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Abstract

Oxygen fugacity is one of the most important intensive variables that controls the phase
relations and compositions of precipitating minerals. It is accepted that oxygen fugacity reflects
the redox state of the mantle source region. Therefore oxygen fugacities can be used to probe the
mantle redox state and determine mantle heterogeneity. Plume-related magmas and mid-ocean
ridge basalts (MORB) have been shown to fall within the same range (AFMQ = -1.305 to 0.402)
suggesting source regions with similar redox states.

The Galapagos Islands are a result of plume-related volcanoes and located on thin, young
crust created by the nearby Galapagos Spreading Center (GSC). This study focuses on the
differences between the redox state of the Galapagos plume related magmas and the nearby
GSC. The Galapagos Islands show unsually high iron concentrations, which should be reflected
in the fO, values of lavas. Values of fO; calculated from Fe;O3/FeO ratios for GSC lavas ranged
from AFMQ =-1.801 to 0.402. Values calculated from coexisting olivine and melts show
excellent agreement with a range of AFMQ = -1.818 to 0.069. There is reasonable correlation
between oxygen fugacity and Mg, consistent with the idea of crystallization controlling oxygen
fugacity.

Oxygen fugacities were calculated from coexisting olivine and melt samples from Roca
Redonda, Fernandina, and Volcan Darwin on the Galapagos Archipelago. Melt samples were
based on groundmass analyses rather than glasses. The results ranged from AFMQ =-1.962 to -
0.059, similar to values for MORB from the GSC, despite the unusually high Feg ¢ and low Sig g
contents. The latter have been used to suggest that the island magmas are generated at greater
depths than MORBs.

This study supports other work suggesting that OIB from deeper mantle sources have
similar oxygen fugacities to MORB from upper mantle sources. This suggests that both sources
have similar redox states, or that differences are not observed in oxygen fugacities of magmas
originating from these sources. In the case of the Galapagos Islands this is surprising, given

other evidence for differences in melting temperature and depth and source region composition.
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I. Introduction

Hans Eugster introduced the concept of oxygen fugacity in 1956 as a thermodynamic
term to describe the concept of partial pressure of oxygen (Frost 1991). The effect of varying
oxygen fugacity on magmatic processes, mineral stabilities, and mineral and melt compositions
igneous rocks has been studied extensively. Variations in oxygen fugacity have been shown to
control the crystallization sequence and compositions of solids precipitating from magmas
(Carmichael and Ghiorso 1986). In addition, the redox states of magmas reflect that of mantle
source regions, and therefore studies of magmas may be used to constrain both the present and
past redox states of the mantle (Christie et al 1986).

Buffers originally were designed to control the oxygen fugacity in experimental charges,
such that a constant oxygen fugacity is imposed on the experimental charge (Frost 1991). Under
natural conditions, the fo; of magmas is a function of primary melt composition (including
Xre203/Xre0) and of mineral equilibria during crystallization (Frost 1991). Frost summarized
data for many of the buffers used in experimental petrology, and four of these cover the range
important for crystallization in natural systems, which can vary by up to seven or eight orders of

magnitude for basic lavas (Carmichael 1991). These buffers are:

Low fO, Fe,;Si04 = 2Fe + Si0; + O, QIF
\2 2Fe304 + 3Si0; = 3Fe,Si0, + 0, FMQ
\’ 2NiO =2Ni + O, NNO

High fO, 6Fe,03 = 4Fe;04 + O, MH

The buffer reactions illustrate how oxygen fugacity reflects of the amount of free oxygen in a
system — that is, the amount of oxygen available for chemical reactions. Varying fO, drives the
reactions in different directions and affects the stability of different minerals. At low fO, (fO;
<FMQ, or AFMQ = logfO, (sample)-logfO, (FMQ buffer at same T) = 2.7 to +0.4), iron rich
silicates such as fayalite are stable. Crystallization at low oxygen fugacity therefore produces
iron-rich silicates, and magmas follow an iron-enrichment trend. At higher fO, (AFMQ =0 to
+3.3), magnetite becomes stable (Barton personal communication) whereas at the highest values
of fO,, hematite is stable. Crystallization of oxides such as magnetite and/or hematite produces
silica-rich liquids, and magmas follow silica enrichment trend during crystallization (Carmichael

1991). In closed systems, residual liquids show an increase in fO,, which indicates



Temp o, degrees

Figure 1 Oxygen buffer assemblages,
logfO, vs T. (1) MH: magnetite-hematite
(3) NNO: nickel-nickel oxide (4) QIF:
quartz-iron-fayalite (8) FMQ: fayalite-
magnetite-quartz

(Igneous Petrology 625, SP2004)

there is an increase in the iron redox state
of the liquid during crystallization
(Carmichael and Ghiorso 1986).

