speed of the method
and the little resources it requires, the quality of the results is very good - close to the
Jali algorithm that can rely on more information. Besides, even though the “Close”
results of both methods are impressive, they nevertheless show that close homology
detection is not always easy, as 3% to 7% of these relationships could not be found

93

Jali : Successful searches at given minFP cutoffs

%

s
u

c
c
e
s
s
fu

l
s
e
a
rc

h
e
s

50

60

70

80

90

100

0 20 40 60 80 100

JC 22

JC 34

JC 46

minFP cutoff

Close

0

20

40

60

80

100

0 20 40 60 80 100

JC 22

JC 34

JC 46

minFP cutoff

Distant

Figure 42: Minimal false positive counts for Jali. Shown is the percentage of successful
searches at given minFP cutoffs for three different jumpcost values. The results are very
good, in “Close” (left) as well as in “Distant” (right) homology detection. The different
jumpcosts have little effect on the results, such that the curve at jumpcost (JC) 34 is mostly
covered by the curce at JC 46.

with a cutoff of 100.

15.4 Comparative Discussion

For convenience, we display the most important data from the preceding three Sec-
tions in Figure 44. It shows the number of successful searches for minimal false
positive counts up to 100. The displayed data is from the “Fast” mode of Passta,
obtained with the large candidate sets of size 1000. The Jali and BLAST results are
so similar that one curve for each method is sufficient in each diagram.

The left diagram shows that Jali is superior in finding closely related targets. At any
of the given cutoffs, its curve is above those of BLAST and Passta. The BLAST curve
is in between the other two. After a cutoff of about twenty, it is however crossed by
the extended Passta curve, where the candidate sets contained all “Close” targets,
i.e. at 100% sensitivity.

The diagram on the right side of Figure 44 compares the “Distant” results ob-
tained by the three methods. The order of the three curves is basically the same as in
the diagram on the left: The Jali curve is always above the one of BLAST, which itself
is clearly above the one of Passta. The rise of Passtas “extended” curve is in this case
however very steep, reaching the BLAST curve at a cutoff of about five and the Jali
curve at a cutoff of about 15. At cutoff 100, the extended Passta curve is reaching

94

BLAST: Successful searches at given minFP cutoffs

%

s
u

c
c
e
s
s
fu

l
s
e
a
rc

h
e
s

50

60

70

80

90

100

0 20 40 60 80 100

9 / 2

10 / 2

11 / 1

minFP cutoff

Close

0

20

40

60

80

100

0 20 40 60 80 100

9 / 2

10 / 2

11 / 1

minFP cutoff

Distant

Figure 43: Minimal false positive counts for BLAST. Shown is the percentage of successful
searches at given minFP cutoffs for three different gapcost combinations. The results are
good, though not as good as those of Jali.

0

20

40

60

80

100

0 20 40 60 80 100

Passta

Passta (Extd.)

Jali

BLAST
50

60

70

80

90

100

0 20 40 60 80 100

Passta

Passta (Extd.)

Jali

BLAST

Comparison of all methods at given minFP cutoffs

%

s
u

c
c
e
s
s
fu

l
s
e
a
rc

h
e
s

minFP cutoff

Close

minFP cutoff

Distant

Figure 44: Minimal false positive counts of all three methods. Shown is the percentage of
successful searches at given minFP cutoffs. The “Close” results are on the left, the “Distant
results on the right side of the Figure. The results are discussed in the main text.

95

90% successful cases.

The results are easy to interpret. Jali reconfirmed that the additional information
in the multiple alignments is necessary to improve the quality in sequence database
searching, not only in remote homology recognition, but also in the detection of
closely related sequences. Regarding Passta, we have to admit that it is unable to
compete with BLAST and Jali in its current setup. The main reason is the suboptimal
first phase, Pass One. Even though Pass One is not a complete failure, it discards too
many of the related targets and too few of the unrelated ones. Nevertheless, the
extended results of Pass Two show the potential of the method. If Pass One worked
better, Passta should be able to compete with BLAST at least.

