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Abstract 

Oxygen fugacity is one of the most important intensive variables that controls the phase 

relations and compositions of precipitating minerals. It is accepted that oxygen fugacity reflects 

the redox state of the mantle source region. Therefore oxygen fugacities can be used to probe the 

mantle redox state and determine mantle heterogeneity. Plume-related magmas and mid-ocean 

ridge basalts (MORB) have been shown to fall within the same range (~FMQ = -1.305 to 0.402) 

suggesting source regions with similar redox states. 

The Galapagos Islands are a result of plume-related volcanoes and located on thin, young 

crust created by the nearby Galapagos Spreading Center (GSC). This study focuses on the 

differences between the redox state of the Galapagos plume related magmas and the nearby 

GSC. The Galapagos Islands show unsually high iron concentrations, which should be reflected 

in the /02 values of lavas. Values of /02 calculated from F e20 3/F eO ratios for GSC lavas ranged 

from ~FMQ = -1.801 to 0.402. Values calculated from coexisting olivine and melts show 

excellent agreement with a range of ~FMQ = -1.818 to 0.069. There is reasonable correlation 

between oxygen fugacity and Mg, consistent with the idea of crystallization controlling oxygen 

fugacity. 

Oxygen fugacities were calculated from coexisting olivine and melt samples from Roca 

Redonda, Fernandina, and Volcan Darwin on the Galapagos Archipelago. Melt samples were 

based on groundmass analyses rather than glasses. The results ranged from ~FMQ = -1.962 to -

0.059, similar to values for MORB from the GSC, despite the unusually high Fe8.0 and low Sis.o 

contents. The latter have been used to suggest that the island magmas are generated at greater 

depths than MORBs. 

This study supports other work suggesting that OIB from deeper mantle sources have 

similar oxygen fugacities to MORB from upper mantle sources. This suggests that both sources 

have similar redox states, or that differences are not observed in oxygen fugacities of magmas 

originating from these sources. In the case of the Galapagos Islands this is surprising, given 

other evidence for differences in melting temperature and depth and source region composition. 
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I. Introduction 

If Hans Eugster introduced the concept of oxygen fugacity in 1956 as a thermodynamic 

term to describe the concept of partial pressure of oxygen (Frost 1991 ). The effect of varying 

oxygen fugacity on magmatic processes, mineral stabilities, and mineral and melt compositions 

igneous rocks has been studied extensively. Variations in oxygen fugacity have been shown to 

control the crystallization sequence and compositions of solids precipitating from magmas 

(Carmichael and Ghiorso 1986). In addition, the redox states of magmas reflect that of mantle 

source regions, and therefore studies of magmas may be used to constrain both the present and 

past redox states of the mantle (Christie et al 1986). 

Buffers originally were designed to control the oxygen fugacity in experimental charges, 

such that a constant oxygen fugacity is imposed on the experimental charge (Frost 1991). Under 

natural conditions, the f02 of magmas is a function of primary melt composition (including 

XFe203/XFeo) and of mineral equilibria during crystallization (Frost 1991 ). Frost summarized 

data for many of the buffers used in experimental petrology, and four of these cover the range 

important for crystallization in natural systems, which can vary by up to seven or eight orders of 

magnitude for basic lavas (Carmichael 1991). These buffers are: 

High f02 

Fe2Si04 = 2Fe + Si02 + 02 

2Fe304 + 3Si02 = 3Fe2Si04 + 02 

2Ni0 = 2Ni + 02 

6Fe203 = 4Fe304 + 02 

QIF 

FMQ 

NNO 

MH 

The buffer reactions illustrate how oxygen fugacity reflects of the amount of free oxygen in a 

system - that is, the amount of oxygen available for chemical reactions. Varying f02 drives the 

reactions in different directions and affects the stability of different minerals. At low f02 (f02 

:SFMQ, or ~FMQ = logf02 (sample)-logf02 (FMQ buffer at same T) = 2.7 to +0.4), iron rich 

silicates such as fayalite are stable. Crystallization at low oxygen fugacity therefore produces 

iron-rich silicates, and magmas follow an iron-enrichment trend. At higher f02 (~FMQ = 0 to 

+3.3), magnetite becomes stable (Barton personal communication) whereas at the highest values 

of f02, hematite is stable. Crystallization of oxides such as magnetite and/or hematite produces 

silica-rich liquids, and magmas follow silica enrichment trend during crystallization (Carmichael 

1991 ). In closed systems, residual liquids show an increase in f02, which indicates 
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Figure 1 Oxygen buffer assemblages, 
logf02 vs T. (1) MH: magnetite-hematite 
(3) NNO: nickel-nickel oxide (4) QIF: 
quartz-iron-fayalite (8) FMQ: fayalite­
magneti te-q uartz 
(Igneous Petrology 625, SP2004) 

there is an increase in the iron redox state 

of the liquid during crystallization 

(Carmichael and Ghiorso 1986). 