Although buffers are widely used in
experimental petrology, the concept is
useful for natural magmas, and the buffers
provide reference values of fO,. The
oxygen fugacities of many magmas during
crystallization approximately parallel that
of one of the buffers described above.
Carmichael and Ghiorso (1986) argued that
this requires exchange of oxygen between
the magma and the surrounding country
rock, and they calculated that 0.05g of
oxygen must be exchanged for every 100g
of magma in order for the latter to stay on
the FMQ buffer. The advantage of
comparing oxygen fugacities to those of
buffers is that the resulting value is

independent of

temperature (ie. AFMQ = logfO, (sample)-logfO, (FMQ buffer at same T)). The relative oxygen

fugacities for compositionally different magmas can then be directly compared and used to infer

the redox states of mantle source regions.

Early research suggested that the entire mantle was homogeneous with fO, values around

the FMQ buffer (AFMQ = 0), but mantle xenoliths with oxygen fugacities well below those of

the FMQ buffer indicate variations in the redox state of the mantle (Christie et al 1986). Studies

of mantle peridotites yield oxygen fugacities ranging from -2.3 to +1.9 AFMQ (Barton personal

communication.

II. Previous Methods

Several methods are used to determine the oxygen fugacity of lavas, and each method has

been found to be limited in its application. The most direct method uses the compositions of
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magmatic gas sampled during eruptions. The most complete set of measurements available is
that from Makaopuhi Lava Lake, Hawaii, which sampled gas emitted during crystallization
(Carmichael and Ghiorso 1986). There are relatively few complete sets of magmatic gas
analyses, and there is some doubt that oxygen fugacities determined from magmatic gases reflect
those of the magmas.

Another method uses the compositions of coexisting Fe-, Ti-oxides (magnetite-ulvospinel
and hematite-ilmenite) to determine the oxygen fugacity. This method is based on exchange of
Fe?* and Ti between coexisting members of the ulvéspinel-magnetite solid solution series
(Fe;TiO4-Fe;04) and ilmenite-hematite solid solution series (FeTi03-Fe,03),

Fe;0; + FeTiOy FeTiOs + Fe;04 @)

Hematite ~ Ulvspinel [Imenite Magnetite

and the redox equilibrium,
6F6203 «> 4FC304 + 02 (2)

In Ilmenite In Spinel

There are, however, well known limitations on the use of coexisting Fe-Ti oxides to
determine fO, for igneous rocks. One is the ease with which Fe-Ti oxide compositions are reset
by inter-oxide and intra-oxide re-equilibration during cooling or during alteration (eg. Frost,
1991). This severely handicaps the use of coexisting Fe-Ti oxides to determine fO, for intrusives
and for older igneous rocks, which are more likely to be altered than young rocks. These
limitations can be partly or wholly overcome by using assemblages of coexisting ferromagnesian
silicates and Fe-Ti oxides to determine fO,. This approach is predicated on the fact that
compositions of Fe-Mg silicates and Fe-Ti oxides are related via equilibria such as

Si0, + 2Fe,Ti04 <«  2FeTiO; + Fe,SiO, 3)
Quartz  Ulvospinel [Imenite Fayalite

termed QUIIF by Frost et al. (1988). This assemblage allows calculation of T and fO, from
coexisting Fe-Ti oxides as well as from the FMQ equilibrium:
3Fe;Si04 + O, — 2Fe;04 + 3Si0, 4
Fayalite Magnetite  Quartz
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Lindsley and Frost (1992) extended the QUIIF equilibrium to magnesian and calcic compositions
to include assemblages containing low-Ca and high-Ca pyroxenes. Nevertheless, many igneous
rocks, especially many basalts, do not contain coexisting Fe-Ti oxides.
Oxygen fugacity can be also be determined from the redox state of melts. The
homogenous reaction
2FeO0 + %0, «—  Fe 05 %)
Melt Melt

shows that the ratio (Fe;03/FeOQ)™" can be used to calculate fO, if the functional relationship
between (FezOglFeO)MC", fO,, T, and melt composition is known. Ian Carmichael et al. (1991)
have found that the relationship between melt redox state, temperature, and oxygen fugacity can

be described by the empirical relation.
In[Xpe203/Xre0] = alnfo, + b/T + ¢ + > Xid; (6)

where a, b, c, d; are constants found by regression of experimental data. This method is simple,
and has the obvious advantage that it can be used for lavas such as primitive basalts that lack
mineral assemblages from which fO, can be estimated (e.g. MORB). There are, however,
potential limitations of the approach. First, it is necessary to determine Fe,O3 and FeO by wet
chemical or other analytical methods (eg. moéssbauer spectroscopy of glasses), techniques not
routinely used by petrologists or geochemists. Second, the Fe;O3/FeO ratio of rocks is readily
affected by alteration, and therefore this method can only be used to estimate fO, for unaltered,
fresh lavas. In addition, the analyzed Fe,03/FeO ratios of fresh lavas do not necessarily represent
those of melts, and hence this ratio should only be used to estimate fO, for glassy or aphyric
volcanics, or for phyric lavas that do not contain contain cumulate or xenocrystal ferromagnesian
minerals.