96

Summary and Outlook

More than 30 years have passed since the first protocols for DNA-sequencing were
published. The continous improvement of these protocols and their automatization
lead to more and more known gene sequences of many different organisms. The
need to analyze and compare these sequences fostered the advent of sequence anal-
ysis, a suptopic within bioinformatics.
One of the key concepts in sequence analysis are alignments of biological sequences.
They present conserved and variable positions of the aligned sequences in an easily
accessible way and can answer many scientific questions, especially in the analy-
sis of evolutionarily related or homologous sequences. Alignments are also a key
technique in homology recognition. Here, a sequence database is searched for ho-
mologous sequences. While most closely related sequences can be found by modern
approaches, remotely related sequences are much harder to find.
The Jumping Alignment algorithm (Jali) is a recently proposed method for database
searching. Its input is a sequence database and a multiple alignment of related se-
quences (a sequence family). Jali compares each sequence in the database to the
multiple alignment, thereby considering the information in the rows of the multiple
alignment. It may however jump to another row of the multiple alignment and use
the information in the alignment colums as well.
Initial evaluations of Jali showed promising results. In this thesis we asked whether
these good results can be reproduced and investigated the reason. We analysed a set
of jumping alignments with underlying secondary structure information for cases
of “structural significance”, where the Jali algorithm seemed to recognize the sec-
ondary structure in the alignment. Even though we found a few examples, these
cases are rather rare. In a second experiment, we simulated the evolution of ten pro-
tein superfamilies and evaluated Jali in close and remote homology recognition on
these families. We monitored several parameters of the Jali algorithm during these
experiments. The results support our assumption that its jumping ability offers Jali
more flexibility in homology recognition, especially in conjunction with suboptimal
alignments.
Nevertheless, Jali is not as flexible as it could be. In addition, it shares certain lim-
itations with many traditional, alignment-based approaches in sequence database
searching. They have to process the input sequences letter by letter, and they also
have to use each letter exactly once. This aggravates finding related sequences with
duplications or rearrangements. Besides, the output of these approaches is usually
a list of hits sorted by an alignment score or an e-value. This list does however
not conveniently show which part of the query aligns best with what target in the
database.
We developed a new method that circumvents these limitations, called Passta. It
tries to “explain” a query sequence with fragments of related sequences in the best
possible way. The fragments we use are Secondary Structure Elements (SSEs) from
the Protein Data Bank (PDB). Passta uses a two-staged protocol: The first stage (Pass
One) serves as a filter. It computes optimal, pairwise alignments of the target SSEs

97

from the database and the query. These alignments are used to select a set of target
domains, the candidate set. This candidate set is submitted to the second stage of
Passta, Pass Two. Here, we compute also co- and suboptimal alignments between
the SSEs and the query. These alignments are represented in a directed acyclic graph.
We compute an optimal path in the graph, which corresponds to a selection of align-
ments. This path may contain rearrangements, duplications, and deletions of one or
more SSEs.
Prior to evaluating Passta, we trained some of its parameters for better performance.
When we chose the Blosum62 threshold of Pass One, we discovered that the three
SSE classes produce different numbers of valid alignments. We could partly explain
these differences with the biological properties of the SSEs. In a second project, we
proposed a way to calibrate the rearrangement cost parameter of Pass Two. This
parameter is also important in genome alignment. During the calibration, we iden-
tified many SCOP families with duplications or circular permutations, a special kind
of rearrangement. We could show that Passta is able to detect well-conserved rear-
rangements and duplications.
Finally, we evaluated Passta together with Jali and BLAST in homology recognition.
The evaluation unfortunately revealed that the current design of Pass One has to be
improved. It discards too many of the related or too few of the unrelated targets.
One of the reasons is that we align short SSEs. Many such alignments are not spe-
cific. We were however able to show the potential of Pass Two: When we added the
true positive targets missed by Pass One to the candidate set, Pass Two was able to
compete with Jali and BLAST. It even outperformed them at minimal false positive
cutoffs over 15.

Our experiments answered some, but not all questions related to Passta. Some fea-
tures worked very well, while others did not meet our expectations. We present a
few ideas to alleviate the shortcomings and to improve the strengths of Passta.

One of the main advantages of Passta is its ability to cope with rearrangements
and duplications. Since we want to retain this ability, Passta will continue to work
with sequence fragments. Using SSEs as fragments is still a good choice, even
though Passta can presently only access a part of their biological information con-
tent. This information could be used to find optimal paths being more feasible
in terms of biology. For example, the hydrophobicity information available in the
PDBFinder II database could be stored for each SSE. Then, alignments of hydropho-
bic SSEs with polar SSEs could receive an extra penalty. We also propose to penalize
alignments of α-helices adjacent to alignments of β-strands, if an aligned residue
with helical secondary structure conformation is immediately followed by a residue
with β-strand conformation. This is in vivo because of steric restrictions impossi-
ble [34].
Passta uses secondary structure specific gap costs when computing the SSE align-
ments. Even though some of the structural information is considered in this way,
we believe that the signal-to-noise ratio could be improved with a set of modern,
secondary structure specific substitution matrices.

98

Even if we had secondary structure specific substitution matrices, the information
content in pairwise alignments is in general rather low. It would be nice to use the
information of multiple sequences, as in Jali. We propose to compute SSE-PSSMs to
improve Pass One. PSSMs18 are profiles of related sequences that are often used in
sequence database searching to facilitate the detection of remotely related sequences,
see e.g. [71]. The sequences for our PSSMs would be syntenic SSEs of all protein do-
mains within a SCOP family. A multiple alignment had to be constructed from these
SSEs, which is then used to compute a SSE-PSSM. Comparing the PSSM to the query
sequence is computationally cheap, and high-scoring random similarities between a
PSSM and the query are less likely than with single SSE sequences.
Another option to improve Pass One is to compute e-values for each SSE. Most of
the small SSEs will however be unable to produce significant alignments at all. Even
though noise would not anymore be a problem for Pass One, it would also lose a
large amount of information.