Although buffers are widely used in 

experimental petrology, the concept is 

useful for natural magmas, and the buffers 

provide reference values of f02. The 

oxygen fugacities of many magmas during 

crystallization approximately parallel that 

of one of the buffers described above. 

Carmichael and Ghiorso (1986) argued that 

this requires exchange of oxygen between 

the magma and the surrounding country 

rock, and they calculated that 0.05g of 

oxygen must be exchanged for every 1 OOg 

of magma in order for the latter to stay on 

the FMQ buffer. The advantage of 

comparing oxygen fugacities to those of 

buffers is that the resulting value is 

independent of 

temperature (ie. ~FMQ = logf02 (sample)-logf02 (FMQ buffer at same T)). The relative oxygen 

fugacities for compositionally different magmas can then be directly compared and used to infer 

the redox states of mantle source regions. 

Early research suggested that the entire mantle was homogeneous with f02 values around 

the FMQ buffer (~FMQ ~ 0), but mantle xenoliths with oxygen fugacities well below those of 

the FMQ buffer indicate variations in the redox state of the mantle (Christie et al 1986). Studies 

of mantle peridotites yield oxygen fugacities ranging from -2.3 to + 1.9 ~FMQ (Barton personal 

communication. 

II. Previous Methods 

Several methods are used to determine the oxygen fugacity of lavas, and each method has 

been found to be limited in its application. The most direct method uses the compositions of 
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magmatic gas sampled during eruptions. The most complete set of measurements available is 

f that from Makaopuhi Lava Lake, Hawaii, which sampled gas emitted during crystallization 

(Carmichael and Ghiorso 1986). There are relatively few complete sets of magmatic gas 

analyses, and there is some doubt that oxygen fugacities determined from magmatic gases reflect 

those of the magmas. 

Another method uses the compositions of coexisting Fe-, Ti-oxides (magnetite-ulvospinel 

and hematite-ilmenite) to determine the oxygen fugacity. This method is based on exchange of 

Fe2
+ and Ti between coexisting members of the ulvospinel-magnetite solid solution series 

(Fe2 Ti04-Fe304) and ilmenite-hematite solid solution series (FeTi03-Fe203), 

(1) 

Hematite Ulvospinel Ilmenite Magnetite 

and the redox equilibrium, 

6Fe203 ~ 4Fe304 + 02 (2) 

In Ilmenite In Spinel 

There are, however, well known limitations on the use of coexisting Fe-Ti oxides to 

determine fD2 for igneous rocks. One is the ease with which Fe-Ti oxide compositions are reset 

by inter-oxide and intra-oxide re-equilibration during cooling or during alteration ( eg. Frost, 

1991 ). This severely handicaps the use of coexisting Fe-Ti oxides to determine fD2 for intrusives 

and for older igneous rocks, which are more likely to be altered than young rocks. These 

limitations can be partly or wholly overcome by using assemblages of coexisting ferromagnesian 

silicates and Fe-Ti oxides to determine fD2. This approach is predicated on the fact that 

compositions of Fe-Mg silicates and Fe-Ti oxides are related via equilibria such as 

Si02 + 2Fe2 Ti04 ~ 2FeTi03 + Fe2Si04 (3) 

Quartz Ulvospinel Ilmenite Fayalite 

termed QUIIF by Frost et al. (1988). This assemblage allows calculation of T and fD2 from 

coexisting Fe-Ti oxides as well as from the FMQ equilibrium: 

3Fe2Si04 + 02 ~ 2Fe304 + 3Si02 (4) 

Fayalite Magnetite Quartz 
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Lindsley and Frost (1992) extended the QUilF equilibrium to magnesian and calcic compositions 

f to include assemblages containing low-Ca and high-Ca pyroxenes. Nevertheless, many igneous 

rocks, especially many basalts, do not contain coexisting Fe-Ti oxides. 

Oxygen fugacity can be also be determined from the redox state of melts. The 

homogenous reaction 

2Fe0 + Yz02 

Melt Melt 

(5) 

shows that the ratio (Fe203/FeO)Me1t can be used to calculate fD2 if the functional relationship 

between (Fe20 3/FeO)Mel\ fD2, T, and melt composition is known. Ian Carmichael et al. (1991) 

have found that the relationship between melt redox state, temperature, and oxygen fugacity can 

be described by the empirical relation. 

