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ABSTRACT
It is shown that above the temperature of maximum abundance, recombination rates into the

excited states of He-like ions that are calculated using earlier, more approximate methods differ

markedly from rates obtained from recent distorted-wave and R-matrix calculations (unified

recombination rate coefficients) for Ca, Fe and Ni. The present rates lead to G ratios that are

greatly lower than those resulting from the more approximate rates in previous works, by up

to a factor of 6 at high electron temperatures. Excellent agreement between the distorted-wave

and the R-matrix rates, as well as excellent agreement in the G ratios calculated from them, pro-

vides support for the accuracy of these new values which have a broad applicability to the mod-

elling and interpreting of X-ray spectra from a variety of astrophysical and laboratory sources.
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1 I N T RO D U C T I O N

The Kα emission lines of He-like ions have been actively studied

for quite some time, starting with Edlén & Tyrén (1939). Much of

the basic theory and interpretation that is now used for astrophysical

spectroscopy was established by Gabriel & Jordan (1969a) in their

work to interpret solar spectra. While detailed discussions of the

structure of the Kα complex and line ratios can be found elsewhere

(see Gabriel & Jordan 1969a,b; Blumenthal, Drake & Tucker 1972;

Gabriel 1972; Mewe & Schrijver 1978a,b; Pradhan & Shull 1981;

Pradhan 1982), in brief there are four He-like lines in the Kα com-

plex: 1s2 p 1P1 → 1s2 1S0 (w), 1s2p 3P2 → 1s2 1S0 (x), 1s2 p 3P1

→ 1s2 1S0 (y), 1s2s 3S1 → 1s2 1S0 (z). The ‘w’ line is sometimes

referred to as the resonance or dipole allowed line and ‘y’ as the

intercombination line as it is dipole allowed through fine-structure

mixing. The lines ‘x’ and ‘z’ both arise from higher order tran-

sitions, and as such are described by much slower rates. The ‘x’

line represents a magnetic quadrupole transition, and the ‘z’ line

represents a magnetic dipole transition. Gabriel & Jordan (1969a)

defined the temperature sensitive line ratio G as

G = I (x) + I (y) + I (z)

I (w)
, (1)

where I(w) is the total emission in the ‘w’ line in units of num-

ber of photons cm−3 s−1. In general, the behaviour of the G ratio

is determined by the rate at which the He-like excited states are

populated. At high temperatures these populations are determined
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by an interplay between the processes of recombination and im-

pact excitation. Recombination preferentially feeds the three lines

arising from triplet states (‘x’, ‘y’ and ‘z’) while electron-impact ex-

citation preferentially feeds the ‘w’ line. If the recombination rate

is dominant, due, for example, to an increase in the number of H-

like ions relative to the number of He-like ions, one would expect

to see more flux in the ‘x’, ‘y’ and ‘z’ lines than in the ‘w’ line

(as is observed in the case of recombining plasmas; Pradhan 1985;

Oelgoetz & Pradhan 2004), resulting in a G ratio greater than one.

For heavier atoms the situation is more complex as satellite

lines produced by radiative decay from autoionizing three-electron

states are a prominent part of the Kα spectrum (see Gabriel &

Jordan 1969b; Gabriel 1972; Mewe & Schrijver 1978a; Swartz &

Sulkanen 1993; Bautista & Kallman 2000; Oelgoetz & Pradhan

2001 among others). These satellite lines become less important

as temperature increases. As the high-temperature regime (above

107 K) is the interest of this present work, no investigation of line

ratios involving satellite lines has been made, although we note that

satellite lines can be, and often are, important at temperatures well

above 107 K (Oelgoetz & Pradhan 2001). If the spectra are not ade-

quately resolved, these satellite lines should be included in any line

ratios used for analysis.

As this study investigates the effect of recombination rates [both

radiative (RR) and dielectronic (DR)] on the high-temperature be-

haviour of the G ratio, a brief review of the data commonly used,

how they are used and the reported high-temperature dependence of

the G ratio is provided. CHIANTI (Dere et al. 1997; Landi et al. 2006),

XSTAR (Bautista & Kallman 2001) and ATOMDB (Smith et al. 2001)

are three commonly cited data bases in astrophysics. All three use

different types of recombination data.
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CHIANTI uses the recombination data of Mewe, Gronenschild &

