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Chapter 1
Prologue

Escherichia coli, originally known as Bacterium coli commune, was identified in 1885

by the German pediatrician, Theodor Escherich. They are Gram-negative, straight and

rod-shaped bacteria from the Enterobacteriaceae family (Figure 1.1 and Table 1.1).

Phylum: Proteobacteria
Class: Gamma Proteobacteria
Order: Enterobacteriales
Family: Enterobacteriaceae
Genus: Escherichia
Species: E. coli

Tab. 1.1: Taxonomy of Escherichia coli.

Fig. 1.1: Scanning electron microscopy image of E. coli.

Due to its rapid growth rate, simple nutritional requirements and established ge-

netic manipulation techniques, E.coli has become a model organism in the field of ba-

sic biomolecular sciences for understanding various biological phenomena. As a result,

well established information about E.coli ’s genetics and several completed genome se-

quences are available. Among them, the genome sequences of two closely related K-12

non-pathogenic strains, MG1655 and W3110 have been accurately determined [1, 2]. Re-

sequencing of PCR products of selected regions indicates that there are only eight true

insertion/deletion or base differences between the two strains in addition to the 13 sites

where differences are due to insertion sequences, defective prophages and two sites due to

the W3110 inversion between the ribosomal RNA genes rrnD and rrnE [3]. The rate of

nucleotide changes between both the strains is estimated to be relatively low with almost

identical genome structures [3, 4]. Hence the following important questions arise:
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• Is this high degree of similarity at the nucleotide level reflected in the

metabolic phenotype?

• Do sub-strains with almost identical genome structures exhibit similar

behaviour in cellular metabolism?

• How do global aspects of cell metabolism, protein synthesis and gene

expression differ among closely related sub-strains of the same species,

revealing possible complexities of cellular metabolism?

To address these queries, we analyzed the growth behaviour in strictly controlled

conditions and analysed the global proteome and transcriptome pools of these closely re-

lated E.coli sub-strains W3110 and MG1655. We applied the conventional 2-dimensional

polyacrylamide gel electrophoresis for global proteomic profiling which is still the ma-

jor method for global proteome analysis. Global changes in the gene expression levels

were analysed using microarrays, thus providing quantitative information about the gene

expression levels.

Being the most extensively studied model organism, E.coli is frequently used in molec-

ular evolutionary studies. A few potential reasons for this are: its capacity to propagate

and reproduce quickly, facilitating the evolution experiments for many generations in a

short time span, and capability to store the evolved and ancestor strains, allowing for

direct comparison between them. As a result, several studies have used gene expression

[5, 6, 7, 8] and proteome profiling methods [9, 10, 11, 12] to study molecular evolution,

but these studies were confined to a single type of evolution process and were focused

on a single molecular aspect that characterizes a cell (transcript or protein abundance).

Metabolome profiling has been frequently applied for obtaining quantitative information

on metabolites for studies on mutational or environmental effects, but not in an evolu-

tionary context [13, 14].

In our study, we depicted a complete picture of molecular evolution processes in the

laboratory among the two strains MG1655 and DH10B under three different evolution-

ary conditions in all three functional levels of the cell (transcriptome, proteome and

metabolome). These data sets obtained from the three functional levels would be of vi-

tal importance for viewing a global picture of the experimental sample in question. To

eliminate the possibility of the strain-dependent phenomenon of evolution and to examine

the parallelism of the laboratory evolution processes, we examined all the evolutionary

processes in two strains. The major questions that arose during our study were:

• What are the transcriptome, proteome and metabolome changes occur-

ring during the excess-nutrient adaptive evolution process?
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• Which genes, proteins and metabolites are vitally involved in the pro-

longed stationary phase evolution process?

• What are the transcript, protein and metabolite changes occurring due

to the pleiotropic effects due to environmental shift?

• To what extent are the changes occurring during these evolutionary

processes seen in both strains?

• Among both the strains, is the path of evolution similar in these evo-

lutionary processes (parallelism)?

By global protein profiling technologies and integrating the multidimensional datasets

generated, we aimed to find vital genes, proteins and metabolites involved in the evo-

lutionary processes in three conditions in two E. coli K-12 strains. The importance of

making the proteome data available to the public was taken care of, by constructing a

relational database having the ability to query and to re-analyse that data with valid

functional classification through a web interface. Metabolome data will be available for

download from the project web page. Transcriptome data will be submitted to a pub-

lic repository database of gene expression data. These generated datasets from all the

three functional levels would be an initial resource for the systems biology of microbial

evolution.
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Part I

The plasticity of global proteome and genome expression

analyzed in closely related W3110 and MG1655 strains of a well

studied model organism, Escherichia coli - K12.
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Abstract

The use of Escherichia coli as a model organism has provided a great deal of basic in-

formation in biomolecular sciences. Examining trait differences among closely-related

strains of the same species addresses a fundamental biological question: how much di-

versity is there at the single species level? The main aim of our research was to identify

significant differences in the activities of groups of genes between two laboratory strains

of an organism closely related in genome structure. We demonstrate that despite strict

and controlled growth conditions, there is high plasticity in the global proteome and

genome expression in two closely-related E. coli K-12 sub-strains (W3110 and MG1655),

which differ insignificantly in genome structure. The growth patterns of these two sub-

strains were very similar in a well-equipped bioreactor, and their genome structures were

shown to be almost identical by DNA microarray. However, detailed profiling of protein

and gene expression by 2-dimensional gel electrophoresis and microarray analysis showed

many differentially-expressed genes and proteins, combinations of which were highly corre-

lated. The differentially regulated genes and proteins belonged to the following functional

categories: genes regulated by RpoS (sigma subunit of RNA polymerase), enterobactin-

related genes, and genes involved in central metabolism. Genes involved in central cell

metabolism - the glycolysis pathway, the tricarboxylic acid cycle and the glyoxylate bypass

- were differentially regulated at both the mRNA and proteome levels. The strains differ

significantly in central metabolism and thus in the generation of precursor metabolites

and energy. This high plasticity probably represents a universal feature of metabolic ac-

tivities in closely-related species, and has the potential to reveal differences in regulatory

networks. We suggest that unless care is taken in the choice of strains for any validating

experiment, the results might be misleading.

Authors: Chandran Vijayendran, Tino Polen, Volker F. Wendisch, Karl Friehs,

Karsten Niehaus and Erwin Flaschel.

Author’s contribution: CV conducted all the experiments cited in this study, anal-

ysed the results and wrote this report. TP was involved in microarray experiments.

VFW is the scientist in whose laboratory microarray experiments were conducted. KF

was involved in manuscript preparation. KN was involved in experimental design. EF is

the scientist in whose laboratory these experiments were conducted and was involved in

experimental design and manuscript preparation.



Chapter 2
Introduction (I)

Currently, more than 300 completely sequenced genomes are publicly available and more

than four times that number are in the process of being sequenced [15, 16]. The genomes of

closely-related species are of particular interest since they lead to the elucidation of genome

diversity, evolution and pathogenicity. In the case of the proteobacterium Escherichia coli,

five genomes have been determined and thirteen projects are in progress [15, 16]. Among

the completed E. coli genomes, two are from non-pathogenic strains, MG1655 and W3110,

which are our loci of interest in this study.

Many subtly different strains are in daily use in numerous laboratories for validat-

ing new analytical techniques, provoking critical and unanswered questions such as: do

sub-strains with almost identical genome structures exhibit similar behaviour in cellular

metabolism? Although E.coli is such a well-studied model organism, and many of the

strains in use around the world differ from the strain of origin only in known genetic

characteristics, many more differences remain to be explored. A justifiable question is:

why do closely-related sub-strains of E.coli grow with different efficiencies on the same

media, when the characterized genetic differences between them do not affect the growth

pattern? Furthermore, there is a surprising lack of information on how global aspects of

cell metabolism, protein synthesis and gene expression differ among closely related sub-

strains of the same species, which may reveal the complexities of cellular metabolism. To

address this lack of information we analyzed the growth, the proteomes and the tran-

scriptome pools of the frequently-used laboratory E.coli sub-strains W3110 and MG1655,

which originated from W1485, a derivative of E.coli K-12 (Figure 2.1) [17]. The whole

genome sequences of both sub-strains are publicly available [1, 2]. Their growth patterns

and genome structures are almost identical (Figure 2.2).

Most of the major differences in genome structures between these two sub-strains

result from recombination events mediated by insertion sequences. However, the rate of

nucleotide changes between them is estimated to be relatively low [3, 4]. Hence the major

question arises: is this high degree of similarity at the nucleotide level reflected in the

metabolic phenotype? A further query focused on unravelling the changes resulting from

the aforementioned insertion sequences, and subsequently on obtaining a clear view of

the regulation of metabolic processes in these closely-related laboratory sub-strains. In

order to reveal the patterns of protein and gene expression at different levels of growth

in the same medium under the same conditions, we analysed these expression patterns
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Fig. 2.1: Origins of E.coli K-12 strains MG1655 and W3110.
The two strains are closely related and are derivatives of Lederberg strain W1485 [17]

during the exponential and early stationary phases of growth. A detailed study of the

relevant proteomics and genomics showed that the patterns of global protein and gene

expression differed considerably between the sub-strains despite their close relationship

and absence of significant genomic differences, and despite the provision of strict and

controlled growth conditions. Previous studies have demonstrated that the expression

levels of many genes show abundant natural variation in species from yeast to humans

[18, 19, 20, 21, 22, 23]. There is emerging evidence to suggest that mRNA expression

patterns are necessary, but not by themselves sufficient, for describing the state of a

biological system [24, 25]. Hence we included global proteomics analyses. In this study, the

genes and proteins showing differential regulation belonged to the functional categories of

RpoS (sigma subunit of RNA polymerase)-regulated genes, osmotic stress-related genes,

enterobactin-related genes, and genes related to the energy metabolism of E.coli : the

glycolysis pathway, the tricarboxylic acid cycle and the glyoxylate bypass.
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Fig. 2.2: Growth pattern and genome structure analyses.
The graphs show: (A) growth pattern of strain W3110 (open symbols) and MG1655 (full
symbols). Levels of dissolved oxygen (pO2), carbon dioxide in the emitted gas (CO2) and
glucose concentration in the medium (glucose) are shown along with the optical densities (OD)
of the bacterial cultures. The times of harvesting the samples are indicated by encircled
symbols. (B) Scatter plot of a DNA microarray analysis shows a clear-cut gene-to-gene
comparison of both genomes. (C) Dot plot comparing the whole genome sequence of W3110
against that of MG1655, showing the inversion of ribosomal genes in W3110.
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Chapter 3
Materials and Methods (I)

3.1 Strains and medium

Escherichia coli K-12 strain W3110 was obtained from DSMZ (The German National

Resource Centre for Biological Material); MG1655, obtained from the laboratory of A.

Nishimura, had a culture background originating from the laboratory of M. Singer having

no physiological defects, such as deletion around the fnr (fumarate-nitrate respiration)

regulatory gene [26]. Both sub-strains were grown on M9 minimal medium with 4 gL−1

glucose as carbon source in a 7 litre bioreactor (MBR Bioreactors). Cultivation was at

pH 7, an operating temperature of 37 ◦C and a dissolved oxygen level of 60% saturation,

automatically controlled by the stirrer frequency.

3.2 Two-dimensional SDS-PAGE gel electrophoresis

Approximately 4.1x1010 cells were harvested from the exponential (OD 600 ≈ 1) and early

stationary phases (OD 600 ≈ 4) in all experiments. Isolated proteins were resuspended in

500 µl of rehydration buffer and 300 µg of protein sample was dissolved in 1.5 µl (IPG)-

buffer, pH 4-7, and loaded on to a dry 24 cm Immobiline strip (Amersham Biosciences),

pI range 4-7. The first dimension was developed on an IPG-phor (Amersham Biosciences)

electrophoresis apparatus over 75,000 Vh. After equilibration of the strips, the second

dimension was developed on a 12.5% polyacrylamide gel for 30 min at 3 W per gel, followed

by a further run at 20 W per gel until the end. The second dimension was performed

on an EttanDalt (Amersham Biosciences) electrophoresis unit. For comparative analysis,

the gels were stained with Coomassie blue.

3.3 In-gel tryptic digestion and mass spectrometry

Tryptic digestion was performed as reported previously [27]. Mass spectra were obtained

on a Biflex III MALDI-TOF-MS (Bruker). The peptide mass fingerprints were anno-

tated using the MASCOT search engine (Matrix Science). The parameters used were:

Taxonomy, all entries; Enzyme, trypsin; Missed cleavages, 1; ppm, 100; Database, E. coli.
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3.4 Microarray experiments

Genomic E. coli K-12 DNA microarrays were produced by spotting the PCR products

robotically [28]. Total RNA was isolated using an RNeasy kit (Qiagen) according to the

manufacturer’s instructions with slight modifications. RNA concentration and quality

were checked photometrically and on formaldehyde gels. The same amount of total RNA

(25 µg) was used for each random hexamer-primed synthesis of fluorescence-labeled cDNA

incorporating the fluorescent nucleotide analogues Cy3-dUTP or Cy5-dUTP.

3.5 DNA microarray analysis

Hybridization of fluorescence-labeled cDNA to the microarrays and the washing protocol

were as described previously [29, 28]. The fluorescence was detected at 532 nm (Cy3)

or 635 nm (Cy5) at a resolution of 10 µm using a GenePix 4000 laser scanner (Axon).

Microarray images were analyzed by GenePix Pro 3.0 software (Axon). The normalised

Cy5/Cy3 ratio for the median was taken to reflect relative changes in RNA levels [29].

3.6 Microarray data analysis

For the exponential growth phase experiments, four replicates were used (two biological

and two technical); for exponential and early stationary growth phase experiments on

both sub-strains, we used two biological replicas. The normalised log2 ratios were used

to represent the data graphically on a frequency histogram using MapMan software [30]

with functional classifications based on MultiFun and Gene Ontology terms, a cell func-

tion assignment scheme, with slight modification [31]. The normalised log2 ratios were

used for unsupervised analysis (two-dimensional hierarchical clustering) using Cluster 3.0

and TreeView [32], where average-linkage clustering was performed using an uncentered

correlation metric. Principal components analysis (PCA) was performed using Matlab

6.5 (The MathWorks, Inc.).

3.7 Real-time RT-PCR

RNA was quantified with a LightCycler (Roche Diagnostics) using the QuantiTech SYBR

Green RT-PCR detection system (Qiagen) according to the manufacturer’s instructions.

The specificity of amplification was determined by melting-curve analysis. For each sam-

ple, a straight line representing a log-linear increase in fluorescence was fitted automati-

cally by selecting three points above the threshold level. The intersection of the extrap-
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olated line with the threshold band was used to determine the fractional cycle number

of the crossing point (Cp), calculated automatically by the LightCycler software. These

crossing point values were used to calculate the fold differences between the samples.

The 20 primers used for amplification are summarised in Table 19.1 of Supplementary

Material.

3.8 Determination of siderophores

Chrome Azurol S and Arnow’s assays were performed as described previously [33, 34].

3.9 Cloning and sequencing of rpoS

The rpoS gene from both MG1655 and W3110 was amplified by PCR using the primers rp-

1 (5’- ATGTTCCGTCAAGGGATCACG) and rp-2 (5’- GCGGATCCCTCGAGTTACTCG).