(6) 

where a, b, c, di are constants found by regression of experimental data. This method is simple, 

and has the obvious advantage that it can be used for lavas such as primitive basalts that lack 

mineral assemblages from which fD2 can be estimated (e.g. MORB). There are, however, 

potential limitations of the approach. First, it is necessary to determine Fe20 3 and FeO by wet 

chemical or other analytical methods (eg. mossbauer spectroscopy of glasses), techniques not 

routinely used by petrologists or geochemists. Second, the Fe20 3/Fe0 ratio of rocks is readily 

affected by alteration, and therefore this method can only be used to estimate fD2 for unaltered, 

fresh lavas. In addition, the analyzed Fe203/FeO ratios of fresh lavas do not necessarily represent 

those of melts, and hence this ratio should only be used to estimate fD2 for glassy or aphyric 

volcanics, or for phyric lavas that do not contain contain cumulate or xenocrystal ferromagnesian 

minerals. 

Given the importance of oxygen fugacity in the petrogenesis of magmas, it would be 

useful to have additional methods to constrain or determine this variable. In particular, it is 

desirable to have additional methods to determine fD2 for basalts, especially ones that contain re­

equilibrated Fe-Ti oxides. A method based on olivine-melt equilibrium, is described below. 
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III. Methods 

Two methods were used in this study to calculate oxygen fugacities and the flFMQ of 

lavas. One is based on the relationship between f02 and the Fe20 3/Fe0 ratio of melts described 

earlier, whereas the second method is based on the compositions of coexisting olivine and melt. 

1. Oxygenfugacitiesfrom Fe203/Fe0 ratios 

The samples selected for this study were previously analyzed by wet chemistry and 

electron-microprobe to determine both ferric and ferrous iron concentrations. The full set of 

glass analyses used in this study was taken from the Ridge Database maintained by Columbia 

University (http://petdb.ldeo.columbia.edu), and only fresh glasses were selected for this work. 

In addition, samples from the GEOROC data base (maintained by the Max Planck Institut fur 

Chimie) for the Galapagos Islands were examined. These samples show wide variations in Fe20 3 

and FeO that presumably reflects post-eruptive alteration. Because this variation persists even 

after obviously altered samples (those with high H20, alkalies, Rb, and Ba) were eliminated, the 

samples from the GEOROC data base were not considered further. 

Equation 6 was used to determine lnf02 from the analyzed Fe203 and FeO contents of the 

fresh MORB glasses from the ridge data base. The calculated value of f02 was then compared to 

values for the FMQ and NNO buffers at the same temperature (assumed to be 1200°C). All of 

the samples from the Ridge Database were collected from the Galapagos Ridge, and consist of 

MORB glasses. 

2. Oxygen Jugacities from olivine-melt pairs 

Oxygen fugacities also were calculated from the compositions of coexisting olivine and 

melt. This method is based on exchange of MgO and FeO between olivine and basaltic melts, 

defined as 

K = (XOI _ tvMelt )(XMelt o/XOI ) 
D FeO'-"" FeO Mg MgO (7) 

(XMgo =MgO/[MgO+FeO] on a molar basis). Roeder and Emslie (1970) showed that the 

exchange distribution coefficient, K0 , is virtually independent of temperature, and that the value 

is 0)0 ± 03 (lcr) for anhydrous basaltic liquids. Other experimental studies confirm these 

conclusions for anhydrous basaltic liquids but indicate values of K0 <0.3 for evolved melts rich 

in alkalies (Gee and Sack, 1988). An expression to calculate values of Ko as a function of melt 
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composition is given by Gee and Sack (1988). The relation described by equation 7 has been 

f extensively used by petrologists and geochemists because it allows the equilibrium Fo content of 

olivine to be predicted from the MgO and FeO contents of any melt, if Ko is known or is 

calculated as described by Gee and Sack (1988). The experiments of Roeder and Emslie (1970) 

were conducted over a range of f02 (1 o-0
·
68 to 10-12), and thus indicate that Ko is independent 

of f02, so that the equilibrium composition of olivine can be predicted from the MgO and FeO 

contents of melts that crystallize over a wide range of f02 (~FMQ from +7.6 to -3, or from 

values appropriate for crystallization in air to values near those of the iron-wiistite [IW] buffer). 

Of course, this does not mean that the composition of olivine in equilibrium with a particular 

melt remains constant as f02 varies. On the contrary, the experiments of Roeder and Emslie 

(1970) show that the Fo content of olivine in 

equilibrium with melt of fixed total composition 

increases with increasing f02 at constant T (Fig. 2). 

Because Ko is independent of f02, the apparent 

correlation between the Fo content of olivine and f02 

actually reflects the dependence of Fe203/FeO in the 

melt on f02. 