Given the importance of oxygen fugacity in the petrogenesis of magmas, it would be
useful to have additional methods to constrain or determine this variable. In particular, it is
desirable to have additional methods to determine fO, for basalts, especially ones that contain re-

equilibrated Fe-Ti oxides. A method based on olivine-melt equilibrium, is described below.


dittoe.1
Rectangle


ITII. Methods

Two methods were used in this study to calculate oxygen fugacities and the AFMQ of
lavas. One is based on the relationship between fO, and the Fe,O3/FeO ratio of melts described
earlier, whereas the second method is based on the compositions of coexisting olivine and melt.
1. Oxygen fugacities from Fe;O3/FeQ ratios

The samples selected for this study were previously analyzed by wet chemistry and
electron-microprobe to determine both ferric and ferrous iron concentrations. The full set of
glass analyses used in this study was taken from the Ridge Database maintained by Columbia
University (http://petdb.ldeo.columbia.edu), and only fresh glasses were selected for this work.
In addition, samples from the GEOROC data base (maintained by the Max Planck Institut fur
Chimie) for the Galapagos Islands were examined. These samples show wide variations in Fe;03
and FeO that presumably reflects post-eruptive alteration. Because this variation persists even
after obviously altered samples (those with high H,0, alkalies, Rb, and Ba) were eliminated, the
samples from the GEOROC data base were not considered further.

Equation 6 was used to determine InfO, from the analyzed Fe,O3 and FeO contents of the
fresh MORB glasses from the ridge data base. The calculated value of fO, was then compared to
values for the FMQ and NNO buffers at the same temperature (assumed to be 1200°C). All of
the samples from the Ridge Database were collected from the Galapagos Ridge, and consist of
MORB glasses.

2. Oxygen fugacities from olivine-melt pairs

Oxygen fugacities also were calculated from the compositions of coexisting olivine and

melt. This method is based on exchange of MgO and FeO between olivine and basaltic melts,

defined as

KD — (XOlFeO/XMeltFeO)(XMeltMgO/XOIMgO) (7)

(Xmgo =MgO/[MgO+FeO] on a molar basis). Roeder and Emslie (1970) showed that the
exchange distribution coefficient, Kp, is virtually independent of temperature, and that the value
is 0.30 £ 03 (1o) for anhydrous basaltic liquids. Other experimental studies confirm these
conclusions for anhydrous basaltic liquids but indicate values of Kp<0.3 for evolved melts rich

in alkalies (Gee and Sack, 1988). An expression to calculate values of Kp as a function of melt



composition is given by Gee and Sack (1988). The relation described by equation 7 has been
extensively used by petrologists and geochemists because it allows the equilibrium Fo content of
olivine to be predicted from the MgO and FeO contents of any melt, if Kp is known or is
calculated as described by Gee and Sack (1988). The experiments of Roeder and Emslie (1970)
were conducted over a range of fO, (108 to 10™'2), and thus indicate that Kp, is independent

of fO,, so that the equilibrium composition of olivine can be predicted from the MgO and FeO
contents of melts that crystallize over a wide range of fO, (AFMQ from +7.6 to -3, or from
values appropriate for crystallization in air to values near those of the iron-wiistite [[W] buffer).
Of course, this does not mean that the composition of olivine in equilibrium with a particular

melt remains constant as fO; varies. On the contrary, the experiments of Roeder and Emslie

(1970) show that the Fo content of olivine in

1200+5°C

equilibrium with melt of fixed total composition
increases with increasing fO, at constant T (Fig. 2).
Because Kp is independent of fO,, the apparent
correlation between the Fo content of olivine and fO,
actually reflects the dependence of Fe;O3/FeO in the

melt on fO,

Most petrologists and geochemists recognize

that use of equation 7 requires assumptions about the P T P
R B A

2

redox state of melts for which Fe,O; and FeO
Figure2 Varying olivine
composition with changing
oxygen fugacity at constant T.
(Roeder and Emslie 1988)

contents have not been determined analytically —
which the case in the majority of recent petrological
and geochemical studies. In studies of olivine-melt
equilibrium it therefore is common practice to adopt an arbitrary value for Fe;O3/FeO in melts
(e.g. 0.1 or 0.15), or to assume that crystallization occur at some value of fO; (e.g. FMQ=0) and
then calculate Fe,O3 and FeO contents of melts from equation 6. However, it is preferable to use
the compositions of coexisting olivine and melt to determine Fe,03M" and FeOM" from total
(analyzed) Fe, and use these to calculate logfO, during crystallization.

