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Introduction

Loosely speaking, a graph G is embeddable into a surface S if G can be drawn on S in a
way that each intersection of edges is a single vertex. Questions which arise from the topic
of embeddability are numerous. The most obvious probably is, whether an embedding of a
given graph G for a surface S exists. Another well known problem in graph theory, is the
question of possible colorings of a graph, which is known to be embeddable on a surface:
The Four-Color-Theorem for R2 and the Map-Color-Theorem for surfaces of higher genus.

In 1930 Kuratowski answered the question about embeddability of graphs for the plane
by proving that each graph, which does not contain a subdivision of a K3,3 or a K5, is
embeddable into the plane [Kur30]. A graph G thereby is a subdivision of a graph H if G
contains additional vertices of degree two, which divide edges in H. A reformulation of
Kuratowski’s theorem says that each graph is embeddable into the plane, if it does not
have a K3,3 or a K5 as a topological minor. Whereby a graph H is a topological minor of
a graph G if and only if H can be obtained from G by a series of contractions of edges
with at least one end-vertex of degree less or equal to two and deletion of isolated vertices.
Wagner answered the same question, but instead of the topological minor relation he used
the minor relation, which allows contractions of edges with end-vertices of every degree.
In the case of embeddings into the plane, both relations lead to the same graphs, the K3,3
and the K5, which can never be found in a planar graph.

From the results of Kuratowski and Wagner, we can also conclude, that in order to classify
the embeddable graphs for the plane, it is sufficient to characterize the non-embeddable
graphs and for this purpose it is even sufficient to characterize the smallest non-embeddable
graphs for the plane. If these smallest graphs are no minors in a graph it can be embedded
into the plane. These techniques for characterization of embeddability do not only work for
the plane but for every surface S. Instead of finding all embeddable graphs it is sufficient
to find the smallest non-embeddable graphs, namely the graphs which do not have a minor
that is also not embeddable.

The question arises, whether theorems like the ones from Kuratowski and Wagner can also
be proven for other surfaces than the plane, and especially if one can find a list of smallest
non-embeddable (irreducible) graphs for each surface. The question whether this list is
finite or not, is known as Wagner’s conjecture, although Wagner insisted that he never
conjectured a positive solution, but he discussed this matter with students in the 1960’s.
Robertson and Seymour worked on this question from 1983 to 2004 and they proved it in
a series of papers. The Robertson-Seymour-Theorem (or graph minor theorem) states that
the finite graphs are well-quasi-ordered by the minor relation 4. From this theorem we can
draw the following conclusion: Consider a specific graph property (e.g. embeddability on
a given surface), so that each minor of a graph with this property also obeys this property.
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Introduction

Then the Kuratowski set, which represents the smallest minors without this property, is
finite. The Kuratowski set of embeddability in the plane is {K3,3, K5}. More generally we
can say, that for every surface S there exists a finite set of graphs H1, . . . , Hn such that a
graph is embeddable in S if and only if it contains none of the graphs H1, . . . , Hn as a
minor. ([RS90], [RS04]).

As we will always be speaking about the set of smallest graphs, not embeddable into a
given surface S, it is of great use to define M1(S) as the set of graphs, which are the
irreducible graphs with respect to the topological minor-relation and M2(S) as the set
of the irreducible graphs with respect to the minor-relation. The number of graphs in
M1 and M2 will be very large for surfaces other than the plane. In order to reduce the
number of graphs, which have to be found for the characterization of the graphs which are
not embeddable on a given surface, Bodendiek, Schumacher and Wagner extended the
minor-relations ([BSW81b]). The relations they used when researching the question of
embeddability for different surfaces are:

R0: An edge or an isolated vertex of G is deleted.

R1: An edge of G is contracted, the degree of at least one vertex incident to this edge
equals two.

R2: An edge of G is contracted, the degree of each of the two vertices incident to this
edge is at least three.

R3: A vertex v of degree three in G is deleted and the three incident edges (v, v1), (v, v2),
(v, v3) of G are replaced by the triangle (v1, v2), (v2, v3), (v3, v1).

R4: An edge (v1, v2) in G, where v1 and v2 both have degree three is selected. The edge
(v1, v2) is divided by a new vertex v′ and the transformation R3 is applied to both of
the vertices v1 and v2.

Obviously the relations R0 and R1 represent the topological minor relations and the
relations R0, R1 and R2 represent the minor relations. The additional relations also seem
to be useful for the reduction of the number of irreducible graphs, as K3,3 can be reduced
to K5 by application of R4.

The graph substitutions associated to the relations R1, R3 and R4 are well known in the
theory of electrical networks. The relation R1 corresponds to the reduction of resistors
in series and R3 to the well known Wye-Delta-transform. The substitution given by R4
is a special form of applying Wye-Delta twice avoiding prior subdivision. In this context
Epifanov proved that every planar network (or graph), satisfying a certain connectivity
condition, can be reduced to a single edge (single resistor) by a series of serial, parallel
and Wye-Delta transformation [Epi66]. An elementary proof of this theorem was also
published by Truemper [Tru89]. If we also allow deletion of leaves, we can even say that
each planar graph can be reduced to a single vertex by applying a series of these relations.

The same way the sets M1(S) and M2(S) are defined for the minimal bases of irreducible
graphs for a surface S with respect to the relations R0, R1 and R0, R1, R2 respectively, we
can in general define, that a graph G is an element of Mi(S), for i ∈ {0, . . . , 4}, if G is
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not embeddable into S and Rj(G), j ∈ {0, . . . , i} is embeddable. For these minimal bases
it is obvious that

M0 ⊇M1 ⊇M2 ⊇M3 ⊇M4

applies. The basis M2 is finite as shown by Robertson and Seymour and this can also
be shown for M1; M0 will always be infinite. For the characterization of the irreducible
graphs for a surface S it is sufficient to find the graphs in M4(S), as the other bases
M3(S),M2(S) and M1(S) can be reconstructed by application of the inverse relations of
Ri, R−1

i for i ∈ {1, 2, 3, 4}.

We already know that for the plane the identity

M1(R2) = M2(R2) = {K3,3, K5}

holds. Now we can show, that the identities

M3(R2) = {K3,3, K5} and M4(R2) = {K5}

also hold. These are all results for the plane.

For surfaces of higher genus the question of irreducible graphs is much more complex.
Bodendiek, Schumacher and Wagner worked on the torus, the spindle surface and the
projective plane. For the torus S̃1, they found 23 graphs in M4(S̃1) but could not show
that these are all graphs [BW86]. They also published some results on the spindle-surface,
but again could not show that they found the complete list of irreducible graphs [BSW85].
For the projective plane they found 12 irreducible graphs in M4(S1) and they have also
proven, that this is the complete list of irreducible graphs in M4(S1). Glover, Huneke
and Wang also worked on the irreducible graphs of the projective plane and they have
constructed 103 irreducible graphs which are in M1(S1) [GHW79]. Archdeacon has later
shown that this list of 103 graphs in M1(S1), reduced to 35 graphs in M2(S1), is complete
[Arc81].

In this thesis we want to find a class of irreducible graphs for the Klein surface S2. In
[BSW85] Bodendiek, Schumacher and Wagner have shown that the minimal basis M1(S2)
can be constructed by subdivision of graphs in M1(S1) and attachment of certain relative
components. In our case the subdivisions will be equal to the graphs themselves and the
relative components will always be of the form of (a subgraph of) the K5. As we know
that for the characterization of irreducible graphs, it is sufficient to find the minimal basis
M4(S2), we will only concentrate on this set of graphs.

Before we immerse into the concrete construction of irreducible graphs of the Klein surface,
the theoretical background and the important definitions and theorems are given in
Chapter 1. In Chapter 1.3 we look at all 103 graphs from M1(S1) and we show how these
graphs are linked to each other and which minimal bases Mi(S1), i ∈ {1, 2, 3, 4} they are
elements of. After the characterization of these graphs, we start with our constructions.

In Chapter 2 we will begin with the graphs, which consist of graphs from M4(S1) and
(a subgraph of) the K5 as a relative component. Disconnected graphs, as well as graphs
with one and two base-points can be construted for M4(S2). We will show, which graphs,
constructed in this way, are elements of M4(S2) and that none of the graphs with three
base-points is element of M4(S2).
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Introduction

In Chapter–3 we will then only have a closer look at the graphs in M3(S1) which do not
already lie in M4(S1). Regarding these graphs we only have to consider attachment of
relative components to vertices, which are important for the application of the relation R4
transforming the graphs into other ones of M3(S1) or M4(S1). The respective graphs and
possible attachments of relative components are dealt with in this chapter.

Chapter 4 basically has the same purpose as the previous one, it only deals with the
graphs from M2(S1) which are not already elements of M3(S1). The relative component is
only attached to vertices which are important for the application of the relation R3 that
transforms the graphs into other ones of M2(S1), M3(S1) or M4(S1). In both chapters we
find some graphs, which do lie in M4(S2) and we will show that all other graphs, which
are constructed the same way, are not elements of M4(S2).

In Chapter 5 we will consider the growth-rate of the number of irreducible graphs for
surfaces of higher genus. We will proof that the number of irreducible graphs for surfaces
Sg of genus g grows exponentially with g, to a basis greater than 2.9.

The main result of this thesis is, that the class of graphs we are interested in, consists of
83 elements. The adjacency-lists of these 83 graphs can be found in the Appendix.

iv



1 Theory

In this chapter we will give the necessary theory about embeddability of graphs, the method
of relative components and some theorems which are of importance for the construction
of irreducible graphs. We will take a closer look at the 103 irreducible graphs of the
projective plane. We will also develop some tools, which will be usefull when construction
irreducible graphs in the subsequent chapters. The main result of this thesis will be stated
at the end of this chapter.

1.1 Graphs, the Klein surface and embeddability

In this section, we will look at the three important terms in the title of this thesis, graphs,
the Klein surface and embeddability.
The graphs we will look at, are simple graphs without loops and parallel edges, which are
defined as follows:

Definition
A simple (finite) graph G is an ordered tuple G = (V,E), where V is a (finite) set of
vertices and E a (finite) set of edges, with E =

(
V
2

)
.

Notation 1.1
We will denote vertices v ∈ V with numbers and edges e ∈ E between vertices v1 and v2
will, in abuse of notation, be written as e = (v1, v2).

Figure 1.1: The Klein surface
1



Chapter 1. Theory

The Klein surface is a non-orientable surface of genus two. We will always draw the Klein
surface by using the fundamental polygon as drawn in Figure 1.2 just without drawing
the orientation of the sides every time. The orientation of the boundaries can also be
exchanged.

Figure 1.2: The fundamental polygon of the Klein surface

If we cut the Klein surface into two parts, cutting along the dashed lines as ahown in
Figure 1.3, we get two Möbius strips. This knowledge is of great use for the construction
of irreducible graphs.

Figure 1.3: The Klein surfaces can be cut into two Möbius strips

Every graph, which is drawn within a rectangle in this thesis, is meant to be drawn on
the fundamental polygon of the Klein surface, if not otherwise stated. Oftentimes we will
only use the Möbius-structure of the Klein surface, meaning the left and right edges of the
fundamental polygon are not passed. Every graph which is not drawn within a rectangle,
is meant to be drawn on the projective plane.

The Embeddability of graphs is the third term in the title of this thesis and it is defined as
follows:

Definition
Let S be a surface (a connected two-dimensional manifold) and G = (E, V ) be a graph.
An embedding ε : G → S of a graph G in S is a pair ε = (εV , εE) of maps with the
following properties:

1. εV maps the vertex set V injectively to S.

2. εE maps the edge set E onto the set of simple curves γ : [0, 1]→ S.

3. The end-vertices of the curve εE(e) are the pictures of the end-vertices of e with
εV : εE(e)({0, 1}) = εV (Φ(e)).

4. The curves εE(E) are without crossings: εE(e1)((0, 1)) ∩ ε(e2)((0, 1)) = ∅:

A well known theorem, which is important when working on embeddings of graph is The
Jordan Curve Theorem:

2



1.2. Definitions and Theorems

Theorem 1.2 (Jordan Curve Theorem)
Any simple closed curve C in the plane divides the plane into exactly two arcwise connected
components. Both of these regions have C as the boundary.

Although this theorem only applies to embeddings in the plane, it is also of great use for
embeddings on surfaces of higher genus, as for each point on these surfaces there exists a
neighborhood homeomorphic to the plane.

1.2 Definitions and Theorems

In this section we will give definitions and theorems, which are important for the con-
struction of irreducible graphs. This section is mainly based on [BSW81c], [BSW81a],
[BSW81b] and [BW86].

Throughout we will write Γ0 to denote the class of all simple, finite, and undirected
graphs. On the class Γ0 we define five elementary relations Ri with Ri ⊆ Γ0 × Γ0 and
i ∈ I = {0, 1, 2, 3, 4} as follows:

Definition
Let Γ be a subclass of Γ0 and G, G′ be graphs in Γ ⊆ Γ0 for which we define the following
operations:

The ordered pair (G,G′) ∈ Γ × Γ belongs to the elementary relation Ri, i ∈ I, if and only
if G′ results from G through the i-th transformation:

R0: An edge e or an isolated vertex v of G is deleted.

R1: An edge e of G is contracted, the degree of at least one vertex of e equals two.

R2: An edge e of G is contracted, the degree of each of the two vertices of e is at least
three.

R3: A vertex v of degree three in G is deleted and the three to v adjacent edges
(v, v1), (v, v2), (v, v3) of G are replaced by the triangle (v1, v2), (v2, v3), (v3, v1).

R4: An edge (v1, v2) in G, v1 and v2 both have degree three, is selected. The edge (v1, v2)
is divided by a new vertex v′ and the transformation R3 is applied to both of the
vertices v1 and v2.

−→R2 : −→R3 :

−→R4 :

Figure 1.4: Relations R2, R3 and R4

3



Chapter 1. Theory

Notation 1.3
When applying these relations on a graph G, we will simply write Ri(G), with i ∈
{0, 1, 2, 3, 4}. If we want to indicate which vertex v or edge e of G is affected by the
relation, we will also write Ri(G)(v) or Ri(G)(e). For the relation R0 we will also in short
use R0(G)(e) = G− e or R0(G)(v) = G− v. For R1(G)(e) and R2(G)(e) we will also write
G/e.

On the basis of these five relations Ri, i ∈ I, we define a partial order <i:

Definition
Let G and G′ be two graphs in an arbitrary set of graphs Γ 6= ∅. Then G <i G′, for
i ∈ I, holds, if and only if either G = G′ already applies or a (finite) sequence of graphs
G1, G2, . . . , Gn with n ∈ N and n ≥ 2, G1 = G or Gn = G′ exists and every Gm+1 for
m = 1, . . . , n− 1 arises from Gm through application of one of the relations R0, . . . , Ri.

A sequence G1Rj1G2, G2Rj2G3, . . . , Gn−1Rjn−1Gn with G1 = G and Gn = G′ is called a
chain of G <i G′ with i ∈ I and the individual GmRjmGm+1 are called links of this chain.
We can always avoid digons in Gm+1 by adding a link with the relation R0 to the chain of
G <i G′ and thus deleting one of the edges. If in particular jm = i, then Rjm = Ri for all
m = 1, . . . , n− 1. We call such a chain Ri-chain (from G to G′). We can also refer to this
with the equation G′ = Rni (G), whereas with Rni we mean that Ri is applied to G n times.

From the characteristics of the chain, it follows directly:

Remark
Let G and G′ be two graphs in Γ0. If G <i G′ for i ∈ I and G 6= G′ applies, then
also a chain GmRjmGm+1, m = 1, 2 . . . , n − 1, with G1 = G, Gn = G′ for n ≥ 2 and
jm ∈ {0, 1, . . . , i} exists. In none of the graphs Gm+1 = Rjm(Gm) parallel edges appear.

In addition, the notion of minimality is defined as follows:

Definition
Let Γ be an arbitrary, non-empty set of graphs. The set Γ which is partially ordered by
<i is written as (Γ,<i). We will call the minimal graphs of (Γ,<i) <i-minimal or in short
minimal. The minimal basis of (Γ,<i) is the set of all minimal graphs of (Γ,<i), which
we will denote with Mi(Γ ) for i ∈ I. The minimal graphs in Mi(Γ ) will also be called
irreducible.

Proposition 1.4
For the minimal bases, the following relations apply:

M4(Γ ) ⊆M3(Γ ) ⊆M2(Γ ) ⊆M1(Γ ) ⊆M0(Γ ).

In the following S will stand for a closed, orientable surface S̃p of order p ∈ N0 or a
closed, non-orientable surface Sq of order q ∈ N0. Furthermore we will use Γ (S) ⊆ Γ0
when talking about the set of all graphs in Γ not embeddable in S. Then <i (i ∈ I)
also is a partial order on Γ (S). The set of all minimal elements of Γ (S) with respect

4



1.2. Definitions and Theorems

to <i (i ∈ I), which is the minimal basis of Γ (S) concerning <i, will be denoted with
Mi(Γ (S)) = Mi(S).

Analogous to proposition 1.4 the following conclusion holds:

Conclusion 1
Let S be an arbitrary surface. Then

M4(S) ⊆M3(S) ⊆M2(S) ⊆M1(S) ⊆M0(S)

applies for the minimal bases of graphs not embeddable in S.

Theorem 1.5
A graph G ∈ Γ0 is not embeddable on a surface S if and only if at least one <i-minimal
graph G′ ∈Mi(S) with G <i G′ for i ∈ {1, 2, 3, 4} exists.

Theorem 1.6
Let S be an arbitrary (non-)orientable surface and Γ (S) the set of all graphs not embeddable
into S, which lie in Γ0. Then G ∈ Γ (S) and G ∈Mi(S) hold for all i ∈ I, if and only if G
is not embeddable in S and all Rj(G), for j ≤ i, are embeddable in S.

In order to determine elements of Mi(S), i ∈ {1, 2, 3, 4}, for an arbitrary surface S
explicitely, Theorem 1.6 is inapplicable. The following theorem is more useful in this
context.

Theorem 1.7
A graph G ∈ Γ0 is an element of the minimal basis Mi(S), i ∈ {1, 2, 3, 4}, S an arbitrary
surface, if and only if G fulfills the following conditions:

(1) G is not embeddable in S.

(2) Each vertex of G has degree ≥ 3.

(3) For each edge e of G the graph R0(G) = G− e is embeddable in S.

(4) For each j ∈ {2, . . . , i} and each Rj, the graph Rj(G) is embeddable in S.

Another important theorem, we will base this thesis on, is the following.

Theorem 1.8
If all minimal graphs G ∈M4(S) for a surface S are explicitely identified, all graphs of the
minimal bases Mi(S), i ∈ {1, 2, 3} can be constructed by application of R−n4

4 , R−n3
3 , R−n2

2
on the graphs G ∈M4(S).

Consequently for the consideration of the minimal bases of S it is sufficient to identify all
graphs of the minimal basis M4(S). This is very convenient considering the large number
of minimal graphs for different surfaces. The minimal basis M1(S1) of the projective plane
consists of 103 graphs, M4(S1) however only consists of twelve graphs.
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Chapter 1. Theory

The method of relative components

The method of relative components describes how we can construct irreducible graphs
([BSW85]).

Let G′ and G′′ be two graphs with G′ ⊆ G and G′′ subgraph of G, which is spanned by all
vertices of G which do not belong to G′. The graph G consequently is composed of G′, G′′
and certain edges of G. These edges are

(a) edges which themselves do not lie in G′, but their end-vertices both lie in G′, thus
all chords of G′ and

(b) all edges of G which have one end-vertex in G′ and the other end-vertex in G′′, thus
all bridges from G′ to G′′.

Each component of G′′, including its bridges to G′ (end-vertices of the bridges in G′

included) will be denoted by relative component Q of G with respect to G′. The endpoints
of the bridges, which lie in G′, will be denoted with base-points of Q, the respective
component of G′′ will be denoted with center of Q. If the center of Q consists of only
one vertex, then Q is a star. The number of vertices in the center of Q is also denoted
with order of Q. The chords, mentioned in (a), thus can also be referred to as relative
components of order zero.

G = G′ ∪Q1 ∪Q2 ∪ . . . ∪Qn ∪ {k1, k2, . . . , km}. (1.1)

The Q1, Q2, . . . , Qn (n ∈ N) are the relative components of G, relative to G′, with order
≥ 1 and the k1, k2, . . . , km (m ∈ N) are the chords of G′.

Let S ′′ and S ′ be two surfaces with the characteristic, that each graph embeddable in S ′′
is also embeddable in S ′, consequently S ′′ lies below S ′ concerning embeddability. This,
as an example, applies for S ′ := Sn and S ′′ := Sm with m ≤ n.

If we assume that all graphs of M1(S ′′) are explicitely known, we could ask ourselves, how
the graphs in M1(S ′) can be constructed. We choose an arbitrary graph H from M1(S ′).
According to the definition of M1(S ′), H cannot be embedded into S ′ and thus, according
to the condition for S ′′, can also not be embedded into S ′′. Thus from the definition of
M1(S ′′) follows that a graph G ∈M1(S ′′) with H <1 G exists, which means that the graph
H contains a subdivision U(G) of G. Consequently, using equation (1.1), we can find a
representation of H:

H = U(G) ∪Q1 ∪Q2 ∪ . . . ∪Qn ∪ {k1, k2, . . . , km} (1.2)

with m,n ∈ N.

Consequently the following Theorem holds:

Theorem 1.9
If a surface S ′′ lies below a surface S ′ concerning embeddability, a graph H of M1(S ′)
can be constructed by sub-division of a graph G from M1(S ′′) and adjunction of certain
relative components of order ≥ 0 onto this U(G), as in equation (1.2).

6



1.3. 103 irreducible graphs for the projective plane

1.3 103 irreducible graphs for the projective plane

In this section, we will look at the 103 irreducible gaphs for the projective plane as they
were published in [GHW79] and we will characterize these concerning the different minimal
bases M1(S1), . . . ,M4(S1). We will also give a genealogy of these 103 graphs with regard
to their interdependencies.

Figure 1.5 shows all 103 irreducible graphs for the projective plane. To simplify matters,
the graphs are labeled the same way as done in [GHW79].

(1) A1 ∈M4(S1) (2) A2 ∈M4(S1) (3) A3 ∈M1(S1) (4) A4 ∈M1(S1)

(5) A5 ∈M4(S1) (6) B1 ∈M4(S1) (7) B2 ∈M1(S1) (8) B3 ∈M4(S1)

(9) B4 ∈M1(S1) (10) B5 ∈M1(S1) (11) B6 ∈M1(S1) (12) B7 ∈M2(S1)

(13) B8 ∈M1(S1) (14) B9 ∈M1(S1) (15) B10 ∈M1(S1) (16) B11 ∈M1(S1)

(17) C1 ∈M3(S1) (18) C2 ∈M2(S1) (19) C3 ∈M2(S1) (20) C4 ∈M2(S1)

7



Chapter 1. Theory

(21) C5 ∈M1(S1) (22) C6 ∈M1(S1) (23)
C7 ∈M4(S1)

(24) C8 ∈M1(S1)

(25) C9 ∈M1(S1) (26) C10 ∈M1(S1) (27) C11 ∈M3(S1) (28) D1 ∈M2(S1)

(29) D2 ∈M2(S1) (30) D3 ∈M3(S1) (31) D4 ∈M3(S1) (32) D5 ∈M1(S1)

(33) D6 ∈M1(S1) (34) D7 ∈M1(S1) (35) D8 ∈M1(S1) (36) D9 ∈M4(S1)

(37) D10 ∈M1(S1) (38) D11 ∈M1(S1) (39) D12 ∈M4(S1) (40) D13 ∈M1(S1)

(41) D14 ∈M1(S1) (42) D15 ∈M1(S1) (43) D16 ∈M1(S1) (44) D17 ∈M4(S1)

(45) D18 ∈M1(S1) (46) D19 ∈M1(S1) (47) E1 ∈M3(S1) (48) E2 ∈M2(S1)
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1.3. 103 irreducible graphs for the projective plane

(49) E3 ∈M4(S1) (50) E4 ∈M1(S1) (51) E5 ∈M2(S1) (52) E6 ∈M2(S1)

(53) E7 ∈M1(S1) (54) E8 ∈M1(S1) (55) E9 ∈M1(S1) (56) E10 ∈M1(S1)

(57) E11 ∈M2(S1) (58) E12 ∈M1(S1) (59) E13 ∈M1(S1) (60) E14 ∈M1(S1)

(61) E15 ∈M1(S1) (62) E16 ∈M1(S1) (63) E17 ∈M1(S1) (64) E18 ∈M4(S1)

(65) E19 ∈M3(S1) (66) E20 ∈M2(S1) (67) E21 ∈M1(S1) (68) E22 ∈M4(S1)

(69) E23 ∈M1(S1) (70) E24 ∈M1(S1) (71) E25 ∈M1(S1) (72) E26 ∈M1(S1)

(73) E27 ∈M2(S1) (74) E28 ∈M1(S1) (75) E29 ∈M1(S1) (76) E30 ∈M1(S1)

(77) E31 ∈M1(S1) (78) E32 ∈M1(S1) (79) E33 ∈M1(S1) (80) E34 ∈M1(S1)
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Chapter 1. Theory

(81) E35 ∈M1(S1) (82) E36 ∈M1(S1) (83) E37 ∈M1(S1) (84) E38 ∈M1(S1)

(85) E39 ∈M1(S1) (86) E40 ∈M1(S1) (87) E41 ∈M1(S1) (88) E42 ∈M3(S1)

(89) F1 ∈M3(S1) (90) F2 ∈M1(S1) (91) F3 ∈M1(S1) (92) F4 ∈M2(S1)

(93) F5 ∈M1(S1) (94) F6 ∈M3(S1) (95) F7 ∈M1(S1) (96) F8 ∈M1(S1)

(97) F9 ∈M1(S1) (98) F10 ∈M1(S1) (99) F11 ∈M1(S1) (100) F12 ∈M1(S1)

(101) F13 ∈M1(S1) (102) F14 ∈M1(S1) (103) G ∈M3(S1)

Figure 1.5: All graphs in M1(S1) and their minimal bases Mi(S1), i ∈ {1, 2, 3, 4}

For the construction of irreducible graphs of the Klein surface, it is of great use to know
which of these 103 graphs lie in which of the minimal bases for the projective plane, as
stated in figure 1.5.

Figure 1.6 in addition shows a genealogy of these graphs. The arrows represent a relation
which transforms one graph into another. If the relation Ri for i ∈ {1, 2, 3, 4} is applied to
a graph in Mi which is not also an element of Mi+1 (in short Mi −Mi+1), for i ∈ {1, 2, 3},
the resulting graph is either also an element of Mi −Mi+1 or Mk for k > i.
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1.3. 103 irreducible graphs for the projective plane
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A5C11E42

A1

A3A4

C1C6

C8C10

E1E16E40

A2B7C3

C4

D2E2

E18E21

E24

E28

E31

E32E38

Figure 1.6: Genealogy of graphs in M1(S1)

M4M3 −M4M2 −M3M1 −M2

Figure 1.7: Color-coding for Figure 1.6

1.4 Toolbox

In this section, we will develop some generel criteria, which help with the construction of
graphs in M4(S2). We will also find possibilities to reduce the number of cases, we have to
consider.

The Möbius strip is obviously homeomorphic to the punctured projective plane (an
arbitrary point of the projective plane is removed). If we want to show that a certain face
is the outer face of the Möbius strip, it is consequently enough to show that this face exists
on the projective plane. If we delete one point within this face, this face is homeomorphic
to the outer face of the Möbius strip.

We can easily reduce the number of graphs, we have to consider for the construction of
irreducible graphs by using the following lemma:

Lemma 1.10
For the construction of graphs in M4(S2), we will not have to consider any graphs in
M1(S1), which are not also elements of M2(S1).

Proof
The relation R2 and the attachment of a relative component are commutable, meaning
that it does not make a difference whether we attach the relative component first and

12



1.4. Toolbox

apply R2 in a second step, or if we do it the other way round. Consequently none of the
graphs construted by attaching a relative component to a graph in M1(S1)−M2(S1) can
be an element of M4(S2), as the attachment of a relative component can never foreclose
the transformation of a graph in M1(S1)−M2(S1) into another (smaller) irreducible graph
of the projective-plane.

A further help for reduction of the number of cases which have to be considered, is that
we use vertex- and edge-orbits. When applying one relation R0, . . . , R4 on a graph, it is
sufficient to apply it to one representative of each vertex- or edge-orbit. The vertex- and
edge-orbits of the graphs in M2(S1) are listed in the appendix.

We can also show some more characteristics, which we will use to show whether a graph is
an element of M4(S2) or not.

Lemma 1.11
Let C1, C2 be two cycles in a graph G with the property that C1 − e is a path in C2. If G
is not embeddable on a surface S with the condition, that C1 is the boundary of one face,
it is also not possible for C2.

C2C1 e

Figure 1.8: C1 and C2

Proof
It is ovious that, if G can be embedded with the property that the vertices and edges of
C2 lie on the boundary of one face, C1 can also function as the boundary of a face, as the
edge e can be drawn within the face C2 is a boundary of.

Lemma 1.12
Let G be a graph with G−e embeddable into the projective plane, e = (v1, v2). Let H be a
graph constructed by attachment of a K5 − e′, e′ = (vi, vj), to G with v1 = vi and v2 = vj .
These identified vertices thus are the base points of the relative component K5 − e′. If H
is irreducible for the Klein surface, G is embeddable into the projective plane.

Proof
If H is irreducible for the Klein surface, H − e is embeddable into the Klein surface for an
arbitrary edge e. Obviously v1 and v2 have to lie in the same face for every embedding of
G − e into the projective plane and thus the edge e can be added to the embedding of
G− e and G itself is embeddable into the projective plane.

Corollary 1.13
Let G be a graph which is irreducible for the projective plane and e = (v1, v2) an edge in
G. Let H be a graph which consists of G and a relative component K5 − e′, e′ = (vi, vj)),
with v1, v2 base-points of the relative component, which are identified with vertices vi and
vj respectively. As a consequence of Lemma 1.12 the graph H cannot be irreducible for
the Klein surface.
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Chapter 1. Theory

Corollary 1.14
As a consequence of Corollary 1.13, the attachment of relative components to vertices which
are adjacent in irreducible graphs of the projective plane, do not have to be considered
when constructing irreducible graphs of the Klein surface.

It is known, that for or a non-orientable surface Sg with genus g, χ(S) = 2 − g is the
Euler-characteristic and that the following lemma holds ([MT01]):

Lemma 1.15
Let S be a non-orientable surface and G a graph embeddable on S. Then

χ(S) = f − v + e

holds, with v number of vertices, e number of edges and f number of faces.

The Euler-characteristic for the projective-plane is χ(S1) = 1 and for the Klein surface it
is χ(S2) = 0.

Corollary 1.16
The Euler-characteristic bounds face sizes of an embedding of a graph.

Example 1
If we want to embed the K3,4 into the projective plane, we can use the Euler-characteristic
to calculate the number of faces the embedding of K3,4 has.