Most petrologists and geochemists recognize 

that use of equation 7 requires assumptions about the 

redox state of melts for which Fe203 and FeO 

contents have not been determined analytically­

which the case in the majority of recent petrological 

and geochemical studies. In studies of olivine-melt 

1 
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Figure 2 Varying olivine 
composition with changing 
oxygen fugacity at constant T. 
(Roeder and Emslie 1988) 

equilibrium it therefore is common practice to adopt an arbitrary value for Fe20 3/Fe0 in melts 

(e.g. 0.1or0.15), or to assume that crystallization occur at some value of f02 (e.g .. FMQ=O) and 

then calculate Fe203 and FeO contents of melts from equation 6. However, it is preferable to use 

the compositions of coexisting olivine and melt to determine Fe20 3Mett and FeOMett from total 

(analyzed) Fe, and use these to calculate logf02 during crystallization. 

The method is illustrated graphically using an example taken from the literature (Figure 

3). The analyses of olivine and glass used in this example are from the results of an experiment 

on a basalt from the East Pacific Rise (ALV-2004-3-1-20) with f02 controlled near FMQ (Yang 
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et al. 1996). The olivine and glass produced in the experiment were analyzed by electron 

f microprobe, and total Fe is reported as FeO. 

The first step is to calculate fictive melt compositions with variable Fe203 and FeO 

contents (wt.%), adjusting all oxide percentages for the change in total mass resulting from 

addition of oxygen due to the change in the oxidation state of iron. The resulting values of Fe203 

are plotted against calculated values of XMettMgO (Mg#) in Fig 3a, and the latter are used to 

calculate the Fo contents (Fo) of olivine in equilibrium with these melts (Fig. 3b), using values of 

Ko determined from the empirical relationship given by Gee and Sack (1988). Fo is plotted 

against Fe203 in Fig. 3c. The actual Fe203 content of the melt is determined from the known 

(analyzed) composition of olivine (Foo.836, Yang et al. 1996), and FeOL is calculated from total Fe 

(FeOT=0.8998Fe20 3+FeO). The values of Fe20 3L and FeOL are used in equation 6 to estimate 

logf02 at the reported run temperature of 1188°C using the coefficients given by Kress and 

Carmichael (1991). The agreement between logf02 estimated from olivine-melt equilibrium (-

8.65) and that given by Yang et al (1996) for this experiment (-8. 72) is excellent. In practice, the 

value of Fe203L is calculated from regression of Fe203L versus olivine composition and used to 

calculate logf02. For brevity, this method is hereafter referred to as the olivine-melt 

oxybarometer. 

(a) 
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Figure 3 Olivine-melt 
oxybarometer method. 
The relationship between 
olivine and melt 
compositions is used to 
determine the oxygen 
fugacity of magmas as 
described above. 
(Adapted from Yant et al 
1996, Barton personal 
communication) 
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IV. Application to lavas from the Galapagos Ridge and Galapagos Islands 

I The objective of this research is to determine the oxygen fugacities for crystallization of 

basaltic magmas along the Galapagos Spreading Center (GSC) and on the Galapagos Islands. 

The GSC constitutes a divergent margin, and hence oxygen fugacities of these magmas should 

reflect those of the mantle source beneath the mid ocean ridge system. Volcanism on the 

Galapagos Islands is widely believed to reflect a plume or hot spot in the underlying mantle, and 

the oxygen fugacities of these magmas should reflect those of the underlying mantle plume or 

hot spot source. There is some debate about the existence of mantle plumes in general, but most 

workers concede that ocean island basalts (OIB) such as those erupted on the Galapagos Islands 

are derived from a different mantle source than mid ocean ridge basalts (MORB). Therefore, the 

research described in this study addresses the question of whether the redox states of MORB 

mantle and OIB mantle are the same or different. 

Analyses of coexisting olivines and glasses in samples from the Galapagos Spreading 

Center and from the Galapagos Islands selected from the literature were used to calculate logf02• 

The latter were compared to values for the FMQ and NNO buffers at the same temperature 

(assumed to be 1200°C), and to the values obtained from the analyzed Fe20 3/Fe0 ratio of 

glasses from the GSC and other ridges. 