The method is illustrated graphically using an example taken from the literature (Figure
3). The analyses of olivine and glass used in this example are from the results of an experiment

on a basalt from the East Pacific Rise (ALV-2004-3-1-20) with fO, controlled near FMQ (Yang



et al. 1996). The olivine and glass produced in the experiment were analyzed by electron
microprobe, and total Fe is reported as FeO.

The first step is to calculate fictive melt compositions with variable Fe,O3 and FeO
contents (wt. %), adjusting all oxide percentages for the change in total mass resulting from
addition of oxygen due to the change in the oxidation state of iron. The resulting values of Fe,0;
are plotted against calculated values of XMel‘Mgo (Mg#) in Fig 3a, and the latter are used to
calculate the Fo contents (Fo) of olivine in equilibrium with these melts (Fig. 3b), using values of
Kp determined from the empirical relationship given by Gee and Sack (1988). Fo is plotted
against Fe;Oj; in Fig. 3¢. The actual Fe,O3 content of the melt is determined from the known
(analyzed) composition of olivine (Fog g36, Yang et al. 1996), and FeOl is calculated from total Fe
(FeOT=0.8998F¢,03+Fe0). The values of Fe,03" and FeO" are used in equation 6 to estimate
logfO, at the reported run temperature of 1188°C using the coefficients given by Kress and
Carmichael (1991). The agreement between logfO; estimated from olivine-melt equilibrium (-
8.65) and that given by Yang et al (1996) for this experiment (-8.72) is excellent. In practice, the
value of Fe;O3" is calculated from regression of Fe,0;" versus olivine composition and used to

calculate logfO,. For brevity, this method is hereafter referred to as the olivine-melt

oxybarometer.
{(a) (b) 4
ook F Ko™0020/ X0} KagoKiioo)
- 095F
3 08F 5 F .
(o)) - %— 09 F Figure 3 Olivine-melt
= g L - oxybarometer method.
s 085 F The relationship between
05k ) . ) olivine and melt
F 7 FoOT=Fe0+(0.89%8F,0;) o [ o™X g sKall- X | o noitions s used to

0.
0 2 4 6 8 10 06 07 08 08 determine the oxygen

Fe,03 Mg# fugacity of magmas as
(c) 1 (@ described above.
 Yang et al (1996) L Loagf :-67; :gr‘lw;l) (Adapted from Yant et al
|- ALV 2004-3-1-20 |_LogfO= 8. c
0ssF 2 " Logfom 673 (Expt) 1996, Ba'rtox? personal
—_ E N 4 communication)
O ¢t e I
o 09F 8’; -6 A
L r S
-8
0.85 F0=0.8366 -
- Fe,0,=1.67 -10
£y Fo»/1Fe=0.144
o‘alllllllll .12lrllllltll
0 2 4 & 8 10 0 2 4 6 8 10
Fe, O, Fe203
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IV. Application to lavas from the Galapagos Ridge and Galapagos Islands

The objective of this research is to determine the oxygen fugacities for crystallization of
basaltic magmas along the Galapagos Spreading Center (GSC) and on the Galapagos Islands.
The GSC constitutes a divergent margin, and hence oxygen fugacities of these magmas should
reflect those of the mantle source beneath the mid ocean ridge system. Volcanism on the
Galapagos Islands is widely believed to reflect a plume or hot spot in the underlying mantle, and
the oxygen fugacities of these magmas should reflect those of the underlying mantle plume or
hot spot source. There is some debate about the existence of mantle plumes in general, but most
workers concede that ocean island basalts (OIB) such as those erupted on the Galapagos Islands
are derived from a different mantle source than mid ocean ridge basalts (MORB). Therefore, the
research described in this study addresses the question of whether the redox states of MORB
mantle and OIB mantle are the same or different.

Analyses of coexisting olivines and glasses in samples from the Galapagos Spreading
Center and from the Galapagos Islands selected from the literature were used to calculate logfO,.
The latter were compared to values for the FMQ and NNO buffers at the same temperature
(assumed to be 12000C), and to the values obtained from the analyzed Fe,03/FeO ratio of
glasses from the GSC and other ridges.