Genomic DNAs were extracted and purified from the sub-strains using appropriate Wiz-

ard kits (Promega). Equal amount of genomic DNA were amplified using GoTaq DNA

Polymerase (Promega) for 30 cycles; denaturation at 94 ◦C for 1 min, primer annealing

at 65 ◦C for 1 min and extension at 72 ◦C for 2 min. A fragment of the predicted size

was amplified and cloned into the vector pGEM-T (Promega) according to the manu-

facturer’s directions. The plasmid was transformed into E. coli JM109 competent cells

(Promega) and screened for white colonies on LB agar plates containing 50 µg/ml ampi-

cillin, 30 µg/ml IPTG and 20 µg/ml X-gal. White colonies were picked and streaked

on to LB/amp plates, then the plasmid DNA was purified using appropriate Wizard

kits (Promega). The plasmid DNA was screened for the presence of rpoS by PCR and

restriction digestion experiments before DNA sequencing. Sequencing was performed

commercially by Agowa (Berlin, Germany). JM109 clones having the rpoS gene sequence

from W3110 and MG1655 were utilized for studying the effect of rpoS amber mutation

by examining the gene expression levels of various candidate genes.
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Chapter 4
Results and Discussion (I)

4.1 Expression of RpoS-dependent genes

A set of 76 genes known to be regulated by the sigma factor RpoS [35, 36, 37, 38, 39, 40,

41, 42, 43, 44, 45, 46, 47, 48] were considerably down-regulated in W3110 in comparison to

MG1655 during exponential growth phase (Figure 4.1A). Sigma factor RpoS, a subunit

Fig. 4.1: Frequency histogram of gene expression data from W3110 and
MG1655 based on log2 ratios.
Uppercase letters denote the range of ratios: X= <-2.0; A= -2.0 to -1.55; B= -1.55 to -1.11;
C= -1.11 to -0.66; D= -0.66 to -0.22; E= -0.22 to 0.22; F= 0.22 to 0.66; G= 0.66 to 1.11; H=
1.11 to 1.55; I= 1.55 to 2.0; Y= > 2.0. The number on a bar indicates the number of genes in
that range. A-D shows the comparison between exponentially growing cells (W3110 versus
MG1655); E-H shows the comparison of exponential and early stationary phases. (A) 76
RpoS-dependent genes (Supplementary Material; Table 19.2); (B) 85 central metabolism
genes (Supplementary Material; Table 19.3); (C) 25 enterobactin and iron related genes
(Supplementary Material; Table 19.4); (D) DNA replication genes, shown as control ; (E, F)
38 RpoS-dependent genes from (E) W3110 and (F) MG1655 (Supplementary Material; Table
19.5); (G, H) building block biosynthesis genes from (G) W3110 and (H) MG1655, both
shown as control.

of RNA polymerase, is known to be a master regulator of a complex regulatory network

involved in the control of many genes during growth, especially during stress and the
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early onset of stationary phase [49, 50, 51, 52]. Microarray analysis of exponential phase

versus early stationary phase samples from these two sub-strains confirmed the difference

in expression patterns for these RpoS dependent genes (Figure 4.1 E,F). Classification

of these 76 RpoS-regulated genes according to functional category revealed considerable

differences in expression patterns between the two sub-strains, implying differences in

various functional categories of the cell. When comparing the microarray data of Lacour

& Landini [42] denoting 41 genes which are considered to be regulated by RpoS, 50% of

genes overlapped with the identified genes which are considered as differentially expressed

from our microarray data. Likewise, when comparing the data reported by Weber et al.

[47], out of 140 genes being reported to be controlled by RpoS under three different growth

and stress conditions, 49% of the genes overlapped with our data which were considered as

differentially expressed. Among these known RpoS-dependent genes, osmY (osmotically

inducible protein) and treF (trehalase) showed higher expression levels in MG1655, and

their protein product levels were also higher in a typical total cell proteomic analysis

(Figure 4.2 A,B). All the major genes involved in osmotic stress - otsA, otsB, bolA,

treA, osmB, dps, osmC and osmY - were up-regulated in MG1655 during the exponential

growth phase (Figure 4.1 A). RpoS acts as a global regulator for the osmotic control

of gene expression throughout growth [53]. This is apparently the case in exponentially

growing cells as well as stationary phase cells [54, 55]. It is known that during osmotic

upshift, the cells accumulate potassium ions and synthesize glutamate as a counter-ion in

order to restore turgor pressure. Eventually, potassium ions and glutamate are replaced by

suitable osmoprotectants such as glycine, betaine, proline and trehalose [54]. Among the

major genes in the osmotic stress functional category that are up-regulated in MG1655,

otsA and otsB, which code for trehalose-6-phosphate synthase and trehalose phosphatase

respectively, are involved in trehalose biosynthesis. Similarly, the treA expression level was

high in MG1655; the enzyme it encodes can utilize trehalose at high osmolarity by splitting

it into glucose molecules. Intracellular metabolite analysis revealed a 1.14 (exponential

phase) and 4.52 (early stationary phase) fold increased level of glutamate in MG1655 cells

when compared to W3110. Subsequently, the expression levels of gadA and gadB, coding

for glutamate decarboxylase alpha and beta respectively, were higher in MG1655; this

enzyme is involved in converting glutamate to gamma-aminobutyrate. However, detailed

comparison of the genomes of these two sub-strains in the neighborhood of the RpoS-

dependent and osmotic stress genes revealed sequence differences in the area of treA, otsA

and otsB. MG1655 contains an IS1 (insertion sequence 1) element downstream of otsA

and otsB, but W3110 contains an IS5 element. Likewise, there is an adjacent IS5 element

just upstream of treA in W3110 but not in MG1655. Previous studies demonstrated that

insertion elements upstream or downstream of a gene or an operon can activate or diminish
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Fig. 4.2: Comparative proteome analyses of the E. coli sub-strains W3110 and
MG1655.
Variable protein expression pattern were found for central metabolism genes (fba, gapA, gpm
and eno involved in glycolysis; aceA and mdh involved in the TCA cycle) and genes involved
in the osmotic stress response (treF and osmY ). (A) Differential expression pattern during the
exponential growth phase. The invariant expression pattern of CRR, responsible for the
transport and availability of glucose, is shown as control. (B) Expression patterns for both the
sub-strains during exponential growth phase (1) and early stationary phase (2). The insets
show the dissimilarity in the expression patterns of OsmY.

the expression of that gene or operon [56, 57]. Being one of the primary global regulators of

a complex regulatory network in the cell, RpoS plays a major role in regulating the genes

involved in stress responses [52]. It associates with core RNA polymerase to determine

recognition of specific promoter sites, thereby regulating this complex network. It is

believed that under stress conditions, RpoS is induced by ppGpp and some unidentified

factor(s) that successively stimulate its interaction with the core polymerase [58]. In

addition to this regulation of RpoS synthesis, rapid degradation of RpoS is also controlled

by the ClpXP protease [58, 59]. Application of unsupervised two-dimensional hierarchical

clustering to the microarray data revealed that the RpoS-regulated genes showed clear

differential regulation between the sub-strains and at different growth stages (Figure
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4.3). Average linkage clustering was performed for this purpose, using an uncentered

correlation metric. Hierarchical clustering of RpoS-dependent and DNA-replication genes

showed that those in the former category were clearly over-expressed in MG1655, while

those in the latter category showed no significant differences in expression (shown as

control) between the sub-strains during exponential phase. When the exponential and

early stationary phases were compared, MG1655 showed the commonly-expected response

of RpoS-dependent genes. Thus, these genes were more highly expressed during early

stationary phase than during exponential growth. The converse difference was observed

in W3110 (Figure 4.4A). The RpoS-regulated genes were more highly expressed during

exponential growth than during the early stationary phase. For multivariate data analysis,

which reduces the dimensionality and complexity of the dataset without vitiating the

accurate calculation of distance metrics representing the variability between samples, we

used principal components analysis (PCA). Detailed PCA analysis of the genes known to

be regulated by RpoS shows clear differences in expression levels between the sub-strains

(Figure 4.5). The expression levels of this small set of RpoS-regulated genes sufficed

to differentiate the sub-strains. When we investigated the reason for this differential

expression, we found no regulatory elements such as Crp, Cya, and HfQ that differed in

their expression levels. We therefore cloned rpoS from both sub-strains and determined its

DNA sequence. This revealed a single base change in the rpoS sequence from W3110, a C-

T transition at position 97, which is a commonly-reported point mutation in K12 isolates

[60, 61]. This base change causes an amber mutation at codon 33 (CAG - TAG). Hence,

the synthesis of RpoS is prematurely terminated. Several strains carrying this amber

mutation show reduced RpoS activity when analyzed by traditional catalase assays [61].

Therefore, the down-regulation of the set of 76 known RpoS-regulated genes in W3110

relative to MG1655 during exponential growth phase could be attributed to this amber

mutation at codon 33 in rpoS in W3110. However, the differences in expression (more or

less reciprocal) of these genes between exponential and early stationary growth phase in

the two sub-strains remains much more complicated to explain (Figure 4.4A, and 4.3).

4.2 Expression of energy metabolism genes

During exponential growth phase, most of the 85 genes in this functional category were

up-regulated in W3110 (Figure 4.1B). In this 85-gene set, one group belongs to the

nuoA-N operon and another to the hydrogenases. nuoA-L belonging to the same operon

codes for NADH dehydrogenase-I, which shuttles electrons from NADH via FMN and

iron-sulfur centers to quinones in the respiratory chain. Similarly, some genes for the tri-

carboxylic acid (TCA) cycle such as acnB (aconitase B), sucD (succinyl-CoA), sdhA and
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Fig. 4.3: Two-dimensional hierarchical clustering of gene expression datasets
from W3110 and MG1655
The array data from each strain or growth condition are arranged in columns and rows
corresponding to single genes. Dendrograms indicate the degree of similarity between clusters
of genes, strain or growth conditions. Red indicates up-regulation and green indicates
down-regulation in gene expression, according to the log2 ratio scale on the lower left.
Clustering shows prominent differential expression of RpoS regulated genes in both sub-strains
as well as growth conditions; DNA replication gene expression levels are shown as control.
Expo: Exponential phase; Stat: Early stationary phase.
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Fig. 4.4: Development of gene expression during cultivation of E. coli sub-
strains W3110 and MG1655
(A, B) Expression levels of genes that are (A) RpoS dependent and (B) involved in cell division
(shown as control) from exponential and early stationary phases of growth. (C) Expression
levels of Rpos-dependent genes in relation to functional category. Shades of red denote higher
expression levels in MG1655 or early stationary phase; shades of blue denote higher expression
levels in W3110 or exponential phase. The first, second and third rows depict exponential
phase and exponential versus early stationary phase of W3110 and likewise MG1655. The last
column shows DNA replication genes (presented as control) obtained from the same dataset.

sdhB (succinate dehydrogenases) as well as mdh and mqo (malate dehydrogenases) were

also up-regulated in W3110. This could have been expected, since previous studies have

demonstrated that RpoS negatively regulates TCA cycle genes as well as those involved

in aerobic and anaerobic respiration, fermentation and electron transport [43], consistent

with the previous findings. A detailed comparison of the two sub-strains showed differ-

ences in the genome sequences in the neighbourhood of the nuoA-N operon, attributable

to an insertion element. This was confirmed as IS1 by re-sequencing this region from

both sub-strains. lrhA, which lies immediately upstream of the nuoA-N operon in both

sub-strains, is located between nuoA and IS1 in W3110, but between nuoA and yfbQ

in MG1655, where IS1 is absent (Figure 4.6). Interestingly, most of the genes down-

stream of lrhA, i.e. the nuoA-N operon coding for NADH dehydrogenase-I, were highly
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Fig. 4.5: Principal components analysis (PCA) of RpoS-regulated genes in
W3110 and MG1655.
The figure shows a PCA of the distribution of expression ratios of RpoS-regulated genes in
both sub-strains and growth conditions. The first two principal components are shown. Blue
elements are the gene expression ratios of the two sub-strains compared during exponential
growth. Red and green elements denote the gene expression ratios for MG1655 and W3110
when the exponential and early stationary growth phases are compared.

Fig. 4.6: Comparison of the genome sequence fragment of W3110 and MG1655.
Genome alignment showing the IS1 element upstream of lrhA and the nuoA-N operon in
W3110 but not MG1655; this was confirmed by re-sequencing the region. Numbers represent
the fold change for each gene in W3110, and the sources of data are represented (RT:
Real-time RT-PCR; MA: Microarray; ND: Not determined).

expressed in W3110 (Figure 4.6). The expression levels of some candidate genes in this

operon were also confirmed by real-time RT-PCR. Therefore, it may be assumed that

the insertion element upstream of lrhA in W3110 enhances the expression of both lrhA

and the nuoA-N operon. Modulation of gene expression due to adjacent mobile elements

has previously been reported for the bgl operon [57] and the cryptic gene yicP [56]. The

lrhA gene is involved in the RpoS regulation at the translation level [62]. Simultaneously

examining the mRNA and protein levels of rpoS and lrhA genes in W3110 could reveal

more information on the regulatory role of lrhA gene.
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4.3 Expression of iron-related genes

Precisely 21 of the 25 genes in the functional category of enterobactin and iron-related

metabolism were significantly up-regulated in MG1655 compared to W3110 during expo-

nential growth (Figure 4.1C). Among the products of these 21 genes, EntA-F proteins are

involved in the biosynthesis of the catecholate siderophore enterobactin (Ent), responsible

for the transport of iron from the bacterial environment into the cytoplasm. The products

of fepA-D, fepG and exbB are involved in the transport of ferric enterobactin [63, 64, 65];

they also belong to this group, as does fes (ferric enterobactin esterase), the product of

which renders iron available for metabolic use [66]. In this category, only 4 genes showed

higher expression levels in W3110 than in MG1655: the ferric ion transport proteins A

and B (FeoA, FeoB), and ferritin (FtnA, FtnB), an iron storage protein. Ferric ions are

taken up into the cells for storage by means of ferritin-like molecules [67]. Siderophore

(iron chelating compound) assays showed that the amounts of siderophore produced and

released into the culture supernatants were higher in W3110 than in MG1655. Once ferric

enterobactin is internalised, reductases catalyze the reduction of complexed ferric (Fe3+)

to complexed ferrous (Fe2+) ions, providing iron for metabolic use. The ferric reductase

activities in W3110 and MG1655 remained more or less equal throughout the growth

period. Iron is required by virtually all organisms for essential biological processes; its

predominant form is ferric (Fe3+). This ion is extremely insoluble; hence, E. coli secrete

siderophores to ensure their iron supply. The catecholate-type siderophore enterobactin

is produced by all strains of E. coli [68]. Genes involved in enterobactin uptake were up-

regulated in MG1655, whilst operons involved in ferrous ion uptake were up-regulated in

W3110. The main regulatory genes for iron metabolism such as fnr and fur and the ferric

reductase gene fre showed no differential expression. The levels of siderophores in the cul-

ture supernatant of W3110 were shown by Arnow’s assay (Figure 4.7A) and the Chrome

Azurol S assay (Figure 4.7B) to be elevated. Interestingly, a search for commonality

among the genes with more than two-fold higher expression levels in W3110 revealed that

21% of them code for proteins using iron as prosthetic group or cofactor, proteins with

iron-sulfur clusters and iron storage proteins (Figure 4.7C). These observations indicate

that the W3110 sub-strain should have easier access to reduced iron than MG1655.

4.4 Verification of microarray results

The expression levels of a significant set of candidates in our microarray data were veri-

fied quantitatively by real-time PCR (Figure 4.8A). All these expression levels differed

considerably between W3110 and MG1655, and the relative differences were in complete

14



Fig. 4.7: Additional confirming analyses.
Siderophores (enterobactin) were analysed by (A) Arnow’s assay (measured at OD 500),
which showed higher siderophore concentrations in W3110 during late cultivation times (10 h)
measured at OD 600. Error bars represents the standard deviation of three replicates. (B)
Chrome Azurol S (CAS) assay. The haloes around the wells in the CAS plate show siderophore
production in sample supernatant obtained during different periods of growth. Numbers 1-4
represents 4, 6, 8 and 10 hours, C denotes control (iron-supplemented culture supernatant).
(C) Of all the genes up-regulated more than twofold in strain W3110, 21% were iron-related
and 11% were related to insertion elements because of the high copy number in W3110.

agreement with our microarray data. nuoA and nuoH, which belong to a cluster of 13

genes encoding NADH dehydrogenase I, were expressed 8.2 and 19.7 higher in W3110,

respectively; the expression levels of all genes in this cluster were high in W3110 accord-

ing to our microarray data. gapA and talA genes involved in the central metabolism of

the cell were expressed 1.4 and 2.1 fold higher in W3110, in line with this the GapA

protein was also over expressed in W3110 (Figure 4.2A, B). Similarly, lrhA is expressed

5.2 times higher in W3110, where this gene lies between nuoA and IS1; in MG1655 it

is upstream of nuoA, which lacks IS1. entD, fepB and fepE exhibited higher relative

changes in MG1655: entD (enterobactin synthetase component D), which is involved in

the biosynthesis of enterobactin, underwent a 427.6 fold change; fepB and fepE (ferric

enterobactin transport proteins), which are involved in ferric enterobactin transport, un-

derwent 20 and 6.9 fold changes, respectively. Similarly, all 21 genes in the functional

category of enterobactin and iron related metabolism were substantially up-regulated in

MG1655 according to our microarray data. The change of the ferrous iron uptake operon

containing feoA and feoB were relatively high, 14.1 and 27.1 times those in W3110, in

agreement with our microarray data. The relative changes in rpoS and dnaA expression
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Fig. 4.8: Real-time RT-PCR analyses.
(A) The graphs verify the microarray results by quantitative real-time RT-PCR analyses. The
bars represent the relative change of mRNA levels extracted from exponentially growing cells
of W3110 and MG1655. (B) The relative changes of mRNA levels in JM109 strain harbouring
plasmid containing rpoS gene from W3110 (JM109 -W3110 rpoS) and MG1655 (JM109
-MG1655 rpoS). Error bars represent standard deviation.

were insignificant, as expected.