χ(S1) = 1 = f − 12 + 7
⇒ f = 6

As the bipartite graph K3,4 does not have any cycles of length three, each face of the
embedding has to have at least size four. Also each edge can at most lie on the boundary
of two faces. Consequently the six faces all have size 4.

Figure 1.9: K3,4 embeddeded into the projective plane

Throughout this thesis, we will regularly use colored vertices and edges to illustrate certain
information. If we draw a graph with its vertex-orbits, the vertices in one orbit will be
drawn in the same color. The black vertices will always indicate individual orbits.

An example of a graph and its vertex orbits, is illustrated in Figure 1.10. The set of
vertex-orbits of this graph is:

{
{1, 3}, {2, 4}, {5}, {6}, {7}, {8, 9}

}
14



1.5. The result

1 2 3

6
54 7

8 9

Figure 1.10: A graph and its vertex-orbits

If we want to proof that a certain graph is not in the minimal basis of irreducible graphs
for the Klein surface, we will most of the times try to find a cycle including the required
vertices (base points for the relative component) and show that the graph is not embeddable
having this cycle as the boundary of one face. To show which cycle we are looking at, we
will also use colors for the required vertices, necessary edges and the ones which cannot be
included.

Example 2
A cycle in a graph will be drawn like this:

1 2 3

456

7 8

Figure 1.11: A cycle in D3 − (2, 5)

In this case the edge (2, 5) was deleted. As we want to find a cycle including vertices 5
and 7, these vertices are colored green. We already know from Corollary 1.13 that the
vertices 2 and 5 cannot lie on the boundary of one face. Consequently vertex 2 cannot be
included in the cycle. This vertex is colored red. In the next step the edges, which have
to be included in the cycle, in this case (4, 5) and (5, 6), are colored green, and the edges
which cannot be included, in this case (1, 2) and (2, 3), are colored red. The remaining
edges of the cycle we are looking at, will always be colored blue.

1.5 The result

In this thesis, we want to construct graphs in M4(S2), with the property that these graphs
consist of a graph of M1(S1) and a subgraph of the K5 as a relative component. The
following theorem summarizes the results of the subsequent chapters:

Theorem 1.17
The graphs G1, . . . , G83, which are constructed using the method of relative components
with graphs of M1(S1) and a subgraph of the K5 as a relative component, are elements of
M4(S2).

At this point we will only proof that the graphs G1, . . . , G83 are not embeddable into the
Klein surface:

15



Chapter 1. Theory

Proof
It is easy to show that the graphs G1, . . . , G83 are not embeddable into the Klein surface.
The graphs in M4(S1) are irreducible for the projective plane and thus only leave an
elementary face, when embedded into the Klein surface. The K5 is irreducible for the
plane and consequently cannot be embedded in the elementary face. Thus the graphs
G1, . . . , G83 cannot be embedded into the Klein surface.

The second part of the proof, namely the minimality of the graphs G1, . . . , G83 will be
done in the subsequent chapters.

The adjacency-lists of the graphs G1, . . . , G83 can be found in the Appendix.

In the subsequent chapters we will proof that the graphs G1, . . . , G83 are irreducible for
the Klein surface. In addition we will also show that the following theorem holds:

Theorem 1.18
The graphs G1, . . . , G83 are the only graphs in M4(S2), which consist of a graph in M1(S1)
and a subgraph of the K5 as a relative component.

This theorem will be a side-result of the research done in the subsequent chapters. As
we will study every possible attachment of a subgraph of the K5 to each graph in M1(S1)
and show which of these are elements of M4(S2) and which are not irreducible, no other
graph constructed the same way, can be element of M4(S2). As shown in Lemma 1.10 it is
enough to consider attachments of relative components to graphs in M2(S1), as will be
done in the subsequent chapters.
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2 M4(S1) to M4(S2)

In this chapter we will construct all graphs in M4(S2), which consist of a graph from
M4(S1) and a relative component, (a subgraph of) a K5. In the different sections we will
look at different constructions of these graphs, namely the number of base-points the
subgraph of the K5 is attached to.

2.1 The minimal basis M4(S1) of the projective plane

Before we start with the construction of irreducible graphs in M4(S2), we will take a closer
look at the graphs of the minimal basis M4(S1).

1

2 3
4

5
8

9

6 7

(1) The graph A1

2
5

7

6
3

1

4

(2) The graph A2

4 3

21

5
9 8

76

10

(3) The graph A5

2
5

7

6
3

1

4

(4) The graph B1

3
5

8

6
4

1

2 7

(5) The graph B3

3

6

1

2
5

7

4

8

(6) The graph C7

7

2

4

1 3 9

6

8
5

10

(7) The graph D9

1 2 3

6
54 7

8 9

(8) The graph D12

2

1
3

4 8

6

5
7

(9) The graph D17

1 2 3

456
7 8

(10) The graph E3

1 2 3

457
6 8

(11) The graph E18

5

7
9

4

8

2

6

1

3

(12) The graph E22

Figure 2.1: The twelve graphs in M4(S1)

As already known from Chapter 1.3 there are 12 graphs in M4(S1), which are shown in
Figure 2.1. As these graphs are minimally not embeddable into the projective plane, they
are also minimally not embeddable into the Möbius strip. Thus, as soon as one of the
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Chapter 2. M4(S1) to M4(S2)

relations R0, . . . , R4 is applied, these graphs are embeddable into the Möbius strip, as can
be seen in Figures 2.2 - 2.13.

1

2 3

4

56

7 8
9

(1) A1 − (1, 2)

1

23
4

56

7 8
9

(2) A1 − (2, 5)

1,2

3

4

56

7 8
9

(3) A1/(1, 2)

Figure 2.2: Embeddings of Ri(A1), i ∈ {0, 2}, into the Klein surface
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(1) A2 − (1, 2)

1
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(2) A2 − (3, 4)

1,2

3

4

5
6

7

(3) A2/(1, 2)

1,4
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5

6
7

(4) A2/(1, 4)

Figure 2.3: Embeddings of Ri(A2), i ∈ {0, 2}, into the Klein surface
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(1) A5 − (1, 2)

1,2

3

4

5

6 7

8
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(2) A5/(1, 2)

Figure 2.4: Embeddings of Ri(A5), i ∈ {0, 2}, into the Klein surface18



2.1. The minimal basis M4(S1) of the projective plane
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(1) B1 − (1, 2)

1

2
3 4

5

6 7

(2) B1 − (1, 3)
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(3) B1 − (3, 4)
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(4) B1/(1, 2)
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(5) B1/(3, 4)

Figure 2.5: Embeddings of Ri(B1), i ∈ {0, 2}, into the Klein surface
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Figure 2.6: Embeddings of Ri(B3), i ∈ {0, 2}, into the Klein surface
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Figure 2.7: Embeddings of Ri(C7), i ∈ {0, 2}, into the Klein surface
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Figure 2.8: Embeddings of Ri(D9), i ∈ {0, 2, 3}, into the Klein surface
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Figure 2.9: Embeddings of Ri(D12), i ∈ {0, 2, 3}, into the Klein surface
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Figure 2.10: Embeddings of Ri(D17), i ∈ {0, 2}, into the Klein surface
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Figure 2.11: Embeddings of Ri(E3), i ∈ {0, 2, 3}, into the Klein surface
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Figure 2.12: Embeddings of Ri(E18), i ∈ {0, 2, 3}, into the Klein surface
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Figure 2.13: Embeddings of Ri(E22), i ∈ {0, 2, 3}, into the Klein surface

In addition, the irreducible graphs of the projective plane themselves can easily be
embedded into the Klein surface:
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Figure 2.14: Embeddings of graphs in M4(S1) into the Klein surface

The knowledge about these embeddings will be used in the next chapters, as these are the
basic considerations for the construction of graphs in M4(S2).

2.2 Disconnected graphs

In order to find disconnected irreducible graphs regarding the Klein surface, we take the
irreducible graph for the plane, the K5, and graphs of M4(S1) of the projektive plane and
combine these. By doing this, we get 12 disconnected irreducible graphs for the Klein
surface.
With the knowledge we have about the graphs in M4(S1) and the structure about the
Klein surface, it is obvious that the following proposition holds:

Proposition 2.1
The graphs G1, . . . , G12 are elements of the minimal basis M4(S2).
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(3) G3 = A5 ∪K5
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4

(4) G4 = B1 ∪K5
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3

6

1

2
5

7

4

8

(6) G6 = C7 ∪K5

7

2

4

1 3 9

6

8
5

10

(7) G7 = D9 ∪K5
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(12) G12 = E22 ∪K5

Figure 2.15: The graphs G1, . . . , G12 in M4(S2)

Proof
Each of the graphs Gi, i ∈ I, is a disjoint union of one of the graphs in M4(S1) and the K5.
We already know that the graphs G1, . . . , G12 are not embeddable into the Klein surface.

Now we still have to show that the graphs G1, . . . , G12 are irreducible for the Klein surface.
Thus we have to show that every graph is embeddable if the relations R0, . . . , R4 are
applied.

As already shown in Section 2.1, the graphs in M4(S1) can be embedded into the Möbius
strip, if one of the relations Ri, i ∈ {0, 1, 2, 3, 4}, is applied. The K5 can easily be embedded
into the remaining space of the Klein surface, if the Möbius strip in the middle is already
used for the M4(S1)-component of the graphs:

Figure 2.16: Embedding of K5 into the Klein surface
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Thus we have twelve disconnected graphs, G1, . . . , G12, which are irreducible for the Klein
surface.

Theorem 2.2
Besides the irreducible Graphs G1, . . . , G12, there are no further graphs with connectivity
κ = 0 in M4(S2).

Proof
Let H be an arbitrary graph in M4(S2) with connectivity κ = 0. Then we have two
subgraphs H ′ and H ′′ of H, with the properties H ′ ∪H ′′ = H and H ′ ∩H ′′ = ∅, so that
the graphs are non-planar and non-projective-planar respectively (w.l.o.g. we let H ′ be
the irreducible planar and H ′′ be the irreducible projective-planar graph), as otherwise
H would already be embeddable into the Klein surface. Thus we have H ′ <j K5 or
H ′ <j K3,3 and H ′′ <j H, with j ∈ {0, . . . , 4} and H ∈ M4(S1). We already know that
K3,3 <4 K5 holds, thus also H ′ <4 K5. As H has to be irreducible, H ∈ {G1, . . . , G12}
has to suffice.

2.3 Graphs including one base-point

The same way we found the disconnected graphs, we can find graphs with κ = 1, which
are irreducible for the Klein surface.

Proposition 2.3
The graphs G13, . . . , G41 are elements of the minimal basis M4(S2). These graphs are
constructed by attaching a K5 to one representative of each vertex-orbit of the irre-
ducible projective-planar graphs A1, A2, B1, B3, C7, D9, D12, D17, E3, E18 or E22 and for
each attachment to one vertex we get a new graph with connectivity κ = 1.

We do not attach the K5 to A5, as the resulting graph would be isomorphic to G1, which
we already considered in Section 2.2.
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(3) B1 and its vertex-
orbits
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Figure 2.17: The graphs in M4(S1) and their vertex-orbits. Vertices in one orbit are of the
same color, black vertices indicate individual orbits.

Proof
We already know, that the graphs G13, . . . , G41 cannot be embedded into the Klein surface.
We still have to proof that these graphs can be embedded, if one of the relations R0, . . . , R4
is applied. Again we consider the embeddability of Rj(G), G ∈M4(S1) and j = 0, . . . , 4.
As already shown, these graphs can be embedded into the Möbius strip. Additionally, we
can find embeddings of these graphs into the Möbius strip, so that a representative of
each vertex-orbit can be drawn in the outer face of the Möbius strip regarding one of the
possible embeddings. Thus the K5 can be attached to a representative of each vertex-orbit
of the graphs G2, . . . , G12. We still have to consider those cases, where an edge of the K5
is deleted or contracted. These cases obviously also work, as K5 − e or K5/e can easily be
embedded in each of the faces and attached to a representative of each vertex-orbit, the
graphs in M4(S1), leave when embedded into the Klein surface as shown in Section 2.1

2.4 Graphs including two base-points

In this section, we will construct irreducible graphs by identification of two vertices of a
K5 with two vertices of our graphs in M4(S1). This case of construction is more complex
then the previous ones, as not every graph constructed this way, really is an element of
M4(S2).
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2.4. Graphs including two base-points

Proposition 2.4
The graphs G42, . . . , G59 are the only graphs inM4(S2), which are constructed by attaching
vertices v1 and v2 of a K5 − (v1, v2) to a pair of vertices in graphs of M4(S1).

We already know that these graphs are not embeddable into the Klein surface. The
minimality of these graphs will be shown in the lemmata of this section. We will also show
that none of the other graphs, constructed the same way, can be an element of M4(S2).
As in the cases before, we can embed the irreducible projective-planar graphs into the
Möbius strip, if we apply one of the relations R0, . . . , R4. In order to be able to attach the
K5 to two arbitrary vertices v1 and v2 of H ∈M4(S1) we have to be able to embed H into
the Möbius strip with v1 and v2 on the boundary of one face. This obviously does not
work for every combination of two vertices. We will do this for each graph in M4(S1) and
its possible attachments individually.

The graph A1

1

2 3

4

5
8

9

6 7

Figure 2.18: A1 and its vertex-orbits

The only orbit of pairs of vertices we have to look at for the graph A1 is:

A =
{
{1, 6}, {1, 7}, {1, 8}, {1, 9}, {2, 6}, {2, 7}, {2, 8}, {2, 9},

{3, 6}, {3, 7}, {3, 8}, {3, 9}, {4, 6}, {4, 7}, {4, 8}, {4, 9}
}

Lemma 2.5
There is no irreducible graph constructed by identification of the vertices v1 and v2 in
K5 − (v1, v2) with a pair of vertices of orbit A of A1.

Proof

We consider the possible embeddings of A1 − (1, 2), A1 − (2, 5) and A1/(1, 2). We have
to show that each pair of vertices in A can be drawn on the boundary of one face when
embedding these graphs into the Möbius strip. As we cannot find a planar embedding
of K5 − (v1, v2), where the vertices v1 and v2 lie on the boundary of one face, we also
cannot find an embedding of A1 − (2, 5) into the Möbius strip where vertex 2 and one of
the vertices 6, 7, 8 or 9 respectively lie on the boundary of one face, as vertex 5 has to be
on the outside to be attached to the K5 − (v1, v2). Consequently the K5 − (v1, v2) cannot
be attached to any representative of orbit A to form an irreducible graph of the Klein
surface.
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The graph A2
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Figure 2.19: A2 and its vertex-orbits

The only orbit of pairs of vertices we have to consider for A2 is:

A =
{
{1, 7}, {2, 6}, {3, 5}

}
Lemma 2.6
Attachment of vertices v1 and v2 of K5− (v1, v2) to a pair of vertices of orbit A of A2 does
not result in an element of M4(S2).

Proof
As the pair of vertices {3, 5} lies in the same orbit as {3, 4} for A2 − (3, 4), vertices 3 and
5 cannot be drawn on the boundary of one face of the Möbius strip, when embedding
A2 − (3, 4). Consequently the graph constructed by attaching vertices v1 and v2 of
K5 − (v1, v2) to vertices 3 and 5 in A2 − (3, 4) is not embeddable into the Klein surface.
Thus attaching vertices v1 and v2 of K5 − (v1, v2) to one of the pairs of vertices in orbit A
does not result in an irreducible graph for the Klein surface.

The graph A5

4 3

21
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9 8

76

10

Figure 2.20: A5 and its vertex-orbits

The only orbit of pairs of vertices we have to look at for the graph A5 is:

A =
{
{1, 6}, {1, 7}, {1, 8}, {1, 9}, {1, 10}, {2, 6}, {2, 7}, {2, 8}, {2, 9}, {2, 10},
{3, 6}, {3, 7}, {3, 8}, {3, 9}, {3, 10}, {4, 6}, {4, 7}, {4, 8}, {4, 9}, {4, 10},
{5, 6}, {5, 7}, {5, 8}, {5, 9}, {5, 10}

}
Lemma 2.7
The graph G42, which is obtained by identification of two vertices v1 and v2 of a K5 with
one of the pairs of vertices of orbit A and deleting the edge (v1, v2), is an element of
M4(S2).
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2.4. Graphs including two base-points

Proof
The Graph G42 is embeddable into the Klein surface after one of the relations R0, . . . , R4 is
applied. To show that this is correct, we use possible embeddings of the graphs A5 − (1, 2)
and A5/(1, 2). As we can find embeddings where each of the pairs of vertices in orbit A,
can be drawn on the boundary of one face on the Möbius strip, the K5 − (v1, v2) can be
attached to each of the pairs of vertices.

1

23

4

5
6 7

8
9 10

(1) Embedding of A5−(1, 2), vertex-pairs
{1, 6}, {1, 7}, {1, 9}, {1, 10}, {3, 6},
{3, 7}, {3, 9}, {3, 10}, {4, 6}, {4, 7},
{4, 9}, {4, 10} on the boundary of a
face.
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(2) Embedding of A5−(1, 2), vertex-pairs
{1, 8}, {3, 8}, {4, 8} on the boundary
of a face.
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(3) Embedding of A5−(1, 2), vertex-pairs
{2, 6}, {2, 7}, {2, 9}, {2, 10} on the
boundary of a face.
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(4) Embedding of A5 − (1, 2), vertex-
pairs {2, 8},{5, 8} on the boundary of
a face.
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(5) Embedding of A5−(1, 2), vertex-pairs
{5, 6}, {5, 7}, {5, 9}, {5, 10} on the
boundary of a face.
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(6) Embedding of A5/(1, 2), vertex-pairs
{1, 6}, {1, 7}, {1, 9}, {1, 10}, {2, 6},
{2, 7}, {2, 9}, {2, 10}, {3, 6}, {3, 7},
{3, 9}, {3, 10}, {4, 6}, {4, 7}, {4, 9},
{4, 10} on the boundary of a face.
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(7) Embedding of A5/(1, 2), vertex-pairs
{1, 8}, {2, 8}, {3, 8}, {4, 8} on the
boundary of a face.

5

3

4

1,2

6 7

8
9 10

(8) Embedding of A5/(1, 2), vertex-pairs
{5, 6}, {5, 7}, {5, 9}, {5, 10} on the
boundary of a face.
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(9) Embedding of A5/(1, 2), vertex-pair
{5, 8} on the boundary of a face.

Figure 2.21: Embeddings of Ri(A5), i ∈ {0, 2}, into the Möbius strip, vertex-pairs of orbit
A on the boundary of a face.

We can also find embeddings of A5, where each pair of vertices from orbit A can be drawn
on the boundary of one face. Thus the K5 − (v1, v2)− e and the (K5 − (v1, v2))/e can be
drawn within this face.
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(1) Embedding of A5, vertex-pairs {1, 7},
{1, 8}, {1, 9}, {1, 10}, {2, 7}, {2, 8},
{2, 9}, {2, 10}, {4, 7}, {4, 8}, {4, 9},
{4, 10}, {5, 7}, {5, 8}, {5, 9}, {5, 10} on
the boundary of a face.
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(2) Embedding of A5, vertex-pairs {1, 6},
{2, 6}, {4, 6}, {5, 6} on the boundary of
a face.
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(3) Embedding of A5, vertex-pairs {3, 7},
{3, 8}, {3, 9}, {3, 10} on the boundary
of a face.
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(4) Embedding of A5, vertex-pair {3, 6} on
the boundary of a face.

Figure 2.22: Embedding of A5 into the Klein surface, vertex-pairs of orbit A on the
boundary of a face.

As this applies to each element in orbit A, G42 is an element of M4(S2).
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The graph B1
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Figure 2.23: B1 and its vertex-orbits

The orbit of pairs of vertices we have to consider for B1 is:

A =
{
{1, 6}, {1, 7}, {2, 6}, {2, 7}

}
Lemma 2.8
The graph G43, which is constructed by identification of the vertices v1 and v2 ofK5−(v1, v2)
with vertices in orbit A of B1, is an element of M4(S2).

Proof
By considering the Möbius strip embeddings of the graphs B1 − e and B1/e, e ∈
{(1, 2), (1, 3), (3, 4)} one can see that each pair of vertices from orbit A can be drawn on
the boundary of one face, so that the K5 − (v1, v2) can be attached to each of the vertices
in orbit A.
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(1) Embedding of B1−(1, 2), vertex-pairs
{1, }, {2, 7} on the boundary of a face.
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(2) Embedding of B1− (1, 2), vertex-pair
{1, 6} on the boundary of a face.
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(3) Embedding of B1− (1, 2), vertex-pair
{2, 6} on the boundary of a face.
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(4) Embedding of B1−(1, 3), vertex-pairs
{1, 6}, {2, 7} on the boundary of a
face.
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(5) Embedding of B1−(1, 3), vertex-pairs
{1, 7}, {2, 6} on the boundary of a
face.
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(6) Embedding of B1−(3, 4), vertex-pairs
{1, 7}, {2, 7} on the boundary of a
face
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(7) Embedding of B1−(3, 4), vertex-pairs
{1, 6}, {2, 6} on the boundary of a
face.
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(8) Embedding of B1/(1, 2), all vertex-
pairs of orbit A on the boundary of a
face.
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(9) Embedding of B1/(3, 4), all vertex-
pairs of orbit A on the boundary of a
face.

Figure 2.24: Embeddings of Ri(B1), i ∈ {0, 2}, into the Möbius strip.

These pairs of vertices can also be drawn on the boundary of one face of the embedding of
B1 into the Klein surface, so that K5 − (v1, v2)− e and (K5 − (v1, v2))/e can be attached
the same way.
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(1) Embedding of B1, vertex-pairs {1, 7},
{2, 7} on the boundary of a face.
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(2) Embedding of B1, vertex-pairs {1, 6},
{2, 6} on the boundary of a face.

Figure 2.25: Embeddings of B1 into the Klein surface

Consequently G43 is an element of M4(S2).
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The graph B3
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Figure 2.26: B3 and its vertex-orbits

For B3 we have to consider the two remaining orbits of vertex-pairs:

A =
{
{1, 6}, {1, 7}, {1, 8}, {2, 6}, {2, 7}, {2, 8}, {3, 6}, {3, 7}, {3, 8}

}
,

B =
{
{4, 5}

}
.

Lemma 2.9
Attaching the K5 − (v1, v2) to a pair of vertices in orbit A does not result in an element of
M4(S2).

Proof
The graph B3 consists of two K5’s, which are attached at two vertices (in this case they
are called 4 and 5) and the edge (4, 5) is deleted. The K5 − (4, 5) − (1, 2) cannot be
embedded into the plane with vertices 3, 4 and 5 on the boundary of one face. Hence
vertex 3 together with one of the vertices 6, 7 or 8 respectively, can never be drawn on
the boundary of one face of the Möbius strip, when embedding B3 − (1, 2). Consequently,
attaching the K5 − (v1, v2) to a pair of vertices in orbit A does not result in an irreducible
graph for the Klein surface.

Lemma 2.10
The graph G44, which is constructed by attaching vertices v1 and v2 of K5 to vertices 4
and 5 in B3 and deleting the edge (v1, v2) is an element of M4(S2).

Proof
We consider the embeddings of B3 − e and B3/e, e ∈ {(1, 2), (1, 4)}. For each of these
graphs we can find an embedding into the Möbius strip, where vertices 4 and 5 lie on the
boundary of one face.
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(1) Embedding of B3− (1, 2), vertex-pair
{4, 5} on the boundary of a face.

1
2

3
4

5

6

7

8

(2) Embedding of B3− (1, 4), vertex-pair
{4, 5} on the boundary of a face.
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(3) Embedding of B3/(1, 2), vertex-pair
{4, 5} on the boundary of a face.

2
31,4 5
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(4) Embedding of B3/(1, 4), vertex-pair
{4, 5} on the boundary of a face.

Figure 2.27: Embeddings of Ri(B3), i ∈ {0, 2}, into the Möbius strip.

Additionally we have an embedding of B3 into the Klein surface, with vertices 4 and 5 on
the boundary of one face:

1
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55
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Figure 2.28: Embedding of B3 into the Klein surface, vertex-pair {4, 5} on the boundary
of a face.

Consequently, for each of those graphs, we can attach the K5 − (v1, v2) to vertices 4 and
5 of B3, and this is an irreducible graph for the Klein surface and thus an element of
M4(S2).

The graph C7
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Figure 2.29: C7 and its vertex-orbits

The orbits of pairs of vertices we have to consider for attachments of K5 − (v1, v2) to C7
are:

A =
{
{1, 5}, {2, 7}, {2, 8}, {3, 5}

}
, B =

{
{1, 7}, {1, 8}, {3, 7}, {3, 8}

}
,

C =
{
{2, 4}, {5, 6}

}
, D =

{
{4, 6}

}
Lemma 2.11
Construction of a graph where the vertices v1 and v2 of K5 − (v1, v2) are attached to a
pair of vertices of orbit A in C7 does not result in an element of M4(S2).
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Proof
As the pair of vertices {1, 5} lies in the same orbit as the pair of vertices {1, 4} for C7−(1, 4),
vertices 1 and 5 cannot be drawn on the boundary of one face of the Möbius strip, when
embedding A2 − (1, 4). Consequently the graph constructed by attaching vertices v1 and
v2 of K5 − (v1, v2) to vertices 1 and 5 in C7 − (1, 4) is not embeddable into the Klein
surface and thus attaching vertices v1 and v2 of K5− (v1, v2) to one of the pairs of vertices
in orbit A does not result in an irreducible graph for the Klein surface.

Lemma 2.12
The graph G45, which is constructed by attaching vertices v1 and v2 of the K5 − (v1, v2)
to a pair of vertices in orbit B, is an element of M4(S2).

Proof
By considering the Möbius strip embeddings of the graphs C7 − e and C7/e, e ∈ {(1, 2),
(1, 3), (1, 4), (1, 6), (2, 5), (2, 6)} as well as the embedding of C7 itself into the Klein surface,
we can see that each of the pairs of vertices from orbit B can be drawn on the boundary of
one face, so that vertices v1 and v2 of K5 − (v1, v2) can be attached to each of the vertices
in orbit B.
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(1) Embedding of C7−(1, 2), vertex pairs
{1, 8}, {3, 7}, {3, 8} on the boundary
of a face.

1

2

3

4

5

6

8
7

(2) Embedding of C7− (1, 2), vertex-pair
{1, 7} on the boundary of a face.
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(3) Embedding of C7−(1, 3), vertex-pairs
{1, 8}, {3, 7}, {3, 8} on the boundary
of a face.
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(4) Embedding of C7 − (1, 3), vertex pair
{1, 7} on the boundary of a face.
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(5) Embedding of C7−(1, 4), vertex-pairs
{1, 8}, {3, 7}, {3, 8} on the boundary
of a face.
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(6) Embedding of C7− (1, 4), vertex-pair
{1, 7} on the boundary of a face.

39



Chapter 2. M4(S1) to M4(S2)

1

2 3

4

56
7 8

(7) Embedding of C7−(1, 6), vertex-pairs
{1, 7}, {1, 8}, {3, 8} on the boundary
of a face.

1

2 3

4

56
8 7

(8) Embedding of C7− (1, 6), vertex-pair
{3, 7} on the boundary of a face.

1

23

4

5

6

7 8

(9) Embedding of C7−(2, 5), vertex-pairs
{1, 7}, {1, 8}, {3, 8} on the boundary
of a face.

1

23

4

5

6

8 7

(10) Embedding of C7−(2, 5), vertex-pair
{3, 8} on the boundary of a face.

1

2 34

5

6

7

8

(11) Embedding of C7 − (2, 6), vertex-
pairs {1, 8}, {3, 7}, {3, 8} on the
boundary of a face.

1

2 34

5

6

8

7

(12) Embedding of C7−(2, 6), vertex-pair
{1, 7} on the boundary of a face.

1,2

3

4

5

6

7 8

(13) Embedding of C7/(1, 2), vertex-pairs
{1, 7}, {1, 8}, {3, 8} on the boundary
of a face.

1,2

3

4

5

6

8 7

(14) Embedding of C7/(1, 2), vertex-pair
{3, 7} on the boundary of a face.

1,3

2

45

67

8

(15) Embedding of C7/(1, 3), each vertex-
pair of orbit B on the boundary of a
face.

1,42

3
5

6

7
8

(16) Embedding of C7/(1, 4), vertex-pairs
{1, 7}, {1, 8}, {3, 7} on the boundary
of a face.

40



2.4. Graphs including two base-points

1,42

3
5

6

8
7

(17) Embedding of C7/(1, 4), vertex-pair
{3, 8} on the boundary of a face.

1,62

3

45

7

8

(18) Embedding of C7/(1, 6), each vertex-
pair of orbit B on the boundary of a
face.

1

2,5

3

4

6

7 8

(19) Embedding of C7/(2, 5), vertex-pairs
{1, 8}, {3, 8} on the boundary of a
face.

1

2,5

3

4

6

8 7

(20) Embedding of C7/(2, 5), vertex-pairs
{1, 7}, {3, 7} on the boundary of a
face.

1

2,6

3

4

5

7

8

(21) Embedding of C7/(2, 6), vertex-pairs
{3, 7}, {3, 8} on the boundary of a
face.

3

2,6

1

4

5

7

8

(22) Embedding of C7/(2, 6), vertex-pairs
{1, 7}, {1, 8} on the boundary of a
face.

Figure 2.30: Embeddings of Ri(C7), i ∈ {0, 2}, into the Möbius strip.

And the embedding of C7 into the Klein surface:

1 1

11

2

3

4

5

6

7

8

Figure 2.31: Embedding of C7 into the Klein surface, each vertex-pair of orbit B on the
boundary of a face.

Lemma 2.13
A graph constructed by attachment of vertices v1 and v2 of K5 − (v1, v2) to a pair of
vertices of orbit C in C7 cannot be an element of M4(S2). 41



Chapter 2. M4(S1) to M4(S2)

Proof
Using the Euler characteristic for the graph C7 − (2, 6) we see that the embedding of this
graph has to form nine faces on the Möbius strip. As there are only eight cycles of length
three in the graph, and as four of these are in a K4, there can at most be six faces with
three vertices on their boundary, each. As three of the cycles of length three, which do not
lie in the K4 include the edge (1, 3), only two of these could be embedded. Consequently
it is clear that the maximum size of a face, embedded into the Möbius strip, is five. The
only cycles of length five, which include vertices 5 and 6, are:

3

6

1

2
5

7

4

8

(1) Case 1

3

6

1

2
5

7

4

8

(2) Case 2

Figure 2.32: Cycles in C7 − (2, 6), including vertices 5 and 6

It is easy to see that an embedding into the Möbius strip, including these cycles as
boundaries of one face, is not possible:

Embedding of Case 1:

5 7

8 6

(1) Embedding of the given cycle

5 7

8 6

2

3

(2) 5− 2− 3− 6 is embedded

5 7

8 6

2

3

4

4

5 7

8 6

2

3

4

4

(3) 7− 4− 8 is embedded
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5 7

8 6

2

3

4

4

5 7

8 6

2

3

4

4

(4) 3− 4− 5 is embedded

Figure 2.33: Embedding of Case 1

Figure 2.33 shows that an embedding, with the given restrictions, is not possible, as vertex
1 cannot be embedded.