The last feature we suggest is an “interactive mode”. This mode could either
be realized in a graphical user interface or in dynamic HTML. The purpose of the
interactive mode would allow the researcher to further analyze the Pass Two results.
Interesting targets could be kept in the candidate set, while uninteresting targets
could be dropped, e.g. by selecting or deselecting check boxes. The parameters for
jump-, rearrangement-, and deletion cost could be changed, too. Then Pass Two
could be repeated to gain new insights on the investigated query.

18Position-specific scoring matrices

99

Appendix

First implementation of Pass One

The domain-based filtering in Pass One (see Section 12.2) was preceded by an imple-
mentation that was based on a simplified version of the DAG used in Pass Two (see
Sections 12.1 and 12.3). We shortly describe the procedure along with the associated
problems and use the DAG definitions provided on page 54.

Given the query R, our first Pass One implementation started by selecting all
non-redundant SSEs of length 6 or more from PasstaDB. Then it used the Waterman-
Eggert algorithm [108] to compute pairwise, local, non-intersecting alignments of
R and each SSE. The Waterman-Eggert algorithm first computes the optimal, i.e.
highest scoring alignments, then co- and suboptimal alignments. These alignments
were computed until the MaxScoreRatio dropped below a constant value.
As in Pass Two, the alignments were represented as the vertices in a DAG G. Each
vertex was associated with a 5-tuple of information, α = (b, e, s, t, p). The edges in G

were defined by the basic edge definition provided on page 54.

Then we computed all optimal paths (i.e. with maximal weight(P)) in G, however
without considering rearrangements, jumps, or even deletions. If there was more
than one optimal path, we arbitrarily selected one and extracted all target IDs α(t) of
its vertices. These target IDs could have made up the candidate set for Pass Two, but
we had used only non-redundant SSEs to keep the time demands of the Waterman-
Eggert algorithm reasonable. Since redundant SSEs may also exist in other targets
in the database, we identified those and collected their target IDs as well. The target
IDs in the optimal path and the IDs of corresponding redundant SSEs made up our
candidate set for Pass Two.

The first Pass One implementation was designed in an early stage of the Passta
project. Basically, it was a simplified byproduct of Pass Two. Even though a few
initial tests were promising, certain properties of the graph-based approach are dis-
advantegous. These properties are enumerated below.

1. Valid singleton alignments are always in the optimal path: The optimal path com-
puted during Pass One does always contain all alignments that are not over-
lapped by other alignments, regardless of the alignment score. Hence, corre-
sponding targets will be in the Pass Two candidate set. If there are redundant
entries of the aligned SSE in the database, their target IDs are added to the
candidate set, exaggerating the problem.

2. Long target sequences are preferred candidates: High-scoring alignments are likely
to be in the optimal path. Even a short, local alignment of one long SSE se-
quence can easily remain in the optimal path. The probability to produce a
high scoring alignment is increasing with the length of the target sequence.

3. Multiple hits are not considered: A related target may not be in the candidate set,
even though several of its SSEs produce valid alignments. If none of its SSEs

100

aligns optimal with the query at any b, e tuple, overlapping high-scoring align-
ments may be preferred in the optimal path, even if they come from unrelated
targets.

