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Abstract 

 

The demand for precise positioning grows up parallel to the advances in production of the 

geolocation instruments. Today, the Global Positioning System (GPS) is the most 

common positioning system in use because of its being very precise, convenient and 

cheap. However, when working in such areas that the external references (e.g. GPS 

satellites) are not available, a system that does not require information from any external 

source of information is required. Especially, these kinds of systems necessitate in 

detection of unexploded ordnances (UXO) buried in forestry areas, where precise 

position information is vital for removing them. The Inertial Navigation System (INS) 

operates in any environment and does not depended on any external source of 

information. It can operate alone or as an integrated system with GPS. However, the 

Inertial Measurement Unit (IMU) sensor outputs include some errors which can cause 

very large positioning errors. These errors can significantly be reduced by using 

calibration methods. The most accurate calibration methods are performed in laboratories 

and they require very precise instruments. However, the most significant IMU errors, 

biases and scale factor errors, change from turn on to turn on of the IMU and therefore 

they need to be estimated before every mission. The Multi-Position Calibration Method 

developed by Shin (2002) is a good example which is cost efficient and it can be applied 

in the field without use of any external calibration instrument. The method requires 

numerous IMU attitude measurements and use the gravity magnitude and Earth rotation 

rate as reference for calibration.  

The performance of the Multi-Position Calibration Method was tested by using a cart 

based geolocation system which includes 2 tactical grade IMUs, Honeywell HG1700 and 

HG1900. The calibration test was conducted in a parking lot of Ohio State University on 

06 June 2010. The calibration estimations have shown that the navigation accuracy could 

be improved by up to 19.8% for the HG1700 and 17.8% for the HG1900. However, the 

results were not consistent among each other and in some cases decrease in the 

positioning accuracy was yielded. 
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Chapter 1: Introduction 

 

“Geolocation, or determining coordinates of points on or above the Earth’s surface, is one 

of the principal tasks in geodesy and has a history of over two thousand years. Modern 

methods are taking advantage increasingly of satellite-based radar navigation systems, 

such as the Global Positioning System (GPS), which offer centimeter level precision for 

static measurements and sub-decimeter precision for mobile systems” (Jekeli and Lee, 

2007). However, even though it is currently the most accurate and the only fully 

operating satellite point positioning system, GPS is not able to work in some situations 

such as when it loses its connection with the satellites. In addition, GPS positioning 

accuracy depends on the quality if the information received from the satellites and the 

atmospheric conditions. Moreover, Nassar and El-Sheimy (2005) note that GPS is not 

capable of performing some applications that require a very high data rate (e.g. 100-200 

Hz). Therefore, the Inertial Navigation System (INS), although it was invented much 

earlier than GPS, continues to play an important role in positioning and navigation 

applications because it is independent of any external sources and it provides high 

frequency data (e.g. 100Hz for HG1700). 

INS is a system that basically determines the position by using the rate of rotation and 

acceleration of the vehicle as indicated by its inertial sensors based on the Newton’s laws 

of motion. Therefore, it is impossible for external sources to interfere with INS, which 

makes the use of INS important especially in military missions. However, the inertial 

sensors in an Inertial Measurement Unit (IMU) contain some deterministic and random 

errors that have a very strong effect on positioning accuracy, particularly for low-cost 

IMUs. These errors should be determined and the IMU measurements should be 

corrected based on the estimated errors. This procedure is called calibration. 

IMU Calibration is the process of determining the errors on the gyros and accelerometers 

and is essential in order to increase the accuracy of INS. In the calibration process, the 

deterministic errors (biases, scale factor errors and non-orthogonality errors) are 

estimated by comparing the instrument outputs with known data and the random errors, 

noise, are minimized by filtering methods. 

Various kinds of calibration methods for determining the IMU errors have been 

developed by scientists. Today, most commonly used calibration methods are using 

precise laboratory instruments, using data collected in the field by orienting the IMU in 

different attitudes and using adjustment techniques for determining errors, and/or using 

different de-noising techniques (filters). Some of the current calibration methods are 

presented below. The following studies are mostly focused on using low-cost strapdown 

IMUs. 

Aggarwal et al. (2008) use different methods to estimate different error parameters 

including the use of precise laboratory tools. They first use Allan variance for estimating 

the noise in the Micro-Electro-Mechanical Systems (MEMS) sensors. Then, by mounting 

the IMU on a leveled table with each axis of the IMU can precisely be pointed up and 
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down and a precision rate turntable that the unit can be rotated with certain rotation rate, 

the authors apply a six-position static test and angle rate test for calibration of the 

deterministic errors for accelerometer and gyroscope sensors, respectively. Finally, the 

authors develop an accurate thermal-dependent stochastic model by using a thermal 

chamber. The authors test their methods by using a GPS/INS integrated system in the 

field with different scenarios. Their results show that the bias is the most dominant error 

and the thermal variations also have significant effect on the errors. 

However, the study above requires laboratory equipment and cannot be applied during a 

mission in the field. Use of additional sensors is another solution for IMU calibration. 

Nebot et al. (1999) performed a study that can be an example for this kind of field 

calibration procedures. They classify the sensors that are commonly used in navigation 

applications into two categories: dead-reckoning sensors (internal sensors of an IMU) and 

external sensors. The authors notice that the dead-reckoning sensors accumulate error 

over time and these sensors should be reset by using information from external sensors 

which provide absolute information. Therefore, they used two extra gyros to measure the 

tilt angles, bank and elevation angles. Then, these additional angular values are used for 

determining the IMU sensor biases and orientation of the platform on which the unit is 

mounted. The authors conclude that their method is accurate enough to allow navigation 

with INS for an extended time with low dead-reckoning IMU sensor errors. 

Nevertheless, a calibration procedure that does not require any laboratory instrument and 

any external device will be more convenient, less costly and, most importantly, can be 

applied in the field directly. 

Shin and El-Sheimy (2002) develop a field calibration method that does not require in-lab 

calibration procedure, and where the IMU is aligned to the local level frame. The 

calibration method is developed based on the fact that the IMU sensors measure the Earth 

rotation rate and the gravity magnitude independent of the direction where the axes are 

pointing. The authors use IMU measurements for different attitudes in which the IMU is 

rotated. Then, they estimate the related error parameters by applying the mathematical 

method they developed. With the new calibration method, the authors conclude that the 

accelerometer bias, scale factor and non-orthogonality errors can be estimated. However, 

only gyro biases can realistically be determined because the Earth rotation rate is a very 

weak signal and significant parameters are hidden in the noise, which is also addressed 

by many authors such as Salychev (1998) and Chatfield (1997). Thus, scale factor and 

non-orthogonality errors of gyroscope should be determined by an in-lab calibration 

procedure. 

Similarly, Shin (2001) uses the same calibration model developed by Shin and El-Sheimy 

(2002) in his thesis. Since the Earth rotation rate is a very weak signal and the non-

orthogonalities are hard to determine in the field, Shin only considers bias error for 

gyroscopes and bias and scale factor errors for accelerometers. Shin claims that for the 

mid-latitude areas, gyroscope calibration can be performed by the measurements where 

the IMU is set on a level surface while additional tilting is necessary for accelerometer 

calibration in order to avoid singularities in the calculations. Based on the field test 

results, Shin concludes that 2-3 minutes of measurements for six or more different 

attitudes are enough for gyroscope calibration, but the measurement time should be 
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increased to 5 minutes for accelerometer calibration in order to reduce almost half of the 

positioning error. 

Syed et al. (2007) claims that Shin’s method has some deficiencies, such as using the 

Earth rotation rate as a reference for the gyroscope calibration. They also point out that 

the Earth rotation rate is too weak to be used for this purpose. Therefore, Syed et al. 

(2007) modify the new calibration method, which is named as multi-position calibration 

method by the authors, and call it the modified multi-position calibration method. The 

modification is done by using a single-axis turntable, which does not require special 

aligned mounting. By producing a high rotation rate as the reference signal instead of the 

Earth rotation rate, the gyroscope scale factor and non-orthogonality errors are estimated. 

Moreover, the new multi-positioning method uses the IMU measurements from each 

IMU axis, pointed approximately up and down, in order to provide approximate initial 

values for the bias and scale factor error. The field test results show that the new multi-

position calibration method can be used instead of the in-lab calibration methods, such as 

the six-position static test developed by Aggarwal et al. The new method is also less 

costly (because it requires only a single-axis turntable) and requires less time for 

calibration. 

The previous two studies, Shin and El-Sheimy (2002) and Syed et al. (2007), determine 

three types of deterministic IMU sensor errors: bias, scale factor and non-orthogonality 

errors. However, de-noising techniques are also necessary for reducing non-deterministic 

sensor errors. A good example of this technique is found in Nassar and El-Sheimy 

(2005). 

Nassar and El-Sheimy (2005) apply the wavelet techniques to the IMU sensor 

measurements and aim to minimize the undesirable effects of sensor noise and other 

unspecified high frequency disturbances. The results show that by choice of appropriate 

level of decomposition (LOD), positioning accuracy improves by 34% - 63% when it is 

compared to original IMU measurements. The authors claim that the advantage of the 

wavelet de-noising technique is its being capable of performing local signal analyses. 

They also point out another advantage of the wavelet technique as its being able to 

reconstruct the signal from its wavelet coefficients without losing any significant 

information. 

For better inertial sensor error models, in their subsequent work, Nassar and El-Sheimy 

(2006) use a combined method including autoregressive (AR) process and multi-

resolution techniques. The authors prefer the AR process instead of the commonly used 

Gauss-Markov process, and they use the wavelet multi-resolution technique for 

improving the quality of IMU data. They apply both of the methods individually and as 

the combined model to IMU/DGPS data which include Differential GPS (DGPS) signal 

outages. The results show that the combined algorithm provides better positioning 

performance by more than 30% compared to when the two methods are applied 

individually. 

In-lab calibration procedure may not be as accurate as field calibration because the 

inertial sensor errors are changing from switch on to switch on. Therefore, the need for a 

calibration method that can be applied in real time has become more urgent. The purpose 

of this study is to perform a field calibration test that can be done in the field and does not 
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require any external instrument in order to improve INS positioning accuracy. For this 

purpose, the multi-position calibration method developed by Shin (2001) will be applied 

on two medium level IMUs: HG1700 and HG1900.  

The basics of the Inertial Navigation are described in Chapter 2 while Chapter 3 

comprises the calibration methodology with relevant equations and Chapter 4 presents 

the simulation study with the results. Finally, Chapter 5 comprises the performance 

analyses of the field calibration test and Chapter 6 includes the conclusions and future 

suggestions. 
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Chapter 2: Inertial Navigation 

 

2.1 Coordinate Frames 

The coordinate frames used in navigating with IMU are divided into five groups; the 

inertial frame, the Earth-Centered-Earth-Fixed frame, the navigation frame, the body 

frame and the sensor frame. 

 

2.1.1 Inertial Frame 

The inertial frame, or i-frame, is the most fundamental frame in geodesy. It is such the 

frame in which Isaac Newton's laws of motion hold, which means that in the system, a 

body at rest will stay at rest, and similarly a body in a rectilinear motion will preserve its 

motion if there is no force applied. The frame is attached to the Earth's center and it is in 

free-fall. The frame is realized by the observed directions of quasars, extremely faraway 

celestial objects that transmit radio waves and do not indicate any evidence of changing 

their locations (Jekeli, 2000). The i-frame has its x axis (x
i
) pointing towards the mean 

vernal equinox, where the ecliptic crosses the celestial equator on the celestial sphere, the 

z axis (z
i
) pointing towards the north celestial pole. Finally, the y axis (y

i
) completes a 

right-handed orthogonal coordinate frame (Salychev, 2004).  
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Figure 2.1. The inertial frame 
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2.1.2 Earth-Centered-Earth-Fixed Frame 

The Earth-centered-Earth-fixed frame, or e-frame, is fixed to the Earth and has its origin 

at the center of the Earth. Its axes are defined such that the x axis (x
e
) is oriented to the 

mean Greenwich meridian, the z axis (z
e
) is pointing towards the mean polar axis, and the 

y axis (y
e
) completes a right-handed orthogonal coordinate frame (Jekeli, 2000). 

Coordinates of a point in the e-frame can be defined by both the Cartesian coordinates 

(x
e
, y

e
, z

e
) and by the ellipsoidal coordinates (φ, λ, h), where φ, λ and h are the geodetic 

latitude, the geodetic longitude and the ellipsoidal height (normal distance from the 

reference ellipsoid), respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.3 Navigation Frame 

The navigation frame, or n-frame, is considered as a local coordinate frame moving with 

vehicle. It is also known as the local level frame (l-frame). The center of the frame is at 

the location of the navigation system. The n-frame has its 1-axis pointing north, its 3-axis 

pointing downwards and aligned with the ellipsoidal normal, and its 2-axis pointing east 

and producing a right-handed Cartesian coordinate frame. Another type of local 

coordinate frame available is the north-east-up (NEU) which includes the third axis 

pointing up and having positive altitude. However, the NEU frame is a left-handed 

coordinate frame and is usually used for astronomic-geodetic observations. The north-
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Figure 2.2. The Earth-centered-Earth-fixed frame 
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east-down (NED) frame is the most commonly used coordinate frame in navigation 

applications and therefore it is called navigation frame (Jekeli, 2000). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.4 Body frame 

The body frame, or b-frame, is usually associated with the body of the vehicle. The axes 

of the b-frame are defined such that the x axis (x
b
) is pointing towards the front, the y axis 

(y
b
) is pointing towards the right and the z axis (z

b
) is pointing downwards, and about 

which the roll, pitch and yaw angle rotations of the vehicle are defined, respectively. 
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Figure 2.3. The navigation frame (NED) 
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2.1.5 Instrument Frame 

The instrument frame varies based on the manufacturer and the IMU type. Axis 

orientation of the Honeywell HG1700 and HG1900 strapdown IMUs is defined by the 

manufacturer, Honeywell. The axis x is perpendicular to the top surface and looking up 

from the center of the unit, the axis y is orthogonal to the x axis and pointing towards the 

connection cable output. The remaining axis z is perpendicular to the other 2 axes and 

produces a right-handed orthogonal reference frame. 
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x
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z
b 

y
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Figure 2.4. The body frame 

Figure 2.5. The instrument frame, HG1700 (left) and HG1900 (right) 
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2.2 Inertial Navigation System 

INS was invented in the early 20th century and used for marine and land use before and 

during World War II. Today, INS is basically used in military applications, such as 

missile guidance, space navigation, aviation, marine navigation and especially submarine 

navigation, where an external-source-independent navigation system is really necessary. 