Embedding of Case 2:

1

6

75

4

(1) Embedding of the given cycle

1

6

75

4

(2) 4− 7 is embedded

1

6

75

4

8

8

(3) 5− 8− 6 is embedded

1

6

75

4

8

8

3

3

(4) 1− 3− 6 is embedded

1

6

75

4

8

8

3

3

(5) 3− 4 is embedded

Figure 2.34: Embedding of Case 2
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Figure 2.34 shows that an embedding, with the given restrictions, is not possible, as vertex
2 cannot be embedded.

Lemma 2.14
A graph with vertices v1 and v2 of K5 − (v1, v2) attached to vertices 4 and 6 in C7 is no
element of M4(S2).

Proof
The graph C7/(2, 5) is isomorphic to B1 − (3, 5), for which we have already shown that
the vertices 3 and 5 cannot be drawn on the boundary of one face, when embedding the
graph into the Möbius strip. As the graphs B1 − (3, 5) and C7/(2, 5) are isomorphic, we
can also say that the pair of vertices {3, 5} in B1 − (3, 5) is mapped to the pair of vertices
{4, 6} in C7/(2, 5). Consequently vertices 4 and 6 can also not be drawn on the boundary
of one face, when embedding C7/(2, 5) into the Möbius strip. Consequently attaching the
vertices v1 and v2 of K5 − (v1, v2) to vertices 4 and 6 does not deliver an irreducible graph
for the Klein surface.

The graph D9

7

2

4

1 3 9

6

8

5

10

Figure 2.35: D9 and its vertex-orbits

The orbits of pairs of vertices we have to consider for D9 are:

A =
{
{1, 3}, {9, 10}

}
,

B =
{
{1, 5}, {2, 9}, {2, 10}, {3, 5}

}
,

C =
{
{1, 7}, {1, 8}, {3, 7}, {3, 8}, {7, 9}, {7, 10}, {8, 9}, {8, 10}

}
,

D =
{
{1, 9}, {1, 10}, {3, 9}, {3, 10}

}
,

E =
{
{2, 4}, {2, 6}, {4, 5}, {5, 6}

}
,

F =
{
{2, 5}

}
,

G =
{
{4, 6}

}
,

H =
{
{4, 8}, {6, 7}

}
,

I =
{
{7, 8}

}
.

Lemma 2.15
The construction of a graph where the vertices v1 and v2 of K5 − (v1, v2) are attached to a
pair of vertices of orbit A in D9 does not result in an element of M4(S2).
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Proof
The graph R3(D9)(8) without vertices 9 and 10 (and adjacent edges) contains a K3,3 with
vertices 1, 2, 3, 4, 6 and 7, where vertex 5 lies on the edge joining vertices 6 and 7. The
embedding of this K3,3 and the additional edges adjacent to its vertices already uses the
Möbius strip characteristics and only leaves cellular faces. Vertices 9 and 10 consequently
cannot be embedded on the boundary of one face.

Lemma 2.16
Construction of a graph where the vertices v1 and v2 of K5 − (v1, v2) are attached to a
pair of vertices of orbit B in D9 does not result in an element of M4(S2).

Proof
As the pair of vertices {1, 5} lies in the same orbit as the pair {1, 4} for D9 − (1, 4),
vertices 1 and 5 cannot be drawn on the boundary of one face of the Möbius strip, when
embedding D12 − (1, 4). Consequently the graph constructed by attaching vertices v1 and
v2 of K5 − (v1, v2) to vertices 1 and 5 in D12 − (1, 4) is not embeddable into the Klein
surface and thus attaching the vertices v1 and v2 of K5 − (v1, v2) to one of the pairs of
vertices in B does not deliver an irreducible graph for the Klein surface.

Lemma 2.17
A graph with the vertices v1 and v2 of K5 − (v1, v2) attached to a pair of vertices of orbit
C in D9, is no element of M4(S2).

Proof
The graph D9 − (1, 4) has ten vertices and 17 edges and with the Euler characteristic the
number of faces of its embedding into the Möbius strip must be eight. As all faces have
an even number of vertices on their boundary, the embedding of D9 − (1, 4) has one face
with six vertices and the remaining faces with only four vertices on their boundaries. The
only remaining non-isomorphic cycles in D9 − (1, 4) including vertices 1 and 7 are:

7

2

4

1 3 9

6

8

5

10

(1) Case 1

7

2

4

1 3 9

6

8

5

10

(2) Case 2

Figure 2.36: Cycles in D9 − (1, 4), including vertices 1 and 7

For the embeddings of D9 − (1, 4) with these cycles as boundaries of a face, we do the
following case-differentiation:
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Chapter 2. M4(S1) to M4(S2)

Embedding of Case 1:

8

6

2 5

1

7

(1) Embedding of the given cycle

8

6

2 5

1

7

(2) 2− 8 is embedded

8

6

2 5

1

7 9

9

(3) 6− 9− 5 is embedded

8

6

2 5

1

7 9

9

3

(4) 2− 3− 6 is embedded

Figure 2.37: Embedding of Case 1

Figure 2.37 shows that an embedding, with the given restrictions, is not possible, as the
path 3− 4− 7 cannot be embedded. Embedding of Case 2:

1

2

5 6

7

9

(1) Embedding of the given cycle

1

2

5 6

7

98

8

(2) 2− 8− 5 is embedded

1

2

5 6

7

98

8

4

4

(3) 7− 4− 9 is embedded

1

2

5 6

7

98

8

4

4

(4) 6− 8 is embedded

Figure 2.38: Embedding of Case 246
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Figure 2.38 shows that an embedding, with the given restrictions, is not possible, as vertex
3 cannot be embedded.

Consequently it is shown, that the given graph is not an element of M4(S2).

Lemma 2.18
The construction of a graph with vertices v1 and v2 of K5 − (v1, v2) attached to a pair of
vertices of the orbit D in D9, does not result in an element of M4(S2).

Proof
As in Lemma 2.17 the embedding of D9 − (1, 4) into the Möbius strip consists of one
face with six vertices on its boundary and the remaining faces with four vertices on their
boundary. The only remaining non-isomorphic cycles including vertices 1 and 9 are:

7

2

4

1 3 9

6

8

5

10

(1) Case 1

7

2

4

1 3 9

6

8

5

10

(2) Case 2

Figure 2.39: Cycles in D9 − (1, 4), including vertices 1 and 9

The cycle in Case 1 is the same as the one in Case 2 of Lemma 2.17 and thus already
shown. For the cycle in Case 2, we again try to embed the graph starting with the given
cycle as the boundary of one face:

1

2

5 6

8

9

(1) Embedding of the given cycle

1

2

5 6

8

9

(2) 6− 8 is embedded

1

2

5 6

8

97

7

(3) 5− 7− 2 is embedded

1

2

5 6

8

97

7

10

10

(4) 5− 10− 6 is embedded

Figure 2.40: Embedding of Case 2
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Figure 2.40 shows that an embedding, with the given restrictions, is not possible, as the
path 9− 4− 10 cannot be embedded.

Lemma 2.19
The graphs G46, G47 and G48, which are obtained by identifying two vertices v1 and v2 of
a K5 with one of the pairs of vertices of orbits E, F or G, and deleting the edge (v1, v2),
are elements of M4(S2).

Proof
The graphs G46, G47 and G48 are embeddable into the Klein surface as soon as one of the
relations R0, . . . , R4 is applied. To show that this is correct, we use possible embeddings
of the graphs D9 − e and D9/e, e ∈ {(1, 2), (1, 4), (2, 8), (4, 7)} as well as R3(D9)(1) and
R3(D9)(8) into the Möbius strip. As we can find embeddings where each of the pairs of
vertices, which lie in orbits E, F and G, can be drawn on the boundary of one face on the
Möbius strip, the K5 − (v1, v2) can be attached to each of these pairs of vertices.

1 23

4

5

6

7

8

9

10

(1) Embedding of D9−(1, 2), each vertex-
pair of orbits E, F , and G on the
boundary of a face.

1

23

4

5

6

7

8

9

10

(2) Embedding of D9−(1, 4), each vertex-
pair of orbits E, F , and G on the
boundary of a face.

1
2

34

5

6

7

8
9

10

(3) Embedding of D9−(2, 8), each vertex-
pair of orbits E, F , and G on the
boundary of a face.

1 2

34

5

6

7

8

9

10

(4) Embedding of D9−(4, 7), each vertex-
pair of orbits E, F , and G on the
boundary of a face.

1,2 3

4

5

6

7

8

9

10

(5) Embedding of D9/(1, 2), each vertex-
pair of orbits E, F , and G on the
boundary of a face.

1,4

2 35

6

7

8

9

10

(6) Embedding of D9/(1, 4), each vertex-
pair of orbits E, F , and G on the
boundary of a face.
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1

2,7
3

4

5

6

8
9

10

(7) Embedding of D9/(2, 7), each vertex-
pair of orbits E, F , and G on the
boundary of a face.

12

3
4,7

5
6

8

9

9

10

(8) Embedding of D9/(4, 7), each vertex-
pair of orbits E, F , and G on the
boundary of a face.

23

4

5

6

7

8

9

10

(9) Embedding of R3(D9)(1), each vertex-
pair of orbits E, F , and G on the
boundary of a face.

1
2

34

5

6

7

9

10

(10) Embedding of R3(D9)(8), each
vertex-pair of orbits E, F , and G on
the boundary of a face.

Figure 2.41: Embeddings of Ri(D9), i ∈ {0, 2, 3}, into the Möbius strip.

We can also find an embedding of D9, where each pair of vertices in orbits E, F and G can
be drawn on the boundary of one face. Thus the K5− (v1, v2)− e and the (K5− (v1, v2))/e
can be drawn within this face.

1

2 2

22

3

4 5 6
7 8

9

10

10

Figure 2.42: Embedding of D9 into the Klein surface, each vertex-pair of orbits E, F , and
G on the boundary of a face.

As this applies to each element in E, F andG, G46, G47 andG48 are elements ofM4(S2).

Lemma 2.20
The construction of a graph with vertices v1 and v2 of K5 − (v1, v2) attached to a pair of
vertices of orbit H in D9, does not result in an element of M4(S2).

Proof
As in Lemma 2.17 the embedding of D9 − (2, 8) consists of one face with six vertices on
its boundary and the remaining faces with four vertices on their boundary. The only
remaining non-isomorphic cycles including vertices 4 and 8 are:

49



Chapter 2. M4(S1) to M4(S2)
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2

4

1 3 9

6
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5

10

(1) Case 1

7

2

4

1 3 9

6

8

5

10

(2) Case 2

7

2

4

1 3 9

6

8

5

10

(3) Case 3

7

2

4

1 3 9

6

8

5

10

(4) Case 4

Figure 2.43: Cycles in D9 − (2, 8), including vertices 4 and 8

For these four cycles we again do a case-distinction to show that these cycles cannot exist
as boundaries of one face, when embedding D9 − (2, 8) into the Möbius strip.

Embedding of Case 1:

9

4

5 6

7

8

(1) Embedding of the given cycle

9

4

5 6

7

8

(2) 5− 9 is drawn

9

4

5 6

7

8 1

1

(3) 4− 1− 6 is embedded

9

4

5 6

7

8 1

1
2

(4) 1− 2− 7 is embedded

Figure 2.44: Embedding of Case 1

Figure 2.44 shows that an embedding, with the given restrictions, is not possible, as vertex
3 cannot be embedded.
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Embedding of Case 2:

3

4

5 6

9

8

(1) Embedding of the given cycle

3

4

5 6

9

8

(2) 6− 9 is embedded

3

4

5 6

9

87

7

(3) 4− 7− 5 is embedded

3

4

5 6

9

87

7

2

(4) 3− 2− 7 is embedded

Figure 2.45: Embedding of Case 2

Figure 2.45 shows that an embedding, with the given restrictions, is not possible, as vertex
1 cannot be embedded. Embedding of Case 3:

3

4

5 6

7

8

(1) Embedding of the given cycle

3

4

5 6

7

8 1

1

(2) 4− 1− 6 is drawn

3

4

5 6

7

8 1

1

2

2

(3) 3− 2− 7 is drawn

3

4

5 6

7

8
1

1

2

2

9

9

(4) 9 is embedded

Figure 2.46: Embedding of Case 3
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Figure 2.46 shows that an embedding, with the given restrictions, is not possible, as vertex
10 cannot be embedded.
Embedding of Case 4:

10

4

5 6

9

8

(1) Embedding of the given cycle

10

4

5 6

9

8

(2) 5− 10 is drawn

10

4

5 6

9

8

(3) 6− 9 is drawn

10

4

5 6

9

8
3

3

(4) 4− 3− 6 is drawn

10

4

5 6

9

8
3

3

1

1

10

4

5 6

9

8
1

1

3

3

(5) 4− 1− 6 is drawn
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4

5 6

9

8
3

3

1

1

7

7

10

4

5 6

9

8
1

1

3

3

7

7

(6) 4− 7− 5 is drawn

Figure 2.47: Embedding of Case 4

Figure 2.47 shows that an embedding, with the given restrictions, is not possible, as vertex
2 cannot be embedded.
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Consequently non of the given cycles can be found as boundaries of one face in an
embedding of D9 − (2, 8).

Lemma 2.21
The construction of a graph with vertices v1 and v2 of K5 − (v1, v2) attached to a pair of
vertices of orbit I in D9, does not result in an element of M4(S2).

Proof
The same conditions as in Lemma 2.20 apply for this lemma. Consequently the only cycles
we have to look at in D9 − (2, 8) are:

7

2

4

1 3 9

6

8

5

10

(1) Case 1

7

2

4

1 3 9

6

8

5

10

(2) Case 2

Figure 2.48: Cycles in D9 − (2, 8), including vertices 7 and 8

As for these cycles we already found a contradiction in the proof of Lemma 2.20, nothing
else has to be shown.

The graph D12

1 2 3

6
54 7

8 9

Figure 2.49: D12 and its vertex-orbits

For the graph D12 we have to consider the following orbits of pairs of vertices:

A =
{
{1, 3}

}
, B =

{
{1, 5}, {3, 5}

}
,

C =
{
{1, 7}, {3, 7}

}
, D =

{
{1, 9}, {3, 8}

}
,

E =
{
{2, 4}

}
, F =

{
{2, 6}, {4, 6}

}
,

G =
{
{2, 7}, {4, 7}

}
, H =

{
{2, 8}, {2, 9}, {4, 8}, {4, 9}

}
,

I =
{
{5, 6}

}
, J =

{
{6, 8}, {6, 9}

}
.

Lemma 2.22
The graphs G49, G50 and G51 which are obtained by identifying two vertices v1 and v2 of
a K5 with pairs of vertices in orbit A, B or I and deleting the edge (v1, v2), are elements
of M4(S2).
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Proof
We consider embeddings of G4 − e and G4/e for e ∈ {(1, 2), (1, 6), (1, 8), (2, 5), (5, 7),
(5, 8), (6, 7), (7, 8), (8, 9)} as well as R3(D12)(2) and R3(D12)(6) into the Möbius strip.
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(1) Embedding of D12 − (1, 2), each
vertex-pair of orbits A, B and I on
the boundary of one face.

12

34

5
67

8 9

(2) Embedding of D12 − (1, 6), each
vertex-pair of orbits A, B and I on
the boundary of one face.

1 2

3

45

6
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(3) Embedding of D12 − (1, 8), each
vertex-pair of orbits A, B and I on
the boundary of one face.

12
3 4
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(4) Embedding of D12 − (2, 5), each
vertex-pair of orbits A, B and I on
the boundary of one face.
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23

45
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(5) Embedding of D12 − (5, 7), each
vertex-pair of orbits A, B and I on
the boundary of one face.
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3

45

6
78

9

(6) Embedding of D12 − (5, 8), each
vertex-pair of orbits A, B and I on
the boundary of one face.
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45
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(7) Embedding of D12 − (6, 7), each
vertex-pair of orbits A, B and I on
the boundary of one face.

1

23

45

6
7

8
9

(8) Embedding of D12 − (7, 8), each
vertex-pair of orbits A, B and I on
the boundary of one face.
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(9) Embedding of D12 − (8, 9), each
vertex-pair of orbits A, B and I on
the boundary of one face.
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(10) Embedding of D12/(1, 2), each
vertex-pair of orbits A, B and I on
the boundary of one face.
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(11) Embedding of D12/(1, 6), each
vertex-pair of orbits A, B and I on
the boundary of one face.
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(12) Embedding of D12/(1, 8), each
vertex-pair of orbits A, B and I on
the boundary of one face.
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(13) Embedding of D12/(2, 5), each
vertex-pair of orbits A, B and I on
the boundary of one face.
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(14) Embedding of D12/(5, 7), each
vertex-pair of orbits A, B and I on
the boundary of one face.
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(15) Embedding of D12/(5, 8), each
vertex-pair of orbits A, B and I on
the boundary of one face.
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(16) Embedding of D12/(6, 7), each
vertex-pair of orbits A, B and I on
the boundary of one face.

1
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3

45
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7,8
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(17) Embedding of D12/(7, 8), each
vertex-pair of orbits A, B and I on
the boundary of one face.

1 2
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45

6
78,9

(18) Embedding of D12/(8, 9), each
vertex-pair of orbits A, B and I on
the boundary of one face.
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1

3 4

5

6
7

8

9

(19) Embedding of R3(D12)(2), each
vertex-pair of orbits A, B and I on
the boundary of one face.

Figure 2.50: Embeddings of Ri(D12), i ∈ {0, 2, 3}, into the Möbius strip

We can also find embeddings of D12 into the Klein surface, where the pairs of vertices in
orbits A, B and I lie on the boundary of one face:

1 2

3

4

5 5

55

6

7

8

9

Figure 2.51: Embedding of D12 into the Klein surface, each vertex-pair of orbits A, B and
I on the boundary of one face.

Consequently G49, G50 and G51 are elements of M4(S2).

Lemma 2.23
Attaching the K5 − (v1, v2) to a pair of vertices from orbit C of D12 does not result in an
element of M4(S2).

1 2 3

6
54 7

8 9

Figure 2.52: D12 − (6, 7)

Proof
The graph, which we have to consider to show that the constructed graph is not embeddable,
if we delete one random edge, is D12 − (6, 7) with v1 and v2 of K5 − (v1, v2) attached to
one of the pairs of vertices in orbit C. Vertices 5, 8 and 9 have to be connected to vertices
in the K3,3− (5, 6) (vertex 5 is already in K3,3− (5, 6)). As vertices 5, 8 and 9 are adjacent
to each other, the vertices 1, 3 and 5 of the K3,3 have to lie on the boundary of one face.
Thus the Möbius characteristics have to be used. Consequently the K4 with vertices 5, 7, 8
and 9 has to be embedded into one face and vertex 7 consequently has to be embedded
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into the triangular face with vertices 5, 8 and 9. Thus vertex 7 cannot lie in the same face
as vertices 1 or 3.

Lemma 2.24
The construction of a graph with vertices v1 and v2 of K5 − (v1, v2) attached to a pair of
vertices of orbits D, H or J in D12, does not result in an element of M4(S2).

Proof
The K3,3 with the vertices 1, 2, 3, 4, 5 and 6 uses the Möbius characteristics. Therefore the
attached K4 with the vertices 5, 7, 8 and 9 has to be drawn within one face. The vertices
5, 7 and 9 have to lie on the boundary of one face, so they can each be connected to or
identified with a vertex of the K3,3. The vertices 5, 7 and 9 thus form a triangle, in which
vertex 8 has to be embedded. Consequently vertex 8 cannot lie in the same face as vertices
2, 3, 4 or 6.

Lemma 2.25
A graph with vertices v1 and v2 of K5 − (v1, v2) attached to a pair of vertices of orbit G in
D12 cannot be an element of M4(S2).

Proof
As the pair of vertices {2, 7} lies in the same orbit as {2, 5} for D12 − (2, 5), vertices 2
and 7 cannot be drawn on the boundary of one face of the Möbius strip, when embedding
D12 − (2, 5). Consequently the graph constructed by attaching vertices v1 and v2 of
K5 − (v1, v2) to vertices 2 and 7 in D12 − (2, 5) is not embeddable into the Klein surface
and thus attaching vertices v1 and v2 of K5 − (v1, v2) to one of the pairs of vertices in F
does not deliver an irreducible graph for the Klein surface.

For the orbits E and F we take the possible embeddings of the K4 into the Möbius strip
into abbount. The only embedding, where all four vertices of the K4 lie on the boundary
of one face, is:

Figure 2.53: The K4 embedded into the Möbius strip

This embedding of the K4 has only two triangular faces. Although we can find four cycles
of length three in the K4, this is the maximal number of triangular faces under the given
conditions.

Using this, the next two lemmata can be proven.
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Lemma 2.26
The construction of a graph whith vertices v1 and v2 of K5 − (v1, v2) attached to a pair of
vertices of orbit E in D12, does not result in an element of M4(S2).

Proof
In D12 − (1, 6) the shortest paths between vertices 2 and 4 are 2− 1− 4, 2− 3− 4 and
2 − 5 − 4, additionally vertices 1, 3 and 5 are the only vertices 2 and 4 are adjacent to.
Using Lemma 1.11, the cycles of length four in Figure 2.54are the only ones we have to
consider for possible embeddings of D12 − (1, 6) with vertices 2 and 4 on the boundary of
one face.

1 2 3

6
54 7

8 9

(1) Case 1

1 2 3

6
54 7

8 9

(2) Case 2

1 2 3

6
54 7

8 9

(3) Case 3

Figure 2.54: Cycles in D12 − (1, 6), including vertices 2 and 4; vertices 1 and 6 cannot lie
on the same cycle.

For these cycles, we try to find embeddings with these cycles as boundaries of one face:

Embedding of Case 1:

1 4

2 3

(1) Embedding of the given cycle

1 4

2 3

(2) 1− 3 is embedded

1 4

2 3

5

5

(3) 2− 5− 4 is embedded

1 4

2 3

5

5

7

(4) 1− 7− 5 is embedded
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1 4

2 3

5

5

78

(5) 1− 8− 5 is embedded

Figure 2.55: Embedding of Case 1

Figure 2.55 shows that an embedding, with the given restrictions, is not possible, as vertex
9 cannot be embedded.

Embedding of Case 2:

1 4

2 5

(1) Embedding of the given cycle

1 4

2 5

3

3

(2) 2− 3− 4 is embedded

1 4

2 5

3

3

8

8

(3) 1− 8− 5 is embedded

1 4

2 5

3

3

8

8

7

7

1 4

2 5

3

3

8

8

7

7

(4) 1− 7− 5 is embedded

Figure 2.56: Embedding of Case 2
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Figure 2.56 shows that an embedding, with the given restrictions, is not possible, as vertex
9 cannot be embedded.

Embedding of Case 3:

3 4

2 5

(1) Embedding of the given cycle

3 4

2 5

1

1

(2) 2− 1− 4 is embedded

3 4

2 5

1

1

9

9

(3) 5− 9− 3 is embedded

3 4

2 5

1

1

9

9

7
3 4

2 5

1

1

9

9
7

(4) 1− 7− 9 is embedded

Figure 2.57: Embedding of Case 3

Figure 2.57 shows that an embedding, with the given restrictions, is not possible, as vertex
8 cannot be embedded.

Consequently none of the given cycles in D12− (1, 6) can be embedded as the boundary of
one face.

Lemma 2.27
The graph with vertices v1 and v2 of K5 − (v1, v2) attached to a pair of vertices of orbit F
in D12, cannot be an element of M4(S2).

Proof
The graph D12/(1, 2) has eight vertices and 16 edges and with the Euler characteristic
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2.4. Graphs including two base-points

the number of faces of its embedding into the Möbius strip must be nine. As there are
only eight cycles of length three in the graph, where four of these are within a K4, the
embedding of D12/(1, 2) can have at most six triangular faces and consequently faces
cannot have more than six vertices on their boundary. After application of Lemma 1.11
the only remaining non-isomorphic cycles including vertices 4 and 6 are:

1,2 3

6
54 7

8 9

(1) Case 1

1,2 3

6
54 7

8 9

(2) Case 2

1,2 3

6
54 7

8 9

(3) Case 3

Figure 2.58: Cycles in D12/(1, 2), including vertices 4 and 6.

For embeddings with vertices 4 and 6 on the boundary of one face, we have to do a
case-distinction:

Embedding of Case 1:

1 6

4 3

(1) Embedding of the given cycle

1 6

4 3

(2) 1− 3 is embedded

Figure 2.59: Embedding of Case 1

Figure 2.59 shows that an embedding, with the given restrictions, is not possible, as the
remaining K4 with vertices 5, 7, 8 and 9 cannot be embedded.

Embedding of Case 2:

1

6

75

4

(1) Embedding of the given cycle

1

6

75

4

(2) 1− 5 is embedded
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1

6

75

4

3

3

(3) 4− 3− 6 is embedded

1

6

7
5

4

3

39

(4) 9 is embedded

Figure 2.60: Embedding of Case 2

Figure 2.60 shows that an embedding, with the given restrictions, is not possible, as vertex
8 cannot be embedded.

Embedding of Case 3:

3

6

75

4

(1) Embedding of the given cycle

3

6

75

4

1

1

(2) 4− 1− 6 is embedded

3

6

75

4

1

1

9

9

(3) 7− 9− 3 is embedded

3

6

75

4

1

1

9

9

(4) 5− 9 is embedded

Figure 2.61: Embedding of Case 3

Figure 2.61 shows that an embedding, with the given restrictions, is not possible, as vertex
8 cannot be embedded. Consequently none of the graphs can be an element of M4(S2).
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The graph D17

2

1
3

4 8

6

5
7

Figure 2.62: D17 and its vertex-orbits

The only orbit of pairs of vertices we have to look at for the graph D17 is:

A =
{
{1, 6}, {1, 7}, {1, 8}, {2, 5}, {2, 7}, {2, 8}, {3, 5}, {3, 6}, {3, 8}, {4, 5}, {4, 6}, {4, 7}

}
.

Lemma 2.28
The graph G52, which is constructed by attaching the vertices v1 and v2 of K5 − (v1, v2)
to a pair of vertices of orbit A, is an element of M4(S2).

Proof
Looking at possible embeddings of D17 − e and D17/e, e ∈ {(1, 2), (1, 5)} into the Möbius
strip, we find embeddings where each pair of vertices in orbit A can be drawn on the
boundary of one face of the Möbius strip, so that vertices v1 and v2 from K5− (v1, v2) can
be drawn in the outer face and thus attached to each representative of orbit A.

1

23

4

5
6 7

8

(1) Embedding of D17 − (1, 2), vertex-
pairs {1, 6}, {1, 7}, {1, 8}, {2, 7},
{2, 8}, {3, 5}, {3, 6}, {3, 8}, {4, 5},
{4, 6} on the boundary of one face.

1

23
4

5
6 7

8

(2) Embedding of D17 − (1, 2), vertex-
pairs {2, 5}, {4, 7} on the boundary
of one face.

1
23

4

5

6 7
8

(3) Embedding of D17 − (1, 5), vertex-
pairs {1, 6}, {1, 7}, {1, 8}, {2, 7},
{2, 8}, {3, 6}, {3, 8}, {4, 6}, {4, 7} on
the boundary of one face.

1
23

4

5

6 7

8

(4) Embedding of D17 − (1, 5), vertex-
pairs {2, 5}, {3, 5}, {4, 5} on the
boundary of one face.
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1,2
3 4

5 6
78

(5) Embedding ofD17/(1, 2), vertex-pairs
{1, 6}, {1, 7}, {1, 8}, {2, 5}, {2, 7},
{2, 8}, {3, 5}, {3, 6}, {3, 8}, {4, 6},
{4, 7} on the boundary of one face.

1,2
3 4

5 6
78

(6) Embedding of D17/(1, 2), vertex-pair
{4, 5} on the boundary of one face.

1,5

2

3

4

6
7

8

(7) Embedding ofD17/(1, 5), vertex-pairs
{1, 6}, {1, 7}, {1, 8}, {2, 5}, {2, 7},
{3, 5}, {3, 8}, {4, 5}, {4, 6}, {4, 7} on
the boundary of one face.

1,5

2

3

467

8

(8) Embedding ofD17/(1, 5), vertex-pairs
{2, 8}, {3, 6} on the boundary of one
face.

Figure 2.63: Embeddings of Ri(D17), i ∈ {0, 2}, into the Möbius strip.

Also the embeddings of D17 itself into the Klein surface, allow that each pair of vertices in
orbit A lies on the boundary of one face, so that vertices v1 and v2 of K5 − (v1, v2) − e
and (K5/(v1, v2))/e can be attached to each representative.

8

8

x

x

1

23

4

56

7
8

(1) Embedding of D17, vertex-pairs {1, 6},
{1, 7}, {2, 7}, {2, 8}, {3, 5}, {3, 6},
{4, 5}, {4, 6}, {4, 7} on the boundary
of one face.

x

x

1

23

4

56

7
8

(2) Embedding of D17, vertex-pairs {1, 8},
{2, 5}, {3, 8} on the boundary of one
face.

Figure 2.64: Embedding of D17 into the Klein surface

Consequently G52 is an element of M4(S2).
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The graph E3

1 2 3

456

7 8

Figure 2.65: E3 and its vertex-orbits

The only orbits of pairs of vertices we have to look at for the graph E3 are:

A =
{
{1, 3}, {1, 5}, {3, 5}

}
,

B =
{
{2, 4}, {2, 6}, {2, 7}, {2, 8}, {4, 6}, {4, 7}, {4, 8}, {6, 7}, {6, 8}, {7, 8}

}
.

A =
{
{1, 3}, {1, 5}, {1, 7}, {1, 8}, {3, 5}, {3, 7}, {3, 8}, {5, 7}, {5, 8}, {7, 8}

}
,

B =
{
{2, 4}, {2, 6}, {4, 6}

}
.

Lemma 2.29
The graphs G53 and G54, which are constructed by attaching the K5 − (v1, v2) to a pair of
vertices from orbits A and B, are elements of M4(S2).

Proof
For both graphs, we have to check if the elements of A and B can be drawn on the
boundary of one face of the embeddings of E3 − (1, 2), E3/(1, 2) and R3(E3)(1) into the
Möbius strip, and all these embeddings are possible:

2

14

3

6 5

7 8

(1) Embedding of E3−(1, 2), vertex-pairs
{2, 6}, {2, 7}, {1, 3}, {1, 5}, {4, 6},
{4, 7}, {4, 8}, {3, 5}, {6, 8}, {7, 8} on
the boundary of a face.

2

14

3

6 5

7 8

(2) Embedding of E3−(1, 2), vertex-pairs
{2, 4}, {2, 8}, {6, 7} on the boundary
of a face.