van den Oord (1985) for most He-like ions which is based on the

work of Burgess & Seaton (1960) on recombination into neutral

helium. The work of Mewe & Schrijver (1978a) is also based on

Burgess & Seaton (1960) and has been used in some recent inves-

tigations such as Oelgoetz & Pradhan (2001) as well as the earlier

work by Pradhan & Shull (1981). Fe and Ca are the exceptions to

the above rule; for these elements CHIANTI uses the work by Bely-

Dubau et al. (1982a,b) which is based on earlier studies of hydrogen

by Burgess (1958). For completeness we note that Mewe et al. (1985)

also depart from the above methodology and instead directly fit re-

combination data from Bely-Dubau et al. (1982a,b) for Fe XXV and

Ca XIX. The hydrogenic methodology of Bely-Dubau et al. (1982a,b)

has also been used in calculations for other elements (e.g. Porquet

& Dubau 2000).

XSTAR takes a different approach; it calculates recombination rates

from the photoionization cross-sections produced by the Opacity

Project (Seaton 1987; Cunto et al. 1993), using more approximate

methods only for n > 10. These Opacity Project cross-sections were

calculated using R-matrix methods in LS coupling (Burke, Hibbert

& Robb 1971; Berrington et al. 1987). Most recently, Oelgoetz &

Pradhan (2004) used unified recombination rates based on R-matrix

calculations (Nahar & Pradhan 1994) with relativistic fine structure

included in the Breit–Pauli approximation.

ATOMDB uses the fits to distorted-wave photoionization data of

Clark, Cowan & Bobrowicz (1986) for He-like cross-sections. These

cross-sections are integrated to obtain the corresponding rates in

the standard manner. Additionally, there are numerous individual

calculations that use recombination rates from distorted-wave data

in a similar fashion. Thus, much of the recombination data falls into

three basic categories: data derived from more approximate methods

(such as those by Burgess 1958; Burgess & Seaton 1960), data

based on R-matrix calculations (Burke et al. 1971; Berrington et al.

1987) and data based on distorted-wave calculations.

Both Mewe et al. (1985) and Bautista & Kallman (2000) cal-

culate the emission intensities of Fe XXV as does Pradhan & Shull

(1981), using the Mewe & Schrijver (1978a) rate coefficients. If

one calculates G ratios from the data presented in table IV of Mewe

et al. (1985) the value of the G ratio is steadily decreasing, with

values of approximately 0.5, in between 108 and 109 K. Pradhan

& Shull (1981) show a G ratio taking a sharp upturn in the same

temperature range and having a value greater than 1.0. Bautista &

Kallman (2000) for this same temperature range report a G value

in the range of 0.25 for Fe XXV, with a possibly slight rise as the

electron temperature approaches 109 K. Thus the disagreement

among these calculations is significant and resolving this discrep-

ancy is the goal of the present work. To this end we use GSM (Oelgoetz

2006), a code recently developed to model plasma emission spectra,

to explore the effects of different types of recombination data on the

G ratio at high temperatures. Data from recent distorted-wave and

R-matrix calculations are used and compared to rates calculated us-

ing expressions from Mewe & Schrijver (1978a) and Mewe et al.

(1985); the exact rates in the XSTAR and ATOMDB data bases are not

considered here. Additionally, only the effects of using different re-

combination data sets are explored while all other rates and the ion-

ization balance are identical for all models of a particular element.

2 T H E O RY

GSM is a code based on the quasi-static approximation, that is the ex-

cited states of a given ion are considered to always be in equilibrium

with the ground state of the ionization stage from which they arise,

and the neighbouring ionization stages (see Loch et al. 2004). GSM

makes the additional approximation that some states can be treated

purely as conduits that, through radiative decay or autoionization,

allow population to transition into the final states of interest, thus ne-

glecting the effect of collisions with these intermediate states. Both

approximations are valid in the case of low-density plasmas where

the radiation field can be neglected and are common to many of the

previous calculations referenced in this work (see Gabriel & Jordan

1969a,b; Blumenthal et al. 1972; Gabriel 1972; Mewe & Schrijver

1978a,b; Pradhan & Shull 1981; Oelgoetz & Pradhan 2001, 2004).