In general, an INS comprises a computer with adequate hardware and software which 

performs the calculations and an IMU with accelerometers, gyroscopes and the platform 

on which they are mounted (Jekeli, 2000). 

Based on Newton’s laws of motion, INS provides position, attitude and orientation of the 

vehicle on which the IMU is mounted. Continuously collected acceleration and angular 

rate information is required to calculate this navigational information. Therefore, an IMU 

includes three accelerometers and three gyroscopes that measure acceleration and angular 

rates in the three orthogonal axes: x, y and z axes. The continuous velocity and position 

information are estimated by successive mathematical integrations of the measured 

acceleration, and the attitude information is obtained by integration of the measured 

angular rates. Finally, summing these position and attitude changes with the initial 

position and heading of the IMU provides the final position of the vehicle. 

Two types of INS have been developed; gimbaled INS and strapdown INS (SINS). In the 

gimbaled INS, the platform where the inertial sensors are mounted is controlled by 

motorized gimbals so that the platform is always kept aligned with the navigational 

frame. However, in the strapdown INS the platform is mounted onto the vehicle and kept 

aligned with the body frame. When it is compared to the strapdown INS, the gimbaled 

INS is more accurate and requires less computational work, but its bigger size, greater 

expense and lower operability and also the advances in the mathematical models have 

caused the strapdown INS to be used more commonly today. Figure 2.6 and 2.7 show the 

mechanizations of a strapdown INS and a gimbaled INS, respectively. 

 

 

 

 

Figure 2.6. Basic Inertial Navigation System (Strapdown INS) comprising IMU’s and 

navigation computer (Jekeli, 2000) 
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Figure 2.7. Schematic of three-gimbal stabilized platform (G = SDF gyro,                                                    

A = accelerometer) (Jekeli, 2000) 

 

 

 

Based on the error propagation in time, the INS can be categorized as  

Low – accuracy: a tactical grade system with accuracy worse than ± 4 km/hr. 

Medium – accuracy: a navigation grade system whose accuracy is ± 1-4 km/hr. 

High – accuracy: a system with accuracy of ± 0.2 – 1 km/hr, or better (Jekeli, 2000; Yi, 

2007). 

 

2.3 IMU Error Sources 

Main error sources of the INS are the IMU instrumental errors, the gravity model errors, 

numerical computation errors, the selected navigation model errors and initialization 

errors including initial position, velocity and alignment of the IMU. Of these error 

sources, the IMU instrumental errors are the most significant and dominant ones on 

navigation accuracy (Yi, 2007). 

The IMU consists of accelerometer and gyroscope sensors and the IMU sensor errors are 

usually divided into 2 parts: deterministic (constant) and non-deterministic (stochastic) 

errors (Nassar, 2003; Perreault, 2008; Goodall, 2009; etc.). The deterministic errors 

contain the biases, scale factor errors and non-orthogonality (axes misalignment) errors. 

The bias is a constant offset and the scale factor error, which is often modeled as 

constant, creates an error proportional to the magnitude of the IMU measurements. The 

non-orthogonality error is the misalignment within the IMU axes and has a deterministic 
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and non-deterministic error. Common non-deterministic errors, given by Goodall (2009), 

are short term instabilities of the sensor errors (noise), angular random walk (ARW), 

velocity random walk (VRW), and even bias and scale factor changes due to temperature 

effects. The difference between the deterministic and non-deterministic errors is; in 

deterministic errors there needs to be a relationship among observed and output data 

while the input-output relationship is usually random for the non-deterministic errors. 

The most common representations of the IMU errors, such as given by Artese and 

Trecroci (2008), Hou (2004) and Syed et al (2007), are shown below.  

The equations for the accelerometer and gyroscope measurements are  

 

 
aaaaa aNaSbaY       (2.1) 

   NSbY      (2.2) 

 

where a  is the true specific force vector,  is the body frame rotation rate vector. 

Moreover, b is the bias vector, S  is the scale factor error matrix, N
 
is the non-

orthogonality error matrix, and 
 
is the noise term including non-deterministic 

accelerometer errors with the subscripts a  and   representing the accelerometer and 

gyroscope.   

The following table shows factory defined error parameters for the tactical grade IMUs 

Honeywell HG1700 and HG1900. 
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Parameter Units HG1700 HG1900 

Volume in
3 

33 17 

Weight lbs < 2 < 1 

Power Watts < 8 < 2 

Non-Operating Shock g max < 500 < 500 

Gyro Performance 

Parameter Units HG1700 HG1900 

Operating Range 
o
/sec  ± 1074 ± 1000 

Scale Factor Repeatability PPM (1σ) 150 150 

Scale Factor Linearity PPM (1σ) 150 150 

Bias Repeatability 
o
/hr (1σ) 1 < 17 

Bias (In Run Stability) 
o
/hr (1σ) 1 < 7 

Bias Static g Sensitivity 
o
/hr/g (1σ)  3 

Bias g2 Sensitivity 
o
/hr/g2 (1σ)  0.6 

Bias Acoustic Rectification Error (ARE) 
o
/hr max  10 

Quantization    

Angular Random Walk (ARW) deg/√hr max 0.125 0.09 

Axis Alignment Stability µ rad (1σ) 500 80 

Axis Alignment Stability (non-

orthogonality) 

µ rad (1σ) 100 50 

Accelerometer Performance 

Parameter Units HG1700 HG1900 

Operating Range g 70 70 

Scale Factor Error PPM (1σ) 300 300 

Scale Factor Linearity PPM (1σ) 500 500 

Bias Repeatability m-g (1σ) 1 1 

Bias Stability m-g (1σ) 1 1 

Vibration Shift µ-g max 500 500 

Axis Alignment Stability (non-

orthogonality) 

µ rad (1σ) 100 100 

Velocity Random Walk (VRW) (m/s) /√hr 

max 

0.22 0.22 

Table 2.1. Tactical comparison of HG1700 and HG1900 (Honeywell Tactical Inertial 

Measurement Units (IMU), 2007) 

 

 

 

2.4 Calibration Methods 

Based on the required equipment and error estimation procedures, the IMU calibration 

methods can be classified in 3 sections: laboratory calibration methods (Section 2.4.1) 

and field calibration methods (Section 2.4.2) for calibration of the deterministic IMU 

errors and stochastic models (Section 2.4.3) for the non-deterministic IMU errors. 
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2.4.1 Laboratory Calibration Methods 

These methods require the use of precise instruments for orienting the IMU to certain 

directions, or rotating the IMU in desired directions with desired rotation rates. Usually 

these calibration instruments are costly. 

In their study, Aggarwal et al. (2008) provide detailed analyses of the laboratory 

calibration methods under the following titles and as explained below. 

 

2.4.1.1 Six-Position Static Test 

Aggarwal et al. (2008) state that an error calibration model can be established by 

mounting the IMU on a leveled turntable and aligning the IMU axes alternately up and 

down with respect to different angle rotations. Then ignoring the remaining error sources 

given in (2.1) and (2.2), the bias (b) and scale factor error (S) are estimated via the 

following equations by the authors. The up and down oriented sensor measurements of an 

IMU axis will be 

 

 KSbY up )1(         (2.3) 

 KSbY down )1(         (2.4) 

where upY and downY are the sensor measurements when the related IMU axis is pointing 

alternately upward and downward. K is the corresponding component of the Earth 

rotation rate for gyroscope and the gravity magnitude for accelerometer measurements. 

Then, the bias and scale factor error are estimated as follows 

 

 2/)( downup YYb         (2.5) 

KKYYS downup 2/)2(        (2.6) 

 

The procedure is repeated for each IMU axis sequentially and biases and scale factor 

errors are estimated.  

However, Aggarwal et al. (2008) and Syed et al. (2007) claim that accuracy of this six-

position static test, the method described above, depends on the how well the IMU is 

aligned with the vertical axes of the local level frame and it is only possible to calculate 

the biases and scale factor errors with this standard method. In order to be able to 

estimate the non-orthogonality errors, the authors modify the above method and call it the 

improved six-position test. The modified method is explained below. 

In case of accelerometers, by ignoring aS 2 , 
a

  and g in 2.1, the IMU attitude 

measurements are shown as below.  

 

aNaSbaY aaaa        (2.7) 

 

Then, the authors represent the measured accelerometer values for one IMU attitude by 

the following matrix form. 
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The diagonal m elements in X   represent the scale factor errors ( iim ), the remaining m 

elements ( ijm ) denote the non-orthogonality errors while aib and ia symbolize the 

accelerometer bias and true accelerations, respectively (where i, j: x, y and z). 

Then, by perfectly aligning the IMU axes up and down as in the standard six-position 

test, the true accelerations will be 
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where g is the mean gravity magnitude for the point the IMU is placed, the subscripts ai

represent the IMU attitude numbers ( 61  i ) and superscripts denote the up and down 

orientations of the related IMU axes. 

The matrix of observed accelerations is produced as 

 

 
63654321 
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a
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The Least Squares Solution is used for calculating the desired error parameters, the 

matrix X . 

 
1
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
TT

AAAYX       (2.11) 

 

where the coefficient matrix of the least squares solution is designed as 
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By replacing the gravity components with the Earth rotation rate components, the same 

model is used for calibration of gyroscopes. Nevertheless, Aggarwal et al. (2008) claim 

that the six-axis calibration method can only be used for tactical grade or higher grade 

gyroscopes because of the bias instability and high level noise which masks the Earth 

rotation rate. Therefore, the rotation rate test is preferred for calibration of the 

gyroscopes. 

 

2.4.1.2 Rotation Rate Test 

The rotation rate test is done by mounting the IMU on a precise rotation table, which is 

controlled by a computer, and rotating the unit with precisely known angular rates. 

Usually clockwise and counterclockwise rotations are applied. The same procedure as the 

previous method is used for this test as well (Aggarwal et al., 2008). Estimation of the 

deterministic IMU errors is done by replacing the up and down gyro measurements ( upY

and downY ) with clockwise and counterclockwise gyro measurements ( clockwiseY and
ckwisecountercloY ) together with replacing the reference Earth rotation rate ( e ) with the 

generated rotation rate ( ). 

 

2.4.1.3 Thermal Test 

For the low-cost IMU sensors, the errors are very much affected by the changes in the 

environmental conditions, especially the temperature. This indicates that the bias and 

scale factor error values will be different in the laboratory and in the field. Therefore, a 

reliable thermal calibration model is necessary (Aggarwal et al., 2008). Two types of 

thermal method are defined by Aggarwal et al. (2008). 

In the Soak method, the IMU is put inside of a thermal chamber and the IMU data are 

recorded at certain desired temperatures. Then, a linear interpolation technique is used to 

produce a model for intermediate temperatures. In the Thermal Ramp method, however, 

the temperature is linearly increased or decreased during the data recording for a desired 

time interval.  

 

2.4.2 Field Calibration Methods 

The previous calibration methods require a laboratory environment and special 

instruments. Even though they provide very accurate estimations of the IMU sensor 

errors, they are costly. More importantly some of the deterministic errors (biases and 

scale factor errors) change from turn-on to turn-on and they need to be estimated before 

and/or after every operation in the field. 

 

2.4.2.1 Multi-Position Calibration Method 

To fulfill the requirements mentioned above, Shin and El-Sheimy (2002) develop a new 

calibration method that does not require any additional equipment other than the IMU 
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itself. Moreover, special alignment of the IMU is not necessary. By recording the IMU 

data with different attitudes, the deterministic sensor errors are estimated. The calibration 

method is later named as the multi-position calibration method by Syed et al. (2007). The 

method is explained in Section 3 in detail. 

 

2.4.2.2 Modified Multi-Position Calibration Method 

However, Syed et al. (2007) noticed that the multi-position calibration method cannot 

estimate the gyroscope scale factor and non-orthogonality errors. The authors also claim 

that for the low level IMU sensors, it is difficult to converge to reasonable bias and scale 

factor error values without having initial values in the adjustment computations. They 

resolve these deficiencies of the multi-position calibration method by making 2 

modifications on it and call it the modified multi-position calibration method. 

First, they include a single axis turntable into the calibration system. The IMU is mounted 

on the turntable; then, the gyroscope data are recorded while the turntable is rotating with 

a certain rate (however, how they determined the rotation rate was not mentioned in their 

study). Then, the desired IMU attitude measurements are done through clockwise and 

counterclockwise rotations. The possible attitudes are explained in Section 3.5. In the 

modified method, the rotation rate produced by the turntable is used as reference for the 

gyroscope calibration instead of using the Earth rotation rate which is a weak signal.  