101

List of Figures

1 Tree of Life . 3

2 Molecular structure of amino acids . 4

3 Two amino acids forming a peptide bond 5

4 Antiparallel β-sheet . 7

5 Pairwise alignment example . 9

6 Three score functions used in pairwise alignment 10

7 Edit matrix in global alignment . 12

8 Selected records of PDB entry “1EFT” 22

9 Hierarchy in the SCOP classification . 24

10 “Vertical information” in a multiple alignment 27

11 “Horizontal information” in a multiple alignment 28

12 Multiple alignment of two subfamilies 28

13 Edit matrix of the Jumping Alignment algorithm 29

14 Phase4 evaluation setup, step 1 . 31

15 Phase4 evaluation setup, step 2 . 32

16 Phase4 evaluation setup, step 3 . 32

17 Jumping alignment with “structural significance” 33

18 Intra and inter relationships in an example superfamily 35

19 Creation of the artificial superfamilies 36

20 Results of the biological setting . 37

21 Distances between the astral40 and astral70 SCOP subsets in sequence
space . 38

22 Jumping alignment showing a questionable classification in SCOP 1.55 39

23 Results of the “random200” setting at different jumpcosts 40

24 Comparison of the “unstructured” to the “random200” results 41

25 Influence of the alignment quality on the “random200” results 42

26 Classic approaches in database searching are not well suited to align
sequences with rearrangements . 45

27 Schematic overview over Passta . 46

28 Schematic view of the “PasstaDB” database 50

29 Example of a Pass One candidate matrix 58

30 The “align & extend” strategy in Pass Two 61

31 Example graph illustrating the two edge definitions used in Pass Two . 62

32 Excerpt of a secondary structure profile from Passta 65

33 Pass One training: Percentage of valid alignments at three Blosum62
thresholds . 67

34 Pass One training: Alignment length distribution 69

102

35 Pass One training: SSE lengths in valid alignments 71

36 Pass One training: Influence of the MSR threshold 72

37 Calibration of rearrangement and deletion costs: experimental setup . 77

38 Calibration of rearrangement and deletion costs: deletion cost inlu-
ence on the rearrangement cost . 78

39 Calibration of rearrangement and deletion costs: Passta alignment
with a circular permutation . 81

40 Comparative Evaluation: the homology relationships in our experi-
mental setup . 86

41 Comparative Evaluation: Pass Two minFP counts 91

42 Comparative evaluation: minimal false positive counts for Jali 94

43 Comparative evaluation: minimal false positive counts for BLAST . . . 95

44 Comparative evaluation: minimal false positive counts for all three
methods . 95

List of Tables

1 Selected records of PDBFinder II entry “101M” 22

2 Description of selected tables and fields in PasstaDB. 51

3 PDB entry “1e4r” split into SSEs, with associated information 57

4 Pass One training: Effect of secondary structure specific gapcosts . . . 70

5 Pass One training: Effect of secondary structure specific gapcosts on
the number of alignments with gaps . 71

6 Pass One training: Influence of the MSR threshold 73

7 Calibration of rearrangement and deletion costs: twenty SCOP fami-
lies with high collinearity thresholds . 80

8 Calibration of rearrangement and deletion costs: Statistical data for
families with circular permutations . 82

9 Evaluation parameters of Pass One . 87

10 Comparative evaluation: Native and filtered Pass One results 90

11 Comparative evaluation: Pass Two “Full” results, first part 92

12 Comparative evaluation: Pass Two “Full” results, second part 93

103

Acknowledgements

First off, I would like to thank my supervisor Prof. Dr. Jens Stoye. When I started at
the Max-Planck Institute for Molecular Genetics in mid 2001, it was probably some
effort to explain the alignment basics to me (I was much more biologist than com-
puter scientist at that time). When I finished with the Jumping alignment project
in early 2004, he allowed me to develop Passta. It was clear that sequence database
searching with small fragments is not easy, his decision was therefore not self-evident.
Besides, I would like to thank him for his support and patience while I prepared this
thesis.
Particular thanks go to two members of our Genome Informatics (GI) group at Biele-
feld University, Hans-Michael Kaltenbach (Mitch) and Klaus-Bernd Schürmann (Klaus).
They were not just colleagues, but friends. I remember many fruitful discussions,
coffee breaks, and also the nice “retreat” of the GI group in 2007.
The Genome Informatics group was a great environment to work in. While one
sometimes hears about mistrust or envy in other scientific groups, I have never seen
any of these problems while being in the group (which was a long time!). That also
held for our junior- and more or less associated groups.
External thanks go to Patrick May from the Zuse Institute, Berlin (ZIB). He helped
me to understand some of the problems associated with PDB entries. Sergio A. de
Carvalho and Mitch did some valuable proofreading for me. When I finished this
thesis, Peter Husemann was so kind to offer a place to sleep and a pizza to eat.
Life is not entirely dedicated to science. I remember some nice partys, a Salsa danc-
ing class experience (“Are you a mathematician?”) and attending the “Viehtreiben”
(a daily fitness class at Bielefeld University) with Sven Rahmann, Veli Mäkinen, Julia
Zakotnik, and others. Last not least I would like to thank my mother Isolde Bannert
for her support and Nicole Treude for her sheer existence.
I am closing with a piece of personal communication. When I complained about the
PDB format for the second or third time, Dr. Elmar Krieger from the PDBFinder II
team wrote:

”I can safely tell you that I’ve been working on a PDB parser for seven years
now, and it’s still not finished [...].”

104

References

[1] M. I. Abouelhoda and E. Ohlebusch. Chaining algorithms for multiple genome
comparison. J. Discr. Alg., 3:321–341, 2005.

[2] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter. Molecular
Biology of the Cell, 4th Ed. Garland Science, 2002.

[3] V. Alesker, R. Nussinov, and H. J. Wolfson. Detection of non-topological motifs
in protein structures. Protein Eng., 9:1103–1119, 1996.

[4] S. F. Altschul and W. Gish. Local alignment statistics. Meth. Enzymol., 266:460–
480, 1996.

[5] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local
alignment search tool. J. Mol. Biol., 215:403–410, 1990.

[6] S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and
D. J. Lipman. Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucl. Ac. Res., 25:3389–3402, 1997.

[7] Y. An and R. A. Friesner. A novel fold recognition method using composite
predicted secondary structures. Proteins, 48:352–366, 2002.

[8] M. A. Andrade, C. Perez-Iratxeta, and C. P. Ponting. Protein repeats: Struc-
tures, functions, and evolution. J. Struct. Biol., 134:117–131, 2001.