V. Geologic Background
1. Location

The Galapagos archipelago is a group of volcanic islands located near the Galapagos
Spreading Center (GSC), which separates the Cocos and Nazca Plates. Although attributed to
plume magmatism on the basis of He isotope studies, the volcanoes of the archipelago do not
form the typical linear trend parallel to plate motion like those of the Hawaiian-Emporer Chain,
but generally become younger to the west in agreement with plate movement. Volcanism has
been active for 5 to 6 My, with earlier activity being split into the Cocos and Carnegie Ridges
(Figs. 4, 5) by a serious of ridge jumps (Allan and Simkin 2000). The crust below the islands is
young and relatively thin, so the volcanoes are scattered with no one center of activity unlike the
Hawaiian Islands (Geist et al 1999). Harpp et al (2003) described the islands as being one of the
few places on the globe that exhibit magmatism related to both plume and ridge related mantle

processes, but not dominantly one or the other.
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100°W

2. Geographic and geochemical variations

Figure 4 Bathymetric
image of the Galapagos
region (Cushman et al
2004)

Seven major volcanoes form an east-facing horseshoe pattern (Figures 5 and 6). Those in

the center of the horseshoe exhibit depleted upper mantle MORB geochemical signatures

ulrw «Hw .s{.'w

Figure 5 Ancient ridge on the Cocos and
Naxa plates from plume activity. Recent
Galapagos activity is highlighted. (adapted
from Werner et al 2003)

compared to more enriched lavas occur in
the north, west, and south sides of the
horseshoe (Harpp and White 2001). Some
have suggested that plume material is being
sheared to the east by underlying
asthenospheric flow and the movement of
the Nazca Plate, but that it also is flowing
northward toward the GSC, with plume
components observed near and in ridge lavas
(Harpp and White 2001, Harpp et al 2003).
Werner et al (2003) have suggested that the
same pattern of enriched domains can be
identified in activity over the past 14.5 Mya

in the Cocos track. Lavas erupted along the

Cocos track, and in the Carnegie, Malpelo, and Coiba ridges all exhibit compositional

characteristics that are similar to the current Galapagos hotspot magmas (Werner et al 2003);
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Harpp and White (2001) have suggested that part of the geographic variations may reflect origin
from an internally heterogeneous plume with a northern limb different from the southern limb,
rather than effects of magma evolution during ascent from the mantle.

Although regional stresses caused by the ridge movement and plume influence are
responsible for magma generation and transport, the varying magma compositions likely reflect
differences between ridge and plume material (Nusbaum 1991). Compositional variations
evident in Sr, Nd, and Pb isotopic data, and in incompatible trace element concentrations, have
been attributed to plume-asthenosphere mixing, and to variable depths of partial melting, and
different depths of crystal fractionation, especially in the western lavas (Geist 1999). Vulcan
Darwin, in particular shows disequilibria between residual melt and xenocrysts, suggesting the
melt continued to evolve further after crystallization of the phenocrysts (Nusbaum et al 1991).
Isotopic ratios and incompatible element concentrations (corrected for the effects of
fractionation) do not correlate, indicating that magma mixing is probably not the dominant
process (Geist 1992). Harpp and White (2001) used Pb-Pb variations to show that binary mixing
between mantle sources is inadequate to explain compositional variations, and that four
components are needed. Most of the evidence supports mixing between various plume
components and the shallow asthenosphere, rather than between different plume components
alone. Assimilation of lithosphere does not seem to have played a significant role because Sr,
Nd, Pb, Hf, and O isotope ratios appear to remain constant during magma evolution (Harpp and
White 2001). Geist (1992) suggested that although variation in magma compositions are
observed over short lateral distances, they may reflect magma generation at greatly different
depths.

Based on differences in geochemistry, and ages of volcanic products, the islands have
been divided into four regions. The northern province lies between the inferred current plume
center and the GSC and contains volcanoes that erupt plagioclase-rich lavas (Geist 1999). At the
northeastern edge of the islands along the GSC there are more seamounts than along any other
area of the ridge. Lavas from these seamounts show MORB-like rare earth element (REE)
patterns and represent the most light-rare earth element (LREE) depleted material observed in
the archipelago. Lavas from the Wolf-Darwin lineament, the northwest islands, also exhibit
MORB-like characteristics, but some show slight LREE-enrichment (Harpp and White 2001).

Volcanics from this province show evidence for only a small amount of plume component in the

10
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mantle source region (Harpp and White 2001). The lowest *He/*He ratios of the Galapagos
islands has been observed on Pinta (Kurz and Geist 1999).