The second modification is done by performing a test similar to the six-position static 

test. The IMU axes are approximately oriented up and down directions and rough 

estimates of the bias and scale factor are obtained by (2.5) and (2.6), respectively. The 

reason that the estimated values are called rough is in this method the IMU orientations 

are done approximately while the traditional six-position static test requires perfect 

alignments of the IMU axes with the vertical gravity vector. Then, the IMU data are 

calibrated for these initially estimated error parameters and the multi-position calibration 

method equations are used for calibrating the remaining errors in the IMU data. They, 

moreover, state that pre-calibrating the IMU errors improves converging speed in the 

adjustment iterations. 

 

2.4.3 Stochastic Models 

The estimates of deterministic errors can be improved by using appropriate stochastic 

models for the non-deterministic errors, simply noise in the data. These models could be 

derived from the studies of the Allan Variance (Aggarwal et al., 2008) and the wavelet 

de-noising (Nassar and El-Sheimy, 2005) techniques. The Allan variance is a time 

domain analysis technique and it is used for analyzing the characteristics of the random 

processes, for example, the noise in the data (Aggarwal et al., 2008). 

Nassar and El-Sheimy (2005) note that the noise in the IMU data contains two parts, the 

low-frequency (long-term) and high-frequency (short-term) components. The white noise 

is included in the high-frequency components while the low frequency components 

contain the correlated noise. The correlated noise can be modeled using random 

processes, and the white noise could be removed using de-noising techniques. 

Because the main purpose is to analyze the performance of the field calibration method, 

none of the stochastic models described above were tested in this study.   
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Chapter 3: Calibration Procedure 

 

An efficient and cost effective INS calibration method was aimed to be analyzed in this 

study. The new calibration method, Multi-Position Calibration Method (MPCM), that 

was developed by Shin and El-Sheimy (2002) is a good example for this purpose. The 

main advantage of this method is it can be applied in the field and does not require any 

additional instrument to align the IMU to any certain directions. Therefore, it can be 

applied in the field directly and at any time during the operation in order to estimate the 

IMU systematic errors, the bias, scale factor and non-orthogonality errors. Moreover, 

because the bias and scale factor errors change whenever the IMU is turned on and off, 

the necessity of such a calibration method becomes more important.  

The calibration procedure is explained in the sections below with related definitions and 

calculation steps. 

 

3.1 The Multi-Position Calibration Method 

The new method is based on the fact that in the stationary mode, the total magnitude that 

the gyroscopes and the accelerometers sense will be the Earth rotation rate and the 

gravity magnitude, respectively, independent of the direction that the individual axes are 

pointing. By performing an adequate number of IMU measurements at different attitudes 

(see Section 3.5 for the possible attitudes) and using the related adjustment technique 

mentioned in Section 3.4, the IMU sensor errors are estimated.  

 

3.2 Calibration Model 

The calibration model is described by Shin and el Sheimy (2002) as follows.  

The following 3 unit vectors are used in order to define a vector in R
3
 space in the sensor 

frame. 

 

     1,0,0,0,1,0:,0,0,1: zyx      (3.1) 

 

In case of perfect orthogonality, the sensed values for the accelerometers on each axis 

with respect to the NED navigation frame can be explained as follows 

 







cos,

cos,

cos,

gzga

gyga

gxga

z

y

x







      (3.2) 
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where “<-,- >” is the inner product,  T

zyx gggg   is the gravity vector and  , ,  

are the angles (Figure 3.1) between the local gravity vector and the x, y and z axes of the 

IMU, respectively. 

 

 

 

 

 

 

 

 

Shin and El-Sheimy (2002) introduce the general calibration model as below and state 

that it holds regardless of the alignment to the n-frame. 

 

  22222222 coscoscos ggaaa zyx     (3.3) 

  

By using the same methodology, we can derive the general model for the gyros as  

 
2222

ezyx          (3.4) 

 

where e is the true Earth rotation rate. 

However, the IMU axes may not be perfectly orthogonal to each other and the non-

orthogonalities among the IMU axes might have significant effects on navigation 

accuracy. The non-orthogonality error is an angle that we need to rotate the IMU axes in 

order to obtain perfect orthogonality. 

Shin and El-Sheimy (2002) describe the non-orthogonalities as follows. In order to 

eliminate the non-orthogonality between the axes x and y, the y axis is rotated about the z 

axis by the angle yz (figure 3.2). This rotation can be shown by the vector below. 

 

 T

yzyzz yRy 0cossin
1

 ,     (3.5) 





g


x

z

y

local-level plane 

Figure 3.1. Misalignment to n-frame (Shin and El-Sheimy, 2002) 
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where 
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      (3.6) 

 

The non-orthogonality of the z axis can be expressed by two consecutive rotations; 

rotation about the x axis by zx  and about the y axis by zy  (figure 3.2). 

 

 T

zyzxzyzxzyyx zRRz  coscoscossinsin1  , (3.7) 
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Finally, the non-orthogonal IMU axes in local level frame can be represented by the 

vectors below,  

 

 

x
 

1y  

y

 

x  

1z  

zx

zy

Figure 3.2. Non-orthogonality between y axis and x axis (left), non-orthogonality of z 

axis to xy plane (right) (Shin and El-Sheimy, 2002) 
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 

 
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The non-orthogonality angles are quite small, e.g. the manufacturer states standard 

deviations of 100 µrad for HG1700 and HG1900 (see Table 2.1), and therefore the above 

vectors can be represented with small angle approximations as below. 
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The accelerometers on the IMU axes sense the following values. 
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 (3.11) 

 

Inclusion of the major errors, bias and scale factor error, into the IMU data is done by the 

equation below. 

 

  iaiaiai asbY  1        (3.12) 

 

where aaa sbY ,,  are IMU observation, bias and scale factor error, respectively, for the 

accelerometer and ia  is the specific force vector component with i = x, y and z.  

After including the non-orthogonalities, the observation equations for the accelerometer 

sensors on the IMU axis triad will be obtained as below.  
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where ai  is the random sensor noise in the accelerometer measurements (i = x, y and z). 

By rearranging the above equations and ignoring the noise terms, the true values for the 

specific force vector components are found as 
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We can present the equations 3.13 with the small-angle approximations, which is also 

shown by Syed et al. (2007) in a matrix form, as follows 
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and the true specific force vector components will be 
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However, due to the advances in the modern computational technologies, there is no need 

to use the small-angle approximations. Thus, they were not used in this study.  
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The gyroscope observation equations can be produced by replacing specific force vector 

components ( a ) with the Earth rotation rate vector components ( ). 
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where i  is the random sensor noise for gyroscope (i = x, y and z). The Earth rotation 

rate components are then solved: 
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3.3 Generation of the Calibration Model 

By using the equations (3.3) and (3.4), Shin and El-Sheimy (2002) produce the 

calibration models for gyroscope and accelerometer errors are as follows, 

 

0
2222  gaaaf zyxa

      (3.19) 

0
2222  ezyxf       (3.20) 

 

Substituting the equations (3.13) and (3.16) into the calibration model equations, we 

obtain the calibration model that includes all 9 error parameters as 
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and, 
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  (3.22) 

 

In case we want to estimate only the bias and scale factor errors, for example we don’t 

have enough observations, the calibration models that comprise only the bias and scale 

factor solution can be formed as below. 
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Similarly, the model for solving the bias only is 

 

      0
2222
 gbYbYbYf azazayayaxaxa

  (3.24) 

 

By, again, replacing acceleration vector components ( a ) with the rotation rate vector 

components ( ) in equations 3.23 and 3.24 we obtain the calibration models for the 

gyroscope measurements. 
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3.4 Adjustment Computations 

To be able to estimate the gyroscope and accelerometer errors of the IMU, the Least 

Squares adjustment is used for the calibration models given in the section above. Shin 

and El- Sheimy (2002) and Syed et al. (2007) used the combined case least square 

solution with weighted parameters. This method will be called the Gauss-Helmert model 

in this study. The Gauss-Helmert model requires numerous iterations defined below; 

however, the iteration steps were not explained in any of those studies above.  

Pope (1972) asserts that the Newton-Gauss iteration is usually done incorrectly and 

explains the correct way in his study. The adjustment procedure that was described by 

Pope (1972) and summarized by May (2008) is shown below.  

The calibration model is 

 

),0(~,0),(
]33[
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0
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]13[

nnnm

n

obs PeeYf








 
     (3.25) 

 

where 
nmn RRf 3: denotes a given multivariate nonlinear function (Schaffrin and 

Snow, 2009) and n is the number of the different attitudes of the IMU (for either 

accelerometer or gyroscope measurements) that are used in the calibration, m  is the 

number of unknown parameters and P is the nn 33  weight matrix for the observations. 

Moreover,  , e and 
2

0  represent the unknown parameter vector, the random error vector 

and, the variance of unit weight, respectively.  

If it was not given, P  can be obtained as follows 

 

nn

P

33

2

2

2

/100

0/10

00/1




































, or nnIP 33

2 )/1(     (3.26) 

 

where 2 is assumed to be same for each attitude.  

Standard deviation of the IMU measurements, , can be calculated for accelerometer and 

gyroscope measurements from given velocity and angular random walk parameters, 

respectively. Jekeli (2000) and Lee (2009) define the steps for computing  from the 

factory given random walk values of the gyroscopes and accelerometers of the IMUs. 

The obtained   values are shown in the table below for the IMUs HG1700 and HG1900. 

 

 

Standard Deviations HG1700 HG1900 

a
  

2/ sm  
3.667 x 10-3 3.667 x 10-3 

   srad /  
3.636 x 10-5 2.618 x 10-5 

Table 3.1. Accelerometer and gyroscope standard deviations of HG1700 and HG1900 
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The model is nonlinear and after linearization by using the Taylor’s series expansion we 

have, 

 

]1[]1[]1[]3[]1[][
0



nnmnnmmn

weBA        (3.27) 

 

where   is the vector of incremental parameters, and the misclosure vector is 

 

 0, obsYfw        (3.28) 

 

The design matrices are, 
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        (3.29) 

 

where the initial Taylor’s series expansion is evaluated about 0 and 0Y , which symbolize 

the initial approximate unknown vector and initial observation vector, respectively.  

The correction vector is 

 

0         (3.30) 

 

and 

 

̂ˆ
0          (3.31) 

 

where 

 

wCAN T 11ˆ         (3.32) 
TBBPC 1         (3.33) 

 

and the normal matrix is 

 
TT ACAN 1         (3.34) 

 

We can estimate the cofactor matrix of the unknowns 
̂

Q  by 

 
1

ˆ
 NQ


        (3.35) 
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and, the dispersion matrix of the unknowns by 

 


 ˆ

2

0
ˆ}ˆ{ QD          (3.36) 

 

where the estimated variance component is 

 

mn

ePeT




ˆˆ
ˆ 2

0         (3.37) 

 

where the vector of the estimated random errors is 

 

 ̂ˆ 11 AwCBPe T  
      (3.38) 

 

Here, one should notice that in Shin (2002) and Syed et al. (2007), the normal matrix N 

(equation 3.34) was obtained as  

 

  PABBPAN TTT 
 11

  

 

where P  is the a priori weight matrix of the unknowns.  

Including P  can be considered as a stochastic constraint to the system and the 

calibration model. The constraint is usually used in order to stabilize the system if there is 

any singularity problem in the adjustment calculations (when the system is unstable). 

Then the method will be the Gauss-Helmert model with stochastic constraints. However, 

in this calibration study, there is no need to use any constraint.  

In Shin and El-Sheimy (2002) and in Shin (2001), there are mistakes in the derivation of 

the components of the design matrix A for the non-orthogonality errors which cause 

singularity problems in the adjustment computations. It was probably the reason for the 

authors to use the constraint in the adjustment model. These mistakes will be addressed 

after the linearized elements of the design matrix are given (page 49). The linearization 

and iteration steps in the calibration estimation are described below. 

 

3.4.1 Linearization Steps 

Expanding the adjustment model   0,  eYf obs  to the Taylor’s series about 0 and 0Y , 

and neglecting the higher order terms, gives  
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YfYY
Y

YfYf
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 (3.39) 

 

with the expected observation vector Y  , we rewrite the vector of the random errors as 
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obsYYe          (3.40) 

 

and then we can write  

 

    eYYYY obs  00       (3.41) 

 

Thus we get 
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   (3.42) 

 

or 

 

     0, 000  YYBYfBeA obs     (3.43) 

 

with 

 

   000 , YYBYfw obs        (3.44) 

 

Due to the least squares adjustment solutions PeeT  is to be minimized and the 

adjustment solution yields the equation 3.32. 

 

3.4.2 Iteration Steps 

In the first solution (zeroth iteration) we use obsYY 0  and (3.39) becomes 
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or 

 

0000  wBeA        (3.46) 
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Here, because 00 YYobs , the misclosure vector does not contain the second term and it 

is obtained as 

 

 obsYfw ,00         (3.47) 

 

and the adjusted values from the zeroth iteration are estimated by 

 

000
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In the first iteration    0011
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or 

 

0ˆˆ
111  weBA        (3.50) 

 

and the least squares solution gives 
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At the i
th

 iteration, which is the (i+1)
th

 solution,    11
ˆ,ˆ,  iiii YY  is taken and the 

equation 3.39 becomes, 
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or 
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0ˆˆ  iii weBA        (3.55) 

 

and again the least squares solution gives 

 

iii ̂ˆ          (3.56)  

iobsi eYY ˆˆ          (3.57) 

 

During the iteration process, ̂  should go to zero and ê  should become stable, which 

means that the solution is converging. After the linearization of the calibration, the 

coefficient matrices are obtained as follows. 