V. Geologic Background 

1. Location 

The Galapagos archipelago is a group of volcanic islands located near the Galapagos 

Spreading Center (GSC), which separates the Cocos and Nazca Plates. Although attributed to 

plume magmatism on the basis of He isotope studies, the volcanoes of the archipelago do not 

form the typical linear trend parallel to plate motion like those of the Hawaiian-Emporer Chain, 

but generally become younger to the west in agreement with plate movement. Volcanism has 

been active for 5 to 6 My, with earlier activity being split into the Cocos and Carnegie Ridges 

(Figs. 4, 5) by a serious of ridge jumps (Allan and Simkin 2000). The crust below the islands is 

young and relatively thin, so the volcanoes are scattered with no one center of activity unlike the 

Hawaiian Islands (Geist et al 1999). Harpp et al (2003) described the islands as being one of the 

few places on the globe that exhibit magmatism related to both plume and ridge related mantle 

processes, but not dominantly one or the other. 
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2. Geographic and geochemical variations 

Figure 4 Bathymetric 
image of the Galapagos 
region (Cushman et al 
2004) 

Seven major volcanoes form an east-facing horseshoe pattern (Figures 5 and 6). Those in 

the center of the horseshoe exhibit depleted upper mantle MORB geochemical signatures 

Figure 5 Ancient ridge on the Cocos and 
Naxa plates from plume activity. Recent 
Galapagos activity is highlighted. (adapted 
from Werner et al 2003) 

compared to more enriched lavas occur in 

the north, west, and south sides of the 

horseshoe (Harpp and White 2001 ). Some 

have suggested that plume material is being 

sheared to the east by underlying 

asthenospheric flow and the movement of 

the Nazca Plate, but that it also is flowing 

northward toward the GSC, with plume 

components observed near and in ridge lavas 

(Harpp and White 2001, Harpp et al 2003). 

Werner et al (2003) have suggested that the 

same pattern of enriched domains can be 

identified in activity over the past 14.5 Mya 

in the Cocos track. Lavas erupted along the 

Cocos track, and in the Carnegie, Malpelo, and Coiba ridges all exhibit compositional 

characteristics that are similar to the current Galapagos hotspot magmas (Werner et al 2003); 
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Harpp and White (2001) have suggested that part of the geographic variations may reflect origin 

f from an internally heterogeneous plume with a northern limb different from the southern limb, 

rather than effects of magma evolution during ascent from the mantle. 

Although regional stresses caused by the ridge movement and plume influence are 

responsible for magma generation and transport, the varying magma compositions likely reflect 

differences between ridge and plume material (Nusbaum 1991). Compositional variations 

evident in Sr, Nd, and Pb isotopic data, and in incompatible trace element concentrations, have 

been attributed to plume-asthenosphere mixing, and to variable depths of partial melting, and 

different depths of crystal fractionation, especially in the western lavas (Geist 1999). Vulcan 

Darwin, in particular shows disequilibria between residual melt and xenocrysts, suggesting the 

melt continued to evolve further after crystallization of the phenocrysts (Nusbaum et al 1991). 

Isotopic ratios and incompatible element concentrations (corrected for the effects of 

fractionation) do not correlate, indicating that magma mixing is probably not the dominant 

process (Geist 1992). Harpp and White (2001) used Pb-Pb variations to show that binary mixing 

between mantle sources is inadequate to explain compositional variations, and that four 

components are needed. Most of the evidence supports mixing between various plume 

components and the shallow asthenosphere, rather than between different plume components 

alone. Assimilation of lithosphere does not seem to have played a significant role because Sr, 

Nd, Pb, Hf, and 0 isotope ratios appear to remain constant during magma evolution (Harpp and 

White 2001). Geist (1992) suggested that although variation in magma compositions are 

observed over short lateral distances, they may reflect magma generation at greatly different 

depths. 

Based on differences in geochemistry, and ages of volcanic products, the islands have 

been divided into four regions. The northern province lies between the inferred current plume 

center and the GSC and contains volcanoes that erupt plagioclase-rich lavas (Geist 1999). At the 

northeastern edge of the islands along the GSC there are more seamounts than along any other 

area of the ridge. Lavas from these seamounts show MORB-like rare earth element (REE) 

patterns and represent the most light-rare earth element (LREE) depleted material observed in 

the archipelago. Lavas from the Wolf-Darwin lineament, the northwest islands, also exhibit 

MORB-like characteristics, but some show slight LREE-enrichment (Harpp and White 2001). 

Volcanics from this province show evidence for only a small amount of plume component in the 
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mantle source region (Harpp and White 2001). The lowest 3HefHe ratios of the Galapagos 

islands has been observed on Pinta (Kurz and Geist 1999). 

The southern and western provinces 

of the islands tend to contain young 

tholeiitic shield volcanoes (Geist 1992). 

The lavas on the western islands are thought 

to have evolved from primitive magma 

originating from a deep mantle source (Geist 

1992). Lavas from Cerro Azul, Sierra Negra, 

and Floreana have intermediate 3He/4He 

ratios associated with high radiogenic 

isotope values (Kurz and Geist 1999). Some 

of the Floreana lavas have been explained as 

asthenosphere material reacting with LREE 

and volatile enriched fluids (Harpp and 

O". 