The southern and western provinces

93°W P2°W

of the islands tend to contain young 0 f;».a.nv:s;f,
tholeiitic shield volcanoes (Geist 1992). e
The lavas on the western islands are thought
to have evolved from primitive magma

originating from a deep mantle source (Geist

1992). Lavas from Cerro Azul, Sierra Negra,

18

Al Mg
ai\ifa?fsa,awa\ ......
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and Floreana have intermediate *He/*He

ratios associated with high radiogenic ,
i i i i H

G3°W G2°W 91 90w EGW 88°W

isotope values (Kurz and Geist 1999). Some
Figure 6 Island and volcano

of the Floreana lavas have been explained as locations in the Galapagos
asthenosphere material reacting with LREE ot b
and volatile enriched fluids (Harpp and
White 2001). Mantle metasomatism is supported by the highest values of Sr, Nd, and Pb in the
islands, and by the elevated Ba, La, and Th concentrations; additional evidence exists in trace
elemental trends, and by the tendency for alkaline lavas to erupt in explosive, pyroclastic events
(Harpp and White 2001). Harpp and White (op cit) have suggested that a distinct mantle
composition beneath the southwest area explains the localized differences in geochemistry.
Roca Redonda lacks a caldera and is grouped into the western province, but the volcano
does not actually lie on the Galapagos platform (Standish et al 1998). Lavas are dominated by
plagioclase and olivine phyric types, in which olivine cores range from Fosg to Fogs 5, with rims
about 12% lower Fo (Standish et al 1998). An average FeOs ) of 12.7 is significantly higher
than for other volcanoes of the province (Standish et al 1998). The lavas are more degassed than
Fernandina and exhibit less evidence of a plume contribution; all lavas are LREE enriched and
lie within the alkaline field for Hawaiian basalts on an alkali-silica plot (Standish et al 1998).
The samples show more isotopic enrichment than the Wolf-Darwin lineament, so simple plume-
ridge mixing can be ruled out as the primary process (Standish et al 1998).

The central province is characterized by lavas exhibiting evidence of more plume

component, and more depleted MORB than the surrounding provinces (Geist 1992). The island
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volcanoes lack calderas, and they erupt alkali-olivine basalt lavas with more diversity than
originally expected (Geist 1992). The diversity probably reflects a mantle source containing
components of all four regions, but with only small contributions from the southwestern member
(Harpp and White 2001). The highest *He/*He ratios are from Fernandina, with a steep decline
toward the north and east (Kurz and Geist 1999). Source heterogeneity is supported by
correlation of the *He/*He values with averaged FeO(g 0), Na;Os.0), and Nb/La (Kurz and Geist
1999).

Fernandina is believed to represent the purest plume eruptions as evidenced by the high
*He/*He ratios (Harpp and White 2001). Eruptions generally are small volume Aa flows of
hypersthene-normative tholeiites with plagioclase as the most abundant phenocryst (Allan and
Simkin 2000). From textural analysis, Cr-rich spinel appears to be the first mineral to crystallize,
with Fo-rich olivine also crystallizing early (Allan and Simkin 2000). Most olivine cores range
from Fosg to Fogs (Allan and Simkin 2000). The low Mg# and low incompatible element
contents indicate the host magma was relatively evolved (Allan and Simkin 2000).

3. Ridge Volcanism

Lavas erupted near the center of the plume and along the GSC exhibit variations in
geochemistry greater than shown by lavas erupted along ridges elsewhere in the world. In
addition, there are substantial variations in crustal thickness, and morphology. On either side of
the Galapagos plume region, the spreading center contains a mid-Atlantic Ridge-like valley
(Cushman et al 2004). East of 85°W, and west of 95.5°W, ridge lavas have normal MORB
compositions, but the lavas erupted between 85°W and 95.5°W show variable enrichment in
LREE and in large ion lithophile elements (LILE) (Cushman et al 2004). GSC lavas that fall in
the NMORB field show geographical trends with FeOs gy and TiOxs 0y decreasing and SiOys )
increasing from west to east (Cushman et al 2004). The greatest plume influence is shown by
lavas erupted between 91.7°W and 92.4°W were the highest MgO contents are found (Cushman
et al 2004).

VI. Results
As mentioned above, samples from the Galapagos Island in the GEOROC
database have highly variable compositions reflecting alteration, and they were not used in this

project. The oxygen fugacities for samples from the Galapagos Islands were determined using
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the olivine-melt oxybarometer. These samples are typical basalts with SiO, contents between
47.29 and 49.45, an average of 48.57. FeOT concentrations range from 9.37 to 13.78, but ferric
iron ratios, Fe;O3/(FeO + Fe,03), average 0.129 and range between 0.080 and 0.172. Values for
the AFMQ were between -1.9617 and -0.0591 with an average of -0.8270. The complete
analyses are listed in Appendix 1.