 

3.4.3 Derivation of the Coefficient Matrices 

The design matrices for the 9-parameter solution which considers all 9 errors are 
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The correction vector, the residual vector and the misclosure vectors are  
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and linearized elements of the design matrices are 
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Here, the term ayzcos  in the denominator of the last term in equation 3.69, the term 

azxcos  in the denominators of the second and last terms in equation 3.70 and the term 

azycos  in the denominator of the last term in equation 3.71 were missed by Shin and El-

Sheimy (2002). 

The design matrices for the bias and scale factor solution (6 unknowns) are 
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The correction vector, the residual vector and the misclosure vectors are  
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and linearized elements of the design matrices are 
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And the design matrices for the bias and scale factor solution are 
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the correction vector, the residual vector and the misclosure vectors are  
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 Tazayax bbb
13

        (3.85) 

 T
nazayax eeee

13 
     (3.86) 

  T
na Yfw

1
,


        (3.87) 

 

and linearized elements of the design matrices are 
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By replacing the acceleration components with the rotation rate components in the 

equations above, the relevant equations can be obtained for the gyroscope measurements. 

 

3.5 IMU Data Collection Procedure for Calibration 

The number of attitudes must be at least as large as the number the error parameters in 

order to avoid singularities when the inverse of the normal matrix is being computed. 

Even though the gyroscope and accelerometer errors are estimated independently, the 

gyroscope data and accelerometer data are collected for the same attitude. Thus, 9 or 

more IMU attitude measurements are required in order to be able to estimate the bias, 

scale factor and non-orthogonality errors for the gyroscope and accelerometer sensors 

located on x, y and z axes. Each attitude should be different to avoid singularities in the 

adjustment computations. The possible IMU attitudes are described as each face down (6 

attitudes), each side down (12 attitudes) and each corner down (8 attitudes) which gives a 

total of 26 different attitudes. The alignments of the IMU axes to specific directions are 

not necessary, but they should be significantly different from each other in every attitude. 

Some of the attitudes (one sample for each option) are demonstrated in Figure 3.3 which 

is a simplified form of Figure 8 of Shin and El-Sheimy (2002). 
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Figure 3.3. Sample IMU attitudes from each face down (left), each side down 

(center) and each corner down (right) 
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Chapter 4: Simulation Study 

 

The calibration of a strapdown IMU was performed by using simulation data. For this 

purpose, the artificial IMU data were generated and the multi-position calibration method 

was applied to the simulation data. 

 

4.1 Production of the Simulation Data 

The IMU basically comprises accelerometer and gyroscope sensors which in the static 

mode sense components of the Earth rotation and the reactions to gravity vectors, 

respectively. Thus, the simulation IMU gyroscope data were generated by using the true 

Earth rotation rate while the mean gravity magnitude data used for producing the 

accelerometer data. The initial IMU simulation data (first attitude data) were generated 

for a point at latitude of 40
o
, corresponding to the Ohio State University campus, in 

sections 4.1.1 and 4.1.2. Because the calibration method requires numerous IMU attitude 

measurements, the later attitude data were produced by multiplying the first data with the 

rotation matrices for desired related angles, (Section 4.2). 

 

4.1.1 Production of the Gyroscope Data 

The Earth rotation rate vector is first defined in the Earth frame and then transformed to 

the navigation frame by multiplying it with the direction cosine matrix (DCM) as shown 

below. 

The Earth rotation rate vector in the Earth frame is 

 

 T

truee  00        (4.1) 

 

and it is obtained in the navigation frame as 

 



























sin

0

cos

true

true

e

n

en C       (4.2) 

 

where the true Earth rotation rate is rad/s10^-57.292115true  and the DCM for 

transformation from the Earth frame to navigation frame is 
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where   is latitude and   is the longitude. Moreover, computation of the Earth rotation 

vector is independent of , as it can be seen in 4.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The navigation frame that was used is a North-East-Down (NED) frame and the body 

frame was assumed to be aligned with it. Therefore, the IMU simulation data were not 

transformed to any other reference frame. Initially, the x, y and z axes of the IMU were 

assumed to be oriented in the North, East and down directions, respectively. Thus, the 

Earth rotation rate vector in the navigation frame was used as the gyroscope data for the 

first data. The following vector represents the simulated gyroscope data with no errors 

and for this first IMU attitude; 

 

 TzyxY
31

ˆ


        (4.4) 

where Ŷ  is the errorless gyroscope observation data vector and i are the sensed 

gyroscope values (i = x, y and z). 

 

4.1.2 Production of the Accelerometer Data 

In the static mode, the accelerometers in the IMU will sense reactions to the components 

of the gravity vector. On a perfectly level surface, the axis corresponding to the down 

direction will record the negative gravity magnitude while the horizontal axes will record 


2 

1 

3 

ωN 

ωD 

ωE 

λ 

 

h 

Figure 4.1. Earth rotation rate in the navigation frame (NED) 
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zero. By using a mean gravity magnitude for 40
o
 latitude (because the location of the 

OSU campus is approximately 
o40 and o83 ), the gravity vector for a point in the 

navigation frame was generated as, 

 

 T

n
gg 00        (4.5) 

 

where the mean gravity is 
2/801.9 smg  . 

The first accelerometer data vector in the NED navigation frame will be 

 

 
n

T

zyxn gaaaa        (4.6) 

 

Then, the errorless accelerometer data vector for the first IMU attitude was produced as   

 

 Tzyxa aaaY
31

ˆ


        (4.7) 

where aŶ  is the errorless observation vector for the accelerometer, ia are the sensed 

accelerometer values corresponding to x, y and z axes of the IMU.  

As shown by Shin (2001) in Chapter 4 with experimental estimations, the change in the 

reference gravity value only affects the scale factor while it does not have any influence 

on the bias. Therefore, the use of a mean gravity magnitude value should be sufficiently 

accurate in the accelerometer calibration with both simulated and measured IMU data. 

 

4.2 Generation of the Different IMU Attitude Measurements 

After generating the initial data set, the subsequent IMU attitude data were generated by 

multiplying the initial data vector by different rotation matrices as shown below. 

For example, the errorless data vector for the second IMU attitude measurement, 2
ˆ
Y , is 

obtained by 

 

111232
ˆ)()()(ˆ
  YRYRRRY       (4.8) 

111232
ˆ)()()(ˆ

aa YRYRRRY         (4.9) 

 

where 1
ˆ
Y  and 1

ˆ
aY  are the first IMU attitude data vectors for gyroscope and 

accelerometer, and )(1 R , )(2 R  and )(3 R  are the rotation matrices about the x 

(Roll), y (Pitch) and the z (Yaw) axes, respectively. The total transformation matrix R  is 

shown below. 
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(4.10) 

 

By using the same methodology, the remaining data sets were generated with different 

axes orientations. The attitudes were generated in such a way that the IMU axes were 

pointing to a different direction in every attitude measurement. For example, it was 

attempted that each gyroscope and accelerometer on an IMU axis would sense + and – 

the same (or similar) value of the corresponding Earth rotation rate vector and 

acceleration components, respectively.  

Moreover, in order to simulate the real field situation and therefore avoid perfect up and 

down IMU axes orientations, which is not possible and without a precise instrument, 

rotation angles were deformed by adding random angular values with standard deviation 

of 2
o
. Furthermore, 20

o
 offset from the main geographical directions (N, E, and D) was 

considered in the attitude orientations. 

Twenty-six IMU attitude data sets were generated with the attitudes that each face (6 

attitudes), each edge (12 attitudes) and each corner (8 attitudes) of the IMU box was 

pointing down. Then the HG1700 factory defined errors were included in the errorless 

data sets as explained in the next section.  

Each IMU attitude data set was aimed to be 3 minutes long and has the frequency of 1 Hz 

(1 data per second). A single attitude data, whose dimension was 3x1, was replicated 

180l  times within a vector and thus a three-minute-long IMU attitude data set with the 

dimension of 3xl was generated for each IMU attitude. 

 

4.3 Inclusion of the Errors in the Errorless IMU Simulation Data 

The simulated IMU data were corrupted with the inclusion of errors. The deterministic 

IMU errors were chosen from the parameters defined by the manufacturer for the 

Honeywell HG1700 (Figure 2.8). Moreover, Gaussian random noise data with mean 

equal to zero and the standard deviation values given in Table 3.1 were generated in 

MATLAB. By using the equations 3.13 and 3.17, the chosen biases, scale factor errors 

and non-orthogonality errors were included in the simulated data, and then the generated 

random noise values were added to the data.  

The related error parameters are shown in Table 4.1. 

 

 

 Gyroscope Accelerometer 

Bias 4.848E-06 srad /  ( = hr/1 o

) 0.01 m/s2 

Scale Factor 150 ppm 300 ppm 

Non-orthogonality 100 µ rad 100 µ rad 

White Noise srad / 3.636x10 -5  
2-3 /10 x 3.667 sma 
 

Table 4.1. Given error parameters for HG1700 
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The calibration results are presented in the section below. 

 

4.4 Calibration Results of the Simulated IMU Measurements 

All twenty-six simulated gyroscope and accelerometer IMU attitude data sets defined 

above were used in order to test the multi-position calibration method. After including the 

defined error parameters, the data corresponding to the sensor triad were averaged within 

each attitude, which yields a 3x1 vector for each attitude that was then used in the 

calibration estimations. After the averaging, the gyroscope and accelerometer white noise 

variance for the averages will be estimated by 

 

naverage /          (4.11) 

naaveragea /          (4.12) 

 

where n is the number of observations. Here one should notice that the gyroscope and 

accelerometer data are calibrated separately in the multi-position calibration method.  

Three different scenarios were tried, including no noise in the data, including a defined 

level of noise in the data, and including the noise in the data together with increasing the 

reference rotation rate by multiplying by 10
4
.  

The weight matrix P is obtained by the equation 3.26 with using the standard deviation 

values from 4.11 and 4.12. Then, the gyroscope and accelerometer error calibration 

results were obtained after 100 iterations of the linear least-squares solution. The 

calibration results are presented in Sections 4.4.1 and 4.4.2. 

 

4.4.1 Gyroscope Calibration Results 

All 3 scenarios mentioned above were tested for the gyroscope simulation data in this 

section. Table 4.2 includes calibration results of the bias-only solution while 6-parameter 

and 9-parameter solution results are presented in Table 4.3 and Table 4.4, respectively. 

Estimated values and absolute differences calculated by equation 4.12 are shown in the 

following tables.  

 

valuetruevalueestimatedDifference )(    (4.12) 

 

The values below show the parameters used in the calibration estimations. 

Case 1: e
 & 0  

Case 2: e
 & 

srad /103.636 -5  

Case 3: e  410
 & 

srad /103.636 -5  
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Case 1 Case 2 Case 3 

Gyroscope estimated
 est    estimated

 est    estimated
 est    

B
ia

s 
(r

ad
/s

) xb  
4.85E-06 4.04E-09 2.77E-09 5.12E-06 1.07E-06 2.69E-07 -2.26E-05 4.07E-05 2.74E-05 

yb  
4.85E-06 4.24E-09 3.53E-09 5.32E-06 1.11E-06 4.77E-07 4.06E-05 4.27E-05 3.57E-05 

zb  
4.85E-06 4.78E-09 4.04E-10 5.37E-06 1.27E-06 5.25E-07 9.37E-06 4.82E-05 4.52E-06 

Table 4.2. 3-parameter (bias-only) solution results of the gyroscope calibration 

 

 

 
Case 1 Case 2 Case 3 

Gyroscope estimated
 est    estimated

 est    estimated
 est    

B
ia

s 
 

(r
ad

/s
) xb  

4.85E-06 1.35E-09 2.68E-11 5.44E-06 1.15E-06 5.88E-07 5.22E-06 1.36E-05 3.77E-07 

yb  
4.85E-06 1.46E-09 6.83E-11 4.87E-06 1.25E-06 1.96E-08 5.44E-06 1.47E-05 5.94E-07 

zb  
4.85E-06 1.56E-09 4.19E-10 5.08E-06 1.33E-06 2.36E-07 8.04E-07 1.57E-05 4.04E-06 

S
ca

le
 F

ac
to

r 
 

E
rr

o
r 

(p
p
m

) 

xs  
138.453 24.487 11.547 7584.798 20859.022 7434.798 138.988 24.579 11.012 

ys  
165.556 26.514 15.556 25467.152 22505.033 25317.152 168.235 26.613 18.235 

zs  178.691 26.228 28.691 4701.523 22716.690 4551.523 178.962 26.327 28.962 

Table 4.3. 6-parameter (bias and scale factor error) solution results of the gyroscope calibration 
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 Case 1 Case 2 Case 3 

Gyroscope estimated
 est    estimated

 est    estimated
 est    

B
ia

s 
 

(r
ad

/s
) xb  

4.85E-06 4.02E-21 0.00E+00 5.59E-06 1.22E-06 7.37E-07 5.86E-06 1.21E-06 1.01E-06 

yb  
4.85E-06 5.32E-21 0.00E+00 4.56E-06 1.71E-06 2.92E-07 4.52E-06 1.60E-06 3.24E-07 

zb  
4.85E-06 5.24E-21 1.02E-20 3.90E-06 1.65E-06 9.46E-07 3.86E-06 1.58E-06 9.93E-07 

S
ca

le
 F

ac
to

r 
 

E
rr

o
r 

(p
p
m

) 

xs  
150.000 6.95E-11 7.80E-11 13557.915 21834.303 13407.915 150.806 2.090 0.806 

ys  
150.000 7.63E-11 6.99E-12 26758.403 23599.707 26608.403 152.725 2.296 2.725 

zs  
150.000 8.09E-11 5.90E-11 1580.785 25237.662 1430.785 149.494 2.434 0.506 

N
o
n

-o
rt

h
. 