Figure 6 Island and volcano 
locations in the Galapagos 
Archipelago (Geist 1992) 

89' W 

White 2001). Mantle metasomatism is supported by the highest values of Sr, Nd, and Pb in the 

islands, and by the elevated Ba, La, and Th concentrations; additional evidence exists in trace 

elemental trends, and by the tendency for alkaline lavas to erupt in explosive, pyroclastic events 

(Harpp and White 2001). Harpp and White (op cit) have suggested that a distinct mantle 

composition beneath the southwest area explains the localized differences in geochemistry. 

Roca Redonda lacks a caldera and is grouped into the western province, but the volcano 

does not actually lie on the Galapagos platform (Standish et al 1998). Lavas are dominated by 

plagioclase and olivine phyric types, in which olivine cores range from Fo78 to Fo83.s, with rims 

about 12% lower Fo (Standish et al 1998). An average FeO(s.o) of 12.7 is significantly higher 

than for other volcanoes of the province (Standish et al 1998). The lavas are more degassed than 

Fernandina and exhibit less evidence of a plume contribution; all lavas are LREE enriched and 

lie within the alkaline field for Hawaiian basalts on an alkali-silica plot (Standish et al 1998). 

The samples show more isotopic enrichment than the Wolf-Darwin lineament, so simple plume­

ridge mixing can be ruled out as the primary process (Standish et al 1998). 

The central province is characterized by lavas exhibiting evidence of more plume 

component, and more depleted MORB than the surrounding provinces (Geist 1992). The island 
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volcanoes lack calderas, and they erupt alkali-olivine basalt lavas with more diversity than 

It originally expected (Geist 1992). The diversity probably reflects a mantle source containing 

components of all four regions, but with only small contributions from the southwestern member 

(Harpp and White 2001). The highest 3HefHe ratios are from Fernandina, with a steep decline 

toward the north and east (Kurz and Geist 1999). Source heterogeneity is supported by 

correlation of the 3HefHe values with averaged FeO(s.o), Na20(s.o), and Nb/La (Kurz and Geist 

1999). 

Fernandina is believed to represent the purest plume eruptions as evidenced by the high 
3HefHe ratios (Harpp and White 2001). Eruptions generally are small volume Aa flows of 

hypersthene-normative tholeiites with plagioclase as the most abundant phenocryst (Allan and 

Simkin 2000). From textural analysis, Cr-rich spinel appears to be the first mineral to crystallize, 

with Fo-rich olivine also crystallizing early (Allan and Simkin 2000). Most olivine cores range 

from Fo79 to Fos4 (Allan and Simkin 2000). The low Mg# and low incompatible element 

contents indicate the host magma was relatively evolved (Allan and Simkin 2000). 

3. Ridge Volcanism 

Lavas erupted near the center of the plume and along the GSC exhibit variations in 

geochemistry greater than shown by lavas erupted along ridges elsewhere in the world. In 

addition, there are substantial variations in crustal thickness, and morphology. On either side of 

the Galapagos plume region, the spreading center contains a mid-Atlantic Ridge-like valley 

(Cushman et al 2004). East of 85°W, and west of 95.5°W, ridge lavas have normal MORB 

compositions, but the lavas erupted between 85°W and 95.5°W show variable enrichment in 

LREE and in large ion lithophile elements (LILE) (Cushman et al 2004). GSC lavas that fall in 

the NM ORB field show geographical trends with FeO(s.o) and Ti02(8.0) decreasing and Si02(s.o) 

increasing from west to east (Cushman et al 2004). The greatest plume influence is shown by 

lavas erupted between 91.7°W and 92.4°W were the highest MgO contents are found (Cushman 

et al 2004). 

VI. Results 

As mentioned above, samples from the Galapagos Island in the GEOROC 

database have highly variable compositions reflecting alteration, and they were not used in this 

project. The oxygen fugacities for samples from the Galapagos Islands were determined using 
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the olivine-melt oxybarometer. These samples are typical basalts with Si02 contents between 

47.29 and 49.45, an average of 48.57. FeOT concentrations range from 9.37 to 13.78, but ferric 

iron ratios, Fe203/(FeO + Fe203), average 0.129 and range between 0.080 and 0.172. Values for 

the ~FMQ were between -1.9617 and -0.0591 with an average of -0.8270. The complete 

analyses are listed in Appendix 1. 

The majority of island samples were taken from Fernandina, which is thought to 

represent current plume location. Ignoring samples from Volcan Darwin and Roca Redonda, the 

ferric iron ratio covers a slightly smaller range (0.100 to 0.172), but shows an average of 0.127, 

similar to the average all island samples. The ~FMQ for Fernandina has only a slightly lower 

average at -0.8646. 