4.5 Effect of rpoS gene amber mutation in gene expression

For the entire real-time RT-PCR validated genes from the microarray data, we examined

the expression of these genes in the presence (W3110 rpoS ) or absence (MG1655 rpoS )

of the rpoS gene sequence harbouring amber mutation at codon 33 (Figure 4.8B). We

determined this experiment by transforming the full length rpoS gene from W3110 and

MG1655 into a strain having different genotype (JM109) and thus the strain dependent

gene expression variation has been avoided. When analysed, most of the gene expression

levels were in the same direction demonstrating the significant role of amber mutation

dependent rpoS regulation among these genes. In the presence or absence of amber

mutation in rpoS gene transformed in to a different strain, nuoA, nuoH and lrhA genes

were not differentially regulated, unlike in W3110 and MG1655 comparison, indicating

strain specific gene expression as assumed that the insertion element upstream of lrhA

in W3110 enhances the expression of both lrhA and the nuoA-N operon (Figure 4.6).

16



The expression of feoA, feoB, gapA, and talA genes were higher in the strain bearing

the plasmid harbouring the rpoS gene containing the amber mutation (from W3110). In

line with this behaviour, these genes were also over-expressed in W3110 when compared

with MG1655 demonstration potential effect of the amber mutation in the rpoS gene. A

similar direction of gene expression behaviour was also observed among entD, fepB and

fepE genes in both the comparisons. Overall, these results suggest that the observed

differences in the microarray data are largely due to the rpoS amber mutation in W3110

represented in this study.

4.6 Expression of cellular proteins

The expression level of enzymes involved in glycolysis and the TCA cycle was higher in

W3110 during exponential growth (Figure 4.2A). To achieve a reliable overview of the

regulation of these enzymes in relation to the growth period, we analysed the protein

fractions from early stationary phase, which demonstrated that these enzymes were up-

regulated in W3110 (Figure 4.2B). Among them, Fba (fructose bisphosphate aldolase),

GapA (glyceraldehyde phosphate dehydrogenase), GpmA (phosphoglycerate mutase) and

Eno (enolase) are involved in glycolysis; AceA (isocitrate lyase) and Mdh (malate dehy-

drogenase) are involved in the TCA cycle. In contrast, the TreF and OsmY proteins,

which are involved in osmotic stress, were induced in higher amounts in MG1655 (Figure

4.2A, B). These findings from the proteome studies were in excellent agreement with

the microarray results. In particular, OsmY protein was consistently expressed at higher

levels in MG1655 during both the exponential and the early stationary phases of growth

(Figure 4.2B inset, 4.9).

Fig. 4.9: Comparative OsmY protein analyses of the E. coli sub-strains W3110
and MG1655.
Dissimilar expression patterns of OsmY for both the sub-strains during exponential growth
phase (1) and early stationary phase (2).
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Chapter 5
Conclusion (I)

5.1 Plasticity of gene and protein expression

The growth behaviour (Figure 2.2A) and genome-based data (Figure 2.2B, C) point

to the conclusion that both Escherichia coli sub-strains examined, W3110 and MG1655,

may have similar metabolic phenotypes. However, the global transcriptome and pro-

teome data lead to the conclusion that the global proteomes and the genome expres-

sion patterns exhibit high plasticity in these closely related sub-strains of E. coli - K-12,

notwithstanding the strict and controlled growth conditions used. The genomes being

highly similar at the nucleotide level, was not reflected in cellular metabolism, showing

that complex regulatory patterns can differ even between closely-related sub-strains. In

MG1655, genes involved in osmotic stress and enterobactin were effectively up-regulated

(Figure 4.1); in W3110, genes involved in central metabolism were up-regulated and

Fig. 5.1: Global comparison of gene expression in E. coli sub-strains W3110
and MG1655.
The graph shows a global comparison with respect to different functional gene categories,
namely, RpoS-dependent, Energy metabolism, Enterobactin related, TCA cycle and DNA
replication (shown as control).

RpoS-dependent genes were significantly down-regulated (Figure 4.1), with implications

for various functional categories (Figure 4.4C). In contrast to experiments that measure

correlations among transcript and protein levels under different conditions and in strains

bearing knockout mutations, our approach led to the general conclusion that gene expres-

sion and protein patterns differ between closely-related sub-strains, a phenomenon that
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can be largely ignored in the former types of experiments. Our results also emphasize

that complex regulatory pathways are altered by such modifications at the genome level.

Functional differences in central metabolism, which generates precursor metabolites and

energy, were also apparent between these two closely-related and commonly-used sub-

strains of E. coli K-12. These metabolic differences may indicate differences in regulatory

networks. If such differences are not taken into account in critical experiments, the results

obtained may easily be interpreted misleadingly.

19



Part II

Perceiving molecular evolution processes in Escherichia coli by

comprehensive metabolite and gene expression profiling.
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Abstract

The mechanism of evolution in different conditions can be examined from various molec-

ular aspects that constitute a cell, namely, transcript, protein or metabolite abundance.

We have analyzed transcript and metabolite abundance changes in evolved and ances-

tor strains in three different evolutionary conditions, namely, excess-nutrient adaptation,

prolonged stationary phase adaptation and adaptation due to environmental shift, in two

different strains of Escherichia coli K-12 (MG1655 and DH10B). Metabolite profiling of

84 identified metabolites revealed that most of the metabolites involved in TCA cycle and

nucleotide metabolism were found to be altered in both the excess-nutrient evolved lines.

Gene expression profiling using whole genome microarray with 4288 ORFs revealed the

overrepresentation of transport functional category in all evolved lines. Excess-nutrient

adapted lines were found to exhibit higher degree of positive correlation indicating paral-

lelism between ancestor and evolved lines when compared to prolonged stationary phase

adapted lines. Gene-to-metabolite correlation network analysis revealed the overrepre-

sentation of membrane associated functional categories. Proteome analysis revealed the

major role of outer-membrane proteins in adaptive evolution. GltB, LamB and YaeT

proteins in excess-nutrient lines and FepA, CirA, OmpC and OmpA in prolonged station-

ary phase lines were found to be differentially over-expressed. These studies show that

adaptive evolution in excess nutrient conditions are appropriate for examining the extent

of parallelism in the evolutionary process whereas prolonged stationary phase conditions

are useful to understand evolution of microbial diversity among evolved populations and

the dynamic state of the evolved condition. These studies aid in providing a better un-

derstanding of the process of evolution and also provide a valuable initial source of data

for systems biology of microbial evolution.
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Chapter 6
Introduction (II)

Most microorganisms grow in environments that are not conducive to their growth. The

level of nutrients available to them is rarely optimal. These microbes must adapt to envi-

ronmental conditions which consist of either excess, sub-optimal (limiting), or fluctuating

levels of nutrients or in famine. The study of evolution can be facilitated by observing

the process and consequences of evolution in feasible laboratory conditions by culturing

a micro-organism in varying nutrient environments [69, 70, 71, 72]. The extensively stud-

ied microbial evolution processes are nutrient-limited adaptive evolution [73, 74, 75] and

famine-induced prolonged stationary phase evolution [76, 77, 78]. During prolonged car-

bon starvation, micro-organisms can undergo rapid evolution with mutants expressing a

growth advantage in stationary phase (GASP) phenotype [70]. These mutants harbouring

a selective advantage out-compete their siblings and takeover the culture through their

progeny [79, 80, 81]. Adaptive evolution of micro-organisms is a process in which specific

mutations result in phenotypic attributes responsible for fitness in a particular selective

environment [69]. Laboratory studies under these evolutionary conditions can address

fundamental questions regarding adaptation process and selection pressures thereby ex-

plaining modes of evolution.

In this study, we have used Escherichia coli K-12 strains (MG1655 and DH10B) from

(1) serial passage system for excess nutrient adaptive evolution studies, (2) constant batch

culture for prolonged stationary phase evolution studies and (3) culture with nutrient al-

teration following adaptation to a particular nutrient for examining pleiotropic effects

due to environmental shift. During adverse conditions, micro-organisms are known to

exploit the limiting resource more quickly and adapt themselves efficiently to assimilate

various metabolites. Some of these residual metabolites comprise an alternative resource

which the organism can metabolize on [70]. Continual assimilation of various metabolites

and various compounds being metabolized by the organism offers a specific niche which

allows the organism to evolve with a genetic capacity to utilize those assimilated metabo-

lites [70]. Hence a detailed metabolite analysis of these evolved populations would guide

towards a better understanding of these evolution processes. Along with the data gener-

ated from transcriptomics approaches, metabolomics data would be of vital importance

for viewing a global picture of an organism in a particular time point, where metabolite

behaviour closely reflects the actual cellular environment and the observed phenotype of

that organism.
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We have applied metabolome and gene expression profiling approaches to understand

excess nutrient adaptive evolution, prolonged stationary phase evolution and pleiotropic

effects due to environmental shift in two strains harbouring different genotypes. To elimi-

nate the possibility of the strain-dependent phenomenon of evolution and to examine the

parallelism of the laboratory evolution process, we examined the hitherto mentioned evo-

lutionary processes in two different strains. As a result we had to compare the metabolite

and gene expression profiles under various conditions for these strains, namely,

Strain abbreviations Evolved condition

MG and DH MG1655 and DH10B grown in glucose
MGGal and DHGal MG1655 and DH10B grown in galactose
MGAdp and DHAdp MG1655 and DH10B adapted about 1000 gen-

erations in glucose
MGAdpGal and DHAdpGal MGAdp and DHAdp (glucose evolved strains)

grown in galactose
MGStat and DHStat MG1655 and DH10B grown in prolonged sta-

tionary phase (37 days)

Tab. 6.1: Strains and their evolved conditions.

In this study, we depicted a whole picture of laboratory molecular evolution processes

among two different strains by integrating multidimensional metabolome and gene ex-

pression data to find vital metabolites and genes involved in evolution process.
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Chapter 7
Materials and Methods (II)

7.1 Strains and culture conditions

Both the bacterial strains, MG1655 and DH10B used in this study are derivatives of

E.coli K-12. All the experiments were conducted in 250 mL of M9 minimal medium

supplemented with 4 gL−1 of glucose or galactose in covered 1 L Erlenmeyer flasks at

37 ◦C. Adaptation to excess nutrient experiments was carried out in the presence of 4

gL−1 glucose through serial passage at exponential phase for about 1000 generations. The

cells were grown overnight and were diluted by passage into fresh medium. Passage of

each culture into fresh medium was conducted in a laminar flow station using standard

sterile technique practices. Serial passage were conducted for 37 days at exponential

phase for about 1000 generations. For adaptation due to environmental shift experiments,

the strains which were adapted to excess nutrient (glucose) condition for about 1000

generations were grown in 4 gL−1 galactose. For prolonged stationary phase adaptation

experiments, both the strains were incubated for 37 days in M9 minimal medium with 4

gL−1 glucose as initial source of carbon. The evolved populations were frozen using liquid

nitrogen and stored in a freezer at -80 ◦C.

7.2 Metabolite profiling

Approximately equal number of cells (7x109) were taken from the exponential phase of

growth for all the experiments. Extracted cells were disrupted using acid washed glass

beads at maximum speed in a Ribolyser (Q-BIOgene) at a setting of 6.5 ms, two-times for

45 seconds in the presence of 80 % methanol. Subsequently, metabolites were derivatized

using methoxylamine hydrochloride and N-methyl-N-[trimethylsilyl]trifluoroacetamide in

the presence of ribitol as the internal standard. Sample volumes of 1 µl were analysed

with a TraceGC gas chromatograph coupled to a PolarisQ ion trap mass spectrometer

(Thermo Electron). Derivatized metabolites were evaporated at 250 ◦C in splitless mode

and separated on a 30 m x 0.25 mm Equity-5 column with 0.25 µm coating (Supelco).

Metabolites were identified by comparison to purified standards, the NIST 2005 database

(NIST) and the Golm Metabolome Database [82]. Selected metabolite peak areas were

automatically quantified using the processing setup implemented in the Xcalibur 1.4 soft-

ware (Thermo Electron). The relative response ratios calculated from the peak areas were
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normalized by the internal standard ribitol and dry weight of the sample. For both the

strains in all the biological experiments, six replicates were used which consisted of three

biological replicates (per strain).

7.3 Gene expression profiling

E. coli K12 V2 OciChip arrays containing 4,288 gene specific oligonucleotide probes rep-

resenting the complete E. coli K12 genome were utilized in this study (Ocimum Bioso-

lutions). Total RNA was isolated using RNeasy kit (Qiagen) according to the manu-

facturer’s instructions. Reverse transcription, labelling, and scanning were performed as

described previously [83]. Hybridization was carried out according to the manufacturer’s

instructions (Ocimum Biosolutions).

7.4 Microarray data analysis

Mean signal and mean local background intensities were determined for each spot of the

microarray images by using the ImaGene 6.0 software for spot detection, image segmenta-

tion and signal quantification (BioDiscovery). After subtraction of the local background

intensities from the signal intensities, the average intensity in both channels was subse-

quently normalized by the LOWESS method using the GeneSight 4.0 software package

(BioDiscovery). The normalised log2 ratios were used to represent the data graphically

and to calculate Wilcoxon rank sum test P -values using MapMan software [30] with

functional classifications based on MultiFun and Gene Ontology terms, a cell function

assignment scheme, with slight modification [31, 84]. For both the strains in all the bio-

logical experiments, three or more replicates were used which consisted of three biological

replicates. The variation among the biological replicates were estimated to be relatively

low (Figure 7.1).

7.5 Network analysis

All the networks reported in this study were constructed based on Pearson correlation

coefficient (PCC ) r≥0.9 measure i.e. nodes which correspond to genes or metabolites

with r≥0.9 were linked by edge. All-against-all metabolite and gene expression profile r -

values of evolution-specific matrices were used to generate evolution-specific coexpression

network. Strain and evolution specific matrices were used to generate evolution-specific

intersection coexpression network. Intersection coexpression networks are the network
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Fig. 7.1: Gene expression among the biological replicates.
The gene expression levels among the evolved strain replicates indicating relatively low level of
variation among the replicates used for the evolutionary studies.

over the set of nodes N where there is a link (r≥0.9) between two nodes i and j if they

are connected in both the strains in the particular evolutionary condition in context.

Topological properties of the networks were analyzed using the pajek program [85].

7.6 Network functional analysis

Network visualization and functional analysis was done using Cytoscape [86]. Networks

were screened for highly linked clusters of genes or metabolites using MCODE [87]. Genes

in the networks were functionally categorized using their Gene Ontology (GO) biological

process annotation terms [88] and the overrepresented GO terms were identified with

BINGO [89]. The Hypergeometric test was used to do this with the Benjamini and

Hochberg false discovery rate correction (P -value ≤ 0.05).

7.7 Outer-membrane protein analysis

Approximately equal number of extracted cells (7x109) were disrupted by ultrasonication

with 5 mL of 50 mM Tris/HCl, pH 7.3 containing 0.7 mg of DNase I (Sigma) and 0.5 mM

protease inhibitor (pefabloc SC). After the unbroken cells were removed by centrifugation

the supernatant was treated with ice cold 0.1 M sodium carbonate (pH 11). Eventually

the carbonate treated membranes were collected and subsequently analysed by SDS 1D

gel electrophoresis. Excised protein bands were subjected to tryptic digestion and mass

spectra were obtained on a Biflex III MALDI-TOF-MS (Bruker). Peptide masses were

searched against the E.coli database located on our local server using the MASCOT search

engine (Matrix Science) with a mass cut-off of 100 p.p.m..
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Chapter 8
Results (II)

The Adp line cultures (MGAdp and DHAdp) were maintained in prolonged exponential

growth phase by daily passage into fresh medium for about 1000 generations. The Stat

line cultures (MGStat and DHStat) were maintained in constant batch culture for 37

days where no nutrients were added after initial inoculation and no cells were removed,

unlike the former setup. For the AdpGal line cultures (MGAdpGal and DHAdpGal),

Adp lines (glucose adapted) were grown in medium containing galactose as carbon source,

thus creating an environmental shift for the cells with respect to the standard nutrient

source. During this period of adaptation, both Adp lines (evolved) showed increased

fitness in their growth, whereas Stat lines (evolved) showed growth behaviour similar to

their ancestors (Figure 13.1B). The samples of MG, DH, MGGal, DHGal, MGAdp,

DHAdp, MGAdpGal, DHAdpGal, MGStat and DHStat lines grown in respective carbon

sources were harvested in the mid-exponential phase of growth for both metabolome and

transcriptome analysis.

In metabolome analysis, from about 200 peaks in each chromatogram, ≈100 metabo-

lites were identified by gas chromatography - mass spectrometry (GC-MS) and in tran-

scriptome analysis, a whole genome microarray consisting of 4,288 open reading frames

(ORFs) of Escherichia coli K-12 was used. To examine the multivariate measures of the

variability of the metabolite and gene expression profiles for the obtained data, and for

clustering the biological samples, we applied principal components analysis (PCA). In or-

der to identify parallel metabolite accumulation and gene expression, we applied pairwise

correlation plot analysis. To examine the extent of parallelism among the evolved lines,

metabolite-to-gene correlation networks were constructed and their topological properties

were studied. By mapping the correlation networks to Gene ontology (GO) functional

annotations, functional relevance of the networks was obtained. Subsequently, functional

modules which were statistically significantly overrepresented in respective evolution pro-

cesses were elucidated.