E
rr

o
r 

(µ
ra

d
) 

yz  
100.000 1.33E-10 6.60E-11 -32323.790 36613.218 32423.790 97.081 4.007 2.919 

zx  
100.000 2.30E-10 7.18E-11 -30309.263 70860.251 30409.263 97.016 6.905 2.984 

zy  
100.000 1.60E-10 3.79E-12 74513.200 47886.190 74413.200 107.945 4.821 7.945 

Table 4.4. 9-parameter solution results of the gyroscope calibration 
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The estimated parameters estimated  symbolize the estimated gyroscope errors while 

,est  obtained by using the equation 3.36, represents the accuracy and   denotes the 

absolute error of the estimations in the table above. When there is no white noise in the 

data (Case 1), all 9 parameters can be estimated perfectly with the 9-parameter solution. 

However, with the defined level of white noise in the data (Case 2), only the gyro bias 

can be estimated with reasonable accuracy, and the 3-parameter solution provides more 

precise gyro bias estimations according to the standard deviations. On the other hand, the 

actual errors showed mixed results. Nevertheless, it is possible to obtain accurate 

estimations of all 9 parameters for the data with the defined level of white noise when the 

reference Earth rotation rate is increased by 10
4
 (Case 3). This is consistent with results 

of Syed et al (2007), who claimed that the true Earth rotation rate is so weak that it 

cannot be used for calibrating the gyroscope scale factor errors and non-orthogonality 

errors and who solved this problem by using a single axis turn table for the gyroscope 

calibration.  

 

 

 

 

A          continued 

Figure 4.2. Estimations of the gyroscope bias (A), scale factor (B), and non-orthogonality 

(C) errors due to the increase in the reference rotation rate ( srad /103.636 -5 ) 
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Figure 4.2 continued 
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As it can be seen from the figures above, estimation accuracies of the gyroscope scale 

factor and non orthogonality errors increase with the increase in the reference signal. 

However, the bias estimation accuracy slightly decreases and then becomes constant. We 

can conclude that the increase in the reference signal has a positive effect on the scale 

factor error and non-orthogonality estimations while it does not change the bias results 

very much.  

The following figure includes the error estimation results with respect to increase in the 

white noise level in the IMU simulation data. 

 

 

 

 

A          continued 

Figure 4.3. Estimations of the gyroscope bias (A), scale factor (B), and non-orthogonality 

(C) errors due to the increase in the level of gyro white noise ( srad /103.636 -5 ) 
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Figure 4.3 continued 

 

B  
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It was experienced in this section that the increase in the noise level in the IMU data 

significantly decreases the error estimation accuracy. 
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4.4.2 Accelerometer Calibration Results 

Only 2 scenarios were tested for the accelerometer data, which uses the simulated data 

with and without the noise. Because the accelerometer data provided accurate results by 

using the mean gravity magnitude, there was no need to increase the reference gravity 

signal. Moreover, only the 9-parameter solution results were presented below since 

similar results are obtained in the 3- & 6-parameter solutions. 

 

 

 

  
Case 1: 

2/0 sma   

2/801.9 smgg mean   

Case 2: 
2-3 /10 x 3.667 sma   

2/801.9 smgg mean   

Accelerometer estimateda  esta  a  estimateda  esta  a  

B
ia

s 
 

(m
/s

2
) bax  0.010 4.35E-16 1.51E-16 9.970E-03 1.32E-04 2.97E-05 

bay  0.010 3.66E-16 1.91E-16 1.005E-02 1.11E-04 4.69E-05 

baz 0.010 3.75E-16 9.91E-16 1.009E-02 1.14E-04 8.97E-05 

S
ca

le
 F

ac
to

r 
 

E
rr

o
r 

(p
p
m

) 

sax 300.000 6.00E-11 4.60E-11 298.415 18.201 1.585 

say 300.000 4.82E-11 4.50E-11 307.166 14.636 7.166 

saz 300.000 5.19E-11 1.99E-12 299.282 15.737 0.718 

N
o
n

-o
rt

h
. 

E
rr

o
r 

(µ
ra

d
) 

θayz 100.000 1.05E-10 2.50E-11 127.802 32.018 27.802 

θazx 100.000 8.74E-11 6.20E-11 102.237 26.538 2.237 

θazy 100.000 9.51E-11 1.10E-11 92.445 28.874 7.555 

Table 4.5. 9-parameter solution results of the accelerometer calibration 

 

 

where esta  and a  represent the accuracy and absolute error of the accelerometer error 

estimations.  

The simulation study results showed that the accelerometer errors can accurately be 

estimated with current factory defined parameters included in the data. Moreover, the 

standard deviation and absolute error estimates were consistent due to the increase in 

noise level in the data. 

 

4.5 Summary  

Simulation results showed that with a significant number of attitude measurements, all 9 

accelerometer errors can be estimated accurately. In all cases, the estimated standard 

deviations and absolute errors of the gyro bias estimates are generally consistent (within 

an order of magnitude). However, it is only possible to obtain accurate gyroscope scale 

factor error and non-orthogonality error estimations if we increase the reference signal 

strength or decrease the noise in the data (Case 3). Then also, the estimated standard 
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deviations are reasonable. This study has shown that if the gyroscope data have very high 

level noise (e.g. HG1700 type of IMU), then the Earth rotation rate is not large enough to 

estimate gyro scale factor and non orthogonality errors. A single axis turntable, which 

generates rotations at least about 10
4
 times greater than the true Earth rotation rate, will 

help to solve this problem. Moreover, using longer duration attitude data might increase 

the estimation accuracy as well as using more attitude data, and it should be tested in the 

real data study. Because the gyro scale factor and non-orthogonality errors cannot be 

estimated with the Earth rotation rate, the bias-only solution should be used for 

calibrating gyroscopes of the IMUs, such as HG1700 and HG1900. The effects of the 

unconsidered errors (scale factor and non-orthogonality errors) in this case might be 

distributed in the estimated bias results. As it is addressed in Section 3.4, it is believed 

that the mistakes in the derivations of the design matrix (A) components caused Shin and 

El-Sheimy (2002) caused them to include the a priori weight matrix of the unknowns 

)( P  in order to regularize an otherwise singular system. However, having solved the 

problems in the coefficient matrix components, there is no need to use P  unless we have 

actual a priori information about the weights of the unknowns. 
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Chapter 5: Calibration Performance Analyses 

 

To analyze the positioning performance of the multi-position calibration method applied 

the two tactical grade IMUs, Honeywell HG1700 and HG1900, a field test was 

performed in the west campus parking lot of the Ohio State University on June 06, 2009. 

The relevant instruments were installed on a 4-wheel cart, which is then called Cart 

Based Geolocation System, for the kinematic measurement. Section 5.1 describes the 

equipment included in the calibration test, Section 5.2 presents the test scenarios, and the 

estimates of the IMU deterministic errors (bias, scale factor error and non-orthogonality 

errors) are given in Section 5.3. Moreover, Section 5.4 shows the accuracy analyses of 

the field test while the results are summarized in Section 5.5. 

 

5.1 Cart Based Geolocation System Configuration 

The cart based geolocation system is shown in Figure 5.1 and the detailed equipment list 

is given in Table 5.1.  
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Figure 5.1. Cart Based Geolocation System 
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1- IMU Box: 

a- Honeywell HG1700: a light weight and low cost ring-laser based strap-

down Inertial Measurement Unit (IMU) designed for navigation purposes 

especially for missile guidance and unmanned vehicles (UAV). HG1700 

includes three miniature GG1308 Ring Laser Gyroscopes (RLGs) and three 

RBA-500 Resonating Beam Accelerometers, and low-cost Intel 87C196KC 

micro-processor 

b- Honeywell HG1900: a MEMS (Micro electrical Mechanical System) based 

IMU used for the same purposes as HG1700 and is somewhat less accurate. 

HG1900 uses MEMS gyros and RBA500 accelerometers, and it requires 

very low power 

2- AC/DC converter 

3- 12V Car Battery 

4- INS Cart: a 4-wheel cart can be pulled by hand or any vehicle 

5- Trimble NETRS GPS receiver 

6- Trimble Zephyr Geodetic II GPS antenna 

7- Laptop Computer, including a PCMCI card connecting the IMUs and the decoding 

software 

Table 5.1. The detailed equipment list of the Cart Based Geolocation System 

 

 

 

The original Honeywell hardware system of the IMUs requires an ISA card which cannot 

be installed on the modern desktop computers, and, of course, the laptop computers. 

Moreover, the software provided by Honeywell can only be executed on Ms DOS 

operating system and it is only possible to record 100,000 rows of data, which is equal to 

16.7m of data with 100Hz. In order to overcome the limitations of the hardware and 

software systems, a PCMCI card is included in the system and a C++ based data 

recording software was developed by Jong Ki Lee, researcher in The Geodetic Science 

division of OSU, which can operate on Windows XP and can record unlimited amount of 

IMU data. These new software and hardware systems enable the use of a laptop computer 

for the cart-based geolocation system, which decreases the volume and weight of the 

system as well as the power consumption. 

The block diagrams of the original Honeywell and the new hardware systems are given 

below (Lee, 2009). 

 

 

 

 



52 

 

 

 

 

 

 

 

 

 

 

 

 

5.2 Performance Test Scenario 

Initially 20 minutes of warming up time preceded the measurements. 26 different 5-

minute long static IMU attitude measurements were collected for estimation of the IMU 

bias, scale factor error and non-orthogonality errors. The IMU attitudes included each 

face down (6 attitudes), each edge down (12 attitudes) and each, corner down (8 

attitudes). Then, the IMU box was installed on the cart together with the GPS receiver 

and the remaining instruments, producing the cart based geolocation system. The GPS 

measurement and positioning intervals were set equal to 0.1 second. Moreover, another 

GPS receiver, the base station, was installed at a local control point and its measurement 

interval was set to 0.1 second. After that, the INS cart was pulled by hand about 25 

minutes with a walking speed, and a sweep like trajectory (see Figure 5.2) was followed 

among the parking space lines. The trajectory included 25 straight sections and 25 very 

short and sharp curved sections. 

 

 

Power 

Run-box 

HG1700 

HG1900 

ISA 

Computer 

(Desktop) 
Power 

Run-box 

HG1700 

HG1900 

PCMCI 

Computer 

(Laptop) 

Inverter 

Figure 5.2. The block diagram of the Honeywell hardware system (left) and the 

new hardware system (right) 
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Figure 5.3. GPS trajectory map of the field IMU calibration test 

 

 

 

5.3 Calibration Estimates 

The HG1900 and HG1700 deterministic errors were calculated as explained in Section 3, 

and the gyroscope and accelerometer error estimates are presented in this section. Since 

measurements for 9 IMU attitudes are enough to estimate 9 unknowns (3 biases, 3 scale 

factor errors and 3 non-orthogonality errors, which are for inertial sensors on the x, y and 

z axes), and 26 IMU attitudes were done in the field prior the kinematic survey, 4 

scenarios were considered to analyze the estimation. In Scenario 1, all 26 IMU attitudes 

are used, while the first 18 and the first 10 attitudes were used in Scenario 2 and Scenario 

3, respectively. Finally, because there were 16 attitude measurements (they took about 80 

minutes) remaining after the first 10 attitudes, the last 10 attitude data were included in 

Scenario 4 in order to see if the calibration estimates are reliable for IMU measurements 

after a long break. Moreover, in order to analyze the required time length (t) for the IMU 

attitude measurements, the IMU deterministic errors are estimated for t=1minute, 

t=3minutes and t=5minutes for each IMU attitude. Section 5.3.1 includes the error 

estimates for gyroscope, and the accelerometer error estimates are presented in Section 

5.3.2 for the HG1700 and HG1900. 
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5.3.1 Gyroscope Error Estimates 

As it was claimed by Shin (2002) and Syed et al (2007) and also experienced in Section 4 

with a simulation study, gyroscope scale factor errors and non-orthogonality errors were 

expected to be very large (unestimable) unless the reference rotation rate is increased. 

However, in order to analyze the effects of using or not using the very large estimated 

scale factor errors and non-orthogonality errors, the gyroscope errors of the HG1700 and 

HG1900 are calculated by using the 3-parameter (bias-only) and 9-parameter (including 

all 9 errors) solutions. 

Parallel to the results in the simulation study (Chapter 4.4.1), the 3-parameter solution 

provided more accurate gyroscope bias estimations than the 9-parameter solution based 

on the standard deviations. However, the 9-parameter solution estimated more accurate 

gyro biases for the HG1700 when Scenarios 2, 3 and 4 with t=1 minute were used, and 

for HG1900 results when Scenario 3 was used. Within the 3-parameter solution results, 

Scenario 3 and t=5 minutes for the HG1700, and Scenario 1 and t=1 minute for the 

HG1900 provided the most accurate gyroscope bias estimations. When the 9-parameter 

solution was used, Scenario 3 yielded the most accurate gyroscope bias estimations when 

t=5 minutes for HG1700 and t=3 minutes for HG1900 for the 9 gyroscope errors. 

Moreover, HG1700 bias estimates had smaller standard deviations than the HG1900 

results for both 3-parameter and 9-parameter solutions. 

As a result, it can be said that Scenario 3 provided the best gyroscope bias estimates 

among the scenarios according to the standard deviations even though there is not a 

consistent relationship (e.g. accuracy increase or decrease due to the increase in used 

attitude numbers or attitude data recording times) among the scenarios.  

Gyroscope bias estimates of Scenario 3 for the 3-parameter and 9-parameter solutions are 

presented on the tables below. The results of the remaining 3 scenarios are presented in 

Appendix A. 