Oxygen fugacities for GSC samples from the ridge database were calculated from both 

the analyzed (Fe203/FeO)Melt and from olivine-melt equilibrium. The results obtained by both 

methods fall into very similar ranges. Si02 contents for ridge database samples average 51. 77, 

and 50.37 for the olivine-melt oxybarometer samples. Ferric iron ratios had a slightly larger 

range for the ridge database (0.0736-0.1813) than the olivine-melt oxybarometer (0.0828-

0.1713), but the averages were very similar: 0.1366 and 0.1354, respectively. ~FMQ values also 

had similar averages at -0.4636 and -0.6406. Complete analyses for the ridge database samples 

are given in Appendix 2, and olivine-melt oxybarometer samples are given in Appendix 3. 

GSC CFQM data from FeR method 
4 
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0 
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VII. Discussion 

I 1. Correlation between L1FMQ and compositional parameters 

Plots of i1FMQ versus various elements do not reveal consistent trends. Si02 covers a 

narrow range and therefore does not correlate with i1FMQ in the GSC samples. Study of 

samples with higher silica contents is needed to determine whether any such correlation actually 

exists, and the same conclusion is valid for samples from the GSC. This may reflect the style of 

differentiation during crystallization. The magmas follow a typical tholeiitic trend - iron 

enrichment at near constant silica. However, there is also poor correlation between i1FMQ and 

MgO, which normally is an excellent indicator of differentiation. These results imply that 

magma evolution along the GSC and on the Galapagos Islands is complex and is not simply the 

result of crystallization. Nevertheless, trends on plots of i1FMQ versus Mg# suggest that 

crystallization played some role in magma differentiation. The initial increase in i1FMQ as Mg# 

decreases reflects crystallization of silicates such as olivine (±clinopyroxene) so that Fe3
+ 

increases in residual liquids until Fe-Ti oxides crystallize whereafter Fe3
+ decreases in residual 

liquids. A plot of total iron versus MgO reveals that the GSC samples from the Ridge data base 

follow a strong iron enrichment (tholeiitic) trend. 

Data for the Galapagos Islands also show considerable scatter on many of the plots, 

which may reflect that fact that few of the samples are glasses - they are mixtures of glass and 

phenocrysts. However, the array of data on a plot of i1FMQ versus Mg# is similar to that for 

GSC samples, confirming the fact that crystallization played some role in magma differentiation. 

2. GSC compared to MORE compositions 

Compiled data for global MORBs analyzed for (Fe20 3/FeO)Melt show a range in i1FMQ 

from -2.87 to 0.19, with values for the East Pacific Rise (EPR) between -2.59 and 0.10 (McCann 

and Barton personal communication). Although a few samples from the GSC fall below these 

ranges, the average value is almost exactly in the middle. This suggests that the GSC basalts are 

typical MORB lavas and are not heavily affected by plume magmas; that there is interaction of 

plume material in the ridge but not substantial enough to affect i1FMQ; or that interacting mantle 

plume has a similar f02 to mantle beneath the ridge. 
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EPR GSC 
Si02 50.19 51.19 
Ti02 1.77 1.84 
Al203 14.86 13.81 
FeOT 11.33 11.10 
FeO -- --
Fe203 -- --
MgO 7.10 6.48 
cao 11.44 10.75 
Na20 2.66 2.56 
1<20 0.16 0.19 

Galapagos 
OIT Islands 

50.51 48.57 
2.63 3.20 

13.45 15.78 
-- --
9.59 9.69 
1.78 1.43 
7.41 6.01 

11.18 11.08 
2.28 3.11 
1.49 0.59 

Plume MORB 
(Azores) 

49.72 
1.46 

15.81 
--

7.62 
1.66 
7.90 

11.84 
2.35 
0.50 

Table 1 Results 
compared to Wilson 
(1989) 

Harpp and White (200 I) noted that volcanoes in the northwest province of the Galapagos 

exhibit only slight involvement of a plume component in the mantle sources, which supports the 

idea of plume material having little or no effect on the MORB /02 signatures between the ridge 

and the islands. However, Cushman et al (2004) showed some plume influence between 91.7°W 

and 92.4°W, because of high MgO contents and variable FeO(s.o) and Ti02(s.o) that are not seen in 

other areas of the GSC (2004). Therefore, the influence of the Galapagos plume is seen in both 

major element and isotope compositions, but an overall difference in/02 can not be seen. This 

9 suggests that the plume material in the GSC and the typical GSC material share a similar /02 

signature, even though they come from different mantle source regions. 