1,2

3 4

5

67

8

(3) Embedding of E3/(1, 2), vertex-pairs
{2, 4}, {2, 6}, {2, 7}, {2, 8}, {1, 3},
{1, 5}, {4, 6}, {4, 7}, {4, 8}, {3, 5},
{6, 8} on the boundary of a face.

1,2

4 3

6

57

8

(4) Embedding of E3/(1, 2), vertex-pairs
{6, 7}, {7, 8} on the boundary of a
face.
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1

4 3

6

57

8

(5) Embedding of R3(E3)(2), vertex-pairs
{1, 3}, {1, 5}, {3, 5}, {6, 7}, {6, 8},
{7, 8} on the boundary of a face.

1

4 3

6

57

8

(6) Embedding of R3(E3)(2), vertex-pairs
{4, 6}, {4, 7}, {4, 8} on the boundary
of a face.

Figure 2.66: Embeddings of Ri(E3), i ∈ {0, 2, 3}, into the Möbius strip.

Also every pair of vertices of orbits A and B can be drawn on the boundary of one face,
when embedding E3 into the Klein surface. Thus vertices v1 and v2 of K5 − (v1, v2)− e
and (K5 − (v1, v2))/e can be attached to each of the pairs of vertices in orbits A and B.

2

1

43
6

5
7

8 8

88
(1) Embedding of E3, vertex-pairs {2, 4},
{2, 6}, {2, 7}, {2, 8}, {1, 3}, {1, 5},
{4, 6}, {4, 8}, {3, 5}, {6, 7}, {7, 8} on
the boundary of a face.

2

1

43
7

5
6

8 8

88
(2) Embedding of E3, vertex-pairs {4, 7},
{6, 8} on the boundary of a face.

Figure 2.67: Embedding of E3 into the Klein surface

Consequently G53 and G54 are elements of M4(S2).

The graph E18

1 2 3

457

6 8

Figure 2.68: E18 and its vertex-orbits

The remaining orbits of pairs of two vertices, we have to consider for E18 are:

A =
{
{1, 3}, {1, 5}, {2, 4}, {2, 6}, {3, 5}, {4, 6}

}
,

B =
{
{1, 8}, {2, 7}, {3, 8}, {4, 7}, {5, 8}, {6, 7}

}
,

C =
{
{7, 8}

}
.
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Lemma 2.30
The graphs G55 and G56, are graphs constructed by attaching the vertices v1 and v2 of
K5− (v1, v2) to two vertices of E18, which lie in orbits A and B. Both graphs are elements
of M4(S2).

Proof
For each pair of vertices from orbits A and B we can find an embedding of E18 − e and
E18/e, e ∈ {(1, 2), (1, 7)}, as well as R3(E18)(7) into the Möbius strip, where they lie on
the boundary of one face, so that we can attach the K5 − (v1, v2).

12

3

45

6

7 8

(1) Embedding of E18−(1, 2), each vertex-
pair of orbits A and B on the bound-
ary of a face.

1

2 3

45

6

7
8

(2) Embedding of E18 − (1, 7), vertex-
pairs {1, 3}, {1, 5}, {1, 8}, {2, 4},
{2, 6}, {2, 7}, {3, 5}, {3, 8}, {4, 6},
{4, 7}, {5, 8} on the boundary of a
face.

1

2 3

4
5

6

7

8

(3) Embedding of E18−(1, 7), vertex-pair
{6, 7} on the boundary of a face.

1,2

3

4

5 6

7

8

(4) Embedding of E18/(1, 2), each vertex-
pair of orbits A and B on the bound-
ary of a face.

1,7 2

3

45

6 8

(5) Embedding of E18/(1, 7), each vertex-
pair of orbits A and B on the bound-
ary of a face.

1 2

3

45

6 8

(6) Embedding of R3(E18)(7), vertex-
pairs {1, 3}, {1, 5}, {1, 8}, {2, 4},
{2, 6}, {3, 5}, {3, 8}, {4, 6}, {5, 8} on
the boundary of a face.

Figure 2.69: Embeddings of Ri(E18), i ∈ {0, 2, 3} into the Möbius strip.

We also find embeddings of E18 itself into the Klein surface, so that each pair of vertices
from orbits A and B lies on the boundary of one face and the K5 − (v1, v2) − e and
(K5 − (v1, v2))/e can be attached.
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1 2

34

5

6

7 7

77

8

Figure 2.70: Embedding of E18 into the Klein surface, each vertex-pair of orbits A and B
on the boundary of a face.

Consequently G55 and G56 are elements of M4(S2).

Lemma 2.31
The construction of a graph with vertices v1 and v2 of K5 − (v1, v2) attached to vertices 7
and 8 in E18, does not result in an element of M4(S2).

Proof
As the pairs of vertices {1, 2} and {7, 8} lie in the same orbit for E18 − (1, 2), when
embedding this graph into the Möbius strip, vertices 7 and 8 can never be drawn on the
boundary of one face, as this would be a contradiction to the irreducibility of E18 for the
projective plane.

The graph E22

5

7
9

4

8

2

6

1

3

Figure 2.71: E22 and its vertex-orbits

The orbits of pairs of vertices for E22, which we have to consider, are:

A =
{
{1, 3}, {3, 5}, {3, 8}, {3, 9}

}
,

B =
{
{1, 5}, {1, 8}, {1, 9}, {5, 8}, {5, 9}, {8, 9}

}
,

C =
{
{1, 7}, {2, 9}, {4, 8}, {5, 6}

}
,

D =
{
{2, 4}, {2, 6}, {2, 7}, {4, 6}, {4, 7}, {6, 7}

}
.

Lemma 2.32
Attaching vertices v1 and v2 to a pair of vertices of orbits A, B or D, is the construction
of the irreducible graphs G57, G58 and G59, which are elements of M4(S2).
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Proof
Considering the embeddings of E22 − e, E22/e, e ∈ {(1, 2), (2, 3)}, and R3(E22)(1) into the
Möbius strip, we can see that we can find embeddings of these graphs, so that the pairs of
vertices from A, B and D can be drawn on the boundary of one face and vertices v1 and
v2 of K5 − (v1, v2) can be attached to each representative of A, B and D.

1

1

2
3 6

8

4
7

5 9

(1) Embedding of E22 − (1, 2), vertex
pairs {1, 3}, {1, 5}, {1, 9}, {2, 4},
{2, 6}, {2, 7}, {3, 5}, {3, 8}, {3, 9},
{4, 6}, {4, 7}, {5, 8}, {6, 7}, {8, 9} on
the boundary of a face.

1

1

2
3 4

5

6
7

8 9

(2) Embedding of E22 − (1, 2), vertex
pairs {1, 8}, {5, 9} on the boundary
of a face.

1
2

3 4

5

6 7

8 9

(3) Embedding of E22 − (2, 3), vertex
pairs {1, 3}, {1, 5}, {1, 8}, {1, 9},
{2, 4}, {2, 6}, {2, 7}, {3, 8}, {3, 9},
{4, 6}, {4, 7}, {5, 8}, {5, 9}, {6, 7}, on
the boundary of a face.

12

3

4

5

6

7 8

9

(4) Embedding of E22 − (2, 3), vertex
pairs {3, 5}, {8, 9} on the boundary
of a face.

1,2

3 4

5

6

7

7
8

9

9

(5) Embedding of E22/(1, 2), vertex pairs
{1, 3}, {1, 5}, {1, 8}, {2, 4}, {2, 6},
{2, 7}, {3, 5}, {3, 8}, {3, 9}, {4, 7},
{5, 9}, {6, 7}, {8, 9} on the boundary
of a face.

1,2

3 4
5

6

7

8
9

(6) Embedding of E22/(1, 2), vertex pairs
{1, 9}, {4, 6}, {5, 8} on the boundary
of a face.
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5

2,3

4

1

7

6
8 9

(7) Embedding of E22/(2, 3), vertex pairs
{1, 3}, {1, 9}, {2, 4}, {2, 6}, {2, 7},
{3, 5}, {3, 8}, {3, 9}, {4, 6}, {4, 7},
{5, 8}, {5, 9}, {6, 7}, {8, 9} on the
boundary of a face.

1

2,3

4

5

6

78 9

(8) Embedding of E22/(2, 3), vertex pairs
{1, 5}, {1, 8} on the boundary of a
face.

2

3 4

5

6 7

8 9

(9) Embedding of R3(E22)(1), vertex-
pairs {2, 4}, {2, 6}, {2, 7}, {3, 5},
{3, 8}, {4, 6}, {4, 7}, {5, 9}, {6, 7},
{8, 9} on the boundary of a face.

2

3 4

5

6 7

8
9

(10) Embedding of R3(E22)(1), vertex-
pairs {3, 9}, {5, 8} on the boundary
of a face.

Figure 2.72: Embeddings of Ri(E22), i ∈ {0, 2, 3}, into the Möbius strip.

The embedding of E22 into the Klein surface, also has each pair of vertices in orbits A, B
and D on the boundary of one face, so that the vertices v1 and v2 from K5 − (v1, v2)− e
as well as (K5 − (v1, v2))/e can be attached to these vertices.

1

2

3 3

33

45 6

78

9

(1) Embedding of E22, vertex-pairs {1, 3},
{1, 8}, {1, 9}, {2, 4}, {2, 6}, {2, 7},
{3, 5}, {3, 8}, {3, 9}, {4, 6}, {4, 7},
{5, 8}, {5, 9}, {6, 7} on the boundary
of a face.

8

2

3 3

33

45 6

71

9

(2) Embedding of E22, vertex-pairs {1, 5},
{8, 9} on the boundary of a face.

Figure 2.73: Embedding of E22 into the Klein surface

Hence G57, G58 and G59 are elements of M4(S2).

Lemma 2.33
The construction of a graph with vertices v1 and v2 of K5 − (v1, v2) attached to a pair of
vertices of C in E22, does not result in an element of M4(S2).
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Proof
As the pair of vertices {2, 9} lies in the same orbit as {2, 3} for E22 − (2, 3), vertices 2
and 9 cannot be drawn on the boundary of one face, when embedding E22 − (2, 3) into
the Möbius strip: Consequently the graph constructed by attaching vertices v1 and v2 of
K5 − (v1, v2) to vertices 2 and 9 in E22 − (2, 3), is not embeddable into the Klein surface.
Thus attaching vertices v1 and v2 of K5 − (v1, v2) to one of the pairs of vertices in C, does
not deliver an irreducible graph for the Klein surface.

2.5 Graphs including three base-points

In this section, we will look at the possible combinations of the graphs in M4(S1) and a
subgraph of the K5 with the property that these graphs have three shared vertices.

Proposition 2.34
None of the graphs, which are constructed by attaching the vertices v1, v2 and v3 of a
K5−(v1, v2)−(v1, v3)−(v2, v3) to three pairwise different vertices of any graph inM4(S1)is
an element of the minimal basis M4(S2).

Considering the results of Proposition 2.4, most of the orbits of triples do not have to be
considered, as they already consist of pairs of vertices, for which is already shown that an
attachment of a K5 − (v1, v2) does not result in an element of M4(S2).

The graph D9
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1 3 9

6

8

5

10

Figure 2.74: D9 and its vertex-orbits

The orbits of triples of vertices we have to consider for the graph D9 are:

A =
{
{2, 4, 5}, {2, 5, 6}

}
, B =

{
{2, 4, 6}, {4, 5, 6}

}
.

Lemma 2.35
The graph, where vertices v1, v2 and v3 of K5 − (v1, v2)− (v1, v3)− (v2, v3) are identified
with triples of vertices from orbit A of D9, is not an element of M4(S2).

Proof
The embedding of D9 − (4, 7) consists of one face of size six and seven faces of size four
(the graph has 17 edges and the embedding consists of eight faces). The only cycle, which
includes vertices 2, 4 and 5, is:
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Figure 2.75: Cycle in D9 − (4, 7), including vertices 2, 4 and 5

Trying to embed D9 − (4, 7) containing this cycle as the boundary of one face, delivers the
following result:
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(1) Embedding of the given cycle

4

9

8 1

5

2 7

7
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Figure 2.76: Embedding of D9 − (4, 7)

Figure 2.76 shows that an embedding, with the given restrictions, is not possible, as vertex
10 cannot be embedded.

Consequently vertices 2, 4 and 5 can never lie on the boundary of one face, when embedding
the graph D9 − (4, 7) into the Möbius strip.

Lemma 2.36
The graph, with vertices v1, v2 and v3 of K5 − (v1, v2)− (v1, v3)− (v2, v3) identified with a
triple of vertices from orbit B of D9, is not an element of M4(S2).

Proof
The embedding of D9− (1, 2) consists of one face of size six and seven faces of size four (the
graph has 17 edges and the embedding consists of eight faces). The four cycles including
vertices 2, 4 and 6 are:
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Figure 2.77: Cycles in D9 − (1, 2), including vertices 2, 4 and 6

Trying to embed D9 − (4, 7) containing these cycles as boundaries of a face, delivers the
following results:

Embedding of Case 1:
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8 3
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(1) Embedding of the given cycle

4
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8 3

6

2

(2) 3− 6 is drawn

4
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25

5

(3) 9− 5− 8 is embedded

Figure 2.78: Embedding of Case 1

Figure 2.78 shows that an embedding, with the given restrictions, is not possible, as the
path 2− 4− 5 cannot be embedded.
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Embedding of Case 2:
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(3) 4− 9− 6 is embedded

Figure 2.79: Embedding of Case 2

Figure 2.79 shows that an embedding, with the given restrictions, is not possible, as the
path 7− 5− 8 cannot be embedded.

Embedding of Case 3:

4

9

3 7

6

2
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Figure 2.80: Embedding of Case 374
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Figure 2.80 shows that an embedding, with the given restrictions, is not possible, as the
path 7− 5− 9 cannot be embedded.

Embedding of Case 4:
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(1) Embedding of the given cycle
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Figure 2.81: Embedding of Case 4

Figure 2.81 shows that an embedding, with the given restrictions, is not possible, as the
path 2− 3− 6 cannot be embedded.

Consequently no embedding of D9 − (4, 7) into the Möbius strip, with vertices 2, 4 and 6
on the boundary of one face, exists.

The graph D12

1 2 3

6
54 7

8 9

Figure 2.82: D12 and its vertex-orbits

The only triple of vertices we have to consider for D12 is {1, 3, 5}.

Lemma 2.37
The graph, where vertices v1, v2 and v3 of K5 − (v1, v2)− (v1, v3)− (v2, v3) are identified
with vertices 1, 3 and 5 of the graph D12, cannot be an element of M4(S2).

75



Chapter 2. M4(S1) to M4(S2)

Proof
The vertices 1, 3 and 5 cannot lie on the boundary of one face for D12 − (1, 2). This is the
case because the K4 with vertices 5, 7, 8 and 9 needs the Möbius strip characteristics, so
that they can be connected with other vertices in the graph. The also included K3,3− (1, 2)
with the vertices 1, 2, 3, 4, 5 and 7 consequently cannot use the characteristics of the Möbius
strip and thus the vertices 1, 3 and 5, which all lie within the same set of vertices regarding
the K3,3, cannot all be drawn on the boundary of the same face.

The graph E3

1 2 3

456

7 8

Figure 2.83: E3 and its vertex-orbits

The orbits of triples of vertices we have to consider for the graph E3 are:

A =
{
{2, 4, 6}, {2, 4, 7}, {2, 4, 8}, {2, 6, 7}, {2, 6, 8}, {2, 7, 8}, {4, 6, 7},

{4, 6, 8}, {4, 7, 8}, {6, 7, 8}
}
,

B =
{
{1, 3, 5}

}
.

Lemma 2.38
The construction of graphs, with vertices v1, v2 and v3 of K5 − (v1, v2)− (v1, v3)− (v2, v3)
identified with triples of vertices from orbit A or B of the graph E3 does not result in
elements of M4(S2).

Proof
As the Euler characteristic for a graph G embedded into the Möbius strip is χ(G) =
v− e+ f = 1, and E3− (1, 2) has eight vertices and 14 edges, the embedding of E3− (1, 2)
has seven faces. Because the graph is bipartite, a face of the embedding has to have at
least four vertices on its boundary. As the graph only has 14 edges for seven faces and
each edge can only be on the boundary of two faces, each face of the embedding of the
graph has size four. Consequently three vertices which lie within the same set of vertices
in the bipartite graph, cannot lie on the boundary of the same face.

The graph E18

1 2 3

457

6 8

Figure 2.84: E18 and its vertex-orbits
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The orbits of triples of vertices we have to consider for the graph E18 are:

A =
{
{1, 3, 5}, {2, 4, 6}

}
,

B =
{
{1, 3, 8}, {1, 5, 8}, {2, 4, 7}, {2, 6, 7}, {3, 5, 8}, {4, 6, 7}

}
.

Lemma 2.39
The construction of graphs, with vertices v1, v2 and v3 of K5 − (v1, v2)− (v1, v3)− (v2, v3)
identified with triples of vertices from orbit A or B of the graph E18, does not result in
elements of M4(S2).

Proof
For the graph E18 − (1, 2) the same arguments as for the graph E3 − (1, 2) in Lemma 2.38
apply.

The graph E22
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6
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Figure 2.85: E22 and its vertex-orbits

The orbits of triples of vertices we have to consider for the graph E22 are:

A =
{
{1, 3, 5}, {1, 3, 8}, {1, 3, 9}, {3, 5, 8}, {3, 5, 9}, {3, 8, 9}

}
,

B =
{
{1, 5, 8}, {1, 5, 9}, {1, 8, 9}, {5, 8, 9}

}
,

C =
{
{2, 4, 6}, {2, 4, 7}, {2, 6, 7}, {4, 6, 7}

}
.

Lemma 2.40
The construction of a graph, with vertices v1, v2 and v3 of K5− (v1, v2)− (v1, v3)− (v2, v3)
identified with triples of vertices from orbit A of the graph E22 does not result in an
element M4(S2).

Proof
The graph E22 − (1, 2) is bipartite and with the Euler characteristic, we know that the
embedding of the graph consists of seven faces, one of size six and the others of size four.
The only cycle including vertices 1, 3 and 9 is:

5

7
9

4

8

2

6

1

3

Figure 2.86: Cycle in E22 − (1, 2), including vertices 1, 3 and 9 77
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By trying to embed the graph E22 − (1, 2), having this cycle as the boundary of one face,
we get:
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(1) Embedding of the given cycle
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(2) 4− 9 is embedded
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5 2

(5) 3− 2− 5 is embedded

Figure 2.87: Embedding of E22 − (1, 2)

Figure 2.87 shows that an embedding, with the given restrictions, is not possible, as the
path 6− 8− 7 cannot be embedded.

Consequently vertices 1, 3 and 5 cannot lie on the boundary of the same face, when
embedding E22 − (1, 2) into the Möbius strip.

Lemma 2.41
The graph, with vertices v1, v2 and v3 of K5 − (v1, v2)− (v1, v3)− (v2, v3) identified with
triples of vertices from orbit B of the graph E22, is not an element of M4(S2).

Proof
In this Lemma the same considerations about face sizes as in Lemma 2.40 apply. The only
remaining cycle including vertices 1, 5 and 8 is:
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Figure 2.88: Cycle in E22 − (1, 2), including vertices 1, 5 and 8

As before, embedding of E22 − (1, 2) including this cycle as the boundary of one face, is
done:
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Figure 2.89: Embedding of E22 − (1, 2)

Figure 2.89 shows that an embedding, with the given restrictions, is not possible, as the
path 5− 2− 8 cannot be embedded.
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Lemma 2.42
The construction of a graph, with vertices v1, v2 and v3 of K5− (v1, v2)− (v1, v3)− (v2, v3)
identified with triples of vertices from orbit C of the graph E22 does not result in an
element of M4(S2).

Proof
The maximal size of a face in E22 − (2, 3) is six, as already shown above. Thus the only
cycles including vertices 2, 6, and 7, which have to be considered, are:
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Figure 2.90: Cycles in E22 − (2, 3), including vertices 2, 6 and 7

Again we try to embed the graph E22 − (2, 3) with these cycles as boundaries of one face,
and we get:

Embedding of Case 1:

6

8

5 1

7

2

(1) Embedding of the given cycle

6

8

5 1

7

2

(2) 2− 8 is embedded

6

8

5 1

7

2
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Figure 2.91: Embedding of Case 1
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Figure 2.91 shows that an embedding, with the given restrictions, is not possible, as the
path 6− 9− 7 cannot be embedded.

Embedding of Case 2:
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Figure 2.92: Embedding of Case 2

Figure 2.92 shows that an embedding, with the given restrictions, is not possible, as the
path 2− 5− 7 cannot be embedded.

Embedding of Case 3:
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(1) Embedding of the given cycle

6

9

5 8

7

2

(2) 7− 8 is embedded
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Figure 2.93: Embedding of Case 3

Figure 2.93 shows that an embedding, with the given restrictions, is not possible, as vertex
4 cannot be embedded.

Embedding of Case 4:
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Figure 2.94: Embedding of Case 4

Figure 2.94 shows that an embedding, with the given restrictions, is not possible, as the
path 5− 4− 9 cannot be embedded.

Consequently an embedding of E22 − (2, 3), with vertices 2, 6 and 7 on the boundary of
one face, is not possible.
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3 M3(S1) to M4(S2)

In this chapter we will study the graphs of the minimal basis M3(S1) −M4(S1) of the
projective plane. We only have to consider an attachment of a subgraph of the K5 to a
graph G fromM3(S1)−M4(S1) for combinations of vertices which eliminate the application
of R4 and thus transforms the graph into another one from M3(S1)−M4(S1) or M4(S1).
Figure 3.1 shows the possible graphs and the relations we have to foreclose:
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Figure 3.1: Genealogy of graphs in M3(S1)
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Chapter 3. M3(S1) to M4(S2)

3.1 A graph including one base-point

The only graph inM4(S1)−M3(S1), where an attachment of theK5 to one vertex eliminates
all possibilities of applying the relation R4, is the graph D3.

Proposition 3.1
The graph G60 which is obtained by attachment of a K5 to vertex 5 of D3 is an element of
M4(S2).

1 2 3

456

7 8

Figure 3.2: D3 and its vertex-orbits

Proof
As the graph D3 is in M3(S1), it is embeddable on the Möbius strip as soon as one of the
relations R0, R1, R2 or R3 is applied. Consequently an attachment of a K5 to vertex 5,
which forecloses the application of R4 on D3, results in an element of M4(S2).

3.2 Graphs including two base-points

In this section we deal with the attachment of the K5− (v1, v2) to two vertices vi, vj , i 6= j,
vi in G ∈ M3(S1)−M4(S1). We again do this one by one and show whether or not the
attachment of the K5 results in a graph which is an element of M4(S2).

Proposition 3.2
The graphs G61, . . . , G66 are the only elements in M4(S2) constructed by combination of
a graph in M3(S1)−M4(S1) and a K5 − (v1, v2) as a relative component with v1 and v2
base-points.

The graph C1
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Figure 3.3: C1 and its vertex-orbits
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3.2. Graphs including two base-points

The only pair of vertices we have to consider for the graph C1 is: {7, 9}.

Lemma 3.3
The graph G61, which is obtained by attaching the K5 − (v1, v2) to C1 by identification of
vertices v1 and v2 of the K5 and vertices 7 and 9 in C1, is an element of M4(S2).

Proof
It is sufficient to show that the graphs C1− e and C1/e with e ∈ {(1, 2), (1, 5), (5, 6), (6, 7)}
and R3(C1)(6) can be embedded into the Möbius strip, and C1 itself into the Klein surface,
with vertices 7 and 9 on the boundary of one face:
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(9) Embedding of R3(C1)(6), vertices 7
and 9 on the boundary of a face.
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(10) Embedding of C1, vertices 7 and 9
on the boundary of a face.

Figure 3.4: (1)-(9): Embeddings of Ri(C1), i ∈ (0, 2, 3), into the Möbius strip, (10):
Embedding of C1 into the Klein surface

Consequently G61 is an element of M4(S2).

The graph D3
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Figure 3.5: D3 and its vertex-orbits

The orbits of pairs of vertices we have to consider for the graph D3 are:

A =
{
{1, 5}, {3, 5}

}
, B =

{
{2, 6}

}
,

C =
{
{5, 7}, {5, 8}

}
.

Lemma 3.4
The graphs G62 and G63 which can be obtained by identification of the vertices v1 and v2
in K5 − (v1, v2) with a pair of vertices from orbits A or B of D3, are elements of M4(S2).

Proof
As can be seen in Figure 3.6, the graphs D3− e, D3/e, with e ∈ {(1, 2), (1, 4), (1, 7), (2, 5),
(4, 5), (7, 8)} and R3(D3)(2) and R3(D3)(5) can be embedded into the Möbius strip as well
as D3 itself into the Klein surface, in a way that the pairs of vertices from orbits A and B
each lie on the boundary of one face:
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7 4

1 2

6

6

(14) Embedding of R3(D3)(5), vertex-pair
{2, 6} on the boundary of a face.

3 4

2 5

1
6

7

7

8

(15) Embedding of D3, each vertex-pair
of orbits A and B on the boundary of
a face.

Figure 3.6: (1)-(14): Embeddings of Ri(D3), i ∈ (1, 2, 3), into the Möbius strip, (15):
Embedding of D3 into the Klein surface

Consequently G62 and G63 are elements of M4(S2).

Lemma 3.5
The construction of a graph, with vertices v1 and v2 of K5 − (v1, v2) identified with a pair
of vertices from orbit C of the graph D3, does not result in an element of M4(S2).

Proof
The graph D3 − (2, 5) is not embeddable into the Möbius strip, in a way that vertices 5
and 7 lie on the boundary of one face. The only cycle we have to consider for this graph is:

1 2 3

456

7 8

Figure 3.7: Cycle in D3 − (2, 5), including vertices 5 and 7

Embedding the graph starting with this cycle as the boundary of one face is not possible:

1

6

5 4

7

(1) Embedding of the given cycle

1

6

5 4

7

(2) 1− 4 is embedded.
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1

6

5 4

7

3

3

(3) 6− 3− 7 is embedded

1

6

5 4

7

3

3

2

(4) 1− 2− 3 is embedded

1

6

5 4

7

3

3

2

(5) 3− 4 is embedded

Figure 3.8: Embedding of D3 − (4, 5)

Figure 3.8 shows that an embedding, with the given restrictions, is not possible, as vertex
8 cannot be embedded.

The graph D4

1 2 7
3

456

8 9

Figure 3.9: D4 and its vertex-orbits

The only orbit of pairs of vertices we have to consider for the graph D4 is:

A =
{
{1, 5}, {4, 6}

}
.

Lemma 3.6
The graph G64, which is obtained by identification of vertices v1 and v2 of K5 − (v1, v2)
and a pair of vertices from orbit A of D4, is an element of M4(S2).

Proof
As can be seen in Figure 3.10, each graph D4 − e, D4/e, with e ∈ {(1, 2), (1, 4), (2, 7),
(7, 8)}, and R3(D4)(1) can be embedded into the Möbius strip in a way that the pairs of
vertices {1, 5} and {4, 6} each lie on the boundary of one face of these embeddings:
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2 7
8

9
3 4

1

6
5

(1) Embedding of D4−(1, 2), each vertex-
pair of orbit A on the boundary of a
face.

2 7
8

9 3

5

6
1

4

4

(2) Embedding of D4−(1, 4), each vertex-
pair of orbit A on the boundary of a
face.

3 4

2 5

1 6

8 97

(3) Embedding of D4−(2, 7), each vertex-
pair of orbit A on the boundary of a
face.

3 4

2 5

1 6

7

8

9

(4) Embedding of D4−(7, 8), each vertex-
pair of orbit A on the boundary of a
face.

7 3
8

1,2 9

6

5

4

4

(5) Embedding of D4/(1, 2), each vertex-
pair of orbit A on the boundary of a
face.

7 38

2 9

5

6

1,4

1,4

(6) Embedding of D4/(1, 4), each vertex-
pair of orbit A on the boundary of a
face.

3 4

2,7 5

1 6

89

(7) Embedding of D4/(2, 7), each vertex-
pair of orbit A on the boundary of a
face.

3 4

2 5

1 6

7,89

(8) Embedding of D4/(7, 8), each vertex-
pair of orbit A on the boundary of a
face.
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8
37

2 95

6

4

6

(9) Embedding of R3(D4)(1), vertices 4
and 6 on the boundary of a face.

2
7

8

9
3

1
6

5
4

(10) Embedding of D4, each vertex-pair
of orbit A on the boundary of a face.

Figure 3.10: (1)-(9): Embeddings of Ri(D4), i ∈ (0, 2, 3), into the Möbius strip, (10):
Embedding of D4 into the Klein surface

The graph E19

1
2

3

456

7 8

9

Figure 3.11: E19 and its vertex-orbits

The only pairs of vertices we have to consider for the graph E19 are:

A =
{
{1, 3}

}
, B =

{
{4, 6}

}
.

Lemma 3.7
The graphs G65 and G66, which are elements of M4(S2), can be obtained by identification
of vertices v1 and v2 of K5 − (v1, v2) and the pairs of vertices {1, 3} and {4, 6} of E19.

Proof
Looking at the embeddings of E19− e and E19/e with e ∈ {(1, 4), (1, 7), (2, 5), (2, 7), (2, 9),
(4, 5), (7, 8)}, R3(E19)(1) and R3(E19)(4) into the Möbius strip as well as E19 into the Klein
surface, we can find embeddings, such that the pairs of vertices {1, 3} as well as {4, 6}
each lie on the boundary of one face:

2 7

9
8

4
36

5

6
1

(1) Embedding of E19 − (1, 4), vertex-
pairs {1, 3} and {4, 6} on the bound-
ary of a face.

2 7

9 8

3

5

6

4
1

(2) Embedding of E19 − (1, 7), vertex-
pairs {1, 3} and {4, 6} on the bound-
ary of a face.
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3 4

2 5

1 6

9
8

7

(3) Embedding of E19 − (2, 5), vertex-
pairs {1, 3} and {4, 6} on the bound-
ary of a face.

3 4

9 5

1 6

8

2

7

(4) Embedding of E19−(2, 7), vertex-pairs
{1, 3} and {4, 6} on the boundary of a
face.

3 4

2
5

1 6

9

8

7

(5) Embedding of E19−(2, 9), vertex-pairs
{1, 3} and {4, 6} on the boundary of a
face.

2 7

9 85

6

61

4
3

(6) Embedding of E19−(4, 5), vertex-pairs
{1, 3} and {4, 6} on the boundary of a
face.

3 4

2
5

1 6

9

8

7

(7) Embedding of E19−(7, 8), vertex-pairs
{1, 3} and {4, 6} on the boundary of a
face.

3

2 5

1,4
6

9

8

7

(8) Embedding of E19/(1, 4), vertex-pairs
{1, 3} and {4, 6} on the boundary of
a face.

1,7
2

6 3

5 4

9

8

(9) Embedding of E19/(1, 7), vertex-pairs
{1, 3} and {4, 6} on the boundary of
a face.