 

 

 

Scenario 3: 

10 attitudes 

t = 1m t = 3m t = 5m 

Estimates σ Estimates σ Estimates σ 

B
ia

s 
 (

ra
d

/s
) 

H
G

1
7

0
0
 bωx  2.46E-06 8.79E-07 2.20E-06 8.55E-07 2.43E-06 6.73E-07 

bωy -1.64E-07 8.56E-07 -1.82E-06 8.28E-07 -2.35E-06 6.53E-07 

bωz  -8.81E-07 8.55E-07 -1.64E-06 7.99E-07 -8.47E-07 6.26E-07 

H
G

1
9

0
0
 bωx  -5.97E-06 2.38E-06 -7.08E-06 2.67E-06 -7.39E-06 2.93E-06 

bωy  1.42E-05 2.30E-06 1.33E-05 2.67E-06 1.21E-05 2.98E-06 

bωz 9.22E-06 2.10E-06 7.93E-06 2.37E-06 7.58E-06 2.63E-06 

Table 5.2. 3-parameter solution gyroscopes error estimates of the HG1700 and HG1900 

for Scenario 3 
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Scenario 3: 

10 attitudes 

t = 1m t = 3m t = 5m 

Estimates σ Estimates σ Estimates σ 

H
G

1
7

0
0
 

B
ia

s 
 

(r
ad

/s
) 

bωx  1.36E-07 6.62E-07 2.77E-06 2.66E-06 3.24E-06 5.30E-07 

bωy 1.36E-06 5.92E-07 -2.00E-06 2.58E-06 -2.55E-06 5.49E-07 

bωz  -2.51E-06 5.98E-07 -1.23E-06 1.95E-06 -7.29E-07 4.06E-07 
S

ca
le

 F
ac

. 

(p
p

m
) 

sωx  12696.07 11553.97 7194.42 57380.27 -6802.27 11414.08 

sωy 18284.77 10245.42 35019.72 58329.83 46239.64 12536.48 

sωz 29051.21 13881.55 -32018.05 54786.06 -26618.01 11095.15 

N
o

n
-o

rt
h
. 

(µ
ra

d
) 

θωyz 88220.60 15475.40 -33982.95 74133.32 -43530.31 15316.33 

θωzx  16548.94 13482.97 -17138.50 62597.35 -15627.59 13048.52 

θωzy 53794.20 15419.74 -30793.73 58939.16 -15564.28 12073.05 

H
G

1
9

0
0
 

B
ia

s 
 

(r
ad

/s
) 

bωx  -6.08E-06 1.27E-06 -7.06E-06 7.49E-07 -6.58E-06 1.33E-06 

bωy 1.36E-05 2.24E-06 1.26E-05 1.54E-06 9.21E-06 3.43E-06 

bωz  6.43E-06 1.20E-06 4.23E-06 7.85E-07 3.63E-06 1.58E-06 

S
ca

le
 F

ac
. 

(p
p

m
) 

sωx  -76769.15 26086.60 -94917.32 15041.21 -116474.58 27473.59 

sωy 178213.85 42989.82 191292.65 27625.32 225146.73 60942.90 

sωz 3511.57 28535.36 49431.94 19360.79 50519.87 38204.54 

N
o

n
-o

rt
h
. 

(µ
ra

d
) 

θωyz 70402.10 40113.45 75893.20 25119.70 30569.96 49964.45 

θωzx  -2464.51 46613.04 -7034.14 30193.64 -32440.85 63659.29 

θωzy 77572.88 37921.54 81540.91 22666.41 56813.74 41710.64 

Table 5.3. 9-parameter solution gyroscope error estimates of the HG1700 and HG1900 

for Scenario 3 

 

 

 

5.3.2 Accelerometer Error Estimates 

Because the accelerometer errors can be estimated by the Multi-Position Calibration 

Method, the accelerometer deterministic errors are calculated by using only the 9-

parameter solution. Scenario 3 and t=3minutes again provided the smallest standard 

deviations and therefore the most precise estimations. Moreover, the HG1700 results 

were slightly more accurate than the HG1900 results in calculating most of the error 

parameters. The 9-parameter accelerometer error estimates of Scenario 3 are given in the 

table below. The remaining results are presented in Appendix B. 
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9-Parameter  

Solution 

t = 1m t = 3m t = 5m 

Estimates σ Estimates σ Estimates σ 

H
G

1
7

0
0
 

B
ia

s 

(m
/s

2
) 

bgx  4.62E-03 1.87E-04 4.92E-03 5.08E-05 4.86E-03 2.38E-04 

bgy 1.94E-03 2.18E-04 -1.17E-04 5.97E-05 -4.34E-04 2.81E-04 

bgz 5.13E-03 1.96E-04 4.23E-03 5.35E-05 3.82E-03 2.51E-04 
S

ca
le

 F
ac

. 
 

(p
p

m
) 

sgx  -107.34 19.38 -130.33 5.26 -120.80 24.64 

sgy 824.25 50.50 344.45 9.93 291.50 45.21 

sgz 418.88 38.67 145.73 7.09 110.90 32.03 

N
o

n
-o

rt
h
. 

(µ
ra

d
) 

θgyz  1108.02 53.12 279.48 14.63 196.95 68.74 

θgzx 18873.33 1275.41 6637.68 346.20 5542.92 1628.29 

θgzy -1127.91 94.80 -443.23 26.06 -296.92 122.52 

H
G

1
9

0
0
 

B
ia

s 

(m
/s

2
) 

bgx -4.80E-03 7.73E-05 -4.67E-03 5.41E-05 -4.50E-03 1.72E-04 

bgy -4.20E-03 9.41E-05 -4.11E-03 6.61E-05 -3.84E-03 2.11E-04 

bgz 1.77E-03 8.34E-05 1.81E-03 5.85E-05 1.81E-03 1.86E-04 

S
ca

le
 F

ac
. 

 

(p
p

m
) 

sgx -51.64 8.04 -60.37 5.63 -71.34 17.92 

sgy 39.87 20.98 58.36 15.06 112.58 51.06 

sgz 182.05 10.15 175.54 6.92 158.18 20.36 

N
o

n
-o

rt
h
. 

(µ
ra

d
) 

θgyz -39.78 24.26 -36.60 16.96 15.26 53.67 

θgzx -2713.96 626.10 -1960.96 440.56 187.88 1411.44 

θgzy 305.94 45.13 254.70 31.71 106.06 101.20 

Table 5.4. 9-parameter solution accelerometer error estimates of the HG1700 and 

HG1900 for Scenario 3 

 

 

 

5.4 Positioning Accuracy Analyses 

Effects of the estimated IMU error parameters on positioning accuracy were analyzed in 

this section. Each scenario result was used in estimating the positioning accuracy when 

there were 2s GPS signal outages. The estimated gyroscope and accelerometer errors for 

the defined scenarios were used as initial estimates in a 27 state Extended Kalman Filter 

(EKF), developed by Lee (2009). Moreover, standard deviations of the initial IMU states 

were taken from the least-squares solution (equation 3.36). Positioning errors and their 

accuracies were determined by comparing the estimated trajectory during GPS outages 

and the true GPS trajectory. Since the INS and GPS times were synchronized, every 

unused (not employed for the EKF) GPS position which was obtained during the GPS 

signal outage time (Figure 5.4) was compared with the corresponding INS position. In 
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addition, because the curved sections are very short, very sharp and the motion is very 

slow (walking speed), the accuracy estimations were not separated as curved and straight 

sections and the navigation data was processed as a whole. 

The position error vector is obtained by 

 

),,( hyx ZZZZ         (5.1) 

 

where yx,  are the horizontal coordinates and h  is the height, and 

 

     GPSINShGPSINSyGPSINSx hhZyyZxxZ   ,,   (5.2) 

 

The standard deviation of the positioning error (
Z ) is computed by 
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      (5.4) 

 

here jZ is the mean positioning error value for hyxj  and, , and n is the total number 

of GPS outages. 
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Figure 5.4. INS positioning errors (Zi) during GPS outages (t) 
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In Figure 5.4 P0 is the initial position, Pi-INS and Pi-GPS are the positions estimated by INS 

and GPS where i=1:n) 

The positioning errors and the standard deviations of the scenarios defined in Chapter 5.3 

are presented in Table 5.5 and Table 5.6 for HG1700 and HG1900, respectively.  

 

 

 

Original 
Z  = 0.01618 m 

Z  = 0.27299 m 

Scenario Solution Type minute 1t  minutes 3t  minutes 5t  

 
Gyro Accel. Z (m) Z  (m) Z  (m) Z  (m) Z  (m) Z  (m) 

Scenario 1 
3-par. 9-par. 0.01651 0.28071 0.01671 0.27206 0.01673 0.27218 

9-par. 9-par. 0.01520 0.24951 0.01607 0.23444 0.01589 0.23010 

Scenario 2 
3-par. 9-par. 0.01635 0.27577 0.01663 0.27121 0.01670 0.27098 

9-par. 9-par. 0.01585 0.24183 0.01615 0.28239 0.01629 0.24644 

Scenario 3 
3-par. 9-par. 0.01633 0.26955 0.01710 0.27249 0.01663 0.27226 

9-par. 9-par. 0.01595 0.24425 0.01572 0.24107 0.01642 0.26042 

Scenario 4 
3-par. 9-par. 0.01584 0.29263 0.01634 0.27848 0.01643 0.27798 

9-par. 9-par. 0.01520 0.22062 0.01532 0.22819 0.01532 0.22569 

Table 5.5. Mean positioning errors and standard deviations of the defined scenarios for 

HG1700 

 

 

 

Here, t is the attitude data length (in minutes), Z  is the mean position error and 
Z  is the 

standard deviation of the position error (e.g. equation 5.3). The given values for the 

Original case (Table 5.5) are obtained by using 0 (zeros) for the initial IMU error states 

and the corresponding factory defined standard deviations (Table 2.1) in the EKF. In 

addition, for the cases that the 3-parameter solution values were used in the initial states, 

again the remaining scale factor error and non-orthogonality error values were set to 0 

and their standard deviations were obtained from Table 2.1. 

The standard deviation estimates of the position error showed that the most accurate 

results were obtained for Scenario 4 when the 9-parameter solution was used for the 

gyroscopes and for t=1minute, which improved the estimation accuracy by 19%. 

However, the worst result was acquired again with Scenario 4 and the 3-parameter 

solution with t=1 minute, which decreased the accuracy by 7%. The estimates have 

shown that the 9-parameter solution performed better than the 3-parameter solution even 

though the scale factor error and non-orthogonality error estimates were quite large.  
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Original 
Z  = 0.00071 m 

Z  = 0.26772 m 

Scenario Solution Type minute 1t  minutes 3t  minutes 5t  

 
Gyro Accel. Z (m) Z  (m) Z  (m) Z  (m) Z  (m) Z  (m) 

Scenario 1 
3-par. 9-par. 0.01817 0.25741 0.01817 0.25742 0.01817 0.25742 

9-par. 9-par. 0.01825 0.25670 0.01827 0.25648 0.01828 0.25644 

Scenario 2 
3-par. 9-par. 0.01815 0.25740 0.01815 0.25741 0.01816 0.25741 

9-par. 9-par. 0.01826 0.25652 0.01837 0.25620 0.01839 0.25620 

Scenario 3 
3-par. 9-par. 0.01817 0.25744 0.01818 0.25745 0.01816 0.25740 

9-par. 9-par. 0.01825 0.25692 0.01824 0.25691 0.01826 0.25666 

Scenario 4 
3-par. 9-par. 0.01821 0.25727 0.01821 0.25726 0.01823 0.25729 

9-par. 9-par. 21.72845 31.48215 0.01861 0.25578 0.01848 0.25734 

Table 5.6. Mean positioning errors and standard deviations of the defined scenarios for 

HG1900 

 

 

 

Except for Scenario 4, the positioning error estimations acquired were analogues for the 

HG1900. The results were very similar to each other within the cases when the 3-

parameter solution and 9-parameter solution were used for gyroscope calibration. 

However, again the most and least accurate results were obtained in Scenario 4 for t=2 

minutes (standard deviation increased by 4.5%) and t=1 minute, respectively. The EKF is 

very sensitive to the initial parameters included in the system. Therefore, because very 

large scale factor values were obtained in Scenario 4 for t= 1 minute, the estimated 

positioning error and its standard deviation for this case was larger than the remaining 

estimations by about 31.2m. The cause of this exceptional situation is unknown. 

The following 2 figures demonstrates the standard deviations of the position estimations 

for 2s GPS signal outages for the HG1700 and HG1900. 
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Figure 5.5. Positioning error standard deviations of the calibration scenarios for HG1700 

 

 

 

 
Figure 5.6. Positioning error standard deviations of the calibration scenarios for HG1900 

 

 

 

By looking at the results above, it is not possible to decide which scenario must be used 

because there was no consistent increase or decrease in accuracies among the scenarios 

although each of them includes different amount and type of IMU attitude measurements. 

On the other hand, it can be concluded that Scenario 3, with 10 IMU attitude 

measurements, the 9-parameter solution and t=3minutes (3 minutes of data for each 

attitude) can be chosen as a decent solution. The results have already shown that using 

0.2

0.22

0.24

0.26

0.28

0.3

original Scenario 1 Scenario 2 Scenario 3 Scenario 4

Gyro:3-par.,t=1m

Gyro:3-par.,t=3m

Gyro:3-par.,t=5m

Gyro:9-par.,t=1m

Gyro:9-par.,t=3m

Gyro:9-par.,t=5m

0.28 

0.22

0.24

0.26

0.28

original Scenario 1 Scenario 2 Scenario 3 Scenario 4

Gyro:3-par.,t=1m

Gyro:3-par.,t=3m

Gyro:3-par.,t=5m

Gyro:9-par.,t=1m

Gyro:9-par.,t=3m

Gyro:9-par.,t=5m



61 

 

more attitude data with longer recording times do not improve the positioning accuracy 

significantly. Moreover, the 9-parameter solution mostly provided more accurate results 

than the 3-parameter solution although the scale factor error and non-orthogonality 

results are very large and unrealistic values.  