As a consequence of these approximations the first step in any

calculation is to solve for the total population of each ionization

stage. This is done by solving the following set of coupled differ-

ential equations:

dXi

dt
= Ne[Xi+1αi+1→i (ε̃) + Xi−1Ci−1→i (ε̃)]

+N 2
e [Xi+1βi+1→i (ε̃) − Xiβi→i−1(ε̃)]

−Xi Ne[αi→i−1(ε̃) + Ci→i+1(ε̃)], (2)

where Xi is the total population in the ith ionization stage, Ne the

electron number density, ε̃ a variable that describes the shape of

the electron distribution (in the case of this work ε̃ is the electron

temperature as all results presented are for thermal systems with

a Maxwellian distribution), C is a bulk collisional ionization rate

coefficient, β a bulk three-body recombination rate coefficient and

α a bulk recombination rate coefficient (which includes radiative

and dielectronic recombination). Because all results presented in

this work neglect the effect of a radiation field, photoionization

and stimulated recombination have been omitted from equation (2).

While GSM is capable of calculating these bulk rates by integrating

the raw level-specific cross-sections and summing over all interme-

diate pathways, in general that approach would require a data set

that is significantly larger than desired. As such these rates, when

available, come from either tabulated or fitted data in the literature

(such as can be found in Arnaud & Rothenflug 1985; Arnaud &

Raymond 1992 or Mazzotta et al. 1998). All of the calculations pre-

sented in this study are steady-state calculations and therefore the

left-hand side of equation (2) can be set to zero. We note that GSM

is also explicitly designed to handle transient sources.

Once the total ionization stage populations have been calculated,

they are used to calculate the individual level populations, and

subsequently the spectra, by solving the following set of coupled

equations:

dNl, j

dt
= Ne

{
Xl−1α

eff
l−1,1→l, j (ε̃) − Nl, j

∑
i

αeff
j,l→i,l+1(ε̃)

+ Xl+1Ceff
l+1,1→l, j (ε̃) − Nl, j

∑
i

Ceff
l, j→l−1,i (ε̃)

+
∑
i,i �= j

[
Nl,i q

eff
i→ j (ε̃) − Nl, j q

eff
j→i (ε̃)

]}

+ N 2
e

[
Xl−1β

eff
l−1,1→l, j (ε̃) − Nl, j

∑
i

βeff
j,l→i,l+1(ε̃)

]

+
∑
i,i> j

Nl,i Aeff
i→ j − Nl, j

∑
i,i< j

Aeff
j→i

− Nl, j

∑
i

RAI−eff
l, j→i,l−1, (3)

where the variables are defined more or less as before, with Nl,j

being the population in the jth state of the lth ionization stage, qeff an
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electron-impact (de-)excitation effective rate coefficient, RAI−eff an

autoionization rate coefficient and Aeff an effective radiative decay

rate. Just as in equation (2), (3) omits terms that involve the radiation

field. It also omits excitation by proton and α particle impact, as they

are neglected in this study for the sake of simplicity in order to better

illustrate the effect of level-specific recombination rates on the G
ratio. Once again all calculations consider steady-state conditions,

so the left-hand side of equation (3) can be set to zero.

As mentioned earlier, GSM does not treat every spectroscopic level

the same. Instead, it divides them into two categories: explicit (which

are included as levels in equation 3, and coupled via all processes

considered) and statistical (the effects of which are included when

calculating the rate coefficients that go into equation 3). The inclu-

sion of statistical states in the rate coefficients is accomplished via

the collisionless transition matrix (CTM). A given element of the

CTM can be thought of as the probability that once a statistical state

gets populated, neglecting collisions, the atom or ion will end up

in a given explicit state without passing through any other explicit

states. If Q is the set of explicit states, the CTM can be defined using

the following recursive expression:
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Figure 1. G ratios for Ni (top), Fe (middle) and Ca (bottom) for each of the models considered.

T i→ j =
∑
k �∈Q

(Ei >Ek >E j )

�i→k∑
l Ai→l + ∑

m RAI
i→m

T k→ j

+ �i→ j∑
l Ai→l + ∑

m RAI
i→m

, (4)

where �i→k is the appropriate type of spontaneous rate to connect i
and k, via either radiative decay or autoionization. It should be noted

that in order for this quantity to be meaningful, the state i must not

be in the set Q.