3 4

2,5

1 6

9
8

7

(10) Embedding of E19/(2, 5), vertex-
pairs {1, 3} and {4, 6} on the bound-
ary of a face.

3 4

2,7 5

1 6

98

(11) Embedding of E19/(2, 7), vertex-pairs
{1, 3} and {4, 6} on the boundary of a
face.

3 4

2,9 5

1 6

8

7

(12) Embedding of E19/(2, 9), vertex-pairs
{1, 3} and {4, 6} on the boundary of a
face.
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7 4,5

9 2

8

1

6

3

(13) Embedding of E19/(4, 5), vertex-pairs
{1, 3} and {4, 6} on the boundary of a
face.

3 4

7,8 5

1 6

9

2

(14) Embedding of E19/(7, 8), vertex-pairs
{1, 3} and {4, 6} on the boundary of a
face.

2 3

6
4

9
5

7
8

(15) Embedding of R3(E19)(1), vertex-pair
{4, 6} on the boundary of a face.

1 9

7 8

2
3

5

6

(16) Embedding of R3(E19)(4), vertex-pair
{1, 3} on the boundary of a face.

4

3

5

2 7

8 9

5

1

6

(17) Embedding of E19, vertex-pairs
{1, 3} and {4, 6} on the boundary of
a face.

Figure 3.12: (1)-(16): Embeddings of Ri(E19), i ∈ (0, 2, 3), into the Möbius strip, (17):
Embedding of E19 into the Klein surface

The graph F1

1
2 3

456

7

8 9

Figure 3.13: F1 and its vertex-orbits

The only pair of vertices we have to consider for the graph F1 is: {3, 9}
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Chapter 3. M3(S1) to M4(S2)

Lemma 3.8
The graph constructed by identification of vertices 3 and 9 of F1 and vertices v1 and v2 of
K5 − (v1, v2) is not an element of M4(S2).

Proof
It is sufficient to show that the graph F1 − (2, 3) cannot be embedded into the Möbius
strip with vertices 3 and 9 on the boundary of the same face. The only cycle, which we
have to consider, is:

1
2 3

456

7

8 9

Figure 3.14: Cycle in F1 − (2, 3), including vertices 3 and 9

We cannot find an embedding of F1 − (2, 3) with this cycle as the boundary of one face:

3

4

1

79

5

6

(1) Embedding of the given cycle

3

4

1

79

5

6

(2) 1− 6 is embedded.

3

4

1

79

5

6

(3) 4− 5 is embedded

3

4

1

7
9

5

6

8

8

(4) 1− 8− 9 is embedded

Figure 3.15: Embedding of F1 − (2, 3)

Figure 3.15 shows that an embedding, with the given restrictions, is not possible, as the
path 6− 7 cannot be embedded.
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3.3 Graphs including three base-points

In this section, we will proof that none of the graphs constructed by identification of
vertices v1, v2 and v3 of K5 − (v1, v2)− (v1, v3)− (v2, v3) with three vertices of the graphs
in M3(S1)−M4(S1) is an element of M4(S2).

Proposition 3.9
None of the graphs, which are constructed by identification of three vertices in one of the
graphs in M3(S1)−M4(S1) with three vertices in K5 (w.l.o.g. v1, v2, v3) and deleting the
edges (v1, v2), (v1, v3) and (v2, v3), is an element of M4(S2).

The graph C1

5
6 7

89
10

3

2 1

4

Figure 3.16: C1 and its vertex-orbits

The only orbits of triples of vertices we have to consider for the graph C1 are:

A =
{
{1, 7, 9}, {2, 7, 9}, {3, 7, 9}, {4, 7, 9}

}
, B =

{
{6, 8, 10}

}
.

Lemma 3.10
The construction of graphs by identification of vertices v1, v2 and v3 of K5 − (v1, v2) −
(v1, v3)−(v2, v3) with a triple of vertices from orbit A or B of C1 does not result in elements
of M4(S2).

5
6 7

89
10

3

2 1

4

(1) C1 − (6, 7), vertices 1, 7 and
9 cannot lie in one cylce

5
6 7

89
10

3

2 1

4

(2) C1− (6, 7), vertices 6, 8 and 10
cannot lie in one cycle

Figure 3.17: Cycles, including the vertex-sets {1, 7, 9} or {6, 8, 10}, cannot be found in
C1 − (6, 7).
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Proof
As can be seen in Figure 3.17, it is not possible to find a cycle in C1 − (6, 7) where the
vertex-triples {1, 7, 9} ∈ A or {6, 8, 10} ∈ B are included, as already two vertices of these
triples lie in a smaller cycle (cf. Lemma 1.11).

The graph C11

2 2

34

5

6

7

8
9

10

11

Figure 3.18: C11 and its vertex-orbits

The only orbit of triples of vertices we have to consider for the graph C11 is:

A =
{
{6, 8, 10}, {7, 9, 11}

}
Lemma 3.11
The construction of a graph by identification of vertices v1, v2, v3 of K5−(v1, v2)−(v1, v3)−
(v2, v3) and a triple of vertices in orbit A of C11, does not result in an element of M4(S2).

Proof
As can be seen in Figure 3.19, vertices 7, 9 and 11 cannot lie on one cycle in C11 − (6, 7),
as vertices 7 and 11 already lie on a smaller cycle (cf. Lemma 1.11).

2 2

34

5

6

7

8
9

10

11

Figure 3.19: Vertices 7, 9 and 11 cannot lie on one cycle in C11 − (6, 7)

Consequently no embedding of C11 − (6, 7) with vertices from orbit A on the boundary of
one face is possible.
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The graph D3

1 2 3

456

7 8

Figure 3.20: D3 and its vertex-orbits

The orbits of triples of vertices we have to consider for the graph D3 are:

A =
{
{1, 3, 5}

}
, B =

{
{2, 6, 7}, {2, 6, 8}

}
.

Lemma 3.12
The construction of a graph by identification of vertices v1, v2, v3 of K5−(v1, v2)−(v1, v3)−
(v2, v3) with vertices 1, 3 and 5 of D3, does not result in an element of M4(S2).

Proof
The only cycle, including vertices 1, 3 and 5, we have to look at for D3 − (4, 5) is:

1 2 3

456

7 8

Figure 3.21: Cycle in D3 − (4, 5), including vertices 1, 3 and 5

This is because the adjacent vertices of vertex 5 are given, from vertex 2 we can either go
to vertex 1 or 3, as these are isomorphic, w.l.o.g. we choose vertex 3. From vertex 3 we
can only choose between vertices 7 and 8, but again, these are isomorphic, so w.l.o.g. we
choose vertex 7. From here we can only choose vertex 1 as the next vertex, then we close
the cycle. This is the shortest possible cycle, which is isomorphic to all other cycles of
length six including the given three vertices. Every other possible cycle already includes
this (or an isomorphic) cycle and thus (Lemma 1.11) does not have to be considered.
Trying to embed D3 − (4, 5) including this cycle as the boundary of one face delivers:

2

3

7

1

6

5

(1) Embedding of the given cycle

2

3

7

1

6

5

(2) 1− 2 is embedded
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2

3

7

1

6

5

(3) 3− 6 is embedded

2

3

7

1

6

5

8

(4) 1− 8− 3 is embedded

2

3

7

1

6

5

8

(5) 7− 8 is embedded

Figure 3.22: Embedding of D3 − (4, 5)

Figure 3.22 shows that an embedding, with the given restrictions, is not possible, as vertex
4 cannot be embedded.

Lemma 3.13
The graph constructed by identification of vertices v1, v2, v3 ofK5−(v1, v2)−(v1, v3)−(v2, v3)
with a triple of vertices in orbit B of D3 cannot be an element of M4(S2).

Proof
Regarding the graph D3 − (1, 2) and trying to find a cycle including vertices 2, 6 and 7 is
not successful, as vertices 2 and 6 already lie on a cycle which does not include vertex 7:

1 2 3

456

7 8

Figure 3.23: A cycle, including vertices 2, 6 and 7, cannot be found in D3 − (1, 2)

Hence this graph cannot be an element of M4(S2).
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The graph D4

1 2 7
3

456

8 9

Figure 3.24: D4 and its vertex-orbits

The orbits of triples of vertices we have to consider for the graph D4 are:

A =
{
{1, 3, 5}, {2, 4, 6}

}
,

B =
{
{1, 5, 7}, {1, 5, 8}, {1, 5, 9}, {4, 6, 7}, {4, 6, 8}, {4, 6, 9}

}
.

Lemma 3.14
The graphs constructed by identification of vertices v1, v2, v3 of K5 − (v1, v2)− (v1, v3)−
(v2, v3) with a triple of vertices in orbit A or B of D4 cannot be elements of M4(S2).

Proof
Looking at the graph D4 − (1, 2) and trying to find a cycle including vertices 1, 3 and 5 or
1, 5 and 7, we can see that vertices 1 and 5 already have to lie on a cycle of length 4. The
third vertex cannot be included in this cycle.

1 2 7
3

456

8 9

(1) Cycle in D4− (1, 2), in-
cluding vertices 1 and
5

1 2 7
3

456

8 9

(2) Cycle in D4− (1, 2), in-
cluding vertices 1 and
5

Figure 3.25: Cycles in D4 − (1, 2) cannot include the vertex-triples {1, 3, 5} or {1, 5, 7}.

The graph E19

1
2

3

456

7 8

9

Figure 3.26: E19 and its vertex-orbits
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The orbits of triples of vertices we have to consider for E19 are:

A =
{
{1, 2, 3}, {1, 3, 9}

}
, B =

{
{1, 3, 5}

}
,

C =
{
{2, 4, 6}, {4, 6, 9}

}
, D =

{
{4, 6, 7}, {4, 6, 8}

}
.

Lemma 3.15
The graph obtained by identification of vertices v1, v2, v3 of K5− (v1, v2)− (v1, v3)− (v2, v3)
with a triple of vertices in orbit A of E19 is not an element of M4(S2).

Proof
The only cycle, we have to look at, is:

1
2

3

456

7 8

9

Figure 3.27: Cycle in E19 − (2, 5), including vertices 1, 2 and 3

All other possible cycles are either isomorphic to this one, or they already include this
cycle using Lemma 1.11. Trying to embed the graph, having this cycle as the boundary of
one face, delivers:

1

6

3

8

2

7

(1) Embedding of the given cycle

1

6

3

8

2

7

(2) 7− 8 is embedded

1

6

3

8

2

7 4

(3) 3− 4− 1 is embedded

Figure 3.28: Embedding of E19 − (2, 5)

Figure 3.28 shows that an embedding, with the given restrictions, is not possible, as the
path 6− 5− 9− 2 cannot be embedded.
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Lemma 3.16
The construction of a graph by identification of vertices v1, v2, v3 of K5−(v1, v2)−(v1, v3)−
(v2, v3) and a triple of vertices of orbit B of E19 does not result in an element of M4(S2).

Proof
The only cycle we have to look at, due to isomorphisms is:

1
2

3

456

7 8

9

Figure 3.29: Cycle in E19 − (1, 4), including vertices 1, 3 and 5

Trying to embed E19 into the Möbius strip including this cycle as the boundary of one
face leads to a contradiction:

2 5
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7

16

3

8

(1) Embedding of the given cycle

2 5

9

7

16

3

8

(2) 5− 6 is embedded

2 5

9

7

16

3

8

(3) 2− 7 is embedded

2 5

9

7

16

3

8

(4) 8− 9 is embedded

2 5

9

7

16

3

8

(5) 2− 9 is embedded

Figure 3.30: Embedding of E19 − (1, 4) 101



Chapter 3. M3(S1) to M4(S2)

Figure 3.30 shows that an embedding, with the given restrictions, is not possible, as the
path 7− 8 cannot be embedded.

Lemma 3.17
The graphs obtained by identification of vertices v1, v2, v3 of K5−(v1, v2)−(v1, v3)−(v2, v3)
with a triple of vertices in orbit C or D of E19 cannot be elements of M4(S2).

Proof
The graph E19 − (1, 4) only leaves one possible cycle including vertices 4 and 6, this cycle
is of length four and does not include the third vertex of the desired triples.

1
2

3

456

7 8

9

(1) Cycle in E19, including
vertices 2, 4 and 6

1
2

3

456

7 8

9

(2) Cycle in E19, including
vertices 4, 6 and 7

Figure 3.31: Cycles including vertex-triples {2, 4, 6} or {4, 6, 7} cannot be found in
E19 − (1, 4)

Consequently these graphs cannot be elements of M4(S2).

The graph F1

1
2 3

456

7

8 9

Figure 3.32: F1 and its vertex-orbits

The only orbit of triples of vertices we have to consider for the graph F1 is:

A =
{
{3, 7, 8}, {4, 6, 9}

}
.

Lemma 3.18
The construction of a graph by identification of vertices v1, v2, v3 of K5−(v1, v2)−(v1, v3)−
(v2, v3) with a triple of vertices in orbit A of F1 does not result in elements of M4(S2).

Proof
Regarding the graph F1 − (2, 7) and trying to find a cycle including the vertex-triple
{3, 7, 8} from orbit A is not possible, as vertices 7 and 8 already lie on a cycle of length 4,
which cannot be enlarged so that it also includes vertex 3.
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1
2 3

456

7

8 9

Figure 3.33: In F1 − (2, 7), vertices 3, 7 and 8 cannot be included in one cycle.
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4 M2(S1) to M4(S2)

In this chapter we look at the graphs of the minimal basisM2(S1)−M3(S1) of the projective
plane. We only have to consider an attachment of the K5 to a graph fromM2(S1)−M3(S1)
for combinations of vertices which eliminate the application of R3, which transforms the
graph into another one from M2(S1)−M3(S1) or M3(S1) and thus makes the graph with
attachment a graph of M4(S2) of the Klein surface. Figure 4.1 shows the respective graphs
and the relations between these:

1 2 3

456

78
9 10

1 2 3

456

8
7 9

3
5

8

6
4

1

2 7

R3(D1)(8)

= C2

R3(C2)(5)

= B3

1 2 3

4
56 7

10
9

8

1 2 3

6
54 7

8 9

1 2 3

4
56 7
8
9 10

R3(E11)(8)

= D12

R3(E27)(8)

= D12

1 2 3

456
7 89

1 2 3

456
7 8

R3(E5)(9)

= D3
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4.1. Graphs including one base-point
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R3(E2)(7)

= D2

R3(D2)(3)

= C3

R3(C3)(2)

= B7

R3(B7)(7)

= A2

R3(C4)(8)

= B7

1 2 3

456
10

7
8

9

1 2 7
3

456
8 9

R3(E6)(8)

= D4

1
2 3

456

7 8

9
10 1

2
3

456

7 8

9

2

1
3

4 8

6

5
7

R3(F4)(9)

= E20

R3(E20)(6)

= D17

Figure 4.1: Genealogy of graphs in M2(S1)

4.1 Graphs including one base-point

Proposition 4.1
The graphs G67, G68, G69, G70 and G71 which are obtained by attachment of a K5 to vertex
7 of B7, vertex 5 of C2, vertex 8 of E6, vertex 8 of E11, vertex 6 of E20 and vertex 8 of E27
are elements of M4(S2).

Proof
As all graphs, the K5 is attached to, are in M2(S1), they are embeddable on the Möbius
strip as soon as one of the relations R0, R1 and R2 is applied. Consequently an attachment
of a K5 to a vertex of these graphs, which forecloses the application of R3 on these vertices
is possible and results in graphs which are elements of M4(S2).
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Chapter 4. M2(S1) to M4(S2)

4.2 Graphs including two base-points

Proposition 4.2
The graphs G72, . . . , G83 are the only graphs inM4(S2), which are constructed by attaching
the vertices v1 and v2 of a K5− (v1, v2) to a pair of vertices in graphs of M2(S1)−M3(S1).

We already know that these graphs are not embeddable into the Klein surface. The
minimality of these graphs will be shown in the lemmata of this section. We will also show
that none of the other graphs constructed the same way, is an element of M4(S2).

The graph B7

1
2

3

4
5

6

8

7

Figure 4.2: B7 and its vertex-orbits

The orbits of pairs of vertices we have to consider for the graph B7 are:

A =
{
{1, 7}, {3, 7}, {5, 7}

}
, B =

{
{7, 8}

}
.

Lemma 4.3
The graph with vertices v1 and v2 of K5 − (v1, v2) identified with a pair of vertices from
orbit A of B7 is no element of M4(S2).

Proof
Using Lemma 1.15 we know that the embedding of B7/(2, 7) on the Möbius strip has 11
faces.

1
2,7

3

4
5

6

8

Figure 4.3: B7/(2, 7), vertices 5 and 7 supposed to lie in one cycle.

The graph B7/(2, 7) has 17 edges which means that a possible embedding has to consist
of ten triangular and one quadrangular face. As vertices 1 and 7 as well as vertices 3
and 7 are adjacent in B7/(2, 7), we have to show that vertices 5 and 7 cannot lie on the
boundary of one face, when embedding this graph. We can find 17 cycles of length three in
B7/(2, 7) but obviously none of these includes both vertices 5 and 7. Thus the only face of
size four in the embedding has to include these vertices. Only three non-isomorphic cycles
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4.2. Graphs including two base-points

of length four in B7/(2, 7) include both of the vertices. These cycles are: 1− 2− 3− 5− 1,
1− 2− 4− 5− 1 and 1− 2− 8− 5− 1. If B7/(2, 7) was embeddable with one of these cycles
as the boundary of a face, we would have to find ten additional cycles of length three,
which include each of the edges in the cycle of length four exactly once and each other
edge exactly twice. As we cannot find a combination of ten cycles of length three with
these properties, B7/(2, 7) cannot be embedded with vertices 5 and 7 on the boundary of
one face. Thus the construction of a graph with an attached K5 − (v1, v2) and base points
5 and 7 is no element of M4(S2).

Lemma 4.4
The graph G72, which is obtained by attaching the K5 − (v1, v2) to B7 by identification of
vertices v1 and v2 of the K5 and vertices 7 and 8 in B7, is an element of M4(S2).

Proof
It is sufficient to show that the graphs B7 − e and B7/e with e ∈ {(1, 2), (1, 3), (1, 8),
(2, 7), (2, 8)} can be drawn on the Möbius strip, and B7 itself on the Klein surface, with
vertices 7 and 8 on the boundary of one face:

1

23

4

5

6

7

8

(1) Embedding of B7 − (1, 2), vertices 7
and 8 on the boundary of one face.

1 2

3
4

5 6

7

8

8

(2) Embedding of B7 − (1, 3), vertices 7
and 8 on the boundary of one face.

7
2

3
6

5 4

1

8

8

(3) Embedding of B7 − (1, 8), vertices 7
and 8 on the boundary of one face.

3
4

5
2

1 6

8

8

7

7

(4) Embedding of B7 − (2, 7), vertices 7
and 8 on the boundary of one face.

7
4

6 8

5
1

3

2

(5) Embedding of B7 − (2, 8), vertices 7
and 8 on the boundary of one face.

3 4

5 8

1,2
6

7

7

(6) Embedding of B7/(1, 2), vertices 7
and 8 on the boundary of one face.
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7 4

2 5

1,3
6

8

(7) Embedding of B7/(1, 3), vertices 7
and 8 on the boundary of one face.

3 4

2 5

1,8
6

7

(8) Embedding of B7/(1, 8), vertices 7
and 8 on the boundary of one face.

5 6

1 2,7

8
3

4

(9) Embedding of B7/(2, 7), vertices 7 and
8 on the boundary of one face.

3
4

2,8 7

1
6

5

(10) Embedding of B7/(2, 8), vertices 7
and 8 on the boundary of one face.

7
4

2 5

1
6

8 8

88

3

(11) Embedding of B7, vertices 7 and 8 on
the boundary of one face.

Figure 4.4: (1)-(10): Embeddings of Ri(C1), i ∈ (0, 2), on the Möbius strip, (11): Embed-
ding of B7 on the Klein surface

Consequently G72 is an element of M4(S2).

The graph C2

1 2 3

456

8
7 9

Figure 4.5: C2 and its vertex-orbits

The orbits of pairs of vertices we have to consider for the graph C2 are:

A =
{
{1, 5}, {3, 5}

}
, B =

{
{5, 7}, {5, 8}, {5, 9}

}
.
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4.2. Graphs including two base-points

Lemma 4.5
The graph G73, which is obtained by attaching the K5 − (v1, v2) to C2 by identification of
vertices v1 and v2 of the K5 and a pair of vertices from orbit A in B7, is an element of
M4(S2).

Proof
It is sufficient to show that the graphs C2 − e, C2/e with e ∈ {(1, 2), (1, 7), (2, 5), (7, 8)}
and R3(C2)(2) can be drawn on the Möbius strip, with each pair of vertices in orbit A on
the boundary of one face:

8 1
7

3 9

4 2

2 4

5

6

(1) Embedding of C2−(1, 2), vertex-pairs
{1, 5} and {3, 5} on the boundary of
a face.

3 4

2 5

1 6

7

8
9

(2) Embedding of C2−(1, 7), vertex-pairs
{1, 5} and {3, 5} on the boundary of
a face.

1
7

9

8 3

25

2 5

4

6

(3) Embedding of C2−(2, 5), vertex-pairs
{1, 5} and {3, 5} on the boundary of
a face.

3 4

2 5

1 6

9 8
7

(4) Embedding of C2−(7, 8), vertex-pairs
{1, 5} and {3, 5} on the boundary of
a face.

1,2 7
9

8 3

5

5

6

4

(5) Embedding of C2/(1, 2), vertex-pairs
{1, 5} and {3, 5} on the boundary of
a face.

3 4

2 5

1,7 6

9 8

(6) Embedding of C2/(1, 7), vertex-pairs
{1, 5} and {3, 5} on the boundary of
a face.

1 7
9

8 3

4

4

6

2,5

(7) Embedding of C2/(2, 5), vertex-pairs
{1, 5} and {3, 5} on the boundary of
a face.

3 4

2 5

1 6

9 7,8

(8) Embedding of C2/(7, 8), vertex-pairs
{1, 5} and {3, 5} on the boundary of
a face.
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7 3
9

1 8

6

6

5

5

4

(9) Embedding of R3(C2)(2), vertex-pairs
{1, 5} and {3, 5} on the boundary of
a face.

Figure 4.6: Embeddings of Ri(C2), i ∈ {0, 2, 3}, on the Möbius strip.

We can also find an embedding of C2 into the Klein surface with each pair of vertices in
orbit A on the boundary of one face:

3
4

2 5

1 6

7
8

9 9

99

Figure 4.7: Embedding of C2 into the Klein surface, vertex-pairs {1, 5} and {3, 5} on the
boundary of a face.

Consequently G73 is an element of M4(S2).

Lemma 4.6
The graph, with vertices v1 and v2 of K5 − (v1, v2) identified with pairs of vertices from
orbit B of the graph C2, cannot be an element of M4(S2).

Proof
We take the graph C2 − (1, 7) into consideration to show that vertices 5 and 7 cannot lie
on the boundary of one face, when embedding this graph on the Möbius strip.

1 2 3

456

8
7 9

Figure 4.8: C2 − (1, 7)

As can be seen, we cannot find a cycle including vertices 5 and 7, as vertex 3 would always
have to be passed twice.
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The graph C3

1
2

3

4
5

6

7

8

9

Figure 4.9: C3 and its vertex-orbits

The only pair of vertices we have to consider for the graph C3 is {2, 8}.

Lemma 4.7
The graph G74 which is obtained by attaching the K5 − (v1, v2) to C3 by identification of
vertices v1 and v2 of the K5 and vertices 2 and 8 in C3 is an element of M4(S2).

Proof
It is sufficient to show that the graphs C3 − e, C3/e with e ∈ {(1, 2), (1, 5), (1, 6), (1, 9),
(2, 7), (5, 9), (7, 9)} and R3(C3)(7) can be embedded into the Möbius strip with vertices 2
and 8 on the boundary of one face:

8 4

2 5

1 6

7
3

9

9

(1) Embedding of C3 − (1, 2), vertices 2
and 8 on the boundary of one face.

3
4

9 5

1 6

2

2

8

(2) Embedding of C3 − (1, 5), vertices 2
and 8 on the boundary of one face.

6 3

9 4

5 8

1 7

2

2

(3) Embedding of C3 − (1, 6), vertices 2
and 8 on the boundary of one face.

3 4
9

5 8

7

1

1

7

6
2

(4) Embedding of C3 − (1, 9), vertices 2
and 8 on the boundary of one face.

4 1

3 6

2 7

5

9 8

(5) Embedding of C3 − (2, 7), vertices 2
and 8 on the boundary of one face.

3 4

2 5

7 6

9

1

9

8

(6) Embedding of C3 − (5, 9), vertices 2
and 8 on the boundary of one face.
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3
4

2 5

1
6

7

8

9

9

(7) Embedding of C3 − (7, 9), vertices 2
and 8 on the boundary of one face.

6 9

1,2 4

5 8

3

7

7

(8) Embedding of C3/(1, 2), vertices 2
and 8 on the boundary of one face.

1,5 6

4 9

8
3

7

2

(9) Embedding of C3/(1, 5), vertices 2
and 8 on the boundary of one face.

3 4

2 8

1,7
6

9

5

5

(10) Embedding of C3/(1, 7), vertices 2
and 8 on the boundary of one face.

3 4

2 5

1,9
6

7

8

8

(11) Embedding of C3/(1, 9), vertices 2
and 8 on the boundary of one face.

1 2,7

4 3

5
6

8

9

9

(12) Embedding of C3/(2, 7), vertices 2
and 8 on the boundary of one face.

3
4

2 5,9

1 6

8

8

7

(13) Embedding of C3/(5, 9), vertices 2
and 8 on the boundary of one face.

8 6

4 1

3
2

5

7,9

7,9

(14) Embedding of C3/(7, 9), vertices 2
and 8 on the boundary of one face.

1 2

4
3

5
6

8

9

9

(15) Embedding of R3(C3)(7), vertices 2
and 8 on the boundary of one face.

Figure 4.10: Embeddings of Ri(C3), i ∈ {0, 2, 3}, on the Möbius strip.
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We can also find an embedding of C3 into the Klein surface with vertices 2 and 8 on the
boundary of one face:

3 4

2 5

1 6

8 7

9 9

99

Figure 4.11: Embedding of C3 into the Klein surface, vertices 2 and 8 on the boundary of
one face.

Consequently G74 is an element of M4(S2).

The graph C4

1 2 3

456

7

8

9

Figure 4.12: C4 and its vertex-orbits

The only pair of vertices we have to consider for the graph C4 is {7, 8}.

Lemma 4.8
The graph, with vertices v1 and v2 of K5 − (v1, v2) identified with vertices 7 and 8 of C4 is
not an element of M4(S2).

Proof
For C4 − (1, 9) we have to consider four cycles including vertices 7 and 8 as the boundary
of a face on the Möbius strip. Vertices 1 and 9 cannot lie in the same cycle.

1 2 3

456

7

8

9

(1) Case 1

1 2 3

456

7

8

9

(2) Case 2
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1 2 3

456

7

8

9

(3) Case 3

1 2 3

456

7

8

9

(4) Case 4

Figure 4.13: Cycles in C4 − (1, 9), including vertices 7 and 8

All other cycles do not have to be considered following Lemma 1.11. Trying to embed the
graph C4 − (1, 9) with each one of these four cycles as the boundary of one face results in:

Embedding of Case 1:

1

2

7

4

5

8

(1) Embedding of the given cycle

1

2

7

4

5

8

3

3

(2) 4− 3− 8 is embedded

1

2

7

4

5

8

3

3

9

9

(3) 2− 9− 5 is embedded

Figure 4.14: Embedding of Case 1

Figure 4.14 shows that an embedding, with the given restrictions, is not possible, as the
path 1− 6− 7 cannot be embedded.
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Embedding of Case 2:

1

2

7

6

5

8

(1) Embedding of the given cycle

1

2

7

6

5

8

(2) 1− 6 is embedded

1

2

7

6

5

8

9

9

(3) 2− 9− 5 is embedded

1

2

7

6

5

8

9

9

3

3

(4) 2− 3− 8 is embedded

Figure 4.15: Embedding of Case 2

Figure 4.15 shows that an embedding, with the given restrictions, is not possible, as the
path 5− 4− 7 cannot be embedded.
Embedding of Case 3:

2

3

8

5

4

7

(1) Embedding of the given cycle

2

3

8

5

4

7

(2) 3− 4 is embedded

2

3

8

5

4

7

1

1

(3) 2− 1− 8 is embedded

Figure 4.16: Embedding of Case 3 115
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Figure 4.16 shows that an embedding, with the given restrictions, is not possible, as the
path 5− 6− 7 cannot be embedded.

Embedding of Case 4:

2

3

8

5

6

7

(1) Embedding of the given cycle

2

3

8

5

6

7

9

9

(2) 3− 9− 6 is embedded

2

3

8

5

6

7

9

9

4

4

(3) 5− 4− 7 is embedded

Figure 4.17: Embedding of Case 4

Figure 4.17 shows that an embedding, with the given restrictions, is not possible, as the
path 2− 1− 8 cannot be embedded.

Consequently C4 − (1, 4) cannot be embedded on the Möbius strip with one of the given
cycles as boundary of one face.

The graph D1

1 2 3

456

78
9 10

Figure 4.18: D1 and its vertex-orbits

The only pair of vertices we have to consider for the graph D2 is {5, 8}.

Lemma 4.9
The construction of a graph with vertices v1 and v2 of K5− (v1, v2) identified with vertices
5 and 8 of the graph D1 does not result in an element of M4(S2).
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Proof
The shortest cycle in D1 − (2, 5), which includes vertices 5 and 8, is of length eight.

1 2 3

456

78
9 10

Figure 4.19: D1 − (2, 5), vertices 5 and 8 supposed to be included in one cycle

Using Lemma 1.15 a face of size eight cannot be found in any embedding of D1 − (2, 5) on
the Möbius strip. An embedding of D1− (2, 5) has eight faces and D1− (2, 5) has 17 edges
and each edge lies on the boundary of two faces, lets say we have 34 ‚edge-sides‘. Lets
assume one face has size eight and thus uses eight edge-sides, now we have 26 edge-sides
left for the remaining 7 faces. As we cannot find a cycle of length three in D1 − (2, 5) the
smallest cycles have length four. Seven cycles of length four already use 28 edge-sides,
consequently a face cannot be of size eight, when embedding D1 − (2, 5).

The graph E5

1 2 3

456

7 89

Figure 4.20: E5 and its vertex-orbits

The only pair or vertices we have to consider for the graph E5 is {5, 9}.

Lemma 4.10
The construction of a graph with vertices v1 and v2 of K5− (v1, v2) identified with vertices
5 and 9 of the graph C2 does not result in an element of M4(S2).