[9] A. Andreeva, D. Howorth, S. E. Brenner, T. J. Hubbard, C. Chothia, and A. G.
Murzin. SCOP database in 2004: refinements integrate structure and sequence
family data. Nucl. Ac. Res., 32:D226–D229, 2004.

[10] A. Andreeva, D. Howorth, J.-M. Chandonia, S. E. Brenner, Hubbard T. J.,
C. Chothia, and A. G. Murzin. Data growth and its impact on the SCOP
database: new developments. Nucl. Ac. Res., 36:D419–D426, 2007.

[11] Z. Aung and K. L. Tan. Rapid 3D protein structure database searching using
information retrieval techniques. Bioinformatics, 20:1045–1052, 2004.

[12] C. Bannert. Systematic investigation of jumping alignments. Technical Report,
2003-05, 2003.

[13] C. Bannert and J. Stoye. Evaluation of the jumping alignment algorithm with
artificial and biological data. In Proc. German Conference on Bioinformatics (GCB
2003), pages 21–25, 2003.

[14] C. Bannert and J. Stoye. Protein annotation by secondary structure based
alignments (Passta). In LNBI, volume 3695, pages 79–90, 2005.

[15] R. Bellman. On the theory of dynamic programming. Proc. Natl. Acad. Sci.
USA, 38:716–719, 1952.

105

[16] H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N.
Shindyalov, and P. E. Bourne. The protein data bank. Nucl. Ac. Res., 28:235–242,
2000.

[17] F. C. Bernstein, T. F. Koetzle, G. J. Williams, E. F. Meyer Jr., M. D. Brice, J. R.
Rodgers, O. Kennard, T. Shimanouchi, and M. Tasumi. The protein data bank:
A computer-based archival file for macromolecular structures. J. Mol. Biol.,
112:535–542, 1977.

[18] P. E. Bourne and H. Weissig. Structural Bioinformatics. Wiley Liss, 2003.

[19] S. E. Brenner, C. Chothia, and T. J. Hubbard. Assessing sequence compar-
ison methods with reliable structurally identified distant evolutionary rela-
tionships. Proc. Natl. Acad. Sci. USA, 95:6073–6078, 1998.

[20] S. E. Brenner, P. Koehl, and M. Levitt. The ASTRAL compendium for protein
structure and sequence analysis. Nucl. Ac. Res., 28:254–256, 2000.

[21] M. Brudno, M. Chapman, B. Göttgens, S. Batzoglou, and B. Morgenstern. Fast
and sensitive multiple alignment of large genomic sequences. BMC Bioinfor-
matics, 4:66–77, 2003.

[22] H. Carillo and D. Lipman. The multiple sequence alignment problem in biol-
ogy. SIAM J. Appl. Math., 48:1073–1082, 1988.

[23] D. M. Carrington, A. Auffret, and D. E. Hanke. Polypeptide ligation occurs
during post-translational modification of concanavalin A. Nature, 313:64–67,
1985.

[24] J. M. Chandonia, G. Hon, N. S. Walker, L. Lo Conte, P. Koehl, M. Levitt, and
S. E. Brenner. The ASTRAL compendium in 2004. Nucl. Ac. Res., 32:D189–
D192, 2004.

[25] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms, 2nd Ed. MIT Press / McGraw-Hill, 2001.

[26] M. M. Cox and J. R. Battista. Deinococcus radiodurans - the consummate sur-
vivor. Nat. Rev. Microbiol., 3:882–892, 2005.

[27] A. C. Darling, B. Mau, F. R. Blattner, and N. T. Perna. Mauve: Multiple
alignment of conserved genomic sequence with rearrangements. Genome Res.,
14:1394–1403, 2004.

[28] M. O. Dayhoff, R. M. Schwartz, and B. C. Orcutt. A model of evolutionary
change in proteins. Atlas of Protein Science and Structure, 5:345–352, 1978.

[29] W. Deng, V. Burland, G. Plunkett 3rd, A. Boutin, G. F. Mayhew, P. Liss, N. T.
Perna, D. J. Rose, B. Mau, S. Zhou, D. C. Schwartz, J. D. Fetherston, L. E.
Lindler, R. R. Brubaker, G. V. Plano, S. C. Straley, K. A. McDonough, M. L.

106

Nilles, J. S. Matson, F. R. Blattner, and Perry R. D. Genome sequence of Yersinia
pestis KIM. J. Bacteriol., 184:4601–4611, 2002.

[30] C. Dodge, R. Schneider, and C. Sander. The HSSP database of protein
structure-sequence alignments and family profiles. Nucl. Ac. Res., 26:313–315,
1998.

[31] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological sequence analysis:
probabilistic models of proteins and nucleic acids. Cambridge University Press,
1998.