8.1 Metabolome profiling

Till date, metabolome profiling has been frequently applied for obtaining quantitative in-

formation on metabolites for studies on mutational or environmental effects, but not in an

evolutionary context [13, 14]. Here, for our evolutionary studies, we used an approach that
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combined metabolomics and transcriptomics which offers whole genome coverage. In to-

tal, 84 metabolites of known chemical structure were quantified in every chromatogram.

The full datasets (Supplementary Material; Table 17.9)from the metabolite profiling

study are presented in an overlay heat map in Figure 8.1 . This map shows the re-

Fig. 8.1: Overlay heat map of the metabolite profiles.
Logarithmically transformed (to base 2) response ratios were used to plot the heat map. Red
or blue color indicates that the metabolite content is decreased or increased, respectively. For
each sample, gas chromatography/mass spectrometry was used to quantify 84 metabolites
(non-redundant), categorized into amino acids and their derivatives, polyamines, metabolites
involved in nucleotide related pathways, TCA cycle, organic acids, phosphates, and sugar and
polyols. Highlighted yellow boxes indicate significant changes in the metabolite level in the
TCA cycle and the nucleotide related pathways of the evolved lines.

sponse ratios of relevant comparisons of the samples analyzed. In most cases the levels

of metabolites are significantly changed in evolved lines and their directional behavior is
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more or less constant in both the ancesteral strains and in their evolved strains as shown

in Figure 8.2.

Fig. 8.2: Typical examples of metabolite differential levels among the ancestral
and evolved lines.
(a) Sections of chromatograms showing orotate or orotic acid (denoted by an arrow)
abundance among all the lines. (b) Mass spectrum of orotate purified standard and mass
spectrum of the identified peak as orotate in both strains. (c) Box and Whisker plots of
metabolites involved in nucleotide related pathways. 1 and 3 represent MG and DH lines
(ancestors), 2 and 4 represent MGAdp and DHAdp lines (evolved). The top and bottom of
each box represent the 25th and 75th percentiles, the center square indicates the mean, and
the extents of the whiskers show the extent of the data. For each metabolite, the maximal
measured peak area was normalized to a value of 100.

In MGAdp and DHAdp strains, among all the metabolites, 55% and 64% of metabo-

lites respectively had higher or lower than one fold level change, of which them 24% of

metabolites were common among both the strains. MGAdpGal and DHAdpGal strains

were observed to have 45% and 39% respectively, where 14% of the metabolites were
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common among both these strains. Likewise MGStat and DHStat showed 57% and 40%

and 21% of metabolites were common in both the strains (Figure 8.3).

Fig. 8.3: Venn diagrams comparing number of genes and metabolites changes.
Venn diagrams showing commonalities in metabolites and genes in experimental evolutionary
conditions. Venn diagrams demonstrating the distribution of metabolites and genes having one
fold higher or lower level at each evolutionary condition are shown for both strains (Green-
MG1655, Blue- DH10B).

Those metabolites that showed differences in between the ancestral and the evolved

strains fell into groups of metabolites involved in TCA cycle, nucleotide metabolism,

aminoacids and their derivatives and polyamine biosynthesis (Figure 8.1). For ex-

ample, metabolites involved in the nucleotide pathway were significantly different be-

tween both the ancestral and the evolved strains, MG/MGAdp P=0.007 and DH/DHAdp

P=0.038 (Wilcoxon rank sum test; Benjamini-Hochberg corrected). Nucleic acids - ade-

nine, thymine and uracil along with ribose-5-phosphate and orotate (orotic acid) metabo-

lite levels significantly differed in both the Adp evolved strains (Figure 8.2c). Orotate is

an intermediate in de novo biosynthesis of pyrimidine ribonucleotides the level of which

were high in the ancestor strains unlike other metabolites which were not the interme-

diates (Figure 8.2a,b,c). Likewise, the levels of metabolites involved in the TCA cycle

were significantly different for both the ancestral and the evolved strains, MG/MGAdp

P=3.70E-06 and DH/DHAdp P=0.026 (Wilcoxon rank sum test; Benjamini-Hochberg

corrected). An overview of the TCA cycle and the diversion of its key intermediates

display clear differences in the metabolite levels among the Adp evolved strains and its
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ancestors in both the strains (Figure 8.4). Since the TCA cycle is the first step in gener-

Fig. 8.4: The levels of metabolites involved in the TCA cycle and the diversion
of key intermediates to biosynthetic pathways.
In the Box and Whisker plots, 1 and 3 represents MG and DH lines (ancestors), 2 and 4
represents MGAdp and DHAdp lines (evolved). The top and bottom of each box represent the
25th and 75th percentiles, the center square indicates the mean, and the extents of the
whiskers show the extent of the data. For each metabolite, the maximal measured peak area
was normalized to a value of 100.

ating precursors for various biosyntheses and one of the main energy producing pathways

in a cell, these metabolite level changes can be expected to play a vital role in adaptive

evolution of these evolved strains which exhibit increased fitness in growth when compared

with their ancestor strains.

8.2 Gene expression profiling

Several studies have used gene expression profiling to study molecular evolution, but these

studies were confined to a single type of evolution process and were focused on a single

molecular aspect that characterizes a cell (transcript abundance) [5, 6, 7, 8]. In our report,

we focused on three evolutionary conditions of two strains and two molecular aspects in
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a cell (transcript and metabolite abundance). This approach provided us a chance to

integrate both metabolome and transcriptome data sets to better understand the process

of evolution in laboratory conditions.

Using the whole genome microarray consisting of 4,288 ORFs, we compared expres-

sion levels of the transcripts in MG/MGAdp and DH/DHAdp lines. Among 4159 genes,

8% and 7% showed altered expression levels respectively, among these 19% of the genes

were common to both the strains. In MGGal/MGAdpGal and DHGal/DHAdpGal com-

parison, of 4126 genes it was observed that there were 2% and 5% change, respectively,

where 4% of these genes were common among both these strains. Likewise, it was ob-

served in comparing MG/MGStat and DH/DHStat that 1% of the 4156 genes had altered

expression levels in both cases, among that 4% of genes were common in both the strains

(Figure 8.3). In all comparisons, statistically significant functional categories with a P

≤ 0.05 (Wilcoxon rank sum test) that did show differences between the ancestral and

the evolved strains fell into broad groups of genes involved in transport, biosynthesis and

catabolism (Figure 8.5). The gene expression changes associated with these main and

Fig. 8.5: Broad functional annotations of the transcriptome profiling data.
The pie charts of individual evolutionary experimental conditions show the distribution of
differentially regulated functional modules, having P ≤ 0.05 of Wilcoxon rank sum test. For
each evolutionary condition the details of all functional modules and its significant values are
provided in supplementary information (Table 19.6).

broad functional categories consist of sub-functional categories emphasizing specific func-

tions. (Supplementary Material; Table 19.6). For example, genes involved in the pentose

phosphate pathway were significantly differentially expressed between the ancestral and

the evolved strains of the Adp lines (MG/MGAdp P= 0.036; DH/DHAdp P= 0.019)

(Figure 8.6, 8.7, 8.8).

The pentose phosphate pathway produces the precursors (pentose phosphates) for

ribose and deoxyribose in the nucleic acids. By the accumulation of nucleic acid metabo-
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lites (Figure 8.1, 8.2 and 8.4) and over-expression of pentose phosphate pathway genes

in the Adp lines, the involvement of the pentose phosphate pathway in excess nutrient

adaptive evolution can be assumed.

8.3 Extent of changes

To examine the level of metabolite and gene expression changes among all the evolu-

tionary conditions, we applied principal components analysis (PCA). PCA is a technique

for multivariate data analysis which reduces the dimensionality and complexity of the

dataset without losing the ability to calculate accurate distance metrics. It transforms

the metabolome and transcript expression data into a more manageable form in which

the number of clusters might be discriminated. When applied to ancestor and Adp lines,

both ancestors (MG and DH) cluster together; Adp lines (MGAdp and DHAdp) cluster

separately from their ancestor lines, denoting substantial adaptive changes. This pattern

was seen in both metabolite and gene expression data as summarized in Figure 8.9a,

d. When PCA was applied to MGGal, DHGal and AdpGal lines, MGGal and DHGal

clustered together; AdpGal lines clustered separately from their ancestor lines, denoting

considerable environmental shift due to pleiotropic changes in both metabolite and gene

expression data (Figure 8.9b, e). Unlike Adp and AdpGal lines, Stat lines displayed

dissimilar behaviour; Stat lines (MGStat and DHStat) clustered along with their ancestor

lines (MG and DH), denoting few changes between ancestor and evolved strains or diverse

changes between the evolved strains in both metabolite and gene expression data (Figure

8.9c, f).

8.4 Direction of the observed extent of changes

For examining the level of observed changes among the strains, we calculated the pairwise

Pearson correlation coefficient (r) (PCC ) for all the metabolites and significantly corre-

lating genes. All genes having a threshold of r ≤ -0.9 or ≥ 0.9 and all metabolites were

plotted on both axes of a matrix containing all pairwise metabolite or gene expression

profile correlation. When these correlation (r -values) are colour coded, it allows for a

visual inspection to determine the degree of positive and negative correlation among the

samples in question. The correlation map of Adp, AdpGal and Stat line comparisons

showed various degrees of negative correlation (Figure 8.9g-l). Among them, Stat line

comparisons (MG/MGStat versus DH/DHStat) displayed a high degree of negative cor-

relation when compared to AdpGal and Adp line comparisons in both metabolite and

gene expression correlation maps (Figure 8.9i, l) suggesting elevated levels of variabil-
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Fig. 8.9: The extent of changes in experimental evolution among the strains.
(a-f) PCA analysis of the metabolome (a-c) and transcriptome (d-f) data, each data-point
represents an experimental sample plotted using the first three principal components. PCA
was carried out on the log transformed mean-centered data matrix using all identified
metabolites and the genes with P ≤ 0.05 (Student t-test) in at least one strain. (g-l) Pairwise
correlation maps of the metabolome (g-i) and transcriptome (j-l) data among the strains, using
Pearson correlation coefficient (r). All the metabolites and the genes having a threshold value
of r ≤ -0.9 or ≥ 0.9 were plotted colour coded on both axes of a matrix containing all pairwise
metabolite or gene expression profile correlation. Darker spot indicate higher degree of
negative correlation among the strains. Both the analyses were carried out using Matlab 6.5
(The MathWorks, Inc.).
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ity in the Stat lines. The correlation map of Adp line comparison (MG/MGAdp versus

DH/DHAdp) exhibited a lower degree of negative correlation than the other line compar-

isons in both metabolite and gene expression correlation maps (Figure 8.9g, j) denoting

a reduced level of variability in the Adp lines.

8.5 Metabolite to gene correlation network analysis

It has been demonstrated that functionally related genes are preferentially linked in coex-

pression networks [90]. By integrating and comparing the gene expression and metabolite

profile patterns, we were able to explore the connections between the gene-to-gene and

gene-to-metabolite links and associated functions (Figure 8.10a) by assuming that the

more similar the expression pattern is, the shorter the distance between genes and/or

metabolites in the coexpression network. Relative transcript amounts of all genes and

Fig. 8.10: Metabolite-to-gene correlation network analyses.
(a) Substructure extracted from Adp correlation network with MCODE algorithm, showing
preferentially linked functionally related metabolites. In the Box and Whisker plots of the
metabolites 1 and 3 represents MG and DH lines (ancestors), 2 and 4 represents MGAdp and
DHAdp lines (evolved). (b-g) Topological properties of all evolution specific coexpression
networks. (b) Degree distribution of the clustering coefficients of all the evolution specific
network entities. The average clustering coefficient of all the nodes was plotted against the
number of neighbours. (c) Degree distribution of the networks, the number of nodes with a
given degree (k ) in the networks approximates power-law (P(k)≈ kγ ; Adp γ=1.70, AdpGal
γ=1.76, Stat γ=1.32). Distribution of the shortest path between pairs of nodes in the
evolution specific (d, e) and intersection (f, g) networks; constructed with PCC threshold of
0.8 (d, f) and 0.9 (e, g).

relative concentrations of all non-redundant metabolites were combined to form distance
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matrices which were calculated by using the Pearson correlation coefficient r to build

coexpression networks. In many cases there were striking relationships between network

substructure, gene or metabolite function and coexpression (Figure 8.10a). The coex-

pression network analysis provides a possibility to use it as a quantifiable and analytical

tool to unravel the relationships among cellular entities that govern the cellular functions

[91].

All-against-all metabolite and gene expression profile comparison for Adp, AdpGal

and Stat matrices were used to generate evolution specific coexpression networks con-

structed using (PCC ). There was a significantly strong dependence between coexpression

and functional relevance of the networks, stating a strong potential of coexpression net-

work analysis (Figure 8.10a). In coexpression networks, nodes correspond to genes or

metabolites, and edges link two genes or metabolites if they have a threshold correlation

coefficient (r) at, or above which, genes or metabolites are considered to be changed dif-

ferentially, exhibiting similar behaviour. Correlation networks as such inherently contain

corresponding large noise components which were largely eliminated by setting the thresh-

old of r at 0.9. The correlation networks based on the high threshold r of 0.9 reported

here are less likely to contain putative noise and simultaneously they are sufficiently dense

for analyses of topological properties.

8.6 Evaluation of evolution specific networks

With respect to a number of parameters describing their common topological properties,

all evolution specific coexpression networks (Adp 4170 nodes, 23086 edges; AdpGal 4136

nodes, 20501 edges; and Stat 4166 nodes, 54028 edges) were found to be similar except

for the average degree. The average degree (< k >) is the average number of edges per

node [91]. The Stat coexpression network shows higher < k > than the Adp and AdpGal

networks, which is consistent with their greater numbers of edges. < k > gives only

a rough approximation of how dense the network is. The average clustering coefficient,

< C >, determines the network density and characterizes the overall tendency of nodes

to form clusters [91]. For all the evolution specific coexpression networks, the < C > was

approximately equal and high (≈0.05), when compared to randomly generated networks

of similar size, the observed < C > was quite low (≈0.0008). The average path length

(< l >) is the average shortest path between all pairs of nodes [91]. For all the evolution

specific coexpression networks, the < l > was approximately equal and low (≈6.97)

(Figure 8.10). When analysing the networks’ generic features, the clustering coefficient

C(k) of all the networks were more or less constant, implying that they do not exhibit

a hierarchical structure (Figure 8.10). Node degree (k) distribution of all the networks
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appear to have an exponential drop-off in the tail, following a power-law (Figure 8.10).

Overall, these evaluations suggest that the global properties of these evolution specific

coexpression networks are indistinguishable.

8.7 Evolution specific intersection networks

Strain and evolution specific networks were screened for the set of nodes N where there

is a link (r ≥ 0.9) between two nodes a and b in both the strains in the particular

evolution type in context to build evolution specific intersection networks. By examining

the intersection networks of both the strains, we found that the path length distribution

varied among the networks. All intersection networks differed in < k > consistent with

their varying numbers of edges. The < C > was slightly higher in the Adp intersection

network (< C > Adp intersection= 0.113; AdpGal intersection= 0.07; Stat intersection=

0.089) demonstrating high network density and tendency of nodes to form clusters in

the Adp intersection network. The average path length (< l >) was almost equal in

all networks but its distribution in the Adp intersection network differed, indicating high

network navigability (Figure 8.10). From the observations of the global properties of the

evolutionary specific intersection networks, Adp intersection network can be distinguished

from other intersection networks demonstrating its unique characteristics.

8.8 Parallelism and functional relevance of molecular evolu-

tion

The generated networks were examined for functional coherence by assigning Gene ontol-

ogy (GO) functional annotations to the networks’ entities, and the level of parallelism in

the representation of these functional categories was elucidated. Parallel evolution is the

independent development of similar traits in distinct but evolutionarily related lineages

through similar selective factors on both lines [92]. Parallel evolution of similar traits

across both lines are used as an indicator that the change is adaptive [93]. Previous stud-

ies in E.coli and S.cerevisiae have shown parallel changes in independently adapted lines

of replicate populations by utilizing gene expression profiling [5, 7].