Proof
Looking at the graph E5 − (4, 5) and trying to find a cycle including vertices 5 and 9, we
already have to include certain edges into the cycle:

1 2 3

456

7 89

Figure 4.21: Cycle in E5 − (4, 5), including vertices 5 and 9
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The vertex-orbits of E5 − (4, 5) are: {1, 3}, {2, 6}, {4, 7, 8}. Consequently vertices 4 and 7
could be exchanged. An embedding of E5 − (4, 5) with 5 and 9 on the boundary of one
face including vertices 7 and 8 consequently means that an embedding of E5 − (4, 5) on
the Möbius strip would also be possible with vertices 4 and 5 on the boundary of one face.
This is a contradiction to the fact that E5 is irreducible for the projective plane.

The graph E6

1 2 3

456
10

7
8

9

Figure 4.22: E6 and its vertex-orbits

The only orbits of pairs of vertices we have to consider for the graph E6 are:

A =
{
{1, 8}, {4, 8}, {5, 8}, {6, 8}

}
; B =

{
{2, 8}, {3, 8}

}
.

Lemma 4.11
The graph, where the vertices v1 and v2 of K5− (v1, v2) are identified with a pair of vertices
from orbit A of the graph E6 does not lie in M4(S2).

Proof
The graph E6 − (1, 2) does not allow an embedding with vertices 1 and 8 on the boundary
of one face.

1 2 3

456
10

7
8

9

Figure 4.23: E6 − (1, 2)

Every possible path from vertex 8 runs through vertex 3, consequently we cannot find a
cycle including vertices 1 and 8, which could be the boundary of a face embedded on the
Möbius strip.

Lemma 4.12
The graph G75, which is obtained by attaching the K5 − (v1, v2) to C2 by identification of
vertices v1 and v2 of the K5 and a pair of vertices from orbit B in C3, is an element of
M4(S2).

Proof
It is sufficient to show that the graphs E6 − e, E6/e with e ∈ {(1, 2), (1, 4), (2, 7), (7, 8)}
R3(E6)(1) and R3(E6)(7) can be drawn on the Möbius strip, and E6 itself on the Klein
surface with pairs of vertices of orbit B on the boundary of one face:
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2 9

10 8

3 7

5

4

6
1

(1) Embedding of E6−(1, 2), vertex-pairs
{2, 8} and {3, 8} on the boundary of
a face.

2 7

10 8

3 9

1 5

6
4

(2) Embedding of E6−(1, 4), vertex-pairs
{2, 8} and {3, 8} on the boundary of
a face.

6 3

1 4

2 5

7
8
9

10

10

(3) Embedding of E6−(2, 7), vertex-pairs
{2, 8} and {3, 8} on the boundary of
a face.

3 4

2 5

1 6

10 8 9 7

(4) Embedding of E6−(7, 8), vertex-pairs
{2, 8} and {3, 8} on the boundary of
a face.

8 9

7 3

1,2 10

5

6

4

(5) Embedding of E6/(1, 2), vertex-pairs
{2, 8} and {3, 8} on the boundary of
a face.

2 7

10
3

8 9

1,4

5

6

(6) Embedding of E6/(1, 4), vertex-pairs
{2, 8} and {3, 8} on the boundary of
a face.

7 3

2,5
9

10 8

1

6

4

(7) Embedding of E6/(2, 5), vertex-pairs
{2, 8} and {3, 8} on the boundary of
a face.

3 4

2 5

1 6

10
7,8

9

(8) Embedding of E6/(7, 8), vertex-pairs
{2, 8} and {3, 8} on the boundary of
a face.

8 7

10 3

2 9

4

5
6

(9) Embedding of R3(E6)(1), vertex-pairs
{2, 8} and {3, 8} on the boundary of
a face.

3 4

2 5

1 6

10
8

9

(10) Embedding of R3(E6)(7), vertex-
pairs {2, 8} and {3, 8} on the bound-
ary of a face.
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3 4

2 5

1 6

7
9
8

10

(11) Embedding of E6, vertex-pairs {2, 8}
and {3, 8} on the boundary of a face.

Figure 4.24: (1)-(10): Embeddings of Ri(E6), i ∈ {0, 2, 3}, into the Möbius strip, (11):
Embedding of E6 into the Klein surface

Consequently G75 is an element of M4(S2).

The graph E11

1 2 3

4
56 7

10
9

8

Figure 4.25: E11 and its vertex-orbits

The only orbits or pairs of vertices we have to consider for the graph E11 are:

A =
{
{1, 8}, {3, 8}

}
, B =

{
{2, 8}, {6, 8}

}
,

C =
{
{4, 8}

}
, D =

{
{5, 8}

}
.

Lemma 4.13
The graphs G76, G77 and G78, which can be obtained by identification of vertices v1 and
v2 in K5 − (v1, v2) with a pair of vertices from orbits A, C or D of E11, are elements of
M4(S2).

Proof
As can be seen in Figure 4.26, the graphs E11 − e, E11/e, e ∈ {(1, 2), (1, 4), (2, 5), (3, 9),
(4, 7), (5, 7), (7, 8), (8, 9)}, and R3(E11)(j) for j ∈ {2, 4, 7, 9} can be embedded into the
Möbius strip as well as E11 itself into the Klein surface, in a way that the pairs of vertices
from orbits A, C and D each lie on the boundary of one face:
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3 6
9 2

8 5

10 7

1 4

(1) Embedding of E11−(1, 2), each vertex-
pair from orbits A, C and D on the
boundary of a face.

3 4

7 5

1
2

4
9

8

10

(2) Embedding of E11−(1, 4), each vertex-
pair from orbits A, C and D on the
boundary of a face.

1 9

10 8

5
7

6

3

2

4

(3) Embedding of E11−(2, 5), each vertex-
pair from orbits A, C and D on the
boundary of a face.

1
4

2 5

3 6

8
9

10

7

(4) Embedding of E11−(3, 9), each vertex-
pair from orbits A, C and D on the
boundary of a face.

3 4

2
5

1 6

8
7

10

9

(5) Embedding of E11−(4, 7), each vertex-
pair from orbits A, C and D on the
boundary of a face.

3 4

2 5

1
610

7

9 8

(6) Embedding of E11−(5, 7), each vertex-
pair from orbits A, C and D on the
boundary of a face.

1 4

2 5

3 6

9

9

7 8
10

(7) Embedding of E11−(5, 9), each vertex-
pair from orbits A, C and D on the
boundary of a face.

4
8

1

10
93

5

6

2 7

(8) Embedding of E11−(7, 8), each vertex-
pair from orbits A, C and D on the
boundary of a face.

3
4

2 5

1 6

8 7

10

9

9

(9) Embedding of E11 − (8, 9), each
vertex-pair from orbits A, C and D
on the boundary of a face.

3
4

10 5

1,2 6

9 7
8

(10) Embedding of E11/(1, 2), each
vertex-pair from orbits A, C and D
on the boundary of a face.
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2 3

5 7

6
1,4

9

10

8

(11) Embedding of E11/(1, 4), each
vertex-pair from orbits A, C and D
on the boundary of a face.

3 4

8
2,5

1 6

9 7

10

(12) Embedding of E11/(2, 5), each
vertex-pair from orbits A, C and D
on the boundary of a face.

1 4

2 5

3,9
6

7 8
10

(13) Embedding of E11/(3, 9), each
vertex-pair from orbits A, C and D
on the boundary of a face.

1 2

4,7 5

3 6

10

8

9

(14) Embedding of E11/(4, 7), each
vertex-pair from orbits A, C and D
on the boundary of a face.

3 2

4
5,7

1 6

10
8
9

(15) Embedding of E11/(5, 7), each
vertex-pair from orbits A, C and D
on the boundary of a face.

2 3

1 4

6
5,9

7 8
10

(16) Embedding of E11/(5, 9), each
vertex-pair from orbits A, C and D
on the boundary of a face.

1 4

2 5

3 6

7,8
10 9

(17) Embedding of E11/(7, 8), each
vertex-pair from orbits A, C and D
on the boundary of a face.

1 4

2 5

3 6

7 8,9

10

(18) Embedding of E11/(8, 9), each
vertex-pair from orbits A, C and D
on the boundary of a face.

1 4

2 5

3 6

7 8

10

(19) Embedding of R3(E11)(2), each
vertex-pair from orbits A, C and D
on the boundary of a face.

1 2

7 5

3 6

8
9

10

(20) Embedding of R3(E11)(4), each
vertex-pair from orbits A, C and D
on the boundary of a face.
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1 2

4
5

3 6

8

9

10

(21) Embedding of R3(E11)(7) vertex-
pairs {1, 8}, {3, 8}, {5, 8} on the
boundary of a face.

1 4

2 5

3 6

7 8
10

(22) Embedding of R3(E11)(9), each
vertex-pair from orbits A, C and D
on the boundary of a face.

3 4

2 5

1 6

9

10

87

(23) Embedding of E11, each vertex-pair
from orbits A, C and D on the bound-
ary of a face.

Figure 4.26: (1)-(22): Embeddings of Ri(E11), i ∈ (1, 2, 3), into the Möbius strip, (23):
Embedding of E11 into the Klein surface

Consequently G76, G77 and G78 are elements of M4(S2).

Lemma 4.14
The construction of a graph with vertices v1 and v2 of K5 − (v1, v2) identified with a pair
of vertices from orbit B of the graph E11 does not result in an element of M4(S2).

Proof
For E11− (2, 5) we have to consider two cycles, including vertices 2 and 8, as the boundary
of a face on the Möbius strip:

1 2 3

4
56 7

10
9

8

(1) Case 1

1 2 3

4
56 7

10
9

8

(2) Case 2

Figure 4.27: Cycles in E11 − (2, 5) including vertices 2 and 8

All other cycles do not have to be considered following Lemma 1.11. Trying to embed the
graph E11 − (2, 5) with one of these two cycles as the boundary of one face delivers:
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Embedding of Case 1:

2

3

9

8

10

1

(1) Embedding of the given cycle

2

3

9

8

10

1

4

4

(2) 1− 4− 3 is embedded

2

3

9

8

10

1

4

45

5

(3) 9− 5− 10 is embedded

Figure 4.28: Embedding of Case 1

Figure 4.28 shows that an embedding, with the given restrictions, is not possible, as the
path 4− 7− 8 cannot be embedded.
Embedding of Case 2:

2

3

4

78

10

1

(1) Embedding of the given cycle

2

3

4

78

10

1

(2) 1− 4 is embedded

2

3

4

78

10

1

9

9

(3) 3− 9− 8 is embedded

Figure 4.29: Embedding of Case 2124



4.2. Graphs including two base-points

Figure 4.29 shows that an embedding, with the given restrictions, is not possible, as the
path 7− 5− 10 cannot be embedded.

The graph E20

1
2

3

456

7 8

9

Figure 4.30: E20 and its vertex-orbits

The only orbits of pairs of vertices we have to consider for the graph E20 are:

A =
{
{2, 6}, {6, 7}, {6, 8}

}
, B =

{
{4, 6}

}
,

C =
{
{6, 9}

}
.

Lemma 4.15
The graphs G79 and G80, which can be obtained by identification of vertices v1 and v2 in
K5 − (v1, v2) with a pair of vertices from orbit A or B of E20, are elements of M4(S2).

Proof
As can be seen in Figure 4.31, the graphs E20− e, E20/e for e ∈ {(1, 4), (1, 6), (1, 7), (2, 7),
(2, 9), (4, 9)} and R3(E11)(1) can be embedded into the Möbius strip as well as E20 itself
into the Klein surface, in a way that the pairs of vertices from orbits A and B each lie on
the boundary of one face:

3 9

8 2

7
5

6

1

4

4

(1) Embedding of E20−(1, 4), each vertex-
pair of orbits A and B on the bound-
ary of a face.

4 9

8 2

7 5

6

3

1

1

(2) Embedding of E20−(1, 6), each vertex-
pair of orbits A and B on the bound-
ary of a face.

3 9

8 2

7 5

4

6

14

(3) Embedding of E20−(1, 7), each vertex-
pair of orbits A and B on the bound-
ary of a face.

3 6

5

1
4

8 2

7
9

(4) Embedding of E20−(2, 7), each vertex-
pair of orbits A and B on the bound-
ary of a face.
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3
4

2 5

1 6

9

8

7

(5) Embedding of E20−(2, 9), each vertex-
pair of orbits A and B on the bound-
ary of a face.

5 6

2 3

7
8

4

9

1

1

(6) Embedding of E20−(4, 9), each vertex-
pair of orbits A and B on the bound-
ary of a face.

3 9

5

1,4 6

8

7
2

(7) Embedding of E20/(1, 4), each vertex-
pair of orbits A and B on the bound-
ary of a face.

4
9

8
2

7

5

1,6

3

(8) Embedding of E20/(1, 6), each vertex-
pair of orbits A and B on the bound-
ary of a face.

5 8

2 9

1,7 4

6 3

(9) Embedding of E20/(1, 7), each vertex-
pair of orbits A and B on the bound-
ary of a face.

3 4

2,7 5

1 6

9

8

(10) Embedding of E20/(2, 7), each
vertex-pair of orbits A and B on the
boundary of a face.

2,9 3

1 4

6 5

8

7

(11) Embedding of E20/(2, 9), each
vertex-pair of orbits A and B on the
boundary of a face.

2 3

1
4,9

6 5

8

7

(12) Embedding of E20/(4, 9), each
vertex-pair of orbits A and B on the
boundary of a face.
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4.2. Graphs including two base-points

5 8

2 9

7 4

6 3

(13) Embedding of R3(E20)(1), each
vertex-pair of orbits A and B on the
boundary of a face.

3 4

2
5

1 6

7

8
9

(14) Embedding of E20

Figure 4.31: (1)-(13): Embeddings of Ri(E20), i ∈ (1, 2, 3), into the Möbius strip, (15):
Embedding of E20 into the Klein surface

Consequently G79 and G80 are elements of M4(S2).

Lemma 4.16
The construction of a graph, with vertices v1 and v2 of K5 − (v1, v2) identified with pairs
of vertices from orbit C of the graph E20, does not result in an element of M4(S2).

Proof
For the proof, we look at the graph E20 − (4, 9) and try to find a cycle including vertices 6
and 9.

1
2

3

456

7 8

9

Figure 4.32: E20 − (4, 9)

The set of vertex-orbits of E20 − (4, 9) is:
{
{1, 3, 5}, {2, 7, 8}, {4, 6}

}
. Consequently

vertices 4 and 6 are isomorphic. An embedding of E20−(4, 9) with 6 and 9 on the boundary
of one face consequently means that an embedding of E20 − (4, 9) into the Möbius strip
would also be possible with vertices 4 and 9 on the boundary of one face. This is a
contradiction to the irreducibility of E20 for the projective plane.

The graph E27

1 2 3

4
56 7

8
9 10

Figure 4.33: E27 and its vertex-orbits
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Chapter 4. M2(S1) to M4(S2)

The orbits of pairs of vertices we have to consider for the graph E27 are:

A =
{
{1, 8}, {3, 8}

}
, B =

{
{2, 8}, {6, 8}

}
,

C =
{
{4, 8}

}
, D =

{
{7, 8}

}
.

Lemma 4.17
The graphs G81 and G82, which can be obtained by identification of vertices v1 and v2 in
K5 − (v1, v2) with a pair of vertices from orbit A or D of E27, are elements of M4(S2).

Proof
As can be seen in Figure 4.34, the graphs E27− e, E27/e for e ∈ {(1, 2), (1, 4), (1, 9), (2, 5),
(4, 7), (5, 7), (5, 8), (7, 9), (8, 9)} and R3(E27)(j) for j ∈ {2, 4, 9} can be embedded into the
Möbius strip as well as E27 itself into the Klein surface, in a way that the pairs of vertices
from orbits A and D each lie on the boundary of one face:

10 7

8
9

5 6

3 4

1

2

2

(1) Embedding of E27−(1, 2), each vertex-
pair of orbits A and D on the bound-
ary of a face.

10 7

8
9

5 6

3

2

1

4

4

(2) Embedding of E27−(1, 4), each vertex-
pair of orbits A and D on the bound-
ary of a face.

3 4

2 5

1 6

10

8
9

(3) Embedding of E27−(1, 9), each vertex-
pair of orbits A and D on the bound-
ary of a face.

9
8

7
10

5 6

1

4
3

2

2

(4) Embedding of E27−(2.5), each vertex-
pair of orbits A and D on the bound-
ary of a face.

9
7

8 10

5
3

1

6

4

4
2

(5) Embedding of E27−(4, 7), each vertex-
pair of orbits A and D on the bound-
ary of a face.

3 4

2 9

1
5

6

10

7

8

6

(6) Embedding of E27−(5, 7), each vertex-
pair of orbits A and D on the bound-
ary of a face.
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3
4

2 5

1
6

10

8

9

7

(7) Embedding of E27−(5, 8), each vertex-
pair of orbits A and D on the bound-
ary of a face.

1 4

2 5

3 6

7 10
8

9

(8) Embedding of E27−(7, 9), each vertex-
pair of orbits A and D on the bound-
ary of a face.

3 4

2 5

1
6

10

8

97

(9) Embedding of E27−(8, 9), each vertex-
pair of orbits A and D on the bound-
ary of a face.

9 7

8 10

5 1,2

6 3
4

(10) Embedding of E27/(1, 2), each
vertex-pair of orbits A and D on the
boundary of a face.

9 7

8 10

5
1,46

3 2

(11) Embedding of E27/(1, 4), each
vertex-pair of orbits A and D on the
boundary of a face.

3 6

2 5

1,9
4

7
8
10

(12) Embedding of E27/(1, 9), each
vertex-pair of orbits A and D on the
boundary of a face.

9 7

8 10

2,5 6

1

4

3

(13) Embedding of E27/(2, 5), each
vertex-pair of orbits A and D on the
boundary of a face.

3 2

4,7
5

1 6

8

10

9

(14) Embedding of E27/(4, 7), each
vertex-pair of orbits A and D on the
boundary of a face.

3 4

2
5,7

1 6

9

8

10

(15) Embedding of E27/(5, 7), each
vertex-pair of orbits A and D on the
boundary of a face.

3 4

2 5,8

1 6

10
7 9

(16) Embedding of E27/(5, 8), each
vertex-pair of orbits A and D on the
boundary of a face.
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1 4

2 5

3 6

8
7,9 10

(17) Embedding of E27/(7, 9), each
vertex-pair of orbits A and D on the
boundary of a face.

1 4

2 5

3 6

8,9
7 10

(18) Embedding of E27/(8, 9), each
vertex-pair of orbits A and D on the
boundary of a face.

3 4

8 5

1 6

10 7

9

(19) Embedding of R3(E27)(2), each
vertex-pair of orbits A and D on the
boundary of a face.

9 7

8 3

5
1

10

2
6

(20) Embedding of R3(E27)(4), each
vertex-pair of orbits A and D on the
boundary of a face.

1 4

2 5

3 6

8
7 10

(21) Embedding of R3(E27)(9), each
vertex-pair of orbits A and D on the
boundary of a face.

3 4

2 5

1 6

10
7

9 8

(22) Embedding of E27, each vertex-pair
of orbits A and D on the boundary of
a face.

Figure 4.34: (1)-(21): Embeddings of Ri(E27)m i ∈ (1, 2, 3), into the Möbius strip, (22):
Embedding of E27 into the Klein surface

Consequently G81 and G82 are elements of M4(S2).

Lemma 4.18
The construction of a graph with vertices v1 and v2 of K5− (v1, v2) identified with pairs of
vertices from orbit B of the graph E27 does not result in an element of M4(S2).

Proof
Regarding the graph E27 − (2, 5) the only cycle we have to consider, using Lemma 1.11
and isomorphisms, is:

1 2 3

4
56 7

8
9 10

Figure 4.35: Cycle in E27 − (2, 5), including vertices 2 and 8130



4.2. Graphs including two base-points

Trying to embed E27− (2, 5) with this cycle as the boundary of a face on the Möbius strip
does not work:

2

3

10

8

9

1

(1) Embedding of the given cycle

2

3

10

8

9

1

7

7

(2) 9− 7− 10 is embedded

2

3

10

8

9

1

7

7

4

4

(3) 1− 4− 3 is embedded

2

3

10

8

9

1

7

7

4

4

(4) 4− 7 is embedded

Figure 4.36: Embedding of E27 − (2, 5)

Figure 4.36 shows that an embedding, with the given restrictions, is not possible, as the
path 1− 6− 3 cannot be embedded.

Lemma 4.19
The construction of a graph, where vertices v1 and v2 of K5 − (v1, v2) are identified with
pairs of vertices from orbit C of the graph E27, does not result in an element of M4(S2).

Proof
Looking at the graph E27 − (4, 7) and trying to find a cycle including vertices 4 and 8 we
already have to include certain edges into the cycle:

1 2 3

4
56 7

8
9 10

Figure 4.37: E27 − (4, 7), vertices 4 and 8 supposed to be included in one cycle

The set of vertex-orbits of E27 is:
{
{1, 3}, {2, 6}, {7, 8}, {9,10}

}
. Consequently vertices 7

and 8 could be exchanged. An embedding of E27 with vertices 4 and 8 on the boundary of
one face consequently means that an embedding of E27 into the Möbius strip would also
be possible with vertices 4 and 7 on the boundary of one face. This is a contradiction to
the irreducibility of E27 for the projective plane.
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The graph F4

1
2 3

456

7 8

9
10

Figure 4.38: F4 and its vertex-orbits

The only pair of vertices we have to consider for the graph F4 is {6, 9}.

Lemma 4.20
The graph G83, which is by identification of vertices v1 and v2 of the K5 − (v1, v2) and
vertices 6 and 9 in F4, is an element of M4(S2).

Proof
It is sufficient to show that the graphs F4 − e, F4/e with e ∈ {(1, 4), (1, 6), (1, 7), (2, 5),
(2, 10), (5, 6)}, R3(F4)(1) and R3(F4)(5) can be embedded into the Möbius strip, and F4
itself into the Klein surface with vertices 6 and 9 on the boundary of one face:

8
2

9
10

6 7

3

1

5

4

5

(1) Embedding of F4 − (1, 4), vertices 6
and 9 on the boundary of one face.

8 2

9
10

7 1

3

6

5

4

(2) Embedding of F4 − (1, 6), vertices 6
and 9 on the boundary of one face.

8 2

9 10

7 4

3

6

5

1

(3) Embedding of F4 − (1, 7), vertices 6
and 9 on the boundary of one face.

8
2

9 10

7
1

3

6

5 4

(4) Embedding of F4 − (2, 5), vertices 6
and 9 on the boundary of one face.

3 4

2 5

1 6

8

7
9

10

(5) Embedding of F4 − (2, 10), vertices 6
and 9 on the boundary of one face.

3 4

2 5

1 6

9
10

8

7

(6) Embedding of F4 − (5, 6), vertices 6
and 9 on the boundary of one face.
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8
9

2 10

7 1,4

5

6

3

3

(7) Embedding of F4/(1, 4), vertices 6
and 9 on the boundary of one face.

8 9

2 10

7 4
5

1,6

3

3

(8) Embedding of F4/(1, 6), vertices 6
and 9 on the boundary of one face.

8
9

2 10

1,7
4

5

6

3

3

(9) Embedding of F4/(1, 7), vertices 6
and 9 on the boundary of one face.

7
9

2,5 10

8 4

1 6

3
6 1

(10) Embedding of F4/(2, 5), vertices 6
and 9 on the boundary of one face.

2,10
3

1 4

6 5

8

97

(11) Embedding of F4/(2, 10), vertices 6
and 9 on the boundary of one face.

2 8

7 9

4 10

3

5,6
1

3

(12) Embedding of F4/(5, 6), vertices 6
and 9 on the boundary of one face.

8 9

2 10

7 4

3

5

6 3

(13) Embedding of R3(F4)(1), vertices 6
and 9 on the boundary of one face.

7
9

2 10

8 4

2 6

3
6 1

(14) Embedding of R3(F4)(5), vertices 6
and 9 on the boundary of one face.

3 4

2 5

1 6

9 9

99

8

7
10

(15) Embedding of F4, vertices 6 and 9 on
the boundary of one face.

Figure 4.39: (1)-(14): Embeddings of Ri(F4), i ∈ (1, 2, 3), into the Möbius strip, (15):
Embedding of F4 into the Klein surface

Consequently G83 is an element of M4(S2).
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Chapter 4. M2(S1) to M4(S2)

4.3 Graphs including three base-points

In this section we will look at the remaining graphs, which still have to be considered for
the attachment of the K5 − (v1, v2)− (v1, v3)− (v2, v3) to three of their vertices.

Proposition 4.21
None of the graphs constructed by attachment of a K5 − (v1, v2) − (v1, v3) − (v2, v3) to
three vertices in M2(S1)−M3(S1), is in M4(S2).

The graph C2

1 2 3

456

8
7 9

Figure 4.40: C2 and its vertex-orbits

The only triple of vertices we have to consider for attachments to the graph C2 is: {1, 3, 5}.

Lemma 4.22
The construction of a graph, where vertices v1, v2 and v3 of K5− (v1, v2)− (v1, v3)− (v2, v3)
are identified with vertices 1, 3 and 5 in B7, does not result in an element of M4(S2).

Proof
The only cycle including vertices 1, 3 and 5, we have to look at using Lemma 1.11 and
isomorphisms is:

1 2 3

456

8
7 9

Figure 4.41: Cycle in C2 − (2, 5), including vertices 1, 3 and 5

Trying to embed this cycle as the boundary of a face when embedding C2 − (2, 5) into the
Möbius strip is not possible:
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1

6

5

4

3

7

(1) Embedding of the given cycle

1

6

5

4

3

7

(2) 3− 6 is embedded

1

6

5

4

3

7

(3) 1− 4 is embedded

1

6

5

4

3

78

(4) 1− 8− 7 is embedded

1

6

5

4

3

78

(5) 3− 8 is embedded

Figure 4.42: Embedding of C2 − (2, 5)

Figure 4.42 shows that an embedding, with the given restrictions, is not possible, as vertex
9 cannot be embedded.

The graph C3

1
2

3

4
5

6

7

8

9

Figure 4.43: C3 and its vertex-orbits
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Chapter 4. M2(S1) to M4(S2)

The orbits of triples of vertices we have to consider for the graph C3 are:

A =
{
{2, 5, 8}

}
, B =

{
{2, 8, 9}

}
.

Lemma 4.23
The graph, where vertices v1, v2 and v3 of K5 − (v1, v2)− (v1, v3)− (v2, v3) are identified
with triples of vertices from orbit A of the graph C3, cannot be an element of M4(S2).

Proof
We have a look at the graph C3 − (2, 7): The only cycle, which includes vertices 2, 5 and
8, we have to consider for this case, is:

1
2

3

4
5

6

7

8

9

Figure 4.44: Cycle in C3 − (2, 7), including vertices 2, 5 and 8

Trying to embed this cycle as the boundary of one face of the graph C3 − (2, 7) on the
Möbius strip results in:

1

5

6

84

3

2

(1) Embedding of the given cycle

1

5

6

84

3

2

(2) 3− 5 is embedded

1

5

6

84

3

2

(3) 1− 6 is embedded

1

5

6

84

3

2

(4) 4− 5 is embedded

Figure 4.45: Embedding of C3 − (2, 7)

Figure 4.45 shows that an embedding, with the given restrictions, is not possible, as vertex
9 cannot be embedded.
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Lemma 4.24
The construction of a graph, where vertices v1, v2 and v3 of K5− (v1, v2)− (v1, v3)− (v2, v3)
are identified with triples of vertices from orbit B of the graph C3, does not result in an
element of M4(S2).

Proof
We consider the graph C3− (7, 9). The only cycle we have to try to embed as the boundary
of one face is:

1
2

3

4
5

6

7

8

9

Figure 4.46: Cycle in C3 − (7, 9), including vertices 2, 8 and 9

The embedding of this cycle as the boundary of one face does not work:

1

2

3

48

6

9

(1) Embedding of the given cycle

1

2

3

48

6

9

(2) 3− 9 is embedded

1

2

3

48

6

9

7

7

(3) 2− 7− 8 is embedded

Figure 4.47: Embedding of C3 − (7, 9)

Figure 4.14 shows that an embedding, with the given restrictions, is not possible, as the
path 1− 6 cannot be embedded.

137
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The graph D2

1 2 7
3

4
91056

8

Figure 4.48: D2 and its vertex-orbits

The only triple of vertices we have to consider for the graph D2 is: {3, 5, 9}.

Lemma 4.25
The construction of a graph, where vertices v1, v2 and v3 of K5− (v1, v2)− (v1, v3)− (v2, v3)
are identified with vertices 3, 5 and 9 in D2, does not result in an element of M4(S2).

Proof
Regarding the graph D2− (2, 7) there is only one cycle including vertices 3, 5 and 9, which
has to be considered:

1 2 7
3

4
91056

8

Figure 4.49: Cycle in D2 − (2, 7), including vertices 3, 5 and 9
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Trying to embed this cycle as the boundary of one face of D2 − (2, 7) on the Möbius strip
delivers:

5

10

9
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6

(1) Embedding of the given cycle
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9
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1

1

(2) 6− 1− 10 is embedded
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10

9
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6

1

1

(3) 1− 4 is embedded

5

10

9

4

3

6

1

1

8

(4) 1− 8− 9 is embedded

Figure 4.50: Embedding of D2 − (2, 7)

Figure 4.50 shows that an embedding, with the given restrictions, is not possible, as vertex
2 cannot be embedded.

The graph E6

1 2 3

456
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9

Figure 4.51: E6 and its vertex-orbits

The only triple of vertices we have to consider for the graph E6 is: {2, 3, 8}.

Lemma 4.26
The construction of a graph with vertices v1, v2 and v3 of K5 − (v1, v2)− (v1, v3)− (v2, v3)
identified with vertices 2, 3 and 8 in E6 does not result in an element of M4(S2).

Proof
Regarding the graph E6 − (2, 7) there is only one cycle which includes vertices 2, 3 and 8,
that has to be considered:
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1 2 3

456
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7
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9

Figure 4.52: Cycle in E6 − (2, 7), including vertices 2, 3 and 8

Trying to embed this cycle as the boundary of one face of E6 − (2, 7) on the Möbius strip
results in a contradiction.
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Figure 4.53: Embedding of E6 − (2, 7)

Figure 4.53 shows that an embedding, with the given restrictions, is not possible, as the
path 1− 4− 3 cannot be embedded.

The graph E11

1 2 3

4
56 7

10
9

8

Figure 4.54: E11 and its vertex-orbits
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4.3. Graphs including three base-points

The orbits of triples of vertices we have to consider for the graph E11 are:

A =
{
{1, 3, 8}

}
, B =

{
{1, 5, 8}, {3, 5, 8}

}
,

C =
{
{4, 5, 8}

}
.

Lemma 4.27
The construction of a graph with vertices v1, v2 and v3 of K5 − (v1, v2)− (v1, v3)− (v2, v3)
identified with vertices 1, 3 and 8 of the graph E11 does not result in an element of M4(S2).