[32] R. D. Finn, J. Mistry, B. Schuster-Böckler, S. Griffiths-Jones, V. Hollich, T. Lass-
mann, S. Moxon, M. Marshall, A. Khanna, R. Durbin, S. R. Eddy, E. L.
Sonnhammer, and A. Bateman. Pfam: clans, web tools and services. Nucl.
Ac. Res., 34:D247–D251, 2006.

[33] W. M. Fitch. Homology - a personal view on some of the problems. Trends
Genet., 16:227–231, 2000.

[34] N. C. Fitzkee and G. D. Rose. Steric restrictions in protein folding: An α-helix
cannot be followed by a contigous β-strand. Prot. Sci, 5:633–639, 2004.

[35] A. Fliess, B. Motro, and R. Unger. Swaps in protein sequences. Proteins, 48:377–
387, 2002.

[36] D. Frishman and P. Argos. Knowledge-based protein secondary structure as-
signment. Proteins, 23:566–579, 1995.

[37] A. J. Gibbs and G. A. McIntyre. The diagram, a method for comparing se-
quences. Its use with amino acid and nucleotide sequences. Eur. J. Biochem.,
16:1–11, 1970.

[38] O. Gotoh. An improved algorithm for matching biological sequences. J. Mol.
Biol., 162:705–708, 1982.

[39] R. E. Green and S. E. Brenner. Bootstrapping and normalization for enhanced
evaluations of pairwise sequence comparison. Proc. IEEE, 90:1834–1847, 2002.

[40] A. J. Griffiths, J. H. Miller, D. T. Suzuki, R. C. Lewontin, and W. M. Gelbart.
An Introduction to Genetic Analysis (6th ed.). W.H. Freeman and Company, New
York, 1996.

[41] D. Gusfield, K. Balasubramanian, and D. Naor. Parametric optimization of
sequence alignment. Algorithmica, 12:312–326, 1994.

[42] B. Hao, W. Gong, T. K. Ferguson, C. M. James, J. A. Krzycki, and M. K. Chan.
A new UAG-encoded residue in the structure of a methanogen methyltrans-
ferase. Science, 296:1462–1466, 2002.

107

[43] S. Henikoff. Scores for sequence searches and alignments. Curr. Opi. Struct.
Biol., 6:353–359, 1996.

[44] S. Henikoff and G. Henikoff. Amino acid substitution matrices from protein
blocks. Proc. Natl. Acad. Sci., 89:10915–10919, 1992.

[45] J. Heringa. Computational methods for protein secondary structure prediction
using multiple sequence alignments. Curr. Protein Pept. Sci., 1:273–301, 2000.

[46] R. W. Hooft, C. Sander, and G. Vriend. The PDBFINDER database: A summary
of PDB, DSSP and HSSP information with added value. CABIOS, 12:525–529,
1996.

[47] J.-T. Huang and M.-T. Wang. Secondary structural wobble: the limits of protein
prediction accuracy. Biochem. Biophys. Res. Commun., 294:621–625, 2002.

[48] X. Huang and W. Miller. A time-efficient, linear-space local similarity algo-
rithm. Adv. Appl. Math., 12:337–357, 1991.

[49] T. Jaakkola, M. Diekhans, and D. Haussler. A discriminative framework for
detecting remote protein homologies. J. Comp. Biol., 7:95–114, 2000.

[50] W. Kabsch and C. Sander. Dictionary of protein secondary structure: Pat-
tern recognition of hydrogen-bonded and geometrical features. Biopolymers,
22:2577–2637, 1983.

[51] S. Karlin and S. F. Altschul. Methods for assessing the statistical significance
of molecular sequence features by using general scoring schemes. Proc. Natl.
Acad. Sci., 87:2264–2268, 1990.

[52] K. Karplus, C. Barrett, and R. Hughey. Hidden markov models for detecting
remote protein homologies. Bioinformatics, 14:846–856, 1998.

[53] L. A. Kelley. Enhanced genome annotation using structural profiles in the
program 3D-PSSM. J. Mol. Biol., 299:499–520, 2000.

[54] W. J. Kent. BLAT – the BLAST-like alignment tool. Genome Res., 12:656–664,
2002.

[55] C. Kimchi-Sarfaty, J. Mi Oh, I.-W. Kim, Z. E. Sauna, A. M. Calcagno, S. V. Am-
budkar, and M. M. Gottesman. A “silent” polymorphism in the MDR1 gene
changes substrate specifity. Science, 315:525–528, 2007.

[56] I. Koch, T. Lengauer, and E. Wanke. An algorithm for finding maximal com-
mon subtopologies in a set of protein structures. J. Comput. Biol., 3:289–306,
1996.

[57] K. K. Koretke, R. B. Russell, R. R. Copley, and A. N. Lupas. Fold recognition
using sequence and secondary structure information. Proteins., S3:141–148,
1999.

108

[58] A. Krause and M. Vingron. A set-theoretic approach to database searching
and clustering. Bioinformatics, 14:430–438, 1998.