Here we examined the parallelism of metabolite and gene expression levels among

the evolved lines of different populations which exhibited similar growth behavior. For

examining the functional coherence and parallelism among the evolution processes, we

mapped the GO functional annotations to the corresponding evolution specific coex-

pression networks and we attempted to address the extent to which these coexpressed
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entities represent functionally related categories. By mapping GO functional categories

to the coexpression networks, statistically and significantly overrepresented functional

categories were color coded according to the hypergeometric test P -value which was cor-

rected by Benjamini and Hochberg False Discovery Rate (Figure 8.11) . To examine

Fig. 8.11: Parallelism and functional relevance of molecular evolution.
GO functional annotations were mapped to the corresponding evolution specific coexpression
networks and examined for commonalities in the coexpressed entities representing functional
related categories. Each node represents a GO functional category and the area of a node is
proportional to the number of genes in the network matrix to the corresponding GO category.
Statistically and significantly overrepresented categories are colour coded based on the
hypergeometric test P -value which was corrected by Benjamini and Hochberg False Discovery
Rate. Grey nodes are not significantly overrepresented. (a-c) GO annotations were mapped to
the evolution specific coexpression networks namely (a) Adp, (b) AdpGal and (c) Stat. (d-f)
GO annotations mapped evolution specific intersection coexpression networks namely (d) Adp
intersection, (e) AdpGal intersection and (f) Stat intersection. (1- membrane, 2- cell wall
(sensu Bacteria), 3- inner membrane, 4- transporter activity, 5- transport, 6- catabolism, 7-
cellular catabolism, 8- amino acid metabolism, 9- nitrogen compound metabolism, 10-
carbohydrate metabolism, 11- energy derivation by oxidation of organic compounds). Not all
overrepresented categories are labelled due to the interdependency of functional categories in
the GO hierarchy.

the parallelism of evolutionary processes in both the strains in context of GO functional

categories, we mapped the GO functional annotations to the coexpression networks (r

≥ 0.9) generated by merging the data matrix of both the strains forming three evolu-

tion specific coexpression networks namely, Adp, AdpGal and Stat networks (Figure

8.11a, b, c). The level of parallelism differed among these networks. In the Adp net-

work, for example, membrane, cell wall (sensu Bacteria), inner-membrane, transporter

activity, catabolism, and cellular catabolism functional categories were significantly over-

represented (P ≤ 0.05) (Figure 8.11a). In the AdpGal network membrane, cell wall
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(sensu Bacteria), inner-membrane, transport, catabolism, and cellular catabolism func-

tional categories were overrepresented (P ≤ 0.05) (Figure 8.11b). However, in the

Stat network, none of the GO functional categories were significantly overrepresented,

denoting decreased level of parallelism among both the strains (Figure 8.11c). Further

examination of parallelism of evolutionary processes was extended to intersection coex-

pression networks, which were created by selecting the nodes that are connected (r ≥
0.9) in both the strains in the particular evolutionary process in question. By examining

the parallelism in these intersection coexpression networks, apart from other functional

categories, we found that the commonly observed distribution of statistically overrepre-

sented GO categories in all the coexpression networks belonged to membrane-associated

GO functional categories (Figure 8.11d, e, f).

8.9 Parallelism in outer-membrane protein expression

To further examine the extent of parallel evolutionary changes, we determined the ex-

pression levels of proteins associated with the outer-membrane (OM) of the ancestor and

evolved strains, whose membrane-related GO functional categories were overrepresented

in the evolution specific coexpression networks (Figure 8.11). OM protein levels revealed

substantial differential expression among the ancestor and evolved strains (Figure 8.12).

In Adp lines, GltB (glutamate synthase (NADPH) large chain precursor), LamB (mal-

tose high-affinity receptor) and YaeT (polypeptide involved in outer-membrane protein

biogenesis) proteins were over-expressed, whereas in Stat lines, FepA (outer receptor for

ferric enterobactin), CirA (outer-membrane receptor for iron-regulated colicin I recep-

tor), OmpC (outer-membrane porin) and OmpA (outer-membrane porin) proteins were

differentially over-expressed (Figure 8.12). Significantly, parallelism in the level of pro-

tein expression patterns in these evolved strains and involvement of the outer-membrane

proteins in these evolutionary processes was observed.
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Fig. 8.12: Parallelism and functional significance in the outer-membrane protein
expression.
SDS gel electrophoresis of the protein samples obtained from the outer-membrane of the
ancestor and evolved lines showing the identified proteins by peptide mass fingerprinting.
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Chapter 9
Discussion (II)

In this study, we have examined the metabolome and transcriptome profiles of excess

nutrient adaptive evolution, immediate environmental shift changes and prolonged sta-

tionary phase evolution in two strains of Escherichia coli K-12. We found significant

influence of genes involved in transport and membrane related functional categories in

all evolutionary conditions determined in this study. In earlier studies, during prolonged

nutrient-limited chemostat culture of bacterial populations, it has been reported that the

populations tend to mutational adaptation in transport systems to increase the efficiency

of utilizing the limiting nutrient [94, 95, 96, 97]. For example, glucose-limited chemostat

evolved strains attained diverse mutations at several loci in LamB porin which increased

glucose permeability [96, 97, 98]. Earlier study of adaptation of Ralstonia in selective

environments resulted in the morphological changes in the outer cell envelope in all the

lineages examined [99].

In adaptation to excess-nutrient resources, the Adp lines exhibited higher levels of

metabolites involved in nucleotide pathway and TCA cycle and its intermediates (Figure

8.1, 8.4). In line with these observations, the expression levels of genes involved in

these pathways were also over-expressed in the Adp lines (Figure 8.7, 8.8). Specifically,

the pentose phosphate pathway (produces pentose phosphates for nucleic acid synthesis)

was differentially regulated, along with the histidine biosynthesis pathway which shares

metabolites with the purine and nucleotide biosynthesis pathways (Figure 8.6, 9.1).

For example, glutamate, which is involved in the de novo biosynthesis of purine nu-

cleotides and various other pathways as a reactant, was accumulated in higher amounts in

Adp lines. In line with this observation, the genes involved in the glutamate biosynthesis

and the protein coding for glutamate synthase (GltB) were up-regulated in the Adp lines

(Figure 8.12). Taken together, the increased growth fitness in Adp lines when compared

to their ancestor lines can be assumed to be due to the differential levels of, 1) TCA

cycle components which are the first step in generating precursors for several biosynthe-

ses, 2) components involved in pentose phosphate pathway which are the main source of

precursor metabolites for the biosynthesis and the main producer of NADPH which is

utilized in several biosynthesis pathways; however, the involvement of these pathways in

the growth fitness has to be confirmed by additional studies. Our finding that the central

metabolism is altered in excess nutrient and famine conditions is consistent with a previ-

ously published study focusing on adaptive evolution in yeast in glucose-limited chemostat
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Fig. 9.1: Histidine biosynthesis pathway in excess-nutrient adapted strains.
The gene expression level and the metabolite abundance level in the evolved strains compared
to their ancestor lines are shown according to the log2 ratio scale shown in the inset. The
reaction lines are color-coded according to the relative values of the expression level of the gene
that codes for the enzyme that catalyzes that reaction step. Metabolite names are color-coded
according to the relative abundance of the metabolite.
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experiments, which showed gene expression variation in glycolysis, the tricarboxylic acid

cycle and metabolite transport [5].

In long-term stationary-phase cultures, cells lose their integrity and release their com-

ponents into the medium as cells enter death phase [70]. For cell maintenance and growth,

the surviving cells scavenge nutrient sources from the cellular debris (amino acids from

proteins, carbohydrates from the cell wall, lipids from cell membrane material and DNA)

of their dead siblings [70]. This nutrient-scavenging process due to nutrient limitation en-

hances the availability of carbon sources by reconstruction of the outer-membrane (OM)

composition and by improving its permeability [100]. The OM of E.coli consists of a lipid

bilayer structure composed of an outer layer consisting of lipopolysaccharide (LPS) and

an inner layer consisting of phospholipids [101]. The genes involved in the biosynthe-

sis pathways of fatty acids (key building blocks for the phospholipid components of cell

membranes) and lipids were over-expressed in Stat lines (Figure 9.2, 9.3). Other ma-

jor components of the outer-membrane are proteins - largely consisting of porins which

coexist with LPS [102]. OM of the cell is the first point of contact with the external

environment and therefore its cellular constituents may be the most sensitive to the ex-

ternal environment. Consistent with this hypothesis, OM proteins FepA, CirA, OmpC,

and OmpA were differentially over-expressed in Stat lines (Figure 8.12), and the genes

belonging to the membrane-associated GO functional categories were significantly over-

represented in the corresponding evolutionary networks as well (Figure 8.11f). This

demonstrates the reliability of the correlation network analysis being robust enough to

examine the significant changes in the integrated metabolite and gene profiling dataset.

Mutation rates in stationary phase are known to be influenced by the genetic back-

ground of the strain [78]. Initial isogenic long-term stationary-phase cultures are highly

dynamic and are known to yield different GASP mutations due to significant genotypic

diversity in these cultures [70]. Consistent with this hypothesis, when we applied PCA

(Figure 8.9c, f) and correlation plot analysis (Figure 8.9i, l), the metabolite and gene

expression levels of Stat lines showed low degree of parallelism when compared with their

ancestor lines. Likewise, when GO functional annotations were mapped onto the Stat

coexpression network, we found that none of the GO functional categories were signif-

icantly overrepresented, denoting a low level of parallelism (Figure 8.11c). However,

when applied to the Stat intersection coexpression network, membrane-associated GO

functional categories were significantly overrepresented (Figure 8.11f). These observa-

tions demonstrate the parallelism in membrane-associated categories in Stat intersection

coexpression network but not in Stat coexpression network propose the existence of paral-

lelism in membrane-associated categories but not in similar membrane-associated genes in

Stat lines. From this, we can conclude the involvement of distinct but functionally-related
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genes in the parallelism in the Stat intersection coexpression network.
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Chapter 10
Conclusion (II)

We analyzed two different strains in three different evolutionary conditions. Integration

of metabolome and gene expression data in the context of evolution facilitated the inves-

tigation of the path of evolution and its degree of parallelism. Classifying microarray data

according to significantly overreprepresented Gene ontology (GO) functional categories,

showed that the transport related categories comprised the highest overall representation.

Similarly, by mapping the GO annotation to the correlation networks, we found that the

membrane-associated functional categories were significantly overrepresented. The outer-

membrane (OM) of the cell is the first point of contact with the external environment,

which acts as a barrier that is quite resistant to unwanted factors as well as acting as

a channel for the diffusion of required nutrients. Components of the OM may therefore

be the most sensitive cellular constituents to the external environment. Analyses of the

outer-membrane proteins of the ancestor and evolved strains showed clear differential reg-

ulation of the outer-membrane proteins. In summary, all the evolutionary experiments

reported in this study demonstrate the vital role of the involvement of the membrane-

associated components in the evolutionary process. These studies show that adaptive

evolution in excess-nutrient conditions are appropriate for examining the extent of par-

allelism in the evolutionary process of the evolved populations, whereas the prolonged

stationary phase conditions are useful to understand the evolution of microbial diversity

among the evolved populations and the dynamic state of the evolved condition. Such

studies would certainly advance understanding of the process of evolution immensely and

along with constructed models [103] would certainly be an ideal initial source of data for

systems biology of microbial evolution.
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Part III

Integration of proteome with transcriptome and metabolome

profile during molecular evolution processes in Escherichia coli.
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Abstract

A comprehensive analysis of molecular evolutionary processes can be accomplished by

analysing the evolved strain in all three functional levels of a gene (protein, transcript

and metabolite). To examine the effect of different molecular evolution processes, we

have analysed the variations in protein abundance in evolved and ancestor strains under

three different evolutionary conditions (excess-nutrient adaptation, prolonged stationary

phase adaptation and adaptation due to environmental shift) and integrated the gene ex-

pression and metabolite levels in two different strains of Escherichia coli K-12 (MG1655

and DH10B). We found 173 proteomic changes among the 525 identified proteins. A

majority of these proteins belonged to membrane related and energy metabolism func-

tional categories. The direction and degree of these proteomic changes varied among the

evolutionary conditions analysed and the pattern was consistent with the transcript and

metabolite changes. The integration and comparison of data generated from all the three

functional levels showed that they were in complete agreement with each other. All the

proteome data discussed in this study is accessible in the form of a relational database at

http://2dbase.techfak.uni-bielefeld.de.
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Author’s contribution: CV conducted all the experiments cited in this study, anal-

ysed the results and wrote this report. KF was involved in experimental guidance. KN

was involved in experimental design. EF is the scientist in whose laboratory all the

experiments were conducted and was involved in experimental design.



Chapter 11
Introduction (III)

In the field of molecular evolution, microorganisms are widely employed for carrying out

evolution related experiments. Microbial evolution experiments are performed under var-

ious types of evolutionary conditions in the laboratory, as their short life span facilitates

such studies within a limited time scale, also allowing for easy manipulation of environ-

mental variables. Among these evolutionary experiments, nutrient-limited adaptive evo-

lution [73, 75, 74] and famine-induced prolonged stationary phase evolution [78, 76, 77]

are extensively studied. Micro-organisms in these conditions exhibit various specific mu-

tations resulting in phenotypic attributes responsible for fitness in that particular selective

environment, demonstrating adaptive evolution [104]. During prolonged carbon starva-

tion, the evolved mutants harbouring selective advantage out-compete their siblings and

takeover the culture by their progeny [79, 81, 80]. Laboratory studies under these evolu-

tionary conditions have addressed fundamental questions regarding adaptation processes

and selection pressures, thereby explaining modes of evolution [69, 76, 70, 73].

A complete understanding of any molecular process requires quantitative data gen-

erated in parallel for transcript, protein and metabolite levels. Existing technological

advancements have considerably extended the ability to analyse and generate large data

sets, enhancing the possibility of understanding complex biological systems. Integration

and interpretation of large data sets generated from cutting-edge as well as conventional

technologies in these three functional levels, however, remains a major scientific chal-

lenge [105]. Global changes in gene expression are usually analysed using microarrays,

providing quantitative information about the gene expression levels whereas, global quan-

titative profiling methods applied to analyse protein and metabolite levels are still in their

infancy. Proteomics by conventional 2-dimensional polyacrylamide gel electrophoresis is

still the major method for global proteome analysis [106, 107]. Commonly used meth-

ods for metabolite profiling are gas chromatography - mass spectroscopy (GC-MS), liquid

chromatography - mass spectroscopy (LC-MS) and nuclear magnetic resonance (NMR).

Experiments focusing on the three functional levels would provide important information

concerning the hierarchical control of biological processes [108, 24, 109]. Relatively few

studies have integrated the data sets generated from the experiments concerning three

functional levels for better understanding the biological processes.

In this study, we have applied a global proteomic profiling method and integrated the

data sets generated from global transcript and metabolite profiling methods to understand
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excess-nutrient adaptive evolution, prolonged stationary phase evolution and pleiotropic

effects due to environmental shift in two strains harbouring different genotypes. For

this, we have used Escherichia coli K-12 strains (MG1655 and DH10B) from (1) serial

passage system for excess-nutrient adaptive evolution studies, (2) constant batch culture

for prolonged stationary phase evolution and (3) culture with nutrient alteration following

adaptation to a particular nutrient for examining pleiotropic effects due to environmental

shift. A detailed proteome analysis of these evolved populations would guide towards a

better understanding of the evolution processes involved when combined with the data

generated from transcriptomics and metabolomics approaches. These data sets obtained

from three functional levels would be of vital importance for viewing a global picture of

the experimental sample in question. To eliminate the possibility of the strain-dependent

phenomenon of evolution and to examine the parallelism of the laboratory evolution

process, we examined all the evolutionary processes in two strains. As a result we were

able to to compare the protein profiles under various conditions for these strains, namely,

Strain abbreviations Evolved condition

MG and DH MG1655 and DH10B grown in glucose
MGGal and DHGal MG1655 and DH10B grown in galactose
MGAdp and DHAdp MG1655 and DH10B adapted about 1000 gen-

erations in glucose
MGAdpGal and DHAdpGal MGAdp and DHAdp (glucose evolved strains)

grown in galactose
MGStat and DHStat MG1655 and DH10B grown in prolonged sta-

tionary phase (37 days)

Tab. 11.1: Strains and their evolved conditions.

Several studies have used gene expression [7, 5, 8, 6] and proteome profiling meth-

ods [9, 10, 11, 12] to study molecular evolution, but these studies were confined to a

single type of evolution process. In this study, we depicted a complete picture of lab-

oratory molecular evolution processes among two different strains under three different

evolutionary conditions, namely, excess-nutrient adaptive evolution, prolonged stationary

phase evolution and pleiotropic effects due to environmental shift. By global proteome

profiling and integrating multidimensional metabolome and gene expression data, we aim

to find vital proteins, metabolites and genes involved in the evolutionary processes in

these three conditions. To our knowledge, there have been no previous reports on inte-

grating proteome, transcriptome and metabolome data sets involving microbial molecular

evolutionary studies.
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Chapter 12
Materials and Methods (III)

12.1 Strain and culture conditions

Both the bacterial strains, MG1655 and DH10B used in this study are derivatives of

E.coli K-12. All the experiments were conducted in 250 mL of M9 minimal medium

supplemented with 4 gL−1 of glucose or galactose in covered 1 L Erlenmeyer flasks at

37 ◦C. Adaptation to excess nutrient experiments was carried out in the presence of 4

gL−1 glucose through serial passage at exponential phase for about 1000 generations. The

cells were grown overnight and were diluted by passage into fresh medium. Passage of

each culture into fresh medium was conducted in a laminar flow station using standard

sterile technique practices. Serial passage were conducted for 37 days at exponential

phase for about 1000 generations. For adaptation due to environmental shift experiments,

the strains which were adapted to excess nutrient (glucose) condition for about 1000

generations were grown in 4 gL−1 galactose. For prolonged stationary phase adaptation

experiments, both the strains were incubated for 37 days in M9 minimal medium with 4

gL−1 glucose as initial source of carbon. The evolved populations were frozen using liquid

nitrogen and stored in a freezer at -80 ◦C.

