CSO BROADBAND MOLECULAR LINE SURVEYS II: INITIAL CORRELATION ANALYSIS RESULTS FOR COMPLEX ORGANIC MOLECULES

James L. Sanders, Mary L. Radhuber, Jacob C. Laas, Brian M. Hays, Trevor N. Cross, Susanna L. Widicus Weaver

Department of Chemistry, Emory University, Atlanta, GA 303222

Darek C. Lis

Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125

Unbiased Molecular Line Surveys

- Probe multiple transitions in a broad energy window and overlap multiple molecules
- Test models with complete chemical and physical understanding of sources and compare with observations
- Quantify formation pathways of complex organic species

Garrod, Widicus Weaver, Herbst, ApJ 2008

Molecular Targets

- Complex organic molecules (COMs) with specific functional groups that trace formation pathways and physical conditions
- Products of Gas Phase and Grain Surface Chemistry
- Initial constraints of formation pathways associated can be determined through these molecules

 $N \equiv C \equiv 0$ H₃C H₂C Dimethyl Ethanol Isocyanic Ether Ethyl Cyanide Acid $H_{2}C = 0$ H₂C Formaldehyde Methyl Sulfur Methanol Cyanide Dioxide CH₂ Vinvl Methyl Formic Glycolaldehyde Cyanide Formate Acid

Grain Surface Radical Chemistry

$H_2O + hv$	$ \longrightarrow OH + H \\ H_2 + O $	hv M
$CH_3OH + hv$	$\begin{array}{c} & \\ \hline \\$	
$NH_3 + hv$	\longrightarrow NH ₂ + H	
$H_2CO + hv$	→ HCO + H	H ₂ O, CO, CH ₃ OH, NH ₃ , H ₂ CO Ice mantle

$HCO + CH_2OH$	
$HCO + CH_3O$	
HCO + OH	
$HCO + CH_3$	
$HCO + NH_2$	
$CH_3 + CH_3O$	
$CH_3 + NH_2$	
$CH_3 + CH_2OH$	
$CH_2OH + CH_2OH$	

 $\begin{array}{c} & \text{HOCH}_2\text{CHO} \\ & \text{CH}_3\text{OCHO} \\ & \text{HCOOH} \\ & \text{CH}_3\text{CHO} \\ & \text{CH}_3\text{CHO} \\ & \text{H}_2\text{NCHO} \\ & \text{CH}_3\text{OCH}_3 \\ & \text{CH}_3\text{NH}_2 \\ & \text{CH}_3\text{CH}_2\text{OH} \\ & \text{HOCH}_2\text{CH}_2\text{OH} \end{array}$

GlycolaldehydeMethyl FormateFormic AcidAcetaldehydeFormamideDimethyl EtherMethyl AmineEthanolEthylene Glycol

Sources

- Shocked Regions, Hot Cores, Hot Corinos, Quiescent Clouds
- Integration to ~ 30 mK maximum, ~ 20 mK average , 1 MHz resolution
- Frequency Coverage Ranges from 30 GHz to 50 GHz for a total of 1.3 THz of spectral data

NGC1333 2A	NGC2264	G10.47+0.03	G34.30+0.20
NGC1333 2B	NGC7538	G12.21-0.10	G45.47+0.05
NGC1333 4A	B1-b	G12.91-0.26	G75.78+0.34
NGC1333 4B	L1448MM	G19.61-0.23	GCM +0.693-0.027
NGC6334-29	L1157	G24.33+0.11	W3
NGC6334-38	HH80	G24.78+0.08	W51
NGC6334-43	SgrB2NLMH	G29.96-0.02	W75N
NGC6334-IN	Orion	G31.41+0.31	DR21(OH)

New Receiver, New Results

- FFTS Spectrometer
- Auto Tuning
- Increases Scan Efficiency Drastically
- Processing Data
 - Deconvolve Double Side
 Band Spectra
 - Clean Spectra
 - Set Baselines

CSO Line Surveys

32 finished surveys: 16 analyzed, 8 being analyzed, 8 getting ready to be analyzed

Studying What Affects Chemical Diversity

- What Influences Chemistry and Molecular Diversity
 - Physical Conditions
 - Parent Cloud
- Compare Sources
 - Evolved Differently
 - Trace Time Scales
- W75
 - W75N, DR21(OH)/W75S
- NGC 6334
 - 29, 38, 43, IN
- NGC 1333
 - 2A, 2B and 4A, 4B

CSO Spectrum and Simulation

Simulation for G31.41+0.31 created with GOBASIC in the MATLAB program suite

Methanol vs Methyl Formate

Methanol vs Formaldehyde

Methanol vs Dimethyl Ether

Formaldehyde vs Methyl Formate

Methanol vs Isocyanic Acid

Methanol vs Sulfur Dioxide

Glycolaldehyde

Follow-Up Imaging

Orion-KL Temperature maps with molecular emission contours

Contours mark molecule column density, color map marks cloud temperature

Widicus Weaver and Friedel, ApJ, 2012.

Conclusions and Future Work

- Star forming regions contain many complex organic species, differing in complexity from region to region
- Analysis fits were performed using the GOBASIC program suite and assumptions of Local Thermodynamic Equilibrium
- We observe correlations between molecules with similar chemistries and some unexpected correlations
- Analyze the remaining sources for all detected complex ISM species
- Refine further searches for previously undetected surveys for which we have laboratory spectral data
- Follow-up imaging studies using CARMA and ALMA are necessary to resolve source structure and size

Acknowledgements

The Widicus Weaver Group: Bridget DePrince, Brian Hays, Jake Laas, Mary Radhuber Trevor Cross, Luyao Zou, Nadine Wehres

CSO/Caltech: Matthew Sumner, Frank Rice, Jonas Zmuidzinas, Tom Phillips, Geoff Blake, Simon Radford, CSO Staff & TAC

HIFI/HEXOS: Ted Bergin, Nathan Crockett, Claudia Comito, Peter Schilke, Martin Emprechtinger, Steve Lord

UIUC/CARMA: Doug Friedel

Molecular Detections and Abundances

Cyanides

Grain Surface Tiered Chemistry

- MeOH vs EtOH
- Formic Acid and Formaldehyde
- Temperatures tell us about desorption temps -> grain surface binding energy

Follow-Up Imaging

Constraining Column Density with Source Size Beam Dilution: W3

Sulfur Dioxide

Ethyl Cyanide

Methyl Formate

Acetone