After calculating the CTM, each effective rate coefficient can

be constructed from the direct rate coefficient connecting the two

explicit states and sums over all the indirect paths. For exam-

ple effective collisional ionization rate coefficients are calculated

as

Ceff
i→ j (ε) = Cdirect

i→ j (ε) +
∑

k
(Ek >E j )

Cdirect
i→k (ε)T k→ j

+
∑

m
(Em >0)

qdirect
i→m (ε)Tm→ j , (5)
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recombination (RR+DR) rate coefficients as

αeff
j→i (ε) = αRR

j→i (ε) + DDC
j→i (ε) +

∑
m

(Em >Ei )

αRR
j→m(ε)Tm→i

+
∑

m
(Em >E j ,Em >Ei ,Em >0)

DDC
j→m(ε)Tm→i , (6)

where DDC is a dielectronic capture rate, and electron-impact exci-

tation and de-excitation rate coefficients are calculated as

qeff
j→k(ε) = qdirect

j→k (ε) +
∑

l
(El >E j ,El >Ek )

qdirect
j→l (ε)T l→k

+
∑

i
(Ei >E j ,Ei >Ek ,Ei >0)

DDC
j→i (ε)T i→k . (7)

It should be noted that in equations (5)–(7) the effect of resonances

are included as indirect pathways via terms involving dielectronic

capture (DDC). When R-matrix data are used, these terms are omitted

to avoid double counting the effect of resonances.
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Figure 2. Emission spectra of a low-density (Ne = 1010 cm−3) Ni plasma at three different temperatures in the high-temperature range where the G ratio from

the models is in poor agreement. Spectra from the DW, M85 and MS78 models have all been redshifted by 9 eV to facilitate an easier comparison.

Once equation (3) has been solved and the level populations ob-

tained, synthetic spectra are calculated. The first step is to calculate

the intensity (in number of photons cm−3 s−1) of all lines in the

desired energy range as

I (l, j → l, k) = Nl, j A j→k . (8)

Each line is then given a line shape corresponding to a thermal

Doppler-broadened Gaussian profile. The total spectra, S, for a given

photon energy, hν, can be expressed as

S(hν) =
∑

s

Ishν
c
√

mi

2πkT
e

[mi c2(hν−�Ei j )2]/(2�E2
i j kTi), (9)

where s ranges over the set of all included transitions in the desired

energy range, and the ion temperature, Ti, is taken to be equal to the

electron temperature.

3 C O M P U TAT I O N S

The baseline model considered in the present work uses the

ionization balance data of Mazzotta et al. (1998) and detailed,
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level-specific data calculated with the Los Alamos suite of atomic

physics codes (see for instance Abdallah et al. 1994, 2001). The

first step in such a calculation is to use the CATS code to calculate

the bound and autoionizing wave functions, energies and dipole al-

lowed radiative decay rates for all fine-structure levels arising from

the configurations nl, 1snl, 2lnl ′, 1s2nl , 1s2lnl ′ and 1s3lnl ′ with n ≤
10 and l ≤ g which span the H-like, He-like and Li-like ionization

stages. Only fine-structure levels arising from the 1s, 1s2, 1s2l, 1s22l
and 1s2lnl ′ configurations with n ≤ 10 and l ≤ g were treated ex-

plicitly. All other levels were treated statistically. Convergence with

respect to n was tested with a larger model that included up to n ≤
20. The GIPPER code is then used to calculate autoionization and pho-

toionization cross-sections in the distorted-wave approximation, as

well as collisional ionization cross-sections. As the ions under con-

sideration are highly charged, a scaled hydrogenic approximation

was used for collisional ionization cross-sections as it agrees well

with distorted-wave results for systems such as these and is much

more computationally efficient. The ACE code was used to calcu-
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Figure 3. Emission spectra of a low-density (Ne = 1010 cm−3) Fe plasma at three different temperatures in the high-temperature range where the G ratio from

the models is in poor agreement. Spectra from the DW, M85 and MS78 model have all been redshifted by 7 eV to facilitate an easier comparison.

late distorted-wave cross-sections for all electron-impact excitation

transitions out of the lowest seven levels of the He-like ionization

stage, as well as the 1s22l complex of the Li-like ionization stage

(which is used to obtain effective collisional ionization rate coeffi-

cients into the He-like stage as well as a method for producing the

Kα satellite lines). Lastly, the non-dipole A values that give rise to

the ‘x’ and ‘z’ lines as well as a two-photon decay rate from 1s2 1S0

→ 1s2 1S0 were obtained from Mewe & Schrijver (1978a). All rates

were calculated from these cross-sections inside of GSM. We refer

to this baseline model as DW.