Finally, in most of the cases, the HG1700 performs slightly better than the HG1900 when 

the 9-parameter solution was used (for the gyroscopes) while it is the opposite if the 3-

parameter solution was used. Even though the HG1700 is a slightly higher grade IMU 

than HG1900, HG1900 provided consistent improvement in estimating the position for 

both 3-parameter and 9-parameter solutions, where the latter provides more accurate 

results. 

Different variations of Scenario 3 (with t=3 minutes) were also tested for longer GPS 

signal outages, and the results are presented in the table below. Meanwhile, the factory 

defined standard deviations were again used for the Original case while the error 

parameters were equal to 0, which can be considered as no calibration. In Scenario 3.0, it 

was aimed to test the accuracy of calibrating the IMU data only for the accelerometer 

errors. Therefore, the chosen gyroscope error parameters were equal to the Original case 

error parameters. Scenario 3.3 included the 3-parameter solution for the gyroscope error 

estimates while the 9-parameter solution for the gyroscope errors was used in Scenario 

3.9. Moreover, for these 3 sub-scenarios, the accelerometer error estimates were obtained 

from the 9- parameter solution results of Scenario 3.  

 

 

IMU GPS gap Parameter Original Scenario 3.0 Scenario 3.3 Scenario 3.9 

HG1700 

2s 
Z (m) 0.0162 0.0167 0.0168 0.0157 

Z (m) 0.2730 0.2723 0.2749 0.2411 

10s 
Z (m) 0.1098 0.1318 0.1318 0.1673 

Z (m) 2.9097 2.7409 2.7400 2.8066 

30s 
Z (m) 1.8914 2.2924 2.2906 2.6714 

Z (m) 16.2178 14.8938 14.8698 15.5484 

60s 
Z (m) 26.7914 24.0717 23.9707 28.4346 

Z (m) 183.4135 147.1561 147.8637 178.1520 

HG1900 

2s 
Z (m) 0.0007 0.0182 0.0182 0.0182 

Z (m) 0.2677 0.2572 0.2574 0.2569 

10s 
Z (m) 0.1978 0.1989 0.1993 0.2439 

Z (m) 6.7849 6.8077 6.8291 6.8420 

30s 
Z (m) 2.1299 2.0695 2.0353 2.8572 

Z (m) 21.2205 23.0985 23.1007 24.6951 

60s 
Z (m) 17.9284 13.9221 13.7034 18.3633 

Z (m) 92.3565 76.5114 75.9497 83.7324 

Table 5.7. Mean position errors ( Z ) and standard deviations ( Z ) for different variations 

of Scenario 3 with t=3 minutes, (for HG1700 and HG1900) 
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For the HG1700, although the gyroscope estimates obtained by the 9-parameter solution 

(3.9) usually provided more accurate positioning results for 2s GPS outages, using 3-

parameter solution gyroscope estimates (Scenario 3.3) or calibrating the data for only the 

accelerometer errors (Scenario 3.0) performed significantly better for the longer GPS 

outages. Moreover, the accuracy of Scenarios 3.3 were slightly better than Scenario 3.0 

for 10s (by 0.03%) and 30s (by 0.15%) outages while Scenario 3.0 performed 0.39% 

better for the results of the 60s outage.  

Similar to the HG1700, the HG1900 provided its most precise positioning estimates by 

Scenario 3.9 for 2s GPS outage. However, Scenario 3.3 yielded the best standard 

deviation estimates for the 60s outage. In addition, for the 10s and 30s outages, 

calibrating with the factory given standard deviations (Original) produced the most 

precise estimates. Finally, HG1900 provided more accurate estimates for 10s and 30s 

GPS outages, while it was opposite for the remaining outages. The following 2 figures 

present the positioning error standard deviations of Scenario 3 with the defined sub-

scenarios. 

 

 

 
 

 
 

  

Figure 5.7. HG1700 Positioning error standard deviations of Scenario 3 with the defined 

sub-scenarios, due to the GPS outages 
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Figure 5.8. HG1900 Positioning error standard deviations of Scenario 3 with the defined 

sub-scenarios, due to the GPS outages 

 

 

 

5.5 Summary 

In this chapter, performance analyses of the Multi-Position Calibration Method were 

studied for the tactical grade IMUs, HG1700 and HG1900. The IMUs and a GPS receiver 

were installed on a cart together with the GPS antenna and the remaining instruments (see 

Figure 5.1). Then a field navigation test was conducted in the parking lot of OSU after 

performing relevant calibration measurements. The IMU error estimates showed that it is 

possible to obtain good estimates for all 9 accelerometer errors. However, very large 

gyroscope scale factor error and non-orthogonality error values were obtained as 

expected based on the studies of Shin (2002) and Syed et al. (2007), and also the 

simulation study (Chapter 4.4.1). On the other hand, the positioning accuracy estimates 

showed that using the 9-parameter gyro error estimates, even though they were very 

large, provided more accurate results than the 3-parameter solution for both of the IMUs.  
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For the 2s GPS outages, the HG1700 usually performed better than the HG1900 in terms 

of the positioning accuracies of calibrating the IMU data for the 9-parameter gyroscope 

solution error estimates. However, the HG1900 results were consistent, and thought to be 

more reliable. It has been experienced that using 10 IMU attitudes (Scenarios 3 and 4) 

and t=3minutes for each attitude should be enough because an increase in the used 

attitude numbers and the attitude data recording time did not provide a significant 

increase in positioning accuracies. Moreover, spending more time before starting the 

navigation mission is not desired unless it yields considerable improvement to the 

navigation estimations. Therefore, Scenario 3 was selected for the later tests where longer 

GPS outages were examined. Unlike the 2s outage estimates, the 9-parameter gyro 

estimates provided the worst positioning estimates for the longer GPS outages (10s, 30s 

and 60s). Therefore, it might be concluded that for short outages, using 9-parameter 

gyroscope error estimates can significantly contribute to the positioning accuracy while 

using the 3-parameter solution gyroscope estimates or calibrating the IMU data only for 

the accelerometer errors will provide more accurate results for longer outages for both of 

the IMUs. 
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Chapter 6: Conclusion 

 

This study attempted to test the performance of the Multi-Position Calibration Method on 

the tactical grade IMUs. First, a simulation study was performed by the author by 

producing gyroscope and accelerometer data sets for all possible 26 IMU attitudes. The 

IMU errors were estimated by using the simulation data and the results were presented in 

Chapter 4. Then, in order to see the actual performance of the calibration method a cart 

based geolocation system was employed for this purpose and a field navigation test was 

conducted in the parking lot of OSU after collecting 26 IMU attitude data for the 

calibration estimations. The INS and GPS data were processed by an EKF developed in 

Lee (2009). 

The simulation study has proven that all 9 accelerometer errors can be estimated with a 

nominal reference gravity value. 9 or more IMU attitude measurements will be enough 

for this. However, only the gyroscope bias can reasonably be obtained unless the 

reference rotation rate, the Earth rotation rate, is increased by about 10
4
.  

The field test has shown consistent results with both the simulation study and studies of 

Shin (2002) and Syed et al. (2007) in terms of IMU error estimations. The 9 

accelerometer errors (biases, scale factor errors and non-orthogonality errors) and only 

gyroscope biases were reasonably estimated with the current reference signals. The 

remaining gyroscope error estimates were very large and unrealistic. Among the 2 

tactical grade IMUs, the HG1700 usually performed better than the HG1900 as expected, 

because of HG1700 being a slightly higher grade IMU. However, the HG1900 estimates 

were more consistent in estimating the IMU errors with an the increase in attitude 

numbers and attitude data lengths. 

Based on the estimation accuracies, it can be concluded that 10 3-minute-long IMU 

measurements should be enough for the calibration purpose. Longer and more attitude 

measurements might improve the positioning accuracy, but the study has shown that it 

did not provide a significant contribution. However, use of non-orthogonality errors that 

are obtained from the previous calibration studies can decrease the required attitude 

number to 6 (if the same IMU is used) because these errors do not change with every 

turn-on and off of the IMUs. 

The positioning accuracy estimates have shown that except for the 2s GPS outages, 

calibrating the IMU data for the estimated gyroscope errors did not improve the 

positioning accuracy significantly. For 2s outages, calibrating the IMU data with the 9-

parameter solution gyroscope error estimates provided the most accurate positions. 

However, for longer GPS outages, it is not possible to decide on an optimum way to 

calibrate the IMU data. However, together with calibrating the IMU data for 9-parameter 

solution accelerometer errors, it was experienced that calibrating the IMU data with the 

3-parameter solution gyroscope error estimates or the factory given gyroscope parameters 

provided more accurate results than calibrating the data using the 9-parameter solution 

gyroscope error estimates. 
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For accurate positioning with INS, the gyroscope scale factor and non-orthogonality 

errors must be determined precisely. For this purpose, a turntable can be used to increase 

the reference rotation rate, e.g. the Modified Multi-Position Calibration Method (Syed et 

al., 2007), and one if the stochastic models, e.g Allan Variance (Aggarwal et al., 2008) 

and wavelet de-noising (Nassar and El-Sheimy, 2005) can be used. 
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Appendix A: Gyroscope Deterministic Error Estimations 
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Scenario 1: 

26 attitudes 

t = 1minute  t = 3minutes t = 5minutes 

Estimates σ Estimates σ Estimates σ 

B
ia

s 
 (

ra
d

/s
) 

H
G

1
7

0
0
 bωx  6.00E-06 2.31E-06 3.57E-06 1.22E-06 4.61E-06 1.44E-06 

bωy -2.92E-06 2.30E-06 -1.75E-06 1.21E-06 -2.83E-06 1.42E-06 

bωz  -3.34E-06 1.99E-06 1.12E-07 1.06E-06 1.23E-07 1.23E-06 
H

G
1

9
0

0
 bωx  -3.05E-06 1.77E-06 -3.02E-06 2.29E-06 -2.15E-06 2.47E-06 

bωy  1.29E-05 1.80E-06 1.38E-05 2.32E-06 1.27E-05 2.52E-06 

bωz 1.32E-05 1.61E-06 1.38E-05 2.05E-06 1.39E-05 2.19E-06 

Table A.1. 3-parameter solution gyroscope error estimates of the HG1700 and HG1900 

for Scenario 1 

 
 
 

Scenario 1: 

26 attitudes 

t = 1minute  t = 3minutes t = 5minutes 

Estimates σ Estimates σ Estimates σ 

H
G

1
7

0
0
 

B
ia

s 
 

(r
ad

/s
) 

bωx  3.12E-06 3.46E-06 2.68E-06 1.72E-06 3.30E-06 2.09E-06 

bωy -1.19E-06 2.25E-06 -1.09E-06 1.55E-06 -1.73E-06 1.85E-06 

bωz  -2.53E-06 2.52E-06 -7.36E-08 1.34E-06 1.68E-07 1.54E-06 

S
ca

le
 F

ac
. 

(p
p

m
) sωx  151588.13 91281.72 31234.80 40250.16 46403.94 50490.55 

sωy -70816.33 49915.25 -11340.98 33990.76 -4641.01 40368.77 

sωz 73639.86 51540.41 20757.98 27410.23 6861.07 30942.31 

N
o

n
-o

rt
h
. 

(µ
ra

d
) 

θωyz 68800.65 70441.37 15443.10 43445.64 31594.46 51605.53 

θωzx  -8153.25 56304.02 17357.42 35618.85 20540.38 41958.56 

θωzy -137854.18 70499.00 -792.32 38491.11 3300.88 45584.23 

H
G

1
9

0
0
 

B
ia

s 
 

(r
ad

/s
) 

bωx  -3.81E-06 2.06E-06 -3.61E-06 2.46E-06 -3.06E-06 2.81E-06 

bωy 1.33E-05 2.18E-06 1.40E-05 2.60E-06 1.32E-05 2.87E-06 

bωz  1.26E-05 1.82E-06 1.27E-05 2.38E-06 1.29E-05 2.59E-06 

S
ca

le
 F

ac
. 

(p
p

m
) 

sωx  -384.12 47872.79 -26071.13 55029.64 -14575.18 63693.76 

sωy 26674.33 50595.14 1418.93 58634.18 -6911.75 63725.03 

sωz 17018.44 35945.82 72046.34 47388.70 67565.05 51617.42 

N
o

n
-o

rt
h
. 