Proof
We are using the graph E11− (1, 4) for this case. The smallest cycle which includes vertices
1, 3 and 8, is of length six. We also do not have to consider a cycle of length greater
then six because: Let us assume that the cycle has length eight (a cycle of length seven
containing all three vertices does not exist). Using the euler-criterion (Lemma 1.15), we
know that the embedding consists of seven faces. Consequently we have to find six cycles
of length four, which form the boundaries of the remaining six faces of the embedding
and which also have to cover all vertices missing in the cycle of length eight. As the cycle
of length eight has to include vertex 1 it cannot include vertex 4 (Corollary 1.13). None
of the cycles of length four includes vertex 4. Consequently we cannot find six cycles of
length four which would complete the embedding of E11 − (1, 4) when beginning with a
cycle of length eight. The only cycle we have to look at for this graph, due to the above
mentioned arguments and isomorphisms, is:

1 2 3

4
56 7
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8

Figure 4.55: Cycle in E11 − (1, 4), including vertices 1, 3 and 8

We try to embed the graph starting with this cycle as the boundary of one face:
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(2) 1− 6− 3 is embedded
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(3) 2− 5− 10 is embedded
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(4) 5− 9 is embedded

Figure 4.56: Embedding of E11 − (1, 4)

Figure 4.56 shows that an embedding, with the given restrictions, is not possible, as the
path 8− 7− 4− 3 cannot be embedded.

Lemma 4.28
The construction of a graph, where vertices v1, v2 and v3 of K5− (v1, v2)− (v1, v3)− (v2, v3)
are identified with triples of vertices from orbit B of the graph E11, does not result in an
element of M4(S2).

Proof
In this case we use the graph E11 − (7, 8) for our considerations. The same arguments
as in the proof of Lemma 4.27 apply for the size of the cycles of length eight, only that
in this case vertex 7 is the one which is not represented in the cycles of length four. All
cycles of length seven include vertex 7 and thus also do not have to be considered. The
only cycle of length six we have to consider is:

1 2 3

4
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Figure 4.57: Cycle in E11 − (7, 8), including vertices 1, 5 and 8

Trying to embed the graph starting with this cycle as the boundary of one face delivers:
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Figure 4.58: Embedding of E11 − (7, 8)

Figure 4.58 shows that an embedding, with the given restrictions, is not possible, as the
path 4− 7− 5 cannot be embedded.

Lemma 4.29
The graph, where vertices v1, v2 and v3 of K5 − (v1, v2)− (v1, v3)− (v2, v3) are identified
with vertices 4, 5 and 8 in E11, is not an element of M4(S2).

Proof
The only cycle in E11 − (4, 7), which includes vertices 4, 5 and 8, we have to consider due
to isomorphisms is:

1 2 3

4
56 7

10
9

8

Figure 4.59: Cycle in E11 − (4, 7), including vertices 4, 5 and 8
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Chapter 4. M2(S1) to M4(S2)

We try to embed the graph starting with this cycle as the boundary of one face:
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(1) Embedding of the given cycle
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(3) 1− 10 is embedded

Figure 4.60: Embedding of E11 − (4, 7)

Figure 4.60 shows that an embedding, with the given restrictions, is not possible, as the
path 5− 9 cannot be embedded.

The graph E20

1
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456

7 8

9

Figure 4.61: E20 and its vertex-orbits

The only orbit of triples of vertices we have to consider for the graph E11 is:

A =
{
{2, 4, 6}, {4, 6, 7}, {4, 6, 8}

}
.

Lemma 4.30
The construction of a graph, where vertices v1, v2 and v3 of K5− (v1, v2)− (v1, v3)− (v2, v3)
are identified with triples of vertices from orbit A of the graph E20, does not result in an
element of M4(S2).
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4.3. Graphs including three base-points

Proof
We only have to consider two cycles in E20− (1, 6) as the boundary of a face on the Möbius
strip, which contain vertices 2, 4 and 6:
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(1) Case 1
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(2) Case 2

Figure 4.62: Cycles in E20 − (1, 6) including vertices 2, 4 and 6

All other cycles do not have to be considered following Lemma 1.11.
Trying to embed the graph E11 − (1, 6) with these two cycles as the boundary of one face
delivers:
Embedding of Case 1:
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Figure 4.63: Embedding of Case 1 145



Chapter 4. M2(S1) to M4(S2)

Figure 4.63 shows that an embedding, with the given restrictions, is not possible, as the
path 4− 1− 7 cannot be embedded.

Embedding of Case 2:
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(1) Embedding of the given cycle
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(3) 2− 5 is embedded

Figure 4.64: Embedding of Case 2

Figure 4.64 shows that an embedding, with the given restrictions, is not possible, as the
path 8− 9 cannot be embedded.

The graph E27

1 2 3

4
56 7

8
9 10

Figure 4.65: E27 and its vertex-orbits

The orbits of triples of vertices we have to consider for the graph E27 are:

A =
{
{1, 3, 8}

}
, B =

{
{1, 7, 8}, {3, 7, 8}

}
.

Lemma 4.31
The construction of a graph with vertices v1, v2 and v3 of K5 − (v1, v2)− (v1, v3)− (v2, v3)
identified with vertices 1, 3 and 8 in E27 does not result in an element of M4(S2).
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4.3. Graphs including three base-points

Proof
Regarding the graph E27 − (5, 8) the only two cycles including vertices 1, 3 and 8, we have
to consider, using Lemma 1.11 and isomorphisms, are:

1 2 3

4
56 7

8
9 10

(1) Case 1

1 2 3

4
56 7

8
9 10

(2) Case 2

Figure 4.66: Cycles in E27 − (5, 8) including vertices 1, 3 and 8

Trying to embed E27 − (5, 8) with these cycles as the boundaries of a face on the Möbius
strip does not work, as can be seen below.
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Figure 4.67: Embedding of Case 1 147



Chapter 4. M2(S1) to M4(S2)

Figure 4.67 shows that an embedding, with the given restrictions, is not possible, as vertex
6 cannot be embedded.

Embedding of Case 2:
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Figure 4.68: Embedding of Case 2

Figure 4.68 shows that an embedding, with the given restrictions, is not possible, as vertex
2 cannot be embedded.

Lemma 4.32
The graph, where the vertices v1, v2 and v3 of K5− (v1, v2)− (v1, v3)− (v2, v3) are identified
with triples of vertices from orbit B of the graph E27, is not an element of M4(S2).

Proof
Regarding the graph E27 − (5, 7) the only cycle we have to consider, using Lemma 1.11
and isomorphisms, is:

1 2 3

4
56 7

8
9 10

Figure 4.69: Cycle in E27 − (5, 7), including vertices 1, 7 and 8
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4.3. Graphs including three base-points

Trying to embed E27− (5, 7) with this cycle as the boundary of a face on the Möbius strip
does not work:
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Figure 4.70: Embedding of E27 − (5, 7)

Figure 4.70 shows that an embedding, with the given restrictions, is not possible, as the
path 8− 5− 6− 1 cannot be embedded.

The graph F4
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Figure 4.71: F4 and its vertex-orbits

The only orbit of triples of vertices we have to consider for F4 is:

A =
{
{2, 6, 9}, {4, 6, 9}

}
.

Lemma 4.33
The construction of a graph with vertices v1, v2 and v3 of K5 − (v1, v2)− (v1, v3)− (v2, v3)
identified with triples of vertices from orbit A of the graph F4, does not result in an
element of M4(S2).
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Chapter 4. M2(S1) to M4(S2)

Proof
Regarding the graph F4 − (5, 6) the only cycle including vertices 4, 6 and 9 we have to
consider, using Lemma 1.11 and isomorphisms, is:

1
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Figure 4.72: Cycle in F4 − (5, 6), including vertices 4, 6 and 9

Trying to embed F4 − (5, 6) with this cycle as the boundary of a face on the Möbius strip
does not work:
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Figure 4.73: Embedding of F4 − (5, 6)

Figure 4.73 shows that an embedding, with the given restrictions, is not possible, as the
path 8− 2− 10 cannot be embedded.
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5 Resume

In this thesis, we have constructed 83 graphs which are irreducible for the Klein surface
and which are elements of M4(S2). This already is a big number, but we only constructed
one class of graphs and we can be sure that the minimal basis M4(S2) has more than
83 elements. The following theorem shows that the question about irreducible graphs in
general becomes very extensive for surfaces of higher genus:

Theorem 5.1
The number of irreducible graphs in M4(Sp), Sp a non-orientable surface of genus p, grows
exponentially with p.

Proof
Let Sp be a non-orientable surface of genus p. The non-orientable surface Sp+1 then has
an additional crosscap. On this crosscap an additional K5 can be embedded. Using the
knowledge about the method of relative components, we know that we can construct an
irreducible graph for M4(Sp+1) by identifying one vertex of a graph from M4(Sp) and one
vertex of a K5, which is the relative component.

Let us now take one arbitrary graph G ∈M4(Sp), G 6= K5. For the surface Sp+1 we can
identify one vertex of the K5 and one arbitrary vertex of G, and we get an irreducible
graph G′ ∈M4(Sp+1). In the next step, we want to construct graphs which are elements
of M4(Sp+2). Again, we want to identify one vertex of the relative component K5 with
one vertex of the graph G′ ∈ M4(Sp+1). We now have the choice between two different
vertices as base-points. We can either attach the K5 to the same base point the K5 in the
previous step was attched to, or we can attach it to an arbitrary vertex of the previously
attched K5. This way we can construct two non-isomorphic graphs in M4(Sp+2). And
with this construction-method, the number of graphs grows exponentially to the basis two.

We can even increase the basis of the exponential growth:

If we consider the block-graphs of the graphs we can construct as described above, we get
rooted-trees. The number of vertices in these rooted trees corresponds to the genus of the
surface. The number of rooted trees growths exponentially to a basis greater than 2,9 as
can be found in [HP73].
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Chapter 5. Resume

One example for the construction-method described in the proof of Theorem 5.1 could be:

1

2 3

1

2 3 4

1

2 3

4

Figure 5.1: An example for the construction-method

In this case, we have one rooted-graph given. Vertices 1, 2 and 3 are already attached in
an arbitrary way. If we want to attach vertex 4, we can either attach it to vertex 1, or we
can attach it to vertex 3.

This approximation obviously is far smaller than the actual growth rate of graphs inM4(S).
In the proof of Theorem 5.1 we only considered graphs with connectivity κ = 1 and we only
started with one graph in M4(Sp) and only attached the first K5 to one vertex. In reality
we already have 11 connected graphs inM4(S1) and a total number of 29 vertex-orbits. We
also cannot only attach the additional K5 to graphs in M4(Sp), there might be a possibility
to generate graphs like that starting with another graph from M2(Sp). We also know that
we can construct one disconnected graph in M4(Sp+1) for each graph in M4(Sp) and we
will always be able to construct a number of graphs with connectivity κ ≥ 2. In general
even these additional information are only about attachment of a relative component to
graphs in M3(Sp) without even considering adding vertices and edges to a graph in M2(Sp)
and thus being able to attach another relative component than the K5.

Theorem 5.2
The number of irreducible graphs in M4(S̃q), S̃q an orientable surface of genus q, grows
exponentially with q.

Proof
For orientable surfaces the same arguments as for non-orientable surfaces applies, only that
a handle instead of a crosscap is added when increasing the genus by one. Each additional
handle can take an additional K5 and thus the same construction-method applies.

Knowing that the number of irreducible graphs grows at a huge rate, we can say that the
question about irreducible graphs for surfaces of higher genus becomes extensive and that
even the construction of the complete minimal basis M4(S2) of the Klein surface is very
complex.
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Appendix

For the computation of the vertex- and edge-orbits, we used [GAP08] using the packages
[Teu10] and[Soi06]. The adjacency-lists of graphs in M4(S2) are the results of this thesis.

Vertexorbits of graphs in M2(S1)

A1 =
{
{1, 2, 6, 3, 7, 4, 8, 9}, {5}

}
A2 =

{
{1, 2, 3, 5, 6, 7}, {4}

}
A5 =

{
{1, 2, 6, 3, 7, 4, 8, 5, 9, 10}

}
B1 =

{
{1, 2, 6, 7}, {3, 4, 5}

}
B3 =

{
{1, 2, 6, 3, 7, 8}, {4, 5}

}
B7 =

{
{1, 3, 5}, {2, 4, 6}, {7}, {8}

}
C1 =

{
{1, 2, 3, 4}, {5}, {6, 8, 10}, {7, 9}

}
C2 =

{
{1, 3}, {2, 4, 6}, {5}, {7, 8, 9}

}
C3 =

{
{1, 3, 4, 6}, {2, 8}, {5}, {7}, {9}

}
C4 =

{
{1, 3, 5, 6, 2, 4}, {7, 8}, {9}

}
C7 =

{
{1, 3, 7, 8}, {2, 5}, {4, 6}

}
C11 =

{
{1, 2, 3, 4, 5}, {6, 7, 9, 11, 8, 10}

}
D1 =

{
{1, 3}, {2, 4, 7, 6, 9, 10}, {5, 8}

}
D2 =

{
{1}, {2, 8, 7}, {3, 9, 5}, {4, 6, 10}

}
D3 =

{
{1, 3}, {2, 6}, {4}, {5}, {7, 8}

}
D4 =

{
{1, 4, 6, 5}, {2, 3}, {7, 8, 9}

}
D9 =

{
{1, 3, 9, 10}, {2, 5}, {4, 6}, {7, 8}

}
D12 =

{
{1, 3}, {2, 4}, {5}, {6}, {7}, {8, 9}

}
D17 =

{
{1, 2, 5, 3, 6, 4, 7, 8}

}
E1 =

{
{1, 3, 7, 5, 9, 11}, {2, 4, 8, 10}, {6}

}
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E2 =
{
{1}, {2, 4, 6, 11, 8, 10}, {3, 9, 5, 7}

}
E3 =

{
{1, 3, 5, 7, 8}, {2, 4, 6}

}
E5 =

{
{1, 3}, {2, 6, 7, 8}, {4}, {5, 9}

}
E6 =

{
{1, 4, 6, 5}, {2, 3}, {7, 9, 10}, {8}

}
E11 =

{
{1, 3}, {2, 6}, {4}, {5}, {7}, {8}, {9, 10}

}
E18 =

{
{1, 3, 2, 5, 4, 6}, {7, 8}

}
E19 =

{
{1, 3}, {2, 9}, {4, 6}, {5}, {7, 8}

}
E20 =

{
{1, 3, 5}, {2, 8, 7}, {4}, {6}, {9}

}
E22 =

{
{1, 5, 8, 9}, {2, 4, 6, 7}, {3}

}
E27 =

{
{1, 3}, {2, 6}, {4}, {5}, {7}, {8}, {9, 10}

}
E42 =

{
{1, 2, 7, 4, 8, 6, 3, 10, 5, 12, 9, 11}

}
F1 =

{
{1}, {2, 5}, {3, 9}, {4, 6, 7, 8}

}
F4 =

{
{1, 3, 7, 8}, {2, 4}, {5, 10}, {6, 9}

}
F6 =

{
{1, 4, 7, 6, 8, 9, 5, 10}, {2, 3}

}
G =

{
{1, 3, 7, 5, 8, 9}, {2, 10, 4, 6}

}

Edge-orbits of graphs in M2(S1)

A1 =
{
{(1, 2), (1, 3), (6, 7), (1, 4), (2, 3), (6, 8), (2, 4), (6, 9), (7, 8), (3, 4), (7, 9), (8, 9)},

{(1, 5), (2, 5), (5, 6), (3, 5), (5, 7), (4, 5), (5, 8), (5, 9)}
}

A2 =
{
{(1, 2), (1, 3), (1, 5), (2, 3), (1, 6), (2, 5), (2, 7), (3, 6), (3, 7), (5, 6), (5, 7), (6, 7)},

{(1, 4), (2, 4), (3, 4), (4, 5), (4, 6), (4, 7)}
}

A5 =
{
{(1, 2), (1, 3), (6, 7), (1, 4), (2, 3), (6, 8), (1, 5), (2, 4), (6, 9), (7, 8), (2, 5), (6, 10), (3, 4),

(7, 9), (3, 5), (7, 10), (8, 9), (4, 5), (8, 10), (9, 10)}
}

B1 =
{
{(1, 2), (6, 7)}, {(1, 3), (1, 4), (2, 3), (3, 6), (1, 5), (2, 4), (4, 6), (3, 7), (2, 5), (5, 6),

(4, 7), (5, 7)}, {(3, 4), (3, 5), (4, 5)}
}

B3 =
{
{(1, 2), (1, 3), (6, 7), (2, 3), (6, 8), (7, 8)}, {(1, 4), (1, 5), (2, 4), (4, 6), (2, 5), (5, 6),

(3, 4), (4, 7), (3, 5), (5, 7), (4, 8), (5, 8)}
}

B7 =
{
{(1, 2), (2, 3), (4, 5), (3, 4), (5, 6), (1, 6)}, {(1, 3), (3, 5), (1, 5)}, {(1, 8), (3, 8), (5, 8)},

{(2, 7), (4, 7), (6, 7)}, {(2, 8), (4, 8), (6, 8)}
}

C1 =
{
{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}, {(1, 5), (2, 5), (3, 5), (4, 5)}, {(5, 6), (5, 8),

(5, 10)}, {(6, 7), (6, 9), (7, 8), (8, 9), (7, 10), (9, 10)}
}
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Edge-orbits of graphs in M2(S1)

C2 =
{
{(1, 2), (2, 3), (1, 4), (3, 4), (1, 6), (3, 6)}, {(1, 7), (3, 7), (1, 8), (3, 8), (1, 9), (3, 9)},

{(2, 5), (4, 5), (5, 6)}, {(7, 8), (7, 9), (8, 9)}
}

C3 =
{
{(1, 2), (2, 3), (4, 8), (6, 8)}, {(1, 5), (3, 5), (4, 5), (5, 6)}, {(1, 6), (3, 4)}, {(1, 9), (3, 9),

(4, 9), (6, 9)}, {(2, 7), (7, 8)}, {(5, 9)}, {(7, 9)}
}

C4 =
{
{(1, 2), (2, 3), (4, 5), (1, 6), (3, 4), (5, 6)}, {(1, 8), (3, 8), (5, 8), (6, 7), (2, 7), (4, 7)},

{(1, 9), (3, 9), (5, 9), (6, 9), (2, 9), (4, 9)}
}

C7 =
{
{(1, 2), (2, 3), (5, 7), (5, 8)}, {(1, 3), (7, 8)}, {(1, 4), (3, 4), (6, 7), (6, 8)}, {(1, 6), (3, 6),

(4, 7), (4, 8)}, {(2, 5)}, {(2, 6), (4, 5)}
}

C11 =
{
{(1, 2), (1, 3), (1, 4), (2, 3), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5)}, {(6, 7), (6, 9),

(6, 11), (7, 8), (7, 10), (8, 9), (9, 10), (8, 11), (10, 11)}
}

D1 =
{
{(1, 2), (2, 3), (1, 4), (1, 7), (3, 4), (3, 7), (1, 6), (1, 9), (3, 6), (3, 9), (1, 10), (3, 10)},

{(2, 5), (4, 5), (7, 8), (5, 6), (8, 9), (8, 10)}
}

D2 =
{
{(1, 2), (1, 8), (1, 7)}, {(1, 4), (1, 6), (1, 10)}, {(2, 5), (8, 9), (3, 7)}, {(2, 7), (2, 8), (7, 8)},

{(3, 4), (4, 9), (3, 6), (5, 6), (9, 10), (5, 10)}
}

D3 =
{
{(1, 2), (2, 3), (1, 6), (3, 6)}, {(1, 4), (3, 4)}, {(1, 7), (3, 7), (1, 8), (3, 8)}, {(2, 5), (5, 6)},

{(4, 5)}, {(4, 7), (4, 8)}, {(7, 8)}
}

D4 =
{
{(1, 2), (3, 4), (3, 6), (2, 5)}, {(1, 4), (1, 6), (4, 5), (5, 6)}, {(2, 7), (2, 8), (3, 7), (2, 9),

(3, 8), (3, 9)}, {(7, 8), (7, 9), (8, 9)}
}

D9 =
{
{(1, 2), (2, 3), (5, 9), (5, 10)}, {(1, 4), (1, 6), (3, 4), (4, 9), (3, 6), (6, 9), (4, 10), (6, 10)},

{(2, 7), (2, 8), (5, 7), (5, 8)}, {(4, 7), (6, 8)}
}

D12 =
{
{(1, 2), (2, 3), (1, 4), (3, 4)}, {(1, 6), (3, 6)}, {(1, 8), (3, 9)}, {(2, 5), (4, 5)}, {(5, 7)},

{(5, 8), (5, 9)}, {(6, 7)}, {(7, 8), (7, 9)}, {(8, 9)}
}

D17 =
{
{(1, 2), (1, 3), (5, 6), (1, 4), (2, 3), (5, 7), (2, 4), (5, 8), (6, 7), (3, 4), (6, 8), (7, 8)},

{(1, 5), (2, 6), (3, 7), (4, 8)}
}

E1 =
{
{(1, 2), (1, 4), (2, 3), (7, 8), (3, 4), (7, 10), (2, 5), (8, 9), (4, 5), (9, 10), (8, 11), (10, 11)},

{(1, 6), (3, 6), (6, 7), (5, 6), (6, 9), (6, 11)}
}

E2 =
{
{(1, 2), (1, 4), (1, 6), (1, 11), (1, 8), (1, 10)}, {(2, 5), (2, 7), (3, 4), (5, 6), (4, 9), (3, 6),

(7, 11), (7, 8), (5, 10), (9, 11), (3, 8), (9, 10)}
}

E3 =
{
{(1, 2), (1, 4), (2, 3), (1, 6), (3, 4), (2, 5), (3, 6), (4, 5), (2, 7), (5, 6), (4, 7), (2, 8), (6, 7),

(4, 8), (6, 8)}
}

E5 =
{
{(1, 2), (2, 3), (1, 6), (1, 7), (3, 6), (3, 7), (1, 8), (3, 8)}, {(1, 4), (3, 4)}, {(2, 5), (5, 6),

(7, 9), (8, 9)}, {(4, 5), (4, 9)}
}
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E6 =
{
{(1, 2), (3, 4), (3, 6), (2, 5)}, {(1, 4), (1, 6), (4, 5), (5, 6)}, {(2, 7), (2, 9), (3, 7), (2, 10),

(3, 9), (3, 10)}, {(7, 8), (8, 9), (8, 10)}
}

E11 =
{
{(1, 2), (2, 3), (1, 6), (3, 6)}, {(1, 4), (3, 4)}, {(1, 10), (3, 9)}, {(2, 5), (5, 6)}, {(4, 7)},

{(5, 7)}, {(5, 9), (5, 10)}, {(7, 8)}, {(8, 9), (8, 10)}
}

E18 =
{
{(1, 2), (1, 4), (2, 3), (1, 6), (3, 4), (2, 5), (3, 6), (4, 5), (5, 6)}, {(1, 7), (3, 7), (2, 8),

(5, 7), (4, 8), (6, 8)}
}

E19 =
{
{(1, 4), (3, 4), (1, 6), (3, 6)}, {(1, 7), (3, 8)}, {(2, 5), (5, 9)}, {(2, 7), (7, 9), (2, 8), (8, 9)},

{(2, 9)}, {(4, 5), (5, 6)}, {(7, 8)}
}

E20 =
{
{(1, 4), (3, 4), (4, 5)}, {(1, 6), (3, 6), (5, 6)}, {(1, 7), (3, 8), (2, 5)}, {(2, 7), (7, 8), (2, 8)},

{(2, 9), (8, 9), (7, 9)}, {(4, 9)}
}

E22 =
{
{(1, 2), (1, 4), (2, 5), (1, 6), (4, 5), (2, 8), (5, 7), (6, 8), (4, 9), (7, 8), (6, 9), (7, 9)},

{(2, 3), (3, 4), (3, 6), (3, 7)}
}

E27 =
{
{(1, 2), (1, 6), (2, 3), (3, 6)}, {(1, 4), (3, 4)}, {(1, 9), (3, 10)}, {(2, 5), (5, 6)}, {(4, 7)},

{(5, 7)}, {(5, 8)}, {(7, 9), (7, 10)}, {(8, 9), (8, 10)}
}

E42 =
{
{(1, 2), (1, 4), (7, 8), (1, 6), (2, 3), (7, 10), (2, 5), (7, 12), (3, 4), (8, 9), (4, 5), (8, 11),

(3, 6), (9, 10), (5, 6), (10, 11), (9, 12), (11, 12)}
}

F1 =
{
{(1, 4), (1, 6), (1, 7), (1, 8)}, {(2, 3), (5, 9)}, {(2, 5)}, {(2, 7), (2, 8), (4, 5), (5, 6)},

{(3, 4), (3, 6), (7, 9), (8, 9)}
}

F4 =
{
{(1, 4), (3, 4), (2, 7), (2, 8)}, {(1, 6), (3, 6), (7, 9), (8, 9)}, {(1, 7), (3, 8)}, {(2, 5), (4, 10)},

{(2, 10), (4, 5)}, {(5, 6), (9, 10)}
}

F6 =
{
{(1, 2), (3, 4), (2, 7), (3, 6), (3, 8), (2, 9), (2, 5), (3, 10)}, {(1, 4), (1, 6), (7, 8), (4, 5),

(7, 10), (8, 9), (5, 6), (9, 10)}
}

G =
{
{(1, 4), (1, 6), (3, 4), (2, 7), (3, 6), (7, 10), (4, 5), (2, 8), (5, 6), (8, 10), (2, 9), (9, 10)},

{(1, 7), (3, 8), (5, 9)}
}

Adjacency lists of graphs in M4(S2)

G1 :=
{
{2, 3, 4, 5}, {1, 3, 4, 5}, {1, 2, 4, 5}, {1, 2, 3, 5}, {1, 2, 3, 4, 6, 7, 8, 9}, {5, 7, 8, 9}, {5, 6, 8, 9},

{5, 6, 7, 9}, {5, 6, 7, 8}, {11, 12, 13, 14}, {10, 12, 13, 14}, {10, 11, 13, 14}, {10, 11, 12, 14},

{10, 11, 12, 13}
}

G2 :=
{
{2, 3, 4, 5, 6}, {1, 3, 4, 5, 7}, {1, 2, 4, 6, 7}, {1, 2, 3, 5, 6, 7}, {1, 2, 4, 6, 7}, {1, 3, 4, 5, 7},

{2, 3, 4, 5, 6}, {9, 10, 11, 12}, {8, 10, 11, 12}, {8, 9, 11, 12}, {8, 9, 10, 12}, {8, 9, 10, 11}
}
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G3 :=
{
{2, 3, 4, 5}, {1, 3, 4, 5}, {1, 2, 4, 5}, {1, 2, 3, 5}, {1, 2, 3, 4}, {7, 8, 9, 10}, {6, 8, 9, 10},

{6, 7, 9, 10}, {6, 7, 8, 10}, {6, 7, 8, 9}, {12, 13, 14, 15}, {11, 13, 14, 15}, {11, 12, 14, 15},

{11, 12, 13, 15}, {11, 12, 13, 14}
}

G4 :=
{
{2, 3, 4, 5}, {1, 3, 4, 5}, {1, 2, 4, 5, 6, 7}, {1, 2, 3, 5, 6, 7}, {1, 2, 3, 4, 6, 7}, {3, 4, 5, 7},

{3, 4, 5, 6}, {9, 10, 11, 12}, {8, 10, 11, 12}, {8, 9, 11, 12}, {8, 9, 10, 12}, {8, 9, 10, 11}
}

G5 :=
{
{2, 3, 4, 5}, {1, 3, 4, 5}, {1, 2, 4, 5}, {1, 2, 3, 6, 7, 8}, {1, 2, 3, 6, 7, 8}, {4, 5, 7, 8}, {4, 5, 6, 8},

{4, 5, 6, 7}, {10, 11, 12, 13}, {9, 11, 12, 13}, {9, 10, 12, 13}, {9, 10, 11, 13}, {9, 10, 11, 12}
}

G6 :=
{
{2, 3, 4, 6}, {1, 3, 5, 6}, {1, 2, 4, 6}, {1, 3, 5, 7, 8}, {2, 4, 7, 8}, {1, 2, 3, 7, 8}, {4, 5, 6, 8},

{4, 5, 6, 7}, {10, 11, 12, 13}, {9, 11, 12, 13}, {9, 10, 12, 13}, {9, 10, 11, 13}, {9, 10, 11, 12}
}

G7 :=
{
{2, 4, 6}, {1, 3, 7, 8}, {2, 4, 6}, {1, 3, 7, 9, 10}, {7, 8, 9, 10}, {1, 3, 8, 9, 10}, {2, 4, 5},

{2, 5, 6}, {4, 5, 6}, {4, 5, 6}, {12, 13, 14, 15}, {11, 13, 14, 15}, {11, 12, 14, 15},

{11, 12, 13, 15}, {11, 12, 13, 14}
}

G8 :=
{
{2, 4, 6, 8}, {1, 3, 5}, {2, 4, 6, 9}, {1, 3, 5}, {2, 4, 7, 8, 9}, {1, 3, 7}, {5, 6, 8, 9}, {1, 5, 7, 9},

{3, 5, 7, 8}, {11, 12, 13, 14}, {10, 12, 13, 14}, {10, 11, 13, 14}, {10, 11, 12, 14},

{10, 11, 12, 13}
}

G9 :=
{
{2, 3, 4, 5}, {1, 3, 4, 6}, {1, 2, 4, 7}, {1, 2, 3, 8}, {1, 6, 7, 8}, {2, 5, 7, 8}, {3, 5, 6, 8}, {4, 5, 6, 7},

{10, 11, 12, 13}, {9, 11, 12, 13}, {9, 10, 12, 13}, {9, 10, 11, 13}, {9, 10, 11, 12}
}

G10 :=
{
{2, 4, 6, 7, 8}, {1, 3, 5}, {2, 4, 6, 7, 8}, {1, 3, 5}, {2, 4, 6, 7, 8}, {1, 3, 5}, {1, 3, 5}, {1, 3, 5},

{10, 11, 12, 13}, {9, 11, 12, 13}, {9, 10, 12, 13}, {9, 10, 11, 13}, {9, 10, 11, 12}
}

G11 :=
{
{2, 4, 6, 7}, {1, 3, 5, 8}, {2, 4, 6, 7}, {1, 3, 5, 8}, {2, 4, 6, 7}, {1, 3, 5, 8}, {1, 3, 5}, {2, 4, 6},

{10, 11, 12, 13}, {9, 11, 12, 13}, {9, 10, 12, 13}, {9, 10, 11, 13}, {9, 10, 11, 12}
}

G12 :=
{
{2, 4, 6}, {1, 3, 5, 8}, {2, 4, 6, 7}, {1, 3, 5, 9}, {2, 4, 7}, {1, 3, 8, 9}, {3, 5, 8, 9}, {2, 6, 7},

{4, 6, 7}, {11, 12, 13, 14}, {10, 12, 13, 14}, {10, 11, 13, 14}, {10, 11, 12, 14},