[59] Justina Krawczyk. Analyse von Sekundärstrukturelementen in Bezug auf ihre
Konformation (in German). Bachelor thesis, Technische Fakultät, Universität
Bielefeld, Germany, September 2004.

[60] S. Kurtz, A. Phillippy, A. L. Delcher, M. Smoot, Shumway M., C. Antonescu,
and S. L. Salzberg. Versatile and open software for comparing large genomes.
Genome Biol., 5:R 12, 2004.

[61] I. Letunic, R. R. Copley, B. Pils, S. Pinkert, J. Schultz, and P. Bork. SMART 5:
Domains in the context of genomes and networks. Nucl. Ac. Res., 34:D257–
D260, 2006.

[62] R. A. Lippert, X. Zhao, L. Florea, C. Mobarry, and S. Istrail. Finding anchors
for genomic sequence comparison. Proc. RECOMB’04, pages 233–241, 2004.

[63] S. T. Lovett. Resurrecting a broken genome. Nature, 443:517–519, 2006.

[64] M. T. Madigan, J. M. Martinko, and J. Parker. Brock Biology of Microorganisms,
8th ed. Prentice Hall, Inc., 1997.

[65] M. Margulies et al. Genome sequencing in microfabricated high-density picol-
itre reactors. Nature, 437:376–380, 2005.

[66] A. C. Martin. The ups and downs of protein topology: rapid comparison of
protein structure. Protein Eng., 13:829–837, 2000.

[67] A. M. Maxam and W. Gilbert. A new method for sequencing DNA. Proc. Natl.
Acad. Sci., 74:560–564, 1977.

[68] P. May, S. Barthel, and I. Koch. PTGL - a web-based database application for
protein topologies. Bioinformatics, 20:3277–3279, 2004.

[69] K. Mizuguchi, C. M. Deane, T. L. Blundell, and J. P. Overington. HOMSTRAD:
a database of protein structure alignments for homologous families. Prot. Sci.,
7:2469–2471, 1998.

[70] B. Morgenstern, A. Dress, and T. Werner. Multiple DNA and protein sequence
alignment based on segment-to-segment comparison. Proc. Natl. Acad. Sci.,
93:12098–12103, 1996.

[71] D. W. Mount. Bioinformatics: Sequence and Genome Analysis (2nd Ed.). Cold
Spring Harbor, 2004.

[72] T. Müller, R. Spang, and M. Vingron. Estimating amino acid substitution mod-
els: A comparison of dayhoff’s estimator, the resolvent approach and a maxi-
mum likelihood method. Mol. Biol. Evol., 19:8–13, 2002.

109

[73] A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia. SCOP: A structural
classification of proteins database for the investigation of sequences and struc-
tures. J. Mol. Biol., 247:536–540, 1995.

[74] S. B. Needleman and C. D. Wunsch. A general method applicable to the search
for similarities in the amino acid sequence of two proteins. J. Mol. Biol., 48:443–
453, 1970.

[75] H. D. Niall. Automated Edman degradation: the protein sequenator. Methods
Enzymol., 27:942–1010, 1973.

[76] C. A. Orengo, A. D. Michie, S. Jones, D. T. Jones, M. B. Swindells, and J. M.
Thornton. CATH - a hierarchic classification of protein domain structures.
Structure, 5:1039–1108, 1997.

[77] W. R. Pearson. Rapid and sensitive sequence comparison with FASTP and
FASTA. volume 183, pages 63–98. 1990.

[78] W. R. Pearson. Searching protein sequence libraries: Comparison of the sensi-
tivity and selectivity of the Smith-Waterman and FASTA algorithms. Genomics,
11:635–650, 1991.

[79] C. P. Ponting and R. B. Russell. Swaposins: Circular permutations within
genes encoding saposin homologues. Trends Biochem. Sci., 20:179–180, 1995.

[80] K. R. Rasmussen, J. Stoye, and E. W. Myers. Efficient q-gram filters for finding
all epsilon-matches over a given length. J. Comput. Biol., 13:296–308, 2006.

[81] M Rehmsmeier. Phase4: Automatic evaluation of database search methods.
Brief. Bioinform., 3:342–352, 2002.

[82] M Rehmsmeier and M. Vingron. Phylogenetic information improves homol-
ogy detection. Proteins, 45:360–371, 2001.

[83] C. A. Rohl, C. E. Strauss, K. M. Misura, and D. Baker. Protein structure predic-
tion using Rosetta. Meth. Enzymol., 383:66–93, 2004.

[84] B. Rost. Twilight zone of protein sequence alignments. Prot. Eng., 12:85–94,
1999.

[85] R. B. Russell, R. R. Copley, and G. J. Barton. Protein fold recognition by map-
ping predicted secondary structures. J. Mol. Biol., 259:349–365, 1996.

[86] N. Saitou and M. Nei. The neighbor-joining method: a new method for recon-
structing phylogenetic trees. Mol. Biol. Evol., 4:406–425, 1987.