The second model, which is designated RM, begins with the first

model and replaces the radiative and dielectronic recombination data

from the H-like ionization stage into the He-like ionization stage

with total and level-specific rate coefficients for recombination into

all fine-structure levels SLJ with n ≤ 10 calculated from Breit–

Pauli R-matrix photoionization cross-sections (Nahar & Pradhan

1994). While there are unified recombination data available in the

literature for Ni (Nahar 2005) and Fe (Nahar, Pradhan & Zhang
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2001), we do not consider a Ca, RM model as there are no data yet

available for this species. In addition, the energy levels and radiative

decay rates inside the He-like ion are replaced by R-matrix data (the

radiative decay rates are taken from Nahar & Eissner, in preparation

for Ni and Nahar & Pradhan 1999 for Fe). Lastly, the unified re-

combination rates through a given satellite line of Nahar & Pradhan

(2006) are used to calculate the dielectronic recombination contri-

bution to the intensity of all the KLL satellite lines in this model.

The third model, referred to as M85, also begins with the base-

line model and replaces the recombination rates from the H-like

ionization stage into the He-like excited states with rates calculated

using the expressions of Mewe et al. (1985). These expressions are

fits to previously published data. In the case of Ni, the fits are to

the rates of Mewe & Gronenschild (1981), which are based on the

work of Burgess & Seaton (1960) concerning the recombination of

neutral He. These fits do not include the contribution of dielectronic

recombination, so in the Ni M85 model dielectronic recombina-

tion is included using the data from the baseline DW model. Mewe

et al. (1985) fit the data of Bely-Dubau et al. (1982a) for Fe and

Bely-Dubau et al. (1982b) for Ca. Both of these works are based on
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Figure 4. Emission spectra of a low-density (Ne = 1010 cm−3) Ca plasma at three different temperatures in the high-temperature range where the G ratio from

the models is in poor agreement.

the hydrogenic recombination work of Burgess (1958). It should be

noted that Bely-Dubau et al. (1982a,b) only present rates up to an

electron temperature of 108 K. As such, using the fits of Mewe et al.

(1985) to these data beyond this temperature may exceed the range

of validity intended by Bely-Dubau et al. (1982a,b). Furthermore,

these rates do include the effect of dielectronic recombination, so

this contribution is not recalculated and included a second time by

GSM.

The fourth model, MS78, is much like the third, but instead cal-

culates radiative recombination rates using the expressions of Mewe

& Schrijver (1978a), which are also based on the work of Burgess &

Seaton (1960). As these rates do not include dielectronic recombina-

tion, this model includes DR rates obtained from the data contained

in the baseline, DW model.

4 R E S U LT S

The results for the G ratio for all models under consideration are

presented in Fig. 1. The differences are striking. As temperature

increases and recombination becomes more important to spectral

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 382, 761–769
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formation, the more approximate rates of Mewe & Schrijver (1978a)

produce G ratios that diverge significantly from the results obtained

with the newer DW and RM models for all three elements. The M85

result for Ni displays similar discrepancies while the M85 results

for Fe and Ca (which are fits to Bely-Dubau et al. 1982a,b) agree

better with the RM and DW models. Not surprisingly (given the

highly charged nature of these systems) the RM and DW models

are in excellent agreement at all temperatures.

Upon investigation of the underlying spectra (Figs 2–4) to find

the source of the divergence in predicted G values at high temper-

ature, one continues to see excellent agreement at all temperatures

between the RM and DW models; but the analysis is not as straight-

forward for the more approximate methods. In the case of Ni (Fig. 2),

both the M85 and MS78 model agree well with each other, predict-

ing significantly more flux in the ‘x’, ‘y’ and ‘z’ lines, and slightly

more flux in the ‘w’ line, at high temperatures than either of the

more accurate models. This behaviour is consistent with the fact

that both models are based on the same underlying work by Burgess

& Seaton (1960). The spectrum for Fe (Fig. 3) is more interesting
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Figure 5. Four effective recombination rate coefficients for Fe as a function of the highest principal quantum number included in the DW model. Of particular

interest is how quickly the rate coefficient converges in the high-temperature region due to cascade terms becoming less important.

because, while the MS78 model continues to predict significantly

stronger ‘x’, ‘y’ and ‘z’ lines, and a slightly stronger ‘w’ line, com-

pared to the DW and RM models, the M85 model predicts a rather

different result. Like the MS78 model, the M85 model predicts a

slightly stronger ‘w’ line, but the ‘z’ line is in much better agreement

with the DW and RM models than the MS78 model. Furthermore,

the M85 model does a good job of predicting the ‘x’ and ‘y’ line

intensities.

The detailed results for Ca (Fig. 4) are somewhat similar to

those presented for Fe. The MS78 model continues to predict much

stronger ‘x’, ‘y’ and ‘z’ lines when compared to the DW data set

and only a slightly stronger ‘w’ line. The M85 model is in good

agreement for the ‘x’ and ‘y’ lines and much closer for the ‘z’

line, but in the case of Ca it predicts a much stronger ‘w’ line.