(µ
ra

d
) 

θωyz 20956.14 56084.43 40622.36 69566.33 55085.88 77418.75 

θωzx  -14237.39 56418.50 -21227.53 68211.42 -3340.57 75021.34 

θωzy 64462.97 58938.76 78134.27 70602.18 73005.73 77451.32 

Table A.2. 9-parameter solution gyroscope error estimates of the HG1700 and HG1900 

for Scenario 1 
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Scenario 2: 

18 attitudes 

t = 1minute  t = 3minutes t = 5minutes 

Estimates σ Estimates σ Estimates σ 

B
ia

s 
 (

ra
d

/s
) 

H
G

1
7

0
0
 bωx  1.84E-06 1.17E-06 2.57E-06 1.61E-06 2.26E-06 1.47E-06 

bωy -3.18E-07 1.13E-06 -8.77E-07 1.52E-06 -1.34E-06 1.39E-06 

bωz  -4.40E-07 9.98E-07 1.08E-06 1.34E-06 1.27E-06 1.22E-06 
H

G
1

9
0

0
 bωx  -2.45E-06 2.18E-06 -2.50E-06 3.29E-06 -3.25E-06 3.38E-06 

bωy  1.24E-05 2.12E-06 1.27E-05 3.20E-06 1.16E-05 3.32E-06 

bωz 1.27E-05 1.85E-06 1.36E-05 2.75E-06 1.32E-05 2.82E-06 

Table A.3. 3-parameter solution gyroscope error estimates of the HG1700 and HG1900 

for Scenario 2 

 
 

Scenario 2: 

18 attitudes 

t = 1minute  t = 3minutes t = 5minutes 

Estimates σ Estimates σ Estimates σ 

H
G

1
7

0
0
 

B
ia

s 
 

(r
ad

/s
) 

bωx  1.06E-07 8.27E-07 2.30E-06 1.88E-06 1.89E-06 1.72E-06 

bωy 9.61E-07 8.41E-07 -1.38E-06 1.89E-06 -1.76E-06 1.73E-06 

bωz  -1.19E-06 6.87E-07 -3.59E-07 1.90E-06 -7.81E-08 1.68E-06 

S
ca

le
 F

ac
. 

(p
p

m
) 

sωx  23415.90 22729.18 -7434.72 53418.82 -4120.09 49308.02 

sωy 7805.72 18576.47 -11017.17 43563.63 -5427.93 39757.47 

sωz 20795.70 15198.69 61875.68 41646.15 51582.20 36439.91 

N
o

n
-o

rt
h
. 

(µ
ra

d
) 

θωyz 74107.57 21208.71 -10315.82 51206.11 -10278.80 46451.98 

θωzx  14318.25 20389.63 -17065.05 49389.85 -12987.98 44385.99 

θωzy 55057.72 20085.33 19985.82 53008.66 27751.40 47537.60 

H
G

1
9

0
0
 

B
ia

s 
 

(r
ad

/s
) 

bωx  -3.39E-06 1.89E-06 -3.60E-06 2.40E-06 -4.02E-06 2.40E-06 

bωy 1.08E-05 3.11E-06 9.86E-06 4.54E-06 7.99E-06 4.90E-06 

bωz  1.10E-05 2.32E-06 9.61E-06 4.10E-06 8.15E-06 4.54E-06 

S
ca

le
 F

ac
. 

(p
p

m
) 

sωx  -86310.47 50540.68 -115397.89 60573.89 -122281.04 59480.34 

sωy 114603.73 70625.94 109225.84 98015.48 113521.00 100261.79 

sωz 47965.72 48440.72 168799.40 89136.59 184656.04 96069.95 

N
o

n
-o

rt
h
. 

(µ
ra

d
) 

θωyz 48423.30 62283.94 60290.58 84801.68 48178.77 87013.46 

θωzx  -80403.75 79787.83 -156284.05 119476.68 -157727.12 124127.98 

θωzy 91407.23 65398.04 135732.86 85133.61 142035.43 84410.47 

Table A.4. 9-parameter solution gyroscope error estimates of the HG1700 and HG1900 

for Scenario 2 
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Scenario 4: 

Last 10 attitudes 

t = 1minute  t = 3minutes t = 5minutes 

Estimates σ Estimates σ Estimates σ 

B
ia

s 
 (

ra
d

/s
) 

H
G

1
7

0
0
 bωx  1.38E-05 4.43E-06 5.79E-06 1.37E-06 9.02E-06 2.04E-06 

bωy -7.10E-06 4.74E-06 -2.44E-06 1.45E-06 -5.13E-06 2.10E-06 

bωz  -8.82E-06 4.05E-06 -2.03E-06 1.33E-06 -2.43E-06 1.90E-06 
H

G
1

9
0

0
 bωx  -3.84E-06 3.08E-06 -3.27E-06 2.46E-06 -6.82E-07 3.20E-06 

bωy  1.35E-05 3.22E-06 1.59E-05 2.49E-06 1.37E-05 3.22E-06 

bωz 1.45E-05 3.35E-06 1.39E-05 2.64E-06 1.49E-05 3.31E-06 

Table A.5. 3-parameter solution gyroscope error estimates of the HG1700 and HG1900 

for Scenario 4 

 
 

Scenario 4: 

t = 1minute  t = 3minutes t = 5minutes 

Estimates σ Estimates σ Estimates σ 

H
G

1
7

0
0
 

B
ia

s 

(r
ad

/s
) 

bωx 7.38E-06 4.18E-06 3.06E-06 4.08E-06 6.75E-06 2.87E-06 

bωy -7.14E-07 1.77E-06 -6.15E-07 3.54E-06 -4.19E-06 2.37E-06 

bωz -7.03E-06 3.49E-06 -3.01E-07 1.92E-06 1.79E-07 1.27E-06 

S
ca

le
 F

ac
. 

(p
p

m
) 

sωx 285657.03 67602.11 63714.45 54836.11 77802.06 40670.06 

sωy -55141.78 28561.37 56469.02 65158.08 68806.32 46977.00 

sωz 275992.08 78622.51 -65465.49 35556.50 -97401.07 21956.00 

N
o

n
-o

rt
h
. 

(µ
ra

d
) 

θωyz -15374.04 78801.22 86162.59 101247.38 99520.37 73642.71 

θωzx 116969.27 62626.11 -57254.64 75559.38 -123230.17 52949.37 

θωzy -402928.76 58031.96 16494.06 52393.64 28553.97 40699.47 

H
G

1
9

0
0
 

B
ia

s 

(r
ad

/s
) 

bωx -1.57E-04 8.02E-04 -5.50E-06 6.74E-06 -2.67E-05 3.96E-05 

bωy 1.96E-04 1.05E-03 1.64E-05 4.33E-06 4.10E-05 5.81E-05 

bωz 2.47E-05 4.87E-05 1.63E-05 2.60E-06 2.16E-05 7.73E-06 

S
ca

le
 F

ac
. 

(p
p

m
) 

sωx 2215121.62 11094977.31 117577.47 66593.74 424854.38 553295.22 

sωy 2770940.05 14880905.66 -11655.24 142047.34 -2641188.00 1172345.78 

sωz 199300.14 1795454.44 -104920.61 57383.11 -116854.00 112351.40 

N
o

n
-o

rt
h
. 

(µ
ra

d
) 

θωyz 889215.64 1513656.26 -7812.47 151703.57 -415399.79 491399.71 

θωzx  -527971.07 455632.16 -158267.36 165087.87 504809.13 321445.72 

θωzy 130048.59 852101.72 238484.16 121549.01 263015.51 214255.04 

Table A.6. 9-parameter solution gyroscope error estimates of the HG1700 and HG1900 

for Scenario 4 
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Appendix B: Accelerometer Deterministic Error Estimations 
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9-Parameter  

Solution 

t = 1minute  t = 3minutes t = 5minutes 

Estimates σ Estimates σ Estimates σ 

H
G

1
7

0
0
 

B
ia

s 

(m
/s

2
) 

bgx  3.91E-03 5.74E-04 4.24E-03 1.94E-04 4.32E-03 1.76E-04 

bgy -1.04E-03 5.40E-04 -1.06E-03 1.82E-04 -1.19E-03 1.66E-04 

bgz 3.53E-03 5.26E-04 3.62E-03 1.77E-04 3.53E-03 1.61E-04 
S

ca
le

 F
ac

. 
 

(p
p

m
) 

sgx  -176.26 78.58 -157.09 26.52 -138.70 24.14 

sgy 178.32 78.49 171.04 26.49 156.57 24.11 

sgz 75.02 77.47 70.80 26.15 73.18 23.80 

N
o

n
-o

rt
h
. 

(µ
ra

d
) 

θgyz  214.04 131.05 11.75 44.24 -35.96 40.26 

θgzx 107.77 112.40 90.42 37.94 92.65 34.53 

θgzy 157.09 121.20 74.72 40.91 37.72 37.23 

H
G

1
9

0
0
 

B
ia

s 

(m
/s

2
) 

bgx -3.29E-03 4.05E-04 -3.36E-03 3.52E-04 -3.36E-03 3.57E-04 

bgy -4.56E-03 3.82E-04 -4.41E-03 3.32E-04 -4.26E-03 3.37E-04 

bgz 1.75E-03 3.71E-04 1.85E-03 3.22E-04 1.93E-03 3.27E-04 

S
ca

le
 F

ac
. 

 

(p
p

m
) 

sgx 56.30 55.47 51.33 48.20 44.90 48.98 

sgy 89.91 55.61 92.93 48.33 86.00 49.09 

sgz 166.81 54.78 157.71 47.61 150.39 48.36 

N
o

n
-o

rt
h
. 

(µ
ra

d
) 

θgyz -40.26 92.60 -17.56 80.48 -1.67 81.76 

θgzx -146.52 79.55 -127.73 69.13 -103.48 70.23 

θgzy -124.25 85.51 -122.92 74.31 -130.49 75.50 

Table B.1. 9-parameter solution accelerometer error estimates of the HG1700 and 

HG1900 for Scenario 1 
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9-Parameter  

Solution 

t = 1minute  t = 3minutes t = 5minutes 

Estimates σ Estimates σ Estimates σ 

H
G

1
7

0
0
 

B
ia

s 

(m
/s

2
) 

bgx  4.18E-03 9.42E-04 4.58E-03 2.97E-04 4.69E-03 2.31E-04 

bgy -1.14E-03 7.89E-04 -1.17E-03 2.49E-04 -1.33E-03 1.93E-04 

bgz 3.58E-03 8.10E-04 3.67E-03 2.55E-04 3.60E-03 1.98E-04 
S

ca
le

 F
ac

. 
 

(p
p

m
) 

sgx  -197.11 113.37 -155.82 35.76 -125.88 27.77 

sgy 185.81 101.99 179.52 32.17 172.51 24.97 

sgz 59.22 102.62 55.80 32.38 60.22 25.14 

N
o

n
-o

rt
h
. 

(µ
ra

d
) 

θgyz  355.03 227.34 75.49 71.71 54.37 55.68 

θgzx 91.83 182.72 79.15 57.65 107.80 44.76 

θgzy 180.61 212.31 48.36 66.97 3.82 52.00 

H
G

1
9

0
0
 

B
ia

s 

(m
/s

2
) 

bgx -3.89E-03 3.89E-04 -3.89E-03 3.49E-04 -3.93E-03 3.36E-04 

bgy -4.55E-03 3.27E-04 -4.34E-03 2.94E-04 -4.13E-03 2.82E-04 

bgz 1.76E-03 3.34E-04 1.91E-03 3.00E-04 2.03E-03 2.88E-04 

S
ca

le
 F

ac
. 

 

(p
p

m
) 

sgx -36.94 46.79 -28.10 42.02 -39.79 40.41 

sgy 87.78 42.28 91.44 37.96 80.72 36.50 

sgz 205.83 42.39 188.17 38.06 178.35 36.60 

N
o

n
-o

rt
h
. 

(µ
ra

d
) 

θgyz -82.48 93.94 -37.16 84.36 -29.56 81.12 

θgzx -181.64 75.71 -142.20 67.99 -103.90 65.38 

θgzy -70.61 87.73 -80.17 78.77 -87.29 75.74 

Table B.2. 9-parameter solution accelerometer error estimates of the HG1700 and 

HG1900 for Scenario 2 
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9-Parameter  

Solution 

t = 1minute  t = 3minutes t = 5minutes 

Estimates σ Estimates σ Estimates σ 

H
G

1
7

0
0
 

B
ia

s 

(m
/s

2
) 

bgx  3.04E-03 8.87E-04 3.67E-03 2.35E-04 3.86E-03 1.06E-04 

bgy -2.35E-03 1.92E-03 -1.19E-03 5.08E-04 -9.28E-04 2.29E-04 

bgz 3.79E-03 9.20E-04 3.66E-03 2.44E-04 3.44E-03 1.10E-04 
S

ca
le

 F
ac

. 
 

(p
p

m
) 

sgx  -11.88 141.37 -105.86 37.47 -117.67 16.92 

sgy 799.12 945.39 181.55 250.14 5.12 112.73 

sgz -544.67 870.58 30.37 231.17 180.53 104.27 

N
o

n
-o

rt
h
. 

(µ
ra

d
) 

θgyz  9.13 161.61 -28.49 42.81 -85.67 19.34 

θgzx 207.65 151.20 97.74 40.08 54.37 18.09 

θgzy 79.35 157.18 72.96 41.70 40.18 18.84 

H
G

1
9

0
0
 

B
ia

s 

(m
/s

2
) 

bgx -3.18E-03 2.12E-04 -3.28E-03 2.06E-04 -3.26E-03 1.73E-04 

bgy -4.74E-03 4.58E-04 -4.93E-03 4.47E-04 -5.05E-03 3.74E-04 

bgz 1.72E-03 2.08E-04 1.85E-03 2.02E-04 1.95E-03 1.69E-04 

S
ca

le
 F

ac
. 

 

(p
p

m
) 

sgx 345.34 33.76 300.83 32.88 298.00 27.57 

sgy 315.80 224.16 398.97 218.35 506.46 183.01 

sgz -230.29 207.86 -281.68 202.37 -377.32 169.51 

N
o

n
-o

rt
h
. 

(µ
ra

d
) 

θgyz -135.31 38.71 -124.02 37.70 -118.22 31.62 

θgzx -58.01 29.56 -71.33 28.78 -61.18 24.12 

θgzy -160.75 37.03 -144.87 36.05 -146.69 30.23 

Table B.3. 9-parameter solution accelerometer error estimates of the HG1700 and 

HG1900 for Scenario 4 

 

 

 

 

 

 

 