12.2 Two-dimensional SDS-PAGE gel electrophoresis

Approximately 4.1x1010 cells were harvested from the exponential phase in all experi-

ments. The cells were pelleted down at 6000 rpm at 4 ◦C for 10 min. Harvested cells

were washed with low salt solution (3 mM KCl, 1.5 mM KH2PO4 , 68 mM NaCl, 9 mM

NaH2PO4) trice. The pellet was then resuspended in rehydration buffer (9 M urea, 4%

3-([3-chloramidopropyl]dimethylammonio)-1-propane-sulfonate (CHAPS), 85 mM dithio-

threitol (DTT), 0.5 mM pefabloc SC and stored at -20 ◦C until next use. The cells were

lysed by ultrasonication for 10 s, 5 times at 10% of maximum output (Branson sonifier

450). After 30 minutes of incubation at 37 ◦C with DNase and RNase, eventually the

debris was pelleted down and the proteins present in the supernatant were precipitated

with acetone at -20 ◦C overnight. The precipitated proteins were then resuspended in

rehydration buffer and 300 µg of protein sample was loaded to 24 cm, pH 4-7 Immobiline

dry strips (Amersham Biosciences) along with 1.5 µl (IPG)-buffer ph 4-7 dissolved in it

for each strip. The strips were focused on an IPG-phor (Amersham Biosciences) for 1 h
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at 0 V, 12 h at 30 V, 2 h at 60 V, 1 h at 1000 V, and at 8000 V until approximately

75,000 Vh was reached. The strips were equilibrated in 5 ml of a solution containing 6

M urea, 50 mM Tris (pH 8.8), 30% (v/v) glycerol, 20 gL−1 SDS and 20 gL−1 DTT on

a tilt table for 15 min. The solution was discarded and 5 ml of a second solution was

added for 15 min containing 6 M urea, 50 mM Tris (pH 8.8), 30% (v/v) glycerol, 20 gL−1

SDS and 25 gL−1 iodoacetamide. The second dimension was performed on an EttanDalt

(Amersham Biosciences) electrophoresis unit. The strips were placed on a 1.5 mm thick,

12.5% poly-acrylamide gel and sealed with 0.1% agarose in SDS-electrophoresis buffer

containing 0.01% brom-phenol-blue. The gel electrophoresis was performed for 30 min at

3 W per gel followed by a further run at 20 W per gel until the end. For comparative

analysis, gels were stained with coomassie blue stain.

12.3 In-gel tryptic digestion and mass spectrometry

Protein spots were excised from 2-D gels with a spot picker and placed into 96-well

microtiter plates, which were washed twice with TFA:acetonitrile:water (0.1:60:40). The

tryptic digest was performed as reported previously with slight modifications [27]. The

samples containing the tryptic-digested proteins were mixed at a 1:1 ratio with a solution

of water:acetonitrile:TFA (67:33:0.1) saturated with α-cyano-cinnamic acid. The mass

spectrum was obtained on a Biflex III MALDI-TOF-MS (Bruker). The annotation of

the peptide mass fingerprints was performed by the MASCOT search engine (Matrix

Science). The search was done against our local E.coli database. The parameters used

were, Taxonomy: All entries; Enzyme: Trypsin; Missed cleavages: 1; ppm: 100; Database:

E.coli.

12.4 Analysis of two-dimensional protein gels

For a global proteome profile of both the strains and each evolutionary condition, spot den-

sities were determined on three gel images from three independently grown cultures. For

comparison of protein spot densities between different strains and evolutionary conditions,

gels were scanned and digitized. Image smoothing, spot detection, spot quantification,

image alignment, spot matching, spot annotation, molecular weight and pI calculation,

and variation analysis of the protein gels was performed using PDQuest software (Bio-

Rad). For each protein spot, the annotated information along with the peak area and

normalized quantity values were obtained. Along with these exported annotations, the

protein spots were analysed by grouping them into various functional categories based

on MultiFun and Gene Ontology terms, the classification system for cellular functions of
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gene products of E. coli [31, 84] consisting of 10 major functional categories. The log2

ratios of the mean-centered normalized quantity values were used for unsupervised anal-

ysis (hierarchical clustering) using Cluster 3.0 and TreeView [32], where average-linkage

clustering was performed using an uncentered correlation metric.

12.5 Network analysis

All the networks reported in this study were constructed based on correlation data char-

acterized by Pearson correlation coefficient (PCC ) r value of 0.7 i.e. nodes which corre-

spond to proteins with r≥ 0.7 or r≤ -0.7 were linked by an edge. All-against-all protein

expression profile r -values of evolution-specific matrices were used to generate evolution-

specific coexpression networks. Network visualization and analysis was performed using

Cytoscape [86].
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Chapter 13
Results (III)

13.1 Proteome profiles of ancestral and evolved lines

The Adp line cultures (MGAdp and DHAdp) were maintained in prolonged exponential

growth by daily passage into fresh medium for about 1000 generations (Figure 13.1A).

The Stat line cultures (MGStat and DHStat) were maintained in constant batch culture

Fig. 13.1: Flowchart of the experimental scheme.
(A) The ancestral and evolved strains are shown in labelled rectangular boxes with
experimental evolutionary conditions. The comparison between MG1655 or DH10B and
MG Adp or DH Adp was carried out for excess nutrient adaptive evolution experiments. The
comparison between MG1655 or DH10B and MG Stat or DH Stat was carried out for
prolonged stationary phase evolution experiments. Similarly, the comparison between MG Gal
or DH Gal and MG AdpGal or DH AdpGal was carried out for experiments examining the
pleiotropic effects due to environmental shift. (B) The growth behaviour (polynomial fit) of
the ancestral and evolved strains showing the increased growth fitness of the Adp lines in both
the strains and identical growth behaviour of Stat lines when compared with the ancestral
strains.

for 37 days where no nutrients were added after initial inoculation and no cells were re-
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moved, unlike the former setup (Figure 13.1A). For the AdpGal line cultures (MGAdp-

Gal and DHAdpGal), Adp lines (glucose adapted) were grown in medium containing

galactose as the carbon source, thus creating an environmental shift for the cells with

respect to the nutrient source (Figure 13.1A). During this period of adaptation, both

Adp lines (evolved) showed increased fitness in their growth, whereas Stat lines (evolved)

showed growth behaviour similar to their ancestors (Figure 13.1B). The samples of MG,

DH, MGGal, DHGal, MGAdp, DHAdp, MGAdpGal, DHAdpGal, MGStat and DHStat

lines grown in respective carbon sources were harvested in the mid-exponential phase of

growth for proteome analysis, as done for both metabolome and transcriptome anal-

yses. This allowed us to achieve excellent reproducibility by making gel parameters

maximally consistent, and therefore enhancing the comparisons of gels. This also pro-

vided an opportunity to correlate proteome, transcriptome and metabolome data sets

efficiently. Based on the results reported in this study, a proteomics database of E. coli

(http://2dbase.techfak.uni-bielefeld.de) was developed which currently consists of 1185

protein spots information in which 723 proteins were identified and annotated from 12

gels. Among them, 10 gels were generated during microbial evolutionary experiments

reported in this study. This database being a relational database, enables re-analysis,

comparison, functional classification and extensive searching of protein spots in all the

available proteome gels.

13.2 Changes in transcript and metabolite levels

The whole data sets of transcript and metabolite profiling along with the significant func-

tional categories representation is summarised in Figure 13.2. Based on MultiFun and

Gene Ontology terms (the classification system for cellular functions of gene products of

Escherichia coli), in all comparisons, statistically significant functional categories with a

P ≤ 0.05 (Wilcoxon rank sum test) that showed differences between the ancestral and

the evolved strains fell into broad groups of genes involved in transport, biosynthesis

and catabolism (Figure 13.2A). The expression changes associated with these main and

broad functional categories consist of numerous sub-functional categories which varied

in number between different evolutionary conditions (Figure 13.2A). Commonality ob-

served in the analyses were the overrepresentation of transport and biosynthesis involved

functional categories in all the evolutionary conditions studied (excess-nutrient adaptive

evolution, prolonged stationary phase evolution and pleiotropic effects due to environ-

mental shift). A similar statistical method for metabolite data sets revealed differences

in metabolite levels involved in TCA cycle, nucleotide metabolism, aminoacids and their

derivatives and polyamine biosynthesis under the experimental evolutionary conditions
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Fig. 13.2: Broad functional annotations of the transcriptome and metabolome
profiling data.
(A) The stacked column plot comparison of the gene expression data based on broad
functional classification. The comparison of the ancestor and evolved strains of individual
evolutionary experimental conditions in both the strains showing the distribution of
differentially regulated functional modules, having P ≤ 0.05 (Wilcoxon rank sum test). (B)
The stacked column plot comparison of the metabolite profiling data based on broad
functional classification. The comparison of the ancestor and evolved strains of individual
evolutionary experimental conditions in both the strains showing the Wilcoxon rank sum test
P -value degree distribution of various functional modules.

analysed. For example, metabolites involved in nucleotide pathway and TCA cycle were

significantly over accumulated in the evolved strains adapted to the excess-nutrient condi-

tion when compared to the ancestral lines (Figure 13.2B). Likewise, significant changes

in the levels of metabolites were seen in the evolved lines and their directional behavior is

more or less constant in both the strains and in their evolved strains under all the evolu-

tionary conditions studied. As a summary, the genes involved in the membrane associated

functional categories and genes involved in the various biosyntheses functional modules

were overrepresented in the experimental evolutionary studies. In accordance with these
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findings, the metabolites involved in the TCA cycle and the nucleotide pathway were in

higher levels in the evolved lines which were adapted to excess-nutrient source, where

TCA cycle is the first step in generating precursors for various biosyntheses and one of

the main energy producing pathways in a cell.

13.3 Changes in protein expression levels in experimental evo-

lutionary conditions

The normalized quantity values of all the protein spots were utilized to calculate the ra-

tio of their standardized abundance in an evolved line relative to that in the ancestor,

using the values obtained in the same data set. The calculated ratios of all the identified

protein spots under all the experimental conditions were utilized for unsupervised hier-

archical clustering (Figure 13.4). The hierarchical cluster shows the possible relevant

comparisons among the evolved and the ancestral lines (Figure 13.4). In most cases the

protein levels were significantly changed in evolved lines and their directional behaviour

was more or less constant in both the ancestral and the evolved strains (Figure 13.3).

Among 495 and 470 protein spots’ information present in the proteome gels of MG1655

and DH10B series of ancestor and evolved strains, 230 and 295 protein spots were identi-

fied, respectively. Among the identified proteins which were common between the strains,

a comparison of Adp (evolved) and their ancestor lines showed 67% (MG/MGAdp) and

57% (DH/DHAdp) of proteins with significant changes (which corresponds to an esti-

mated fold change of 1 or higher in protein expression) in their expression levels (Figure

13.4). Likewise, a comparison of the protein profiles of the MGGal and MGAdpGal

showed 59% and DHGal and DHAdpGal showed 78% of proteins with significant changes

in expression (Figure 13.4). Similarly, the MG/MGStat and DH/DHStat comparison

showed a 67% and 48% of proteins with significant changes above the estimated fold

change of 1 or higher in protein expression, respectively (Figure 13.4). The number of

proteins showing differential expression above the estimated fold change of 1 or higher

in protein expression varied between the different evolutionary conditions. When the

proteome maps of the ancestor lines (MG and DH) were compared with the Adp lines’

(MGAdp and DHAdp) proteome maps, the Adp lines shared about 34 proteins over- or

under-expressed where, among them 47% (16 proteins) were in common and evolved in

the same direction relative to both the ancestral expression levels. The comparison of

the MGGal/MGAdpGal and DHGal/DHAdpGal lines showed 41 proteins up or down

regulated, of which 34% (14 proteins) were in common. Likewise, the Stat lines (MGStat

and DHStat) shared about 36 proteins with their ancestor lines (MG and DH), of which
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Fig. 13.3: Typical examples of differential protein expression among the ances-
tral and evolved lines.
(A) Sections of proteome gels showing the over expression of the enolase (Eno) protein levels
in evolved strains when compared to their ancestors in excess-nutrient adaptive evolution. (B)
Over expression of beta-methylgalactoside transporter (MglB) in AdpGal lines during
adaptation due to environmental shift experiments. (C) Over expression of the enolase (Eno)
protein levels in evolved strains when compared to their ancestors during prolonged stationary
phase adaptive evolution. (D, E) Expression levels of inorganic pyrophosphatase (Ppa) which
plays an important role in energy metabolism is shown as a control obtained from the same
dataset of all the evolutionary experiments analysed.

only 25% (9 proteins) was in the same direction of expression pattern among both the

strains.

In adaptation to excess-nutrient condition the evolved lines (MGAdp and DHAdp)

exhibited down-regulation of 2 proteins (AceA and MglB) whereas 14 proteins were over-

expressed when compared to their ancestors, among them 4 proteins were associated with

energy metabolism (Eno, GpmA, Pgk, and Mdh), 4 were membrane associated proteins

(MetQ, YbiL, HisJ, and YaeT), 2 were involved in amino acid metabolism (GlyA and

ArgT), and the other 4 belonged to other functional categories or hypothetical proteins.

In experiments concerning adaptation due to environmental shift, by altering the nutrient

resource in the growth medium, the protein spots present in the AdpGal gels (MGAdpGal

and DHAdpGal) displayed under-expression of 3 proteins (AceA, OmpF and Udp) and

11 proteins were over-expressed when compared to the proteome map prepared from the

ancestral strain grown in galactose (MGGal and DHGal). Among them, 6 proteins were
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Fig. 13.4: Hierarchical clustering of protein expression levels of ancestral and
evolved strains.
Logarithmically transformed (to base 2) response ratios of each comparison are arranged in
columns and rows corresponding to single proteins. Dendrograms indicate the degree of
similarity between clusters of proteins. Red indicates up-regulation and green indicates
down-regulation in protein expression, according to the log2 ratio scale on the upper left.
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involved in membrane-associated functions (EntB, AtpD, AtpD- isoform, OmpC, MetQ

and CirA), 2 proteins belonged to energy metabolism of the cell (GpmA and IcdA), and

the remaining 3 proteins corresponded to other functional categories. By adaptation to

the prolonged starvation conditions, the evolved strains (MGStat and DHStat) exhibited

over-expression of 8 proteins when compared to their ancestor strains (MG and DH). Out

of these over-expressed proteins, 4 (Pgk, Eno, GpmA and YbhE) were related to the en-

ergy metabolism functional category of the cell, and the remaining 4 (MetQ, GalM, TufA

and AhpC) were involved in membrane-associated and other functional categories. The

expression patterns of these 39 proteins under the three experimental evolutionary con-

ditions were altered in the same direction in both the strains demonstrating evolutionary

parallelism, indicating the effects of adaptive evolution in excess-nutrient, environmental

shift and incubation in prolonged stationary phase evolutionary environment.

13.4 Direction of the observed protein expression changes

Observing the high extent of parallel changes in the protein expression levels among both

the strains under all experimental evolutionary conditions, we examined the degree and

the direction of the observed changes of their expression levels. For examining the level of

observed changes among the strains in all the three experimental evolutionary conditions,

we calculated the pairwise Pearson correlation coefficient (r) for all the normalized spot

intensities. All the proteins having a threshold value of r ≤ -0.7 or ≥ 0.7 were plotted on

both axes of a matrix containing all pairwise protein expression profile correlations. When

these correlations (r) are colour coded, it facilitates a visual inspection to determine the

degree of correlation among the samples in question. The correlation map of Adp, AdpGal

and Stat lines shows various degrees of negative correlation (Figure 13.5). Among

them, Stat lines (MG/MGStat versus DH/DHStat) displayed a high degree of negative

correlation when compared to AdpGal and Adp lines in the protein correlation maps

suggesting elevated level of protein expression level variability in the Stat lines (Figure

13.5C). The correlation map of Adp lines (MG/MGAdp versus DH/DHAdp) exhibited

a lower degree of negative correlation than the other lines, indicating reduced level of

stochastic variability in the protein expression levels of Adp lines (Figure 13.5A).