This overprediction tends to mitigate the effect of the enhanced ‘z’

line, producing a fortuitously lower value for the G ratio. This type

of cancellation underscores the importance of examining the actual

spectra to gain a better understanding of the quality of the underlying

atomic data.
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In order to determine the fundamental reasons behind the above

discrepancies in the spectra and G ratios, the recombination rates

must be examined in detail, but first it is useful to ensure that the

models are large enough (as a function of the principal quantum

number n) to have converged upon the correct answer. As the var-

ious sources cited in this work all chose different limits for the

maximum n value used in their calculations, lack of convergence

could be a reason for the differences. Additionally, such a study

can be used to investigate the relative importance of cascade cor-

rections, which Pradhan & Shull (1981) suggested to be the cause

of the upturn in the G ratio displayed in that work. As the results

for each element are very similar, only recombination rate coeffi-

cients for Fe are presented (Fig. 5) and discussed for only the DW

model.

In Fig. 5 it can be seen that by n = 10 the effective rate coeffi-

cients into the relevant four spectroscopic levels have converged to

within ∼5 per cent when the temperature is above 108 K. All models

considered in this work extend at least this far in principal quantum

number; thus, the extent of the model (in n) is not the cause of the
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Figure 6. Comparison of the effective recombination rate coefficients for Fe for the various models. Of particular note are the large discrepancies at electron

temperatures above 108 K.

discrepancies. Of additional note is the fact that Fig. 5 indicates that

recombination cascades become less important (as a method of pop-

ulating the He-like excited states) at higher temperatures, even as

recombination is becoming a more important process for the popu-

lation of He-like excited states. According to the analysis of the DW

model, it is the direct recombination rate that is the most important

process at higher temperatures while cascades play a progressively

smaller role.

Moving on to a comparison of the effective recombination rate

coefficients in the four models (again presented only for Fe since

the Ca and Ni results show similar trends) shown in Fig. 6, there

are obvious discrepancies at high temperatures and the cause of

the differences in simulated spectra becomes evident. The two more

approximate models (MS78 and M85) are in reasonable agree-

ment with the more accurate DW and RM models in the middle-

temperature region. Outside the range, there is a marked differ-

ence (as much as a factor of 5 in the high-temperature region).

This difference in the recombination rate coefficients in the high-

temperature regime is responsible for the corresponding difference
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in the G ratio among the various calculations. The values of the

new DW and RM recombination data are significantly smaller than

the MS78 data, which result in decreased recombination rates for

populating the ‘x’, ‘y’ and ‘z’ lines, while the impact-excitation

rate for feeding the ‘w’ line remains essentially fixed for each

type of calculation. Thus, the reduced DW and RM recombination

data cause a delay in the onset of any increase in the G ratio to a

higher temperature, resulting in the large differences displayed in

Fig. 1.

It should be noted that Nahar et al. (2001) saw a similar difference

in the recombination rates in the high-temperature region when they

compared their level-specific unified recombination rates with the

direct component of the recombination rate expressions of Mewe &

Schrijver (1978a). Again there is excellent agreement between the

DW and RM models over the entire temperature range, bolstering

confidence in their validity.

5 C O N C L U S I O N

While the results of calculations using recombination rates derived

from more accurate and extensive distorted-wave and R-matrix cal-

culations agree quite well, both disagree significantly with the previ-

ous, more approximate calculations of Mewe & Schrijver (1978a),

Mewe & Gronenschild (1981), Bely-Dubau et al. (1982a,b) and

Mewe et al. (1985). The results obtained from models based on the

more accurate distorted-wave and R-matrix data show a continually

decreasing G ratio over the investigated temperature range. This be-

haviour disagrees strongly with the sharp upturn observed at high

temperatures in the G ratios calculated from the more approximate

models. The discrepancy is up to a factor of 6 in the G ratio (see

Fig. 1), and was determined to be caused by large differences in the

recombination contributions. The more approximate rates produce

results that agree reasonably well with the newer DW and RM data

up to approximately 108 K, but can lead to unphysical values when

used outside of this range.

Further work is required to refine and verify calculations of the

G ratio and the underlying data from which it is determined. Stud-

ies similar to the present one are needed, but including electron-

impact excitation rates as well as collisional ionization rates from

the ground state of the Li-like species into the excited states of the

He-like species. Investigation of the effect of the ionization balance

may also be required. These studies are underway.
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