The majority of island samples were taken from Fernandina, which is thought to
represent current plume location. Ignoring samples from Volcan Darwin and Roca Redonda, the
ferric iron ratio covers a slightly smaller range (0.100 to 0.172), but shows an average of 0.127,
similar to the average all island samples. The AFMQ for Fernandina has only a slightly lower
average at -0.8646.

Oxygen fugacities for GSC samples from the ridge database were calculated from both
the analyzed (Fe;;_Og/FeO)Melt and from olivine-melt equilibrium. The results obtained by both
methods fall into very similar ranges. SiO; contents for ridge database samples average 51.77,
and 50.37 for the olivine-melt oxybarometer samples. Ferric iron ratios had a slightly larger
range for the ridge database (0.0736-0.1813) than the olivine-melt oxybarometer (0.0828-
0.1713), but the averages were very similar: 0.1366 and 0.1354, respectively. AFMQ values also
had similar averages at -0.4636 and -0.6406. Complete analyses for the ridge database samples

are given in Appendix 2, and olivine-melt oxybarometer samples are given in Appendix 3.

GSC DFQM data from FeR method GSC data from Olivine-Melt Oxybarometer
4
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VII. Discussion
1. Correlation between AFMQ and compositional parameters

Plots of AFMQ versus various elements do not reveal consistent trends. SiO2 covers a
narrow range and therefore does not correlate with AFMQ in the GSC samples. Study of
samples with higher silica contents is needed to determine whether any such correlation actually
exists, and the same conclusion is valid for samples from the GSC. This may reflect the style of
differentiation during crystallization. The magmas follow a typical tholeiitic trend — iron
enrichment at near constant silica. However, there is also poor correlation between AFMQ and
MgO, which normally is an excellent indicator of differentiation. These results imply that
magma evolution along the GSC and on the Galapagos Islands is complex and is not simply the
result of crystallization. Nevertheless, trends on plots of AFMQ versus Mg# suggest that
crystallization played some role in magma differentiation. The initial increase in AFMQ as Mg#
decreases reflects crystallization of silicates such as olivine (£clinopyroxene) so that Fe**
increases in residual liquids until Fe-Ti oxides crystallize whereafter Fe’*decreases in residual
liquids. A plot of total iron versus MgO reveals that the GSC samples from the Ridge data base
follow a strong iron enrichment (tholeiitic) trend.

Data for the Galapagos Islands also show considerable scatter on many of the plots,
which may reflect that fact that few of the samples are glasses — they are mixtures of glass and
phenocrysts. However, the array of data on a plot of AFMQ versus Mg# is similar to that for
GSC samples, confirming the fact that crystallization played some role in magma differentiation.
2. GSC compared to MORB compositions

Compiled data for global MORBs analyzed for (Fe,Os/F eO)M!* show a range in AFMQ
from -2.87 to 0.19, with values for the East Pacific Rise (EPR) between -2.59 and 0.10 (McCann
and Barton personal communication). Although a few samples from the GSC fall below these
ranges, the average value is almost exactly in the middle. This suggests that the GSC basalts are
typical MORB lavas and are not heavily affected by plume magmas; that there is interaction of
plume material in the ridge but not substantial enough to affect AFMQ; or that interacting mantle

plume has a similar fO, to mantle beneath the ridge.
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Galapagos Plume MORB

EPR GSC olT Islands (Azores)
Si02 50.19 51.19 50.51 48.57 49.72
TiO2 1.77 1.84 2.63 3.20 1.46
Al203 14.86 13.81 13.45 15.78 15.81
FeOT 11.33 11.10 - - -
FeO - - 9.59 9.69 7.62
Fe203 - - 1.78 1.43 1.66
MgO 7.10 6.48 7.41 6.01 7.90
Ca0 1144 1075 11.18 11.08 11.84 ;r:rz:fa:e(}{t?‘\‘;,tflson
Na20 2.66 2.56 2.28 3.1 2.35 (1989)
K20 0.16 0.19 1.49 0.59 0.50

Harpp and White (2001) noted that volcanoes in the northwest province of the Galapagos
exhibit only slight involvement of a plume component in the mantle sources, which supports the
idea of plume material having little or no effect on the MORB fO signatures between the ridge
and the islands. However, Cushman et al (2004) showed some plume influence between 91.7°W
and 92.4°W, because of high MgO contents and variable FeOg ¢y and TiOys ¢) that are not seen in
other areas of the GSC (2004). Therefore, the influence of the Galapagos plume is seen in both
major element and isotope compositions, but an overall difference in fO; can not be seen. This
suggests that the plume material in the GSC and the typical GSC material share a similar fO,
signature, even though they come from different mantle source regions.