13.5 Protein correlation network analysis

Normalized spot intensities of all the proteins were utilized to form distance matrices which

were calculated by using the Pearson correlation coefficient r to build protein coexpression

networks for all the experimental evolutionary conditions. It has been demonstrated pre-
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Fig. 13.5: Comparison of direction of changes in the experimental evolution
among the strains.
Pairwise correlation maps of the proteome data among the strains in all the experimental
evolutionary conditions, using the Pearson correlations coefficient (r). All the proteins having
a threshold value of r≤ -0.7 or ≥ 0.7 were plotted colour-coded on both axes of a matrix
containing all pairwise protein expression profile correlations. Darker spot indicates higher
degree of negative correlation among the strains. The analysis was carried out using Matlab
6.5 (The MathWorks, Inc.).

viously that functionally related genes are preferentially linked in coexpression networks

[90]. By applying a similar method for building coexpression protein networks from pro-

tein expression data, we were able to explore and reproduce the connections between the

protein-to-protein links and their corresponding mutual functionality. Functional justifi-

cation of the protein coexpression network was based on the assumption that the more

similar the expression pattern is, the shorter the distance between proteins in the coex-

pression network. Hence, the closely associated proteins in the coexpression networks will

be of special interest in this analysis.

All-against-all protein profile comparison for Adp, AdpGal and Stat matrices were used

to generate evolution specific coexpression networks constructed using Pearson correlation

coefficient (PCC ). There was a strong dependence between coexpression and functional

relevance of the networks, demonstrating the strong potential of coexpression network

analyses (Figure 13.6).

In coexpression networks, nodes correspond to proteins, and edges link two proteins if

they have a threshold positive or negative correlation coefficient of r ≤ -0.7 or ≥ 0.7 which

are considered to be expressed differentially. The coexpression network analysis provides

a possibility to use it as a quantifiable and analytical tool to unravel the relationships

among cellular entities that govern the cellular functions [91].

By analysing the protein coexpression networks separately, we found that the details

of the connections in the networks were different. Very few coregulated protein pairs are

shared among the evolution specific networks. For instance, MetQ and LivJ, involved
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Fig. 13.6: Protein correlation network analyses.
Evolution specific coexpression networks were constructed using Pearson correlation coefficient
by all-against-all protein profile comparison. Nodes correspond to proteins, and edges link two
proteins if they have a threshold correlation coefficient of r ≤ -0.7 (blue edge) or ≥ 0.7 (red
edge). Membrane-associated proteins (nodes) are colour coded with orange and nodes related
to energy metabolism are in green. Closely linked proteins in the network with associated
function are labelled.

in transport of amino acids, shared a consistent connection in Adp and Stat evolution

specific networks, but not in AdpGal coexpression network (Figure 13.6). Likewise,

in all the evolution specific coexpression networks, Eno and AceA, involved in the en-

ergy metabolism of the cell, shared a consistent association (Figure 13.6). Major func-

tional categories which were overrepresented in these networks were energy metabolism,

transporters, membrane associated proteins and outer-membrane proteins (Figure 13.6).

Despite the presence of very few commonly coregulating protein pairs in these coexpres-

sion networks, the functionally associated protein pairs were consistently connected in

all the networks. This suggests that the different experimental evolutionary conditions

have changed not only the protein expression levels, but also the coregulatory relation-

ships among the protein pairs. Nevertheless, the global functional category association is
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retained in all the evolutionary networks analysed (Figure 13.6).

13.6 Comparison of transcript, metabolite and protein levels

The adaptation of both strains to the experimental evolutionary conditions presented

in this study affected the expression of those proteins which were associated principally

with the membrane related transport functional category and the energy metabolism of

the cell. Apart from the over-expressed proteins in the energy metabolism functional

category in Adp lines (MGAdp and DHAdp) (Figure 13.7), the proteins involved in the

amino acid metabolism and transport were differentially over-expressed. For instance,

GlyA and ArgT which are involved in amino acid biosynthesis were over-expressed in

both the evolved strains adapted to excess-nutrient conditions. GlyA is involved in the

biosynthesis of glycine, purines, and methionine. In line with the over-expression of GlyA

protein (MG/MGAdp= 3.46 fold; DH/DHAdp= 3.01 fold) in the evolved strains, the

levels of glycine, adenine (purine) and methionine metabolites were in higher amount in

both the strains evolved in excess-nutrient condition (Figure 13.7). ArgT is involved

in biosynthesis of arginine and functions as lysine/arginine/ornithine ABC transporter.

In parallel with the upregulation of ArgT (MG/MGAdp= 3.11 fold; DH/DHAdp= 2.15

fold) in both the excess-nutrient evolved strains, the levels of lysine, arginine and ornithine

metabolites were higher. In correlation with this, the polyamines (4-aminobutyrate, 5-

methyl-thioadenosine, putrescine and spermidine), the derivatives of arginine were present

in higher amount in both the evolved strains (Figure 13.7). Similarly, the proteins

involved in the transport of amino acids (MetQ and HisJ) were over-expressed in both

the excess-nutrient evolved strains. MetQ which is involved in the uptake of methionine

was over-expressed 1.5 fold in comparison of MG/MGAdp and 6.43 fold in comparison

of DH/DHAdp. The methionine levels were also high in both lines. HisJ is a member

of the histidine transport system and it was 1.54 (MG/MGAdp) and 1.77 (DH/DHAdp)

fold over-expressed in both the excess-nutrient evolved strains, respectively. In case of the

gene expression data, all the genes involved in the histidine biosynthesis were up-regulated

in both the evolved strains which were adapted in excess-nutrient evolutionary condition.

In AdpGal lines (MGAdpGal and DHAdpGal), among the few proteins which were sig-

nificantly differentially regulated, three outer-membrane porin proteins (OmpC, OmpF

and CirA) were differentially expressed in both the strains during the environmental

shift experiments. OmpC porin which transports ions and other hydrophilic solutes

across the outer-membrane [110] was 1.13 fold (MGGal/MGAdpGal) and 2.74 fold (DH-

Gal/DHAdpGal) over-expressed, during the environmental shift experiments. OmpF

porin which is involved in the transport of solutes such as sugars, ions, and amino acids
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Fig. 13.7: Protein, gene and metabolite levels in the central metabolic routes
and the diversion of key intermediates to biosynthetic pathways.
Genes are represented in green text, metabolites in orange text and proteins in black text.
Identified protein expression levels in all the experimental conditions are represented as raw
protein spots excised from the gel images. Ancestor and evolved strain specific gene expression
comparisons are denoted in green boxes (M- MG1655, D-DH10B). Ancestor and evolved strain
specific metabolite abundance comparisons are denoted in orange boxes (m- MG1655,
d-DH10B). Logarithmically transformed (to base 2) response ratios were utilized for each
comparison according to the log2 ratio scale on the upper right inset.
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[111] was downregulated to a fold range of 1.12 and 2.37 in both the strains. CirA outer-

membrane porin was 1.80 (MGGal/MGAdpGal) and 1.63 (DHGal/DHAdpGal) fold over-

expressed, which is a TonB dependent iron-siderophore complex uptake receptor.

In Stat lines (MGStat and DHStat), among the proteins which were differentially reg-

ulated in both the evolved strains in prolonged stationary phase incubation two membrane

bound proteins MetQ (MG/MGStat=3 .69, DH/DHStat= 7.77) and GalM (MG/MGStat=

2.37, DH/DHStat= 1.06) were over-expressed. Other major differentially expressed pro-

teins belonged to the energy metabolism of the cell (Figure 13.7). In all the evolutionary

experimental processes reported in this study, the proteins involved in energy metabolism

were significantly differentially regulated. By integration of the metabolite and gene ex-

pression levels along with the proteome data generated in this study, the correlation of

the observed results were in complete agreement with each other (Figure 13.7).

13.7 Comparison of parallelism in the three functional levels

Parallel evolution is the independent progression of similar traits in separate but evo-

lutionarily related lineages through similar selective factors on both lines by adaptation

[92]. Here we examined the parallelism among different lines by examining the direction

of changes in the protein, gene and metabolite levels adapted to three evolutionary exper-

imental conditions. For examining the parallelism by adaptation in the trend of protein,

transcript and metabolite levels under all the evolutionary conditions, the matrix of both

the strains having all the normalized values of the protein and gene expression levels and

metabolite abundance levels were plotted on both axes. The linear relationship in all

the functional level data sets and in all the experimental conditions was measured by

means of correlation coefficient between both strains. In all the three functional levels of

data sets, Adp lines displayed high linear relationship between both the strains by hav-

ing a higher correlation coefficient when compared to the other evolutionary conditions

(Figure 13.8). This indicates that among the evolutionary conditions examined in this

study, adaptation to excess-nutrient evolutionary condition exhibits high parallelism in

the gene, protein and metabolite levels. AdpGal and Stat lines had slightly lower corre-

lation coefficient than the Adp lines demonstrating variability in the gene, protein and

metabolite levels and lower linear relationship between the strains in environmental shift

and prolonged stationary phase induced evolutionary conditions (Figure 13.8).
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Fig. 13.8: Evolutionary trends of protein, transcript and metabolite levels.
For all the evolutionary conditions of two strains, the matrix of both the strains having all the
normalized values of protein and gene expression and metabolite abundance levels were plotted
on both x (MG1655) and y (DH10B) axes. The linear relationship between both the strains in
every comparison is denoted by the correlation coefficient r.
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Chapter 14
Discussion (III)

We have studied the proteomic changes of two strains harbouring different genotypes

adapted to three different experimental evolutionary conditions, namely, excess-nutrient

adaptive evolution, prolonged starvation adaptive evolution and examining pleiotropic

effects due to an environmental shift by nutrient alteration. Along with the proteome

data generated in this study, we integrated the gene expression and metabolite profiling

data for a better understanding of the experimental evolutionary conditions. We found

that among the proteins identified in all the evolutionary conditions studied, 48% to

78% of proteins were differentially regulated when compared to the proteins in their re-

spective ancestors (MG/MGAdp= 67%; DH/DHAdp= 57%; MGGal/MGAdpGal= 59%;

DHGal/DHAdpGal= 78%; MG/MGStat= 67%; DH/DHStat= 48%). By identifying the

proteins which are common in a particular evolutionary condition between both the strains

which are differentially regulated, we could assume the involvement of these intersecting

proteins in the experimental evolutionary condition studied. Obtained proteomics data

integrated along with gene expression and metabolite levels would certainly ensure the

involvement of these proteins in that particular evolutionary condition. In excess-nutrient

adaptive evolutionary conditions of both the strains, 47% of differential regulated proteins

were common in both the strains. In environmental shift by nutrient alteration condi-

tion on both the strains, 34% of differential regulated proteins were common in both

the strains. In prolonged starvation adaptive evolutionary condition of both the strains,

25% of differential regulated proteins were intersecting in both the strains. As a result,

the protein expression patterns in excess-nutrient adaptive evolution apparently have the

highest level of parallelism in the expression patterns between the strains, whilst protein

expression patterns in prolonged starvation adaptive evolution have the lowest. A simi-

lar conclusion was also derived by pairwise protein expression profile correlation analysis

which revealed a higher degree of negative correlation in the prolonged starvation adap-

tive evolution condition than the other evolutionary conditions studied (Figure 13.5).

This parallelism was not only seen in the proteomics data, but also in transcriptomics

and metabolomics data sets (Figure 13.8). Microorganisms in the stationary phase are

known to have varied mutation rates which are known to be influenced by the genetic

background of the strain [78]. The condition of initial isogenic long-term stationary-phase

cultures is known to be highly dynamic in nature and is known to produce diverse muta-

tions due to significant genotypic diversity in these cultures [70]. In complete agreement
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with this hypothesis, our results demonstrated the lowest level of parallelism seen in the

protein, gene and metabolite levels between the two strains evolved in the prolonged star-

vation adaptive evolutionary condition when compared to other conditions reported in

this study (Figure 13.4, 13.5, 13.8).

The functional categories which were differentially regulated among all the evolution-

ary conditions in their proteome level belonged to membrane-bound functional categories

and the energy metabolism of the cell. Similar results were obtained when the gene ex-

pression of these strains under all the evolutionary conditions were analysed, where the

membrane-bound Gene ontology functional modules were significantly overrepresented.

In this study, both the evolved strains adapted to excess-nutrient evolutionary conditions

exhibited higher growth fitness than their ancestor strains. One of the possible reasons

for increased growth fitness can be assumed to be due to the higher levels of the proteins,

genes and metabolites and their intermediates involved in the energy metabolism in the

evolved strains (Figure 13.7). The energy metabolism of the cell consists of pathways

which are the first step in generating precursor metabolites for biosyntheses involved in

various vital cellular processes. Altered levels of proteins, genes and metabolites involved

in central metabolism in evolved strains of excess-nutrient and starvation conditions re-

ported in this study are consistent with a previous study related to variation of central

metabolism gene expression levels in glucose-limited adaptive evolution in yeast [5].

Previous studies of the evolved strains harbouring mutations for increased growth

fitness under limited-nutrient conditions have shown that the strains re-structured their

membrane for increased permeability [96, 97, 98]. In long-term stationary-phase cultures,

for cellular maintenance the nutrient-scavenging process on the cellular debris enhances

the availability of carbon sources by restructuring the outer-membrane composition and

by improving its permeability [100]. The outer-membrane of the cell being the initial

point of contact with the external environment, its corresponding cellular components are

susceptible to changes to adjust to the external diverse environment. In complete agree-

ment with this hypothesis, the membrane bound functional categories were significantly

overrepresented in the evolved strains in their gene expression levels (Figure 13.2). Con-

sistent with this, the proteomic results presented reveal that the outer-membrane porin

proteins (OmpC, OmpF, CirA and YbiL) were differentially regulated under the evo-

lutionary conditions reported (Figure 13.4, 13.6 and Supplementary Material; Table

19.8).
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Chapter 15
Conclusion (III)

We report the evolutionary changes in protein expression profiles in two strains of three

different experimental evolutionary conditions along with the integrated metabolite and

gene expression data. As a result of the analysis of the evolved and ancestor strains in three

functional levels, we could confirm the involvement of the membrane related functional

categories and energy metabolism of the cell in all the evolutionary conditions studied.

The membrane-bound components are the first point of contact with the evolved exter-

nal environment and thus their involvement in the evolutionary processes examined in

this study is understandable. The pathways of energy metabolism of the cell are known

to generate energy under various conditions of growth for all cellular biosyntheses and

produce various intermediates which are the precursor metabolites of several biosynthetic

pathways. The evolved strains which were adapted in different environmental conditions

exhibited growth in stressful conditions or increased growth fitness; these evolved strains

would certainly require active involvement of the functional category energy metabolism

of the cell for their cellular metabolism. Apart from the already known mutants which are

known to play a vital role in the evolved conditions [69, 70], further experiments will be

required for screening the mutations in these evolved strains in the membrane-related and

energy metabolism functional categories or regulators affecting these functional modules’

candidates. Analyses of the established isogenic constructs of these mutants along with

combined changes in protein, transcript and metabolite levels would certainly demon-

strate the involvement of the mutant in the evolutionary processes, thus enhancing the

understanding of the same. Even though comprehensive analyses at all three levels pro-

vide no direct answer for the evolutionary processes analysed, analysis of the responses

of individual parameters at all three levels would certainly provide valuable functional

information about the evolutionary processes.
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Part IV

2DBase: 2D-PAGE Database of Escherichia coli.
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Abstract

We present a web-based integrated proteome database, termed 2DBase of Escherichia coli

which was designed to store, compare, analyse and retrieve various information obtained

by 2D polyacrylamide gel electrophoresis (2D PAGE) and mass spectrometry (MS). The

main objectives of this database are (1) to provide the features for query and data-mining

applications to access the stored proteomics data (2) to efficiently compare the specific

protein spots present in the comparable proteome maps and (3) to analyse the data

with the integrated classification for cellular functions of gene products of E. coli. This

database currently contains 12 gels consisting of 1185 protein spots information in which

723 proteins were identified and annotated. Individual protein spots in the existing gels

can be displayed, queried, analysed and compared in a tabular format based on various

functional categories enabling quick and subsequent analyses. Our database satisfies the

requirement to be a federated 2-DE database by accomplishing various tasks through a

web interface providing access to a relational database system. The 2DBase of Escherichia

coli database can be accessed at http://2dbase.techfak.uni-bielefeld.de/

Authors: Chandran Vijayendran, Sebastian Burgemeister, Karl Friehs, Karsten Niehaus,

and Erwin Flaschel

Author’s contribution: CV conducted all the experiments cited in this study, anal-

ysed the results and wrote this report. SB was involved in the database construction and

maintenance as a thesis to fulfill his masters. KF and KN was involved in experimental

guidance. EF is the scientist in whose laboratory all the experiments were conducted and

was involved in experimental design.