[87] M. Sammeth and J. Heringa. Global multiple alignment with repeats. Proteins,
64:263–274, 2006.

[88] F. Sanger. The terminal peptides of insulin. Biochem. J., 45:563–574, 1949.

110

[89] F. Sanger, S. Nicklen, and A. R. Coulson. DNA sequencing with chain-
terminating inhibitors. Proc. Natl. Acad. Sci., 74:5463–5467, 1977.

[90] R. Sayle and E. Milner-White. Rasmol: biomolecular graphics for all. Trends
Biochem. Sci., 20:374–376, 1995.

[91] J. Schultz, F. Milpetz, P. Bork, and C. P. Ponting. SMART, a simple modular ar-
chitecture research tool: Identification of signalling domains. Proc. Natl. Acad.
Sci., 95:5857–5864, 1998.

[92] F. Servant, C. Bru, E. Courcelle, J. Gouzy, D. Peyruc, and D. Kahn. ProDom: au-
tomated clustering of homologous domains. Brief. Bioinform., 3:246–251, 2002.

[93] J. Shi, T. L. Blundell, and K. Mizuguchi. FUGUE: Sequence-structure homol-
ogy recognition using environment-specific substitution tables and structure-
dependent gap penalties. J. Mol. Biol., 310:243–257, 2001.

[94] E. Shih and M.-J. Hwang. Alternative alignments from comparison of protein
structures. Proteins, 56:519–527, 2004.

[95] K. T. Simons, C. Kooperberg, E. Huang, and D. Baker. Assembly of protein ter-
tiary structures from fragments with similar local sequences using simulated
annealing and Bayesian scoring functions. J. Mol. Biol., 268:209–225, 1997.

[96] T. F. Smith and M. S. Waterman. Identification of common molecular subse-
quences. J. Mol. Biol., 147:195–197, 1981.

[97] R. Spang, M. Rehmsmeier, and J. Stoye. A novel approach to remote homology
detection: Jumping alignments. J. Comp. Biol., 9:747–760, 2002.

[98] R. Spang and M. Vingron. Statistics of large scale sequence searching. Bioinfo-
matics, 14:279–284, 1998.

[99] R. Spang and M. Vingron. Limits of homology detection by pairwise sequence
comparison. Bioinfomatics, 17:338–342, 2001.

[100] J. Stoye. Multiple sequence alignment with the Divide-and-Conquer method.
Gene, 211:GC45–GC56, 1998.

[101] J. Stoye, D. Evers, and F. Meyer. Rose: generating sequence families. Bioinfor-
matics, 14:157–163, 1998.

[102] A. R. Subramanian, M. Kaufmann, and B. Morgenstern. DIALIGN-TX: greedy
and progressive approaches for segment-based multiple sequence alignment.
Algorithms for Molecuar Biology, 3:6–17, 2008.

[103] C. Tanford. The hydrophobic effect and the organization of living matter. Sci-
ence, 200:1012–8, 1978.

111

[104] W. R. Taylor. Dynamic sequence databank searching with templates and mul-
tiple alignment. J. Mol. Biol., 280:375–406, 1998.

[105] J. D. Thompson, D. J. Higgins, and T. J. Gibson. CLUSTALW: Improving
the sensitivity of progressive multiple sequence alignment through sequence
weighting, position-specific gap penalties and weight matrix choice. Nucl. Ac.
Res., 22:4673–4680, 1994.

[106] M. Vingron. Near-optimal alignment. Curr. Opi. Struct. Biol., 6:346–352, 1996.

[107] M. S. Waterman. Mathematical analysis of molecular sequences. Bull. Math.
Biol., 51:1–194, 1989.

[108] M. S. Waterman and M. Eggert. A new algorithm for best subsequence align-
ments with application to tRNA-rRNA comparisons. J. Mol. Biol., 197:723–728,
1987.

[109] J. Weiner 3rd, G. Thomas, and E. Bornberg-Bauer. Rapid motif-based predic-
tion of circular permutations in multi-domain proteins. Bioinformatics, 21:932–
937, 2005.

[110] J. D. Westbrook and P. E. Bourne. STAR/mmCIF: An ontology for macro-
molecular structure. Bioinformatics, 16:159–168, 2000.

[111] G. Witte, C. Urbanke, and U. Curth. Single-stranded DNA-binding protein of
Deinococcus radiodurans: a biophysical characterization. Nucl. Ac. Res., 33:1662–
1670, 2005.

[112] Y. Ye, L. Jaroszewski, W. Li, and A. Godzik. A segment alignment approach to
protein comparison. Bioinformatics, 19:742–749, 2003.

[113] F. Zinoni, A. Birkmann, T. C. Stadtman, and A. Bock. Nucleotide sequence and
expression of the selenocysteine-containing polypeptide of formate dehydro-
genase (formate-hydrogen-lyase-linked) from Escherichia coli. Proc. Natl. Acad.
Sci., 83:4650–4654, 1986.

112