3. Galapagos Islands versus typical plume magmas 

The major element analysis of the Galapagos lavas are more similar to Wilson's (1989) 

values for typical ocean-island tholeiites (OIT) than for her typical plume-MORB (Azores) for 

ferrous iron oxides and CaO. However, the are closer to plume-MORBs for Si02, Ali03, and 

K20 (1989). Concentrations of ferric iron and MgO are lower than both OIT and plume-MORB, 

but Ti02 and Na20 are both significantly higher. 

4. Galapagos Islands versus the GSC compositions 

Samples from the Galapagos Islands fall mostly within MORB ranges for ~FMQ but tend 

to lie in the lower end of the range. The have slightly lower Si02 contents than ridge lavas, 

similar total iron, and slightly lower Fe3
+ /Fe2

+ ratios. They exhibit similar average values of 

MgO (6.48 in the GSC and 6.01 in the islands), but the GSC lavas shows a much greater range in 

MgO content (from 1.60 to 9.46 compared to 4.89 to 8.86 in island lavas). Results of this study 

suggest that the GSC and plume source regions are similar, which implies that the redox state is 

- homogenous throughout the asthenosphere and lower mantle. However, it could mean that the 
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redox state is not uniform, but that the plume has reequilibrated with the upper mantle with 

I respect to the redox state. 

Geist (1992) has showed that central island lavas are more alkali-olivine tholeiites 

(specifically, hypersthene- normative tholeiites from Fernandina) which lies above the current 

plume location. The central lavas also show high He ratios compared to ridge lavas or lavas 

from island edges (Kurz and Geist 1999). Carmichael (1991) stated that alkali-rich lavas which 

ascend quickly tend to be the most oxidized, but the plume lavas actually have lower ferric iron 

ratios than those in the GSC. Elemental and isotopic evidence supports a deeper mantle magma 

generation for the plume than the upper asthenosphere MORB source of the GSC. This 

eliminates the possibility that the magmas are generated in the same source regions. Because 

compositional differences between plume magmas and OIB are obvious, it is difficult to 

understand how the plume could reequilibrate with the upper mantle, as any such reequilibration 

should be seen in the concentrations of other elements and in the isotopic data. 

The lavas at Roca Redonda are representative of simple plume and ridge magma mixing 

and they show ~FMQ values that are even lower than those observed from Fernandina, the 

presumed center of the plume. If there is a distinctive/02 signature from the plume, compared to 

MORB, the Roca Redonda values should lie between those of the plume and the ridge. If so, this 

would support the idea of a homogeneous mantle, or that the heterogeneity of the mantle is not 

manifest in oxygen fugacities. Roca Redonda lavas still clearly shows the signature of plume 

magmas, which would not be the case if the plume had equilibrated to the upper mantle. 

5. .F'uture J-Vork 

Although the ~FMQ values for the Galapagos Islands are slightly lower than the GSC, 

and normal MORB ranges, they are not statistically different. In part, this may reflect the small 

number of samples from the Galapagos Islands that were used in this study. Further work should 

be done to collect fresh samples and analyzed for both ferric and ferrous iron of the lavas. 

Multiple methods should be used to determine/02, for comparison and to determine the true 

range and average values of the Galapagos plume. Comparison with other mantle plume might 

also be useful. . 

Samples could be collected from all four different geochemical provinces of the 

Galapagos Islands, rather than only the current plume center, and then compared to see if 

~ different proportions of plume material can be observed. The complexity of ridge and plume 

16 



magmas make interpretations difficult if the structure of the plume is not well understood. The 

' lavas from the Galapagos island have some of the highest iron contents in the world and are 

located in a warm, moist environment. This makes weathering a major concern and questionable 

samples need to be carefully examined before they are included in research. Completely fresh 

samples would help to manage statistical uncertainities, which would be make the data 

) 

interpretations more reliable. 
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VIII. Conclusion 

Samples analyzed with the olivine-melt oxybarometer method have L\FMQ values which 

agree with samples analyzed with the traditional ferric-ferrous iron ratio method. The results 

from these methods are similar for lavas from both the GSC and from the Galapagos Islands, 

17 

dittoe.1
Rectangle

dittoe.1
Rectangle



although major and trace element evidence supports different source regions for the lavas-

1 typical upper athenosphere MORB source for the GSC, deep mantle plume source for the 

Galapagos Islands. There is also evidence of magma mixing and fractionation, causing various 

geochemical provinces throughout the islands which is not clearly repeated in ~FMQ values. 

This does not necessarily support a homogenous mantle, but suggests that the varying source 

regions can not be accurately identified using/02 calculations of only a few samples. 
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