Chapter 16
Introduction (IV)

Ever since the term ”proteome” was introduced [112], conventional 2-D gel electrophoresis

has remained the major method for proteome analysis [106, 107]. High throughput pro-

teomic data generated by 2-D gel experiments require elaborate data handling to ensure

comprehensive analyses. Increasing amount of data increases the complexity of comparing

maps present in any existing database. Several 2-D gel electrophoresis databases have been

published in recent times which contain large amounts of experimental proteomics data

generated by various high-throughput methodologies (http://expasy.org/world-2dpage/).

With the rapid increase in the raw proteomics data within or between laboratories, it has

becoming increasingly challenging to meaningfully compare the results from such large

datasets containing numerous 2-D maps. Database management systems, along with

proficient methods of map comparison, would enhance the analyses.

Fig. 16.1: Data flow diagram of 2DBase of Escherichia coli.
The database is a relational database system, showing its extensive search, comparison and
classification options.

Here we report a proteomics database of Escherichia coli which currently consists of

1185 protein spots information in which 723 proteins were identified and annotated from
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12 gels. Among them, 10 gels were generated during microbial evolutionary experiments

(unpublished) and the remaining two gels are discussed later on in this report. The

database is a relational database system (Figure 16.1) and supports extensive search

functions according to several fields (accession number, gene id, description, author, spot

id, pI/MW) (Figure 16.1). We have applied an extensive, quick, efficient and easy

approach to compare various gels by classifying each protein spot utilizing a previously

published classification system for cellular functions of gene products of Escherichia coli

[31, 84]. We used a scoring function generated from the peak value and normalized

quantity of the protein spots, and this information was utilized in a sortable table format.

We also made a functional classification of the protein spots. All of this enabled us to

quickly analyse and compare the gels in an efficient manner. To our knowledge, there

have been no previous reports of a proteome database which has the option of analysing

and comparing 2-D gels at a single protein comparison level across all the gels aided by

functional category classification.
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Chapter 17
Description (IV)

The database was designed to systematically input, store, compare, analyse and output

all the information related to an experiment. Proteome maps generated from 2-D gel

electrophoreses were scanned and the protein spots were subjected to tryptic digestion

and identified by comparing the peptide masses, which were obtained on a Biflex III

MALDI-TOF-MS (Bruker). The digitized gel images were normalized, and annotated us-

ing the PDQUEST program (version 6.2; Bio-Rad). For each protein spot, the annotated

information along with the obtained X and Y coordinates, the peak area and normalized

quantity values were stored in the database. Internally these data, along with the gel

images (Figure 17.1) were stored by an upload function option in the database.

Fig. 17.1: CAS-PLUS and CAS-MINUS 2Dgels.
The proteome gels obtained from a strain (MG1655) which was grown in the presence
(CAS-PLUS) and absence (CAS-MINUS) of Casamino-acids respectively. Encircled black and
white symbols represent protein over- and under-expression in the corresponding gel,
respectively.

This database was created using the Make2D-DB II Package/ version: 2.00.1 (http://

expasy.org/ch2d/make2ddb/) [113] with additional characteristics based on our modifica-

tions. The identified protein spots with the SWISS-PROT accession number were stored
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in a relational database that was made accessible online via a common gateway interface

(cgi) script on a linux web server (Figure 16.1). Information pertaining to each protein

spot can be accessed via a clickable gel image (Figure 16.1).

Expression levels of proteins can be compared one-by-one by viewing the corresponding

protein spot image in a tabular format from the selected gels based on a scoring function,

calculated based on the peak and normalized quantity values. For each identified protein

spot, the spot ID, SWISSPROT accession number, B number, name, function, peak

value, normalized quantity, protein spot image, and score are available in a tabular format.

Moreover, additional information can be accessed via links to the SWISS-PROT database.

For further analysis of the proteome data, we utilized MultiFun- the classification

system for cellular functions of gene products of E. coli [31, 84] consisting of 10 major

functional categories (Figure 17.2). These major categories are further sub-divided into

Fig. 17.2: MultiFun- the classification system for cellular functions of gene
products of Escherichia coli.
This classification system consist of 10 major functional categories. These major categories are
further sub-divided into a hierarchical scheme.

a hierarchical scheme. The complete hierarchical structure of the MultiFun classification

can be screened for the expression of various proteins involved in a particular functional

category in question from the selected gels. As a result, all the individual protein spots

are summarized in a table consisting of vital information with the spot image along with

the classification based on functional category which enhances the analysis.
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Chapter 18
Implementation & Conclusion (IV)

To demonstrate the performance and the utility of the method used for comparing the

proteome maps in this database, we applied this method to the proteome gels derived

from a strain (MG1655) which was grown in the presence and absence of Casamino-acids

respectively (Figure 17.1A, B). For this experiment approximately 4.1x1010 cells were

harvested from M9 minimal medium culture supplemented with or without Casamino-

acids from the exponential phase of growth. A protein sample of 300 g was loaded on

an Immobiline dry strip (Amersham Biosciences) with a length of 24 cm, pI-range 4-7.

The first dimension was developed on an electrophoresis apparatus IPG-phor (Amer-

sham Biosciences) until 75,000 Vh was reached. The second dimension was developed by

means of a 12.5% poly-acrylamide gel. For comparative analysis the gels were stained

with coomassie blue. The excised protein spots were tryptic digested and the mass spec-

tra were obtained on a Biflex III MALDI-TOF-MS (Bruker). Annotations of the pep-

tide mass fingerprints were carried out by the MASCOT search engine (Matrix Science).

The parameters used were: Taxonomy: all entries; Enzyme: trypsin; Missed cleavages:

1; p.p.m.: 100; Database: E. coli. 110 protein spots were analysed in each gel, as a

result 99 proteins could be annotated in both the gels. Many proteins were differen-

tially expressed (Figure 17.1A, B). Comprehensive screening of the functional category

metabolism (1- MultiFun class) revealed substantial over-expression of the tryptophan

amino-acid biosynthesis (1.5.1.15- MultiFun class) enzymes in the CAS-MINUS proteome

map (Figure 18.1). Similarly, browsing the table of transport functional category (4-

Fig. 18.1: MultiFun- metabolism- functional category.
Comprehensive screening of the functional category metabolism (1- MultiFun class) showing
substantial over-expression of the tryptophan amino-acid biosynthesis (1.5.1.15- MultiFun
class) enzymes in the CAS-MINUS (Gel 1) proteome map.
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MultiFun class) revealed that proteins involved in the category of amino-acid transport

were over-expressed in CAS-PLUS proteome map (Figure 18.2). Micro-organisms are

Fig. 18.2: MultiFun- transport- functional category.
The transport functional category (4- MultiFun class) showing the proteins involved in the
amino-acid transport being over-expressed in CAS-PLUS (Gel 2) proteome map

known to utilize the available nutrient resources present in the environment rather than

to synthesise the nutrients by themselves. Amino-acids present in the medium have to be

transported into the cytoplasm for utilization. In line with these known phenomena, the

proteins involved in the transport function were over-expressed in the sample grown in the

presence of Casamino-acids (Figure 18.2) and on the other hand the protein involved

in the amino-acid biosynthesis were over-expressed in the sample grown in the absence of

Casamino-acids (Figure 18.1). Examining the 2-D gel protein spots one-by-one along

with the functional classification enhanced the efficiency of the analyses enormously. This

approach, when applied for multiple gels emerges as a valuable approach to analyse the

available data simultaneously (Figure 18.3).

Commonly, the proteome maps are compared by aligning and overlapping the maps.

These methods are not applicable for proteome maps which are prepared on a different

scale of iso-electric focusing strips and the gels which are prepared from a different per-

centage of acrylamide in the second dimension separation. In our database, by examining

the proteins in the proteome maps spot-by-spot individually, aided with the alignment ob-

tained from 2-D gels analysis software, we were able to combine and utilize the functional

classification to enhance the analysis. Similar approaches would certainly improve the

efficiency of comparison of the data generated from different conditions and from various

laboratories. Furthermore, the approaches outlined here could be applied to the analysis

of proteomic databases of other organisms.

82



Fig. 18.3: Multiple gels comparison.
Simultaneously analysis of five proteome gels spot-by-spot with functional classification.
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Chapter 19
Epilogue

As a result of the analysis of the growth behaviour of the closely related E.coli sub-

strains W3110 and MG1655 in strictly controlled conditions and the global proteome and

transcriptome pools we were able to answer the questions raised in the beginning of the

study:

• Is the high degree of similarity at the nucleotide level reflected in the

metabolic phenotype?

- The genomes being highly similar at the nucleotide level, was not reflected in

metabolic phenotype, showing that complex regulatory patterns can differ even between

closely-related sub-strains.

• Do sub-strains with almost identical genome structures exhibit similar

behaviour in cellular metabolism?

- The growth behaviour and genome-based data point to the conclusion that both

the sub-strains examined may have similar metabolic phenotypes. However, the global

transcriptome and proteome data lead to the conclusion that the global proteomes and

the genome expression patterns exhibit high plasticity in these closely related sub-strains

of E. coli - K-12, notwithstanding the strict and controlled growth conditions used.

• How do global aspects of cell metabolism, protein synthesis and gene

expression differ among closely related sub-strains of the same species

revealing possible complexities of cellular metabolism?

- Among these closely related strains, in MG1655, genes involved in osmotic stress and

enterobactin were effectively up-regulated; in W3110, genes involved in central metabolism

were up-regulated and RpoS-dependent genes were significantly down-regulated. Identifi-

cation of a single base change in rpoS gene presented in this study emphasizes that com-

plex regulatory pathways are altered by such modifications at the genome level. Functional

differences in central metabolism, which generates precursor metabolites and energy, were

also apparent between these two closely-related and commonly-used substrains of E. coli

K-12 in both transcript and protein levels.

As a result of the analysis of gene, protein and metabolite levels of the laboratory

evolved strains under three different evolutionary conditions, we were able to answer the

following questions raised in the beginning of the study:
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• What are the transcriptome, proteome and metabolome changes occur-

ring during the excess-nutrient adaptive evolution process?

- Higher levels of metabolites involved in nucleotide pathway and TCA cycle and its

intermediates were seen in the excess-nutrient evolved strains. In line with these observa-

tions, the expression levels of genes involved in these pathways were also over-expressed

in them. Specifically, the pentose phosphate pathway (produces pentose phosphates for

nucleic acid synthesis) was differentially regulated, along with the histidine biosynthesis

pathway which shares metabolites with the purine and nucleotide biosynthesis pathways.

Genes involved in the membrane-related functional categories and their proteins were

significantly over-expressed in both the evolved strains.

• What are the transcript, protein and metabolite changes occurring due

to the pleiotropic effects due to environmental shift?

- In environmental shift adapted strains several outer-membrane porin proteins were

differentially expressed and in accordance with this the genes involved in the membrane-

associated GO functional categories were also significantly overrepresented.

• Which genes, proteins and metabolites are vitally involved in the pro-

longed stationary phase evolution process?

- The genes involved in the biosynthesis pathways of fatty acids (key building blocks

for the phospholipid components of cell membranes) and lipids were over-expressed in

prolonged stationary phase evolved strains. Several outer-membrane proteins were differ-

entially over-expressed in them, and the genes belonging to the membrane-associated GO

functional categories were significantly overrepresented as well.

• To what extent the changes occurring during these evolutionary pro-

cesses are seen in both strains?

- Clustering by PCA analysis of the multidimensional datasets revealed various degrees

of changes among the strains in the evolutionary conditions studied. Excess-nutrient

evolved strains cluster separately from their ancestor lines, implying substantial adaptive

changes. Environmental shift adapted strains clustered separately from their ancestor

lines, indicating considerable environmental shift due to pleiotropic changes. Prolonged

stationary phase evolved strains clustered along with their ancestor lines, denoting few

changes between ancestor and evolved strains or diverse changes between the evolved

strains.
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• Among both the strains, is the path of evolution similar in these evo-

lutionary processes (parallelism)?

- To examine the extent of parallelism among the strains in particular evolutionary

conditions, we applied pairwise correlation map analysis. Prolonged stationary phase

evolved strains displayed a high degree of negative correlation when compared to other

evolved stains suggesting elevated levels of variability. This demonstrates a low level of

parallelism among the prolonged stationary phase evolved strains. The correlation map

of excess-nutrient adapted evolved strains exhibited a lower degree of negative correlation

than the other strains denoting a reduced level of variability in them representing high

level of parallelism among the excess-nutrient adapted strains.

In summary, all the evolutionary experiments demonstrate the vital role of the in-

volvement of the membrane associated components in the evolutionary process. Even

though comprehensive analyses at all three functional levels provide no direct answer for

the evolutionary processes analysed, further experiments regarding the screening of muta-

tions in these evolved strains in the membrane-related and energy metabolism functional

categories, or regulators affecting these functional modules’ candidates would certainly

provide valuable functional information about the evolutionary processes.
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Supplementary Materials

Gene
name

Primer
name

Primers

nuoA nuoA-1 5’ GAAAAACGTGCCGTTTGAAT 3’
nuoA-2 5’ GCAGCTTCCACAAAGCCTAC 3’

nuoH nuoH-1 5’ TCGGGATTTTGTTCTTCCTG 3’
nuoH-2 5’ TTGACGATGTCGGTCATGTT 3’

lrhA lrhA-1 5’ ATGGCAGAAATGCTGGAATC 3’
lrhA-2 5’ CGCCATGGAATATCTGCTTT 3’

entD entD-1 5’ TCAACCGATTGGCATTGATA 3’
entD-2 5’ TTGCCTTAAATGCGCTCTCT 3’

fepB fepB-1 5’ TGCGCAGTTTGATAAGCAAC 3’
fepB-2 5’ CATGGCGTTTACCCTGACTT 3’

fepE fepE-1 5’ CGAAAATCGACGAACTGGAT 3’
fepE-2 5’ CGGACGTTTTCTAGCGACTC 3’

feoA feoA-1 5’ GCATATCGCCAAAAACTGCT 3’
feoA-2 5’ TAACAGGAAACCGCTTCCAC 3’

feoB feoB-1 5’ ATTTTCCTGAGCGCTTTCAA 3’
feoB-2 5’ TTCTGCCGGATTGAACTCTT 3’

rpoS rpoS-1 5’ GCACGTGAGTTGTCCCATAA 3’
rpoS-2 5’ TAAGACGAAGCATACGGCTG 3’

dnaA dnaA-1 5’ ATCATTCTCACCTCGGATCG 3’
dnaA-2 5’ AGACGCTTGGCGATAAAGAA 3’

1- Forward primer and 2- Reverse primer

Tab. 19.1: Primers used for amplification.
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Abbreviations

2D-PAGE - Two-dimensional-polyacrylamide gel electrophoresis
CAS - Casamino acids
CHAPS - 3-([3-chloramidopropyl]dimethylammonio)-1-propane-sulfonate
DDT - Dithiothreitol
DH - DH10B strain grown in glucose
DHAdp - DH10B strain adapted about 1000 generations in glucose
DHAdpGal - DHAdp (glucose evolved strain) grown in galactose
DHGal - DH10B strain grown in galactose
DHStat - DH10B strain grown in prolonged stationary phase (37 days)
FMN - Flavin mononucleotide
GASP - Growth advantage in stationary phase
GC-MS - Gas chromatography - mass spectroscopy
GO - Gene Ontology
IPG - Immobilized pH gradient
IPTG - Isopropyl β-D-1-thiogalactopyranoside
kDa - Kilo dalton
l - Liter
LC-MS - Liquid chromatography - mass spectroscopy
LPS - Lipopolysaccharide
M - Molar
m - Milli (10−3)
MALDI-TOF-MS - Matrix-Assisted Laser Desorption/Ionisation Time-Of-Flight Mass

Spectrometry
MG - MG1655 strain grown in glucose
MGAdp - MG1655 strain adapted about 1000 generations in glucose
MGAdpGal - MGAdp (glucose evolved strain) grown in galactose
MGGal - MG1655 strain grown in galactose
MGStat - MG1655 strain grown in prolonged stationary phase (37 days)
MS - Mass spectroscopy
MW - Molecular weight
NADH - Nicotinamide adenine dinucleotide - reduced
NADPH - Nicotinamide adenine dinucleotide phosphate - reduced
NMR - Nuclear magnetic resonance
OD - Optical density
OM - Outer-membrane
ORF - Open reading frame
PCA - Principal components analysis
PCC - Pearson correlation coefficient
PCR - Polymerase chain reaction
pI - Isoelectric point
ppGpp - Guanosine-tetraphosphate
RT-PCR - Reverse transcription polymerase chain reaction
SDS-PAGE - Sodium dodecyl sulfate-polyacrylamide gel electrophoresis
TCA - Tricarboxylic acid cycle
TFA - Trifluoroacetic acid
µ - Micro (10−6)
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