3. Galapagos Islands versus typical plume magmas

The major element analysis of the Galapagos lavas are more similar to Wilson’s (1989)
values for typical ocean-island tholeiites (OIT) than for her typical plume-MORB (Azores) for
ferrous iron oxides and CaO. However, the are closer to plume-MORBs for SiO,, Al,O3, and
K50 (1989). Concentrations of ferric iron and MgO are lower than both OIT and plume-MORB,
but TiO, and NayO are both significantly higher.

4. Galapagos Islands versus the GSC compositions

Samples from the Galapagos Islands fall mostly within MORB ranges for AFMQ but tend
to lie in the lower end of the range. The have slightly lower SiO, contents than ridge lavas,
similar total iron, and slightly lower Fe**/Fe?*" ratios. They exhibit similar average values of
MgO (6.48 in the GSC and 6.01 in the islands), but the GSC lavas shows a much greater range in
MgO content (from 1.60 to 9.46 compared to 4.89 to 8.86 in island lavas). Results of this study
suggest that the GSC and plume source regions are similar, which implies that the redox state is

homogenous throughout the asthenosphere and lower mantle. However, it could mean that the
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redox state is not uniform, but that the plume has reequilibrated with the upper mantle with
respect to the redox state.

Geist (1992) has showed that central island lavas are more alkali-olivine tholeiites
(specifically, hypersthene- normative tholeiites from Fernandina) which lies above the current
plume Jocation. The central lavas also show high He ratios compared to ridge lavas or lavas
from island edges (Kurz and Geist 1999). Carmichael (1991) stated that alkali-rich lavas which
ascend quickly tend to be the most oxidized, but the plume lavas actually have lower ferric iron
ratios than those in the GSC. Elemental and isotopic evidence supports a deeper mantle magma
generation for the plume than the upper asthenosphere MORB source of the GSC. This
eliminates the possibility that the magmas are generated in the same source regions. Because
compositional differences between plume magmas and OIB are obvious, it is difficult to
understand how the plume could reequilibrate with the upper mantle, as any such reequilibration
should be seen in the concentrations of other elements and in the isotopic data.

The lavas at Roca Redonda are representative of simple plume and ridge magma mixing
and they show AFMQ values that are even lower than those observed from Fernandina, the
presumed center of the plume. If there is a distinctive fO; signature from the plume, compared to
MORB, the Roca Redonda values should lie between those of the plume and the ridge. If so, this
would support the idea of a homogeneous mantle, or that the heterogeneity of the mantle is not
manifest in oxygen fugacities. Roca Redonda lavas still clearly shows the signature of plume
magmas, which would not be the case if the plume had equilibrated to the upper mantle.

5. Future Work

Although the AFMQ values for the Galapagos Islands are slightly lower than the GSC,
and normal MORB ranges, they are not statistically different. In part, this may reflect the small
number of samples from the Galapagos Islands that were used in this study. Further work should
be done to collect fresh samples and analyzed for both ferric and ferrous iron of the lavas.
Multiple methods should be used to determine fO,, for comparison and to determine the true
range and average values of the Galapagos plume. Comparison with other mantle plume might
also be useful. .

Samples could be collected from all four different geochemical provinces of the
Galapagos Islands, rather than only the current plume center, and then compared to see if

different proportions of plume material can be observed. The complexity of ridge and plume
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magmas make interpretations difficult if the structure of the plume is not well understood. The
lavas from the Galapagos island have some of the highest iron contents in the world and are
located in a warm, moist environment. This makes weathering a major concern and questionable
samples need to be carefully examined before they are included in research. Completely fresh
samples would help to manage statistical uncertainities, which would be make the data

interpretations more reliable.
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VIII. Conclusion
Samples analyzed with the olivine-melt oxybarometer method have AFMQ values which
agree with samples analyzed with the traditional ferric-ferrous iron ratio method. The results

from these methods are similar for lavas from both the GSC and from the Galapagos Islands,
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although major and trace element evidence supports different source regions for the lavas-
typical upper athenosphere MORB source for the GSC, deep mantle plume source for the
Galapagos Islands. There is also evidence of magma mixing and fractionation, causing various
geochemical provinces throughout the islands which is not clearly repeated in AFMQ values.
This does not necessarily support a homogenous mantle, but suggests that the varying source

regions can not be accurately identified using fO, calculations of only a few samples.
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