{10, 11, 12, 13}
}

G13 :=
{
{2, 3, 4, 5, 10, 11, 12, 13}, {1, 3, 4, 5}, {1, 2, 4, 5}, {1, 2, 3, 5}, {1, 2, 3, 4, 6, 7, 8, 9},

{5, 7, 8, 9}, {5, 6, 8, 9}, {5, 6, 7, 9}, {5, 6, 7, 8}, {1, 11, 12, 13}, {1, 10, 12, 13}, {1, 10, 11, 13},

{1, 10, 11, 12}
}

G14 :=
{
{2, 3, 4, 5}, {1, 3, 4, 5}, {1, 2, 4, 5}, {1, 2, 3, 5}, {1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13},

{5, 7, 8, 9}, {5, 6, 8, 9}, {5, 6, 7, 9}, {5, 6, 7, 8}, {5, 11, 12, 13}, {5, 10, 12, 13}, {5, 10, 11, 13},

{5, 10, 11, 12}
}

G15 :=
{
{2, 3, 4, 5, 6, 8, 9, 10, 11}, {1, 3, 4, 5, 7}, {1, 2, 4, 6, 7}, {1, 2, 3, 5, 6, 7}, {1, 2, 4, 6, 7},

{1, 3, 4, 5, 7}, {2, 3, 4, 5, 6}, {1, 9, 10, 11}, {1, 8, 10, 11}, {1, 8, 9, 11}, {1, 8, 9, 10}
}

157



Appendix

G16 :=
{
{2, 3, 4, 5, 6}, {1, 3, 4, 5, 7}, {1, 2, 4, 6, 7}, {1, 2, 3, 5, 6, 7, 8, 9, 10, 11}, {1, 2, 4, 6, 7},

{1, 3, 4, 5, 7}, {2, 3, 4, 5, 6}, {4, 9, 10, 11}, {4, 8, 10, 11}, {4, 8, 9, 11}, {4, 8, 9, 10}
}

G17 :=
{
{2, 3, 4, 5, 8, 9, 10, 11}, {1, 3, 4, 5}, {1, 2, 4, 5, 6, 7}, {1, 2, 3, 5, 6, 7}, {1, 2, 3, 4, 6, 7},

{3, 4, 5, 7}, {3, 4, 5, 6}, {1, 9, 10, 11}, {1, 8, 10, 11}, {1, 8, 9, 11}, {1, 8, 9, 10}
}

G18 :=
{
{2, 3, 4, 5}, {1, 3, 4, 5}, {1, 2, 4, 5, 6, 7, 8, 9, 10, 11}, {1, 2, 3, 5, 6, 7}, {1, 2, 3, 4, 6, 7},

{3, 4, 5, 7}, {3, 4, 5, 6}, {3, 9, 10, 11}, {3, 8, 10, 11}, {3, 8, 9, 11}, {3, 8, 9, 10}
}

G19 :=
{
{2, 3, 4, 5, 9, 10, 11, 12}, {1, 3, 4, 5}, {1, 2, 4, 5}, {1, 2, 3, 6, 7, 8}, {1, 2, 3, 6, 7, 8},

{4, 5, 7, 8}, {4, 5, 6, 8}, {4, 5, 6, 7}, {1, 10, 11, 12}, {1, 9, 11, 12}, {1, 9, 10, 12}, {1, 9, 10, 11}
}

G20 :=
{
{2, 3, 4, 5}, {1, 3, 4, 5}, {1, 2, 4, 5}, {1, 2, 3, 6, 7, 8, 9, 10, 11, 12}, {1, 2, 3, 6, 7, 8},

{4, 5, 7, 8}, {4, 5, 6, 8}, {4, 5, 6, 7}, {4, 10, 11, 12}, {4, 9, 11, 12}, {4, 9, 10, 12}, {4, 9, 10, 11}
}

G21 :=
{
{2, 3, 4, 6, 9, 10, 11, 12}, {1, 3, 5, 6}, {1, 2, 4, 6}, {1, 3, 5, 7, 8}, {2, 4, 7, 8}, {1, 2, 3, 7, 8},

{4, 5, 6, 8}, {4, 5, 6, 7}, {1, 10, 11, 12}, {1, 9, 11, 12}, {1, 9, 10, 12}, {1, 9, 10, 11}
}

G22 :=
{
{2, 3, 4, 6}, {1, 3, 5, 6, 9, 10, 11, 12}, {1, 2, 4, 6}, {1, 3, 5, 7, 8}, {2, 4, 7, 8}, {1, 2, 3, 7, 8},

{4, 5, 6, 8}, {4, 5, 6, 7}, {2, 10, 11, 12}, {2, 9, 11, 12}, {2, 9, 10, 12}, {2, 9, 10, 11}
}

G23 :=
{
{2, 3, 4, 6}, {1, 3, 5, 6}, {1, 2, 4, 6, 9, 10, 11, 12}, {1, 3, 5, 7, 8}, {2, 4, 7, 8}, {1, 2, 3, 7, 8},

{4, 5, 6, 8}, {4, 5, 6, 7}, {3, 10, 11, 12}, {3, 9, 11, 12}, {3, 9, 10, 12}, {3, 9, 10, 11}
}

G24 :=
{
{2, 4, 6, 11, 12, 13, 14}, {1, 3, 7, 8}, {2, 4, 6}, {1, 3, 7, 9, 10}, {7, 8, 9, 10}, {1, 3, 8, 9, 10},

{2, 4, 5}, {2, 5, 6}, {4, 5, 6}, {4, 5, 6}, {1, 12, 13, 14}, {1, 11, 13, 14}, {1, 11, 12, 14},

{1, 11, 12, 13}
}

G25 :=
{
{2, 4, 6}, {1, 3, 7, 8, 11, 12, 13, 14}, {2, 4, 6}, {1, 3, 7, 9, 10}, {7, 8, 9, 10}, {1, 3, 8, 9, 10},

{2, 4, 5}, {2, 5, 6}, {4, 5, 6}, {4, 5, 6}, {2, 12, 13, 14}, {2, 11, 13, 14}, {2, 11, 12, 14},

{2, 11, 12, 13}
}

G26 :=
{
{2, 4, 6}, {1, 3, 7, 8}, {2, 4, 6}, {1, 3, 7, 9, 10, 11, 12, 13, 14}, {7, 8, 9, 10}, {1, 3, 8, 9, 10},

{2, 4, 5}, {2, 5, 6}, {4, 5, 6}, {4, 5, 6}, {4, 12, 13, 14}, {4, 11, 13, 14}, {4, 11, 12, 14},

{4, 11, 12, 13}
}

G27 :=
{
{2, 4, 6}, {1, 3, 7, 8}, {2, 4, 6}, {1, 3, 7, 9, 10}, {7, 8, 9, 10}, {1, 3, 8, 9, 10},

{2, 4, 5, 11, 12, 13, 14}, {2, 5, 6}, {4, 5, 6}, {4, 5, 6}, {7, 12, 13, 14}, {7, 11, 13, 14},

{7, 11, 12, 14}, {7, 11, 12, 13}
}

G28 :=
{
{2, 4, 6, 8, 10, 11, 12, 13}, {1, 3, 5}, {2, 4, 6, 9}, {1, 3, 5}, {2, 4, 7, 8, 9}, {1, 3, 7}, {5, 6, 8, 9},

{1, 5, 7, 9}, {3, 5, 7, 8}, {1, 11, 12, 13}, {1, 10, 12, 13}, {1, 10, 11, 13}, {1, 10, 11, 12}
}

G29 :=
{
{2, 4, 6, 8}, {1, 3, 5, 10, 11, 12, 13}, {2, 4, 6, 9}, {1, 3, 5}, {2, 4, 7, 8, 9}, {1, 3, 7}, {5, 6, 8, 9},

{1, 5, 7, 9}, {3, 5, 7, 8}, {2, 11, 12, 13}, {2, 10, 12, 13}, {2, 10, 11, 13}, {2, 10, 11, 12}
}
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G30 :=
{
{2, 4, 6, 8}, {1, 3, 5}, {2, 4, 6, 9}, {1, 3, 5}, {2, 4, 7, 8, 9, 10, 11, 12, 13}, {1, 3, 7}, {5, 6, 8, 9},

{1, 5, 7, 9}, {3, 5, 7, 8}, {5, 11, 12, 13}, {5, 10, 12, 13}, {5, 10, 11, 13}, {5, 10, 11, 12}
}

G31 :=
{
{2, 4, 6, 8}, {1, 3, 5}, {2, 4, 6, 9}, {1, 3, 5}, {2, 4, 7, 8, 9}, {1, 3, 7, 10, 11, 12, 13}, {5, 6, 8, 9},

{1, 5, 7, 9}, {3, 5, 7, 8}, {6, 11, 12, 13}, {6, 10, 12, 13}, {6, 10, 11, 13}, {6, 10, 11, 12}
}

G32 :=
{
{2, 4, 6, 8}, {1, 3, 5}, {2, 4, 6, 9}, {1, 3, 5}, {2, 4, 7, 8, 9}, {1, 3, 7}, {5, 6, 8, 9, 10, 11, 12, 13},

{1, 5, 7, 9}, {3, 5, 7, 8}, {7, 11, 12, 13}, {7, 10, 12, 13}, {7, 10, 11, 13}, {7, 10, 11, 12}
}

G33 :=
{
{2, 4, 6, 8}, {1, 3, 5}, {2, 4, 6, 9}, {1, 3, 5}, {2, 4, 7, 8, 9}, {1, 3, 7}, {5, 6, 8, 9},

{1, 5, 7, 9, 10, 11, 12, 13}, {3, 5, 7, 8}, {8, 11, 12, 13}, {8, 10, 12, 13}, {8, 10, 11, 13},

{8, 10, 11, 12}
}

G34 :=
{
{2, 3, 4, 5, 9, 10, 11, 12}, {1, 3, 4, 6}, {1, 2, 4, 7}, {1, 2, 3, 8}, {1, 6, 7, 8}, {2, 5, 7, 8},

{3, 5, 6, 8}, {4, 5, 6, 7}, {1, 10, 11, 12}, {1, 9, 11, 12}, {1, 9, 10, 12}, {1, 9, 10, 11}
}

G35 :=
{
{2, 4, 6, 7, 8, 9, 10, 11, 12}, {1, 3, 5}, {2, 4, 6, 7, 8}, {1, 3, 5}, {2, 4, 6, 7, 8}, {1, 3, 5},

{1, 3, 5}, {1, 3, 5}, {1, 10, 11, 12}, {1, 9, 11, 12}, {1, 9, 10, 12}, {1, 9, 10, 11}
}

G36 :=
{
{2, 4, 6, 7, 8}, {1, 3, 5, 9, 10, 11, 12}, {2, 4, 6, 7, 8}, {1, 3, 5}, {2, 4, 6, 7, 8}, {1, 3, 5}, {1, 3, 5},

{1, 3, 5}, {2, 10, 11, 12}, {2, 9, 11, 12}, {2, 9, 10, 12}, {2, 9, 10, 11}
}

G37 :=
{
{2, 4, 6, 7, 9, 10, 11, 12}, {1, 3, 5, 8}, {2, 4, 6, 7}, {1, 3, 5, 8}, {2, 4, 6, 7}, {1, 3, 5, 8},

{1, 3, 5}, {2, 4, 6}, {1, 10, 11, 12}, {1, 9, 11, 12}, {1, 9, 10, 12}, {1, 9, 10, 11}
}

G38 :=
{
{2, 4, 6, 7}, {1, 3, 5, 8}, {2, 4, 6, 7}, {1, 3, 5, 8}, {2, 4, 6, 7}, {1, 3, 5, 8, 9, 10, 11, 12}, {1, 3, 5},

{2, 4, 6}, {6, 10, 11, 12}, {6, 9, 11, 12}, {6, 9, 10, 12}, {6, 9, 10, 11}
}

G39 :=
{
{2, 4, 6, 10, 11, 12, 13}, {1, 3, 5, 8}, {2, 4, 6, 7}, {1, 3, 5, 9}, {2, 4, 7}, {1, 3, 8, 9}, {3, 5, 8, 9},

{2, 6, 7}, {4, 6, 7}, {1, 11, 12, 13}, {1, 10, 12, 13}, {1, 10, 11, 13}, {1, 10, 11, 12}
}

G40 :=
{
{2, 4, 6}, {1, 3, 5, 8, 10, 11, 12, 13}, {2, 4, 6, 7}, {1, 3, 5, 9}, {2, 4, 7}, {1, 3, 8, 9}, {3, 5, 8, 9},

{2, 6, 7}, {4, 6, 7}, {2, 11, 12, 13}, {2, 10, 12, 13}, {2, 10, 11, 13}, {2, 10, 11, 12}
}

G41 :=
{
{2, 4, 6}, {1, 3, 5, 8}, {2, 4, 6, 7, 10, 11, 12, 13}, {1, 3, 5, 9}, {2, 4, 7}, {1, 3, 8, 9}, {3, 5, 8, 9},

{2, 6, 7}, {4, 6, 7}, {3, 11, 12, 13}, {3, 10, 12, 13}, {3, 10, 11, 13}, {3, 10, 11, 12}
}

G42 :=
{
{2, 3, 4, 5, 11, 12, 13}, {1, 3, 4, 5}, {1, 2, 4, 5}, {1, 2, 3, 5}, {1, 2, 3, 4},

{7, 8, 9, 10, 11, 12, 13}, {6, 8, 9, 10}, {6, 7, 9, 10}, {6, 7, 8, 10}, {6, 7, 8, 9}, {1, 6, 12, 13},

{1, 6, 11, 13}, {1, 6, 11, 12}
}

G43 :=
{
{2, 3, 4, 5, 8, 9, 10}, {1, 3, 4, 5}, {1, 2, 4, 5, 6, 7}, {1, 2, 3, 5, 6, 7}, {1, 2, 3, 4, 6, 7},

{3, 4, 5, 7, 8, 9, 10}, {3, 4, 5, 6}, {1, 6, 9, 10}, {1, 6, 8, 10}, {1, 6, 8, 9}
}

G44 :=
{
{2, 3, 4, 5}, {1, 3, 4, 5}, {1, 2, 4, 5}, {1, 2, 3, 6, 7, 8, 9, 10, 11}, {1, 2, 3, 6, 7, 8, 9, 10, 11},

{4, 5, 7, 8}, {4, 5, 6, 8}, {4, 5, 6, 7}, {4, 5, 10, 11}, {4, 5, 9, 11}, {4, 5, 9, 10}
}
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G45 :=
{
{2, 3, 4, 6, 9, 10, 11}, {1, 3, 5, 6}, {1, 2, 4, 6}, {1, 3, 5, 7, 8}, {2, 4, 7, 8}, {1, 2, 3, 7, 8},

{4, 5, 6, 8, 9, 10, 11}, {4, 5, 6, 7}, {1, 7, 10, 11}, {1, 7, 9, 11}, {1, 7, 9, 10}
}

G46 :=
{
{2, 4, 6}, {1, 3, 7, 8, 11, 12, 13}, {2, 4, 6}, {1, 3, 7, 9, 10, 11, 12, 13}, {7, 8, 9, 10},

{1, 3, 8, 9, 10}, {2, 4, 5}, {2, 5, 6}, {4, 5, 6}, {4, 5, 6}, {2, 4, 12, 13}, {2, 4, 11, 13},

{2, 4, 11, 12}
}

G47 :=
{
{2, 4, 6}, {1, 3, 7, 8, 11, 12, 13}, {2, 4, 6}, {1, 3, 7, 9, 10}, {7, 8, 9, 10, 11, 12, 13},

{1, 3, 8, 9, 10}, {2, 4, 5}, {2, 5, 6}, {4, 5, 6}, {4, 5, 6}, {2, 5, 12, 13}, {2, 5, 11, 13},

{2, 5, 11, 12}
}

G48 :=
{
{2, 4, 6}, {1, 3, 7, 8}, {2, 4, 6}, {1, 3, 7, 9, 10, 11, 12, 13}, {7, 8, 9, 10},

{1, 3, 8, 9, 10, 11, 12, 13}, {2, 4, 5}, {2, 5, 6}, {4, 5, 6}, {4, 5, 6}, {4, 6, 12, 13}, {4, 6, 11, 13},

{4, 6, 11, 12}
}

G49 :=
{
{2, 4, 6, 8, 10, 11, 12}, {1, 3, 5}, {2, 4, 6, 9, 10, 11, 12}, {1, 3, 5}, {2, 4, 7, 8, 9}, {1, 3, 7},

{5, 6, 8, 9}, {1, 5, 7, 9}, {3, 5, 7, 8}, {1, 3, 11, 12}, {1, 3, 10, 12}, {1, 3, 10, 11}
}

G50 :=
{
{2, 4, 6, 8, 10, 11, 12}, {1, 3, 5}, {2, 4, 6, 9}, {1, 3, 5}, {2, 4, 7, 8, 9, 10, 11, 12}, {1, 3, 7},

{5, 6, 8, 9}, {1, 5, 7, 9}, {3, 5, 7, 8}, {1, 5, 11, 12}, {1, 5, 10, 12}, {1, 5, 10, 11}
}

G51 :=
{
{2, 4, 6, 8}, {1, 3, 5}, {2, 4, 6, 9}, {1, 3, 5}, {2, 4, 7, 8, 9, 10, 11, 12}, {1, 3, 7, 10, 11, 12},

{5, 6, 8, 9}, {1, 5, 7, 9}, {3, 5, 7, 8}, {5, 6, 11, 12}, {5, 6, 10, 12}, {5, 6, 10, 11}
}

G52 :=
{
{2, 3, 4, 5, 9, 10, 11}, {1, 3, 4, 6}, {1, 2, 4, 7}, {1, 2, 3, 8}, {1, 6, 7, 8}, {2, 5, 7, 8, 9, 10, 11},

{3, 5, 6, 8}, {4, 5, 6, 7}, {1, 6, 10, 11}, {1, 6, 9, 11}, {1, 6, 9, 10}
}

G53 :=
{
{2, 4, 6, 7, 8, 9, 10, 11}, {1, 3, 5}, {2, 4, 6, 7, 8, 9, 10, 11}, {1, 3, 5}, {2, 4, 6, 7, 8}, {1, 3, 5},

{1, 3, 5}, {1, 3, 5}, {1, 3, 10, 11}, {1, 3, 9, 11}, {1, 3, 9, 10}
}

G54 :=
{
{2, 4, 6, 7, 8}, {1, 3, 5, 9, 10, 11}, {2, 4, 6, 7, 8}, {1, 3, 5, 9, 10, 11}, {2, 4, 6, 7, 8}, {1, 3, 5},

{1, 3, 5}, {1, 3, 5}, {2, 4, 10, 11}, {2, 4, 9, 11}, {2, 4, 9, 10}
}

G55 :=
{
{2, 4, 6, 7, 9, 10, 11}, {1, 3, 5, 8}, {2, 4, 6, 7, 9, 10, 11}, {1, 3, 5, 8}, {2, 4, 6, 7}, {1, 3, 5, 8},

{1, 3, 5}, {2, 4, 6}, {1, 3, 10, 11}, {1, 3, 9, 11}, {1, 3, 9, 10}
}

G56 :=
{
{2, 4, 6, 7, 9, 10, 11}, {1, 3, 5, 8}, {2, 4, 6, 7}, {1, 3, 5, 8}, {2, 4, 6, 7}, {1, 3, 5, 8}, {1, 3, 5},

{2, 4, 6, 9, 10, 11}, {1, 8, 10, 11}, {1, 8, 9, 11}, {1, 8, 9, 10}
}

G57 :=
{
{2, 4, 6, 10, 11, 12}, {1, 3, 5, 8}, {2, 4, 6, 7, 10, 11, 12}, {1, 3, 5, 9}, {2, 4, 7}, {1, 3, 8, 9},

{3, 5, 8, 9}, {2, 6, 7}, {4, 6, 7}, {1, 3, 11, 12}, {1, 3, 10, 12}, {1, 3, 10, 11}
}

G58 :=
{
{2, 4, 6, 10, 11, 12}, {1, 3, 5, 8}, {2, 4, 6, 7}, {1, 3, 5, 9}, {2, 4, 7, 10, 11, 12}, {1, 3, 8, 9},

{3, 5, 8, 9}, {2, 6, 7}, {4, 6, 7}, {1, 5, 11, 12}, {1, 5, 10, 12}, {1, 5, 10, 11}
}
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G59 :=
{
{2, 4, 6}, {1, 3, 5, 8, 10, 11, 12}, {2, 4, 6, 7}, {1, 3, 5, 9, 10, 11, 12}, {2, 4, 7}, {1, 3, 8, 9},

{3, 5, 8, 9}, {2, 6, 7}, {4, 6, 7}, {2, 4, 11, 12}, {2, 4, 10, 12}, {2, 4, 10, 11}
}

G60 :=
{
{2, 4, 6, 7, 8}, {1, 3, 5}, {2, 4, 6, 7, 8}, {1, 3, 5, 7, 8}, {2, 4, 6}, {1, 3, 5},

{1, 3, 4, 8, 9, 10, 11, 12}, {1, 3, 4, 7}, {7, 10, 11, 12}, {7, 9, 11, 12}, {7, 9, 10, 12},

{7, 9, 10, 11}
}

G61 :=
{
{2, 3, 4, 5}, {1, 3, 4, 5}, {1, 2, 4, 5}, {1, 2, 3, 5}, {1, 2, 3, 4, 6, 8, 10}, {5, 7, 9},

{6, 8, 10, 11, 12, 13}, {5, 7, 9}, {6, 8, 10, 11, 12, 13}, {5, 7, 9}, {7, 9, 12, 13}, {7, 9, 11, 13},

{7, 9, 11, 12}
}

G62 :=
{
{2, 4, 6, 7, 8, 9, 10, 11}, {1, 3, 5}, {2, 4, 6, 7, 8}, {1, 3, 5, 7, 8}, {2, 4, 6, 9, 10, 11}, {1, 3, 5},

{1, 3, 4, 8}, {1, 3, 4, 7}, {1, 5, 10, 11}, {1, 5, 9, 11}, {1, 5, 9, 10}
}

G63 :=
{
{2, 4, 6, 7, 8}, {1, 3, 5, 9, 10, 11}, {2, 4, 6, 7, 8}, {1, 3, 5, 7, 8}, {2, 4, 6}, {1, 3, 5, 9, 10, 11},

{1, 3, 4, 8}, {1, 3, 4, 7}, {2, 6, 10, 11}, {2, 6, 9, 11}, {2, 6, 9, 10}
}

G64 :=
{
{2, 4, 6, 10, 11, 12}, {1, 5, 7, 8, 9}, {4, 6, 7, 8, 9}, {1, 3, 5}, {2, 4, 6, 10, 11, 12}, {1, 3, 5},

{2, 3, 8, 9}, {2, 3, 7, 9}, {2, 3, 7, 8}, {1, 5, 11, 12}, {1, 5, 10, 12}, {1, 5, 10, 11}
}

G65 :=
{
{4, 6, 7, 10, 11, 12}, {5, 7, 8, 9}, {4, 6, 8, 10, 11, 12}, {1, 3, 5}, {2, 4, 6, 9}, {1, 3, 5},

{1, 2, 8, 9}, {2, 3, 7, 9}, {2, 5, 7, 8}, {1, 3, 11, 12}, {1, 3, 10, 12}, {1, 3, 10, 11}
}

G66 :=
{
{4, 6, 7}, {5, 7, 8, 9}, {4, 6, 8}, {1, 3, 5, 10, 11, 12}, {2, 4, 6, 9}, {1, 3, 5, 10, 11, 12},

{1, 2, 8, 9}, {2, 3, 7, 9}, {2, 5, 7, 8}, {4, 6, 11, 12}, {4, 6, 10, 12}, {4, 6, 10, 11}
}

G67 :=
{
{2, 3, 5, 6, 8}, {1, 3, 7, 8}, {1, 2, 4, 5, 8}, {3, 5, 7, 8}, {1, 3, 4, 6, 8}, {1, 5, 7, 8},

{2, 4, 6, 9, 10, 11, 12}, {1, 2, 3, 4, 5, 6}, {7, 10, 11, 12}, {7, 9, 11, 12}, {7, 9, 10, 12},

{7, 9, 10, 11}
}

G68 :=
{
{2, 4, 6, 7, 8, 9}, {1, 3, 5}, {2, 4, 6, 7, 8, 9}, {1, 3, 5}, {2, 4, 6, 10, 11, 12, 13}, {1, 3, 5},

{1, 3, 8, 9}, {1, 3, 7, 9}, {1, 3, 7, 8}, {5, 11, 12, 13}, {5, 10, 12, 13}, {5, 10, 11, 13},

{5, 10, 11, 12}
}

G69 :=
{
{2, 4, 6}, {1, 5, 7, 9, 10}, {4, 6, 7, 9, 10}, {1, 3, 5}, {2, 4, 6}, {1, 3, 5}, {2, 3, 8},

{7, 9, 10, 11, 12, 13, 14}, {2, 3, 8}, {2, 3, 8}, {8, 12, 13, 14}, {8, 11, 13, 14}, {8, 11, 12, 14},

{8, 11, 12, 13}
}

G70 :=
{
{2, 4, 6, 10}, {1, 3, 5}, {2, 4, 6, 9}, {1, 3, 7}, {2, 6, 7, 9, 10}, {1, 3, 5}, {4, 5, 8},

{7, 9, 10, 11, 12, 13, 14}, {3, 5, 8}, {1, 5, 8}, {8, 12, 13, 14}, {8, 11, 13, 14}, {8, 11, 12, 14},

{8, 11, 12, 13}
}

G71 :=
{
{4, 6, 7}, {5, 7, 8, 9}, {4, 6, 8}, {1, 3, 5, 9}, {2, 4, 6}, {1, 3, 5, 10, 11, 12, 13}, {1, 2, 8, 9},

{2, 3, 7, 9}, {2, 4, 7, 8}, {6, 11, 12, 13}, {6, 10, 12, 13}, {6, 10, 11, 13}, {6, 10, 11, 12}
}
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G72 :=
{
{2, 3, 5, 6, 8}, {1, 3, 7, 8}, {1, 2, 4, 5, 8}, {3, 5, 7, 8}, {1, 3, 4, 6, 8}, {1, 5, 7, 8},

{2, 4, 6, 9, 10, 11}, {1, 2, 3, 4, 5, 6, 9, 10, 11}, {7, 8, 10, 11}, {7, 8, 9, 11}, {7, 8, 9, 10}
}

G73 :=
{
{2, 4, 6, 7, 8, 9, 10, 11, 12}, {1, 3, 5}, {2, 4, 6, 7, 8, 9}, {1, 3, 5}, {2, 4, 6, 10, 11, 12}, {1, 3, 5},

{1, 3, 8, 9}, {1, 3, 7, 9}, {1, 3, 7, 8}, {1, 5, 11, 12}, {1, 5, 10, 12}, {1, 5, 10, 11}
}

G74 :=
{
{2, 5, 6, 9}, {1, 3, 7, 10, 11, 12}, {2, 4, 5, 9}, {3, 5, 8, 9}, {1, 3, 4, 6, 9}, {1, 5, 8, 9}, {2, 8, 9},

{4, 6, 7, 10, 11, 12}, {1, 3, 4, 5, 6, 7}, {2, 8, 11, 12}, {2, 8, 10, 12}, {2, 8, 10, 11}
}

G75 :=
{
{2, 4, 6, 11, 12, 13}, {1, 5, 7, 9, 10}, {4, 6, 7, 9, 10}, {1, 3, 5}, {2, 4, 6}, {1, 3, 5}, {2, 3, 8},

{7, 9, 10, 11, 12, 13}, {2, 3, 8}, {2, 3, 8}, {1, 8, 12, 13}, {1, 8, 11, 13}, {1, 8, 11, 12}
}

G76 :=
{
{2, 4, 6, 10, 11, 12, 13}, {1, 3, 5}, {2, 4, 6, 9}, {1, 3, 7}, {2, 6, 7, 9, 10}, {1, 3, 5}, {4, 5, 8},

{7, 9, 10, 11, 12, 13}, {3, 5, 8}, {1, 5, 8}, {1, 8, 12, 13}, {1, 8, 11, 13}, {1, 8, 11, 12}
}

G77 :=
{
{2, 4, 6, 10}, {1, 3, 5}, {2, 4, 6, 9}, {1, 3, 7, 11, 12, 13}, {2, 6, 7, 9, 10}, {1, 3, 5}, {4, 5, 8},

{7, 9, 10, 11, 12, 13}, {3, 5, 8}, {1, 5, 8}, {4, 8, 12, 13}, {4, 8, 11, 13}, {4, 8, 11, 12}
}

G78 :=
{
{2, 4, 6, 10}, {1, 3, 5}, {2, 4, 6, 9}, {1, 3, 7}, {2, 6, 7, 9, 10, 11, 12, 13}, {1, 3, 5}, {4, 5, 8},

{7, 9, 10, 11, 12, 13}, {3, 5, 8}, {1, 5, 8}, {5, 8, 12, 13}, {5, 8, 11, 13}, {5, 8, 11, 12}
}

G79 :=
{
{4, 6, 7}, {5, 7, 8, 9, 10, 11, 12}, {4, 6, 8}, {1, 3, 5, 9}, {2, 4, 6}, {1, 3, 5, 10, 11, 12},

{1, 2, 8, 9}, {2, 3, 7, 9}, {2, 4, 7, 8}, {2, 6, 11, 12}, {2, 6, 10, 12}, {2, 6, 10, 11}
}

G80 :=
{
{4, 6, 7}, {5, 7, 8, 9}, {4, 6, 8}, {1, 3, 5, 9, 10, 11, 12}, {2, 4, 6}, {1, 3, 5, 10, 11, 12},

{1, 2, 8, 9}, {2, 3, 7, 9}, {2, 4, 7, 8}, {4, 6, 11, 12}, {4, 6, 10, 12}, {4, 6, 10, 11}
}

G81 :=
{
{2, 4, 6, 9, 11, 12, 13}, {1, 3, 5}, {2, 4, 6, 10}, {1, 3, 7}, {2, 6, 7, 8}, {1, 3, 5}, {4, 5, 9, 10},

{5, 9, 10, 11, 12, 13}, {1, 7, 8}, {3, 7, 8}, {1, 8, 12, 13}, {1, 8, 11, 13}, {1, 8, 11, 12}
}

G82 :=
{
{2, 4, 6, 9}, {1, 3, 5}, {2, 4, 6, 10}, {1, 3, 7}, {2, 6, 7, 8}, {1, 3, 5}, {4, 5, 9, 10, 11, 12, 13},

{5, 9, 10, 11, 12, 13}, {1, 7, 8}, {3, 7, 8}, {7, 8, 12, 13}, {7, 8, 11, 13}, {7, 8, 11, 12}
}

G83 :=
{
{4, 6, 7}, {5, 7, 8, 10}, {4, 6, 8}, {1, 3, 5, 10}, {2, 4, 6}, {1, 3, 5, 11, 12, 13}, {1, 2, 9}, {2, 3, 9},

{7, 8, 10, 11, 12, 13}, {2, 4, 9}, {6, 9, 12, 13}, {6, 9, 11, 13}, {6, 9, 11, 12}
}
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