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Abstract 

Neuroblastoma is the most common extra-cranial solid tumor in childhood and the 

leading cause of childhood cancer mortality. MIBG (meta-iodobenzylguanidine), an analogue of 

noradrenaline, is a form of targeted radiation therapy for high-risk neuroblastoma when bound to 

131Iodine. MIBG enters cells through the norepinephrine transporter (NET), a protein expressed 

on the surface of neuroendocrine cells, including most neuroblastoma cells. 131I-MIBG then 

radiates the cells it enters and induces cytotoxicity in surrounding cells. However, 131I-MIBG is 

not always effective, likely in part due to low NET expression in high-risk neuroblastomas. 

Oncolytic virotherapy is a promising therapeutic approach currently in clinical trials. Previously, 

our lab has shown that preclinical models of neuroblastoma are sensitive to oncolytic herpes 

simplex virus (oHSV) therapy. oHSV can also be used to deliver the NET transgene to tumor 

cells to increase susceptibility to 131I-MIBG. In the present study, we are investigating the 

efficacy of HSV1716/NET in increasing NET expression and thereby increasing the efficacy of 

131I-MIBG. We will also evaluate if 131I-MIBG enhances viral replication. The results to date 

indicate that neuroblastoma cell lines are susceptible to HSV1716/NET, and upon viral infection, 

there is effective transfer of the NET gene resulting in an increase in 131I-MIBG uptake.  
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Introduction 

Each year, roughly 13,500 parents will hear the words “your child has cancer.” However, 

there is hope for these families in the fact that survival rates have increased from 10 percent to 80 

percent in the last 40 years (Howlader, N., Noone, A. M., Krapcho, M., Neyman, N., Aminou, 

R., Altekruse, S. F., ... & Cronin, K. A.,  2011). Despite these major advances, the survival rates 

remain much lower for high-risk cancers and for patients with metastases.  

Neuroblastoma is the most common extra-cranial solid tumor in childhood. Although 

neuroblastoma accounts for less than 10% of childhood cancers, it accounts for 15% of pediatric 

cancer deaths (Park, J.R., Eggert, A., and Caron, H., 2010). While the survival rates for low- or 

intermediate-risk patients remains fairly high, the event free survival rate for high-risk patients is 

less than 50% (Cohn, S.L., Pearson, A., London, W.B., Monclair, T., Ambros, P.F., Broderu, 

G.M., Faldum, A., Hero, B., Iehara, T., Machin, D., Mosseri, V., Simon, T., Garaventa, A., 

Castel, V., and Matthay, K.K., 2009). Despite mulit-modal therapy including surgery, 

chemotherapy, radiation, immunotherapy, and stem cell transplant, outcomes remain poor. 

Therefore, alternative therapies are urgently needed for the treatment of high-risk patients, 

especially children with relapse or refractory disease. 

Neuroblastoma is derived from neural crest cells, and thus uniquely expresses the 

norepinephrine transporter (NET) on its cellular membrane, making it a unique cancer for the use 

of targeted therapies and tumor-selective imaging. One novel therapeutic agent is meta-

iodobenzylguanidine (MIBG), an analog of norepinephrine, which enters cells through the NET. 

MIBG can be tagged with radioisopes 123Iodione or 131Iodine, which are used for imaging or 

therapy, respectively. While 90% patients with neuroblastoma have a positive 123I-MIBG scan, 

only 30% of patients have a clinical response to 131I-MIBG (Matthay, K., Yanik, G., Messina, J., 
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Quach, A., Huberty, J., Cheng, S., Veatch, J., Goldsby, R., Brophy, P., Kersun, L.S., Hawkins, 

R.A., and Maris, J.M., 2007). Targeted radiotherapy is a promising approach for neuroblastoma, 

but escalating dosing has only lead to increased toxicity rather than increased 131I-MIBG uptake 

into the tumors (Matthay, K.K., Reynolds, P., Seeger, R.C., Shimada, H., Adkins, E.S., Haas-

Kogan, D., Gerbing, R.B., London, W.B., and Villablanca, J.G., 2009). A study by the 

Children’s Oncology Group found that higher risk neuroblastoma patients have less 123I-MIBG 

uptake, which could be due to a lower level of NET expression. 131I-MIBG uptake and 

therapeutic efficacy could be improved in neuroblastoma patients by increasing the level of NET 

expression.  

Oncolytic virotherapy, the use of a genetically modified virus to selectively target and kill 

cancer cells, is a promising therapeutic approach. This therapy uses an attenuated virus, called an 

oncolytic virus, which has been mutated to not cause an infection in normal cells, but can 

specifically target cancer cells. Oncolytic viruses, specifically oncolytic Herpes Simplex Virus-1 

(oHSV) with its large genome, can be used as viral vectors to aid in cancer gene therapy. 

Previously, our lab has shown that preclinical models of neuroblastoma are sensitive to oHSV 

therapy (Parikh, N.S., Currier, M.A., Mahller, Y.Y., Adams, L.C., Pasquale, B.D., Collins, M.H., 

and Cripe, T.P., 2005). Therefore, oHSV therapy can be used to deliver the NET transgene to 

neuroblastoma to increase susceptibility to 131I-MIBG.  

 

Focus of the research 

 The purpose of the research is to gather preclinical data to determine whether oHSV 

therapy coupled to NET gene therapy can effectively enhance 131I-MIBG uptake in 
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neuroblastoma cells, resulting in greater cytotoxicity of the combined therapies than either 

therapy alone.   

Significance of the project 

Finding a way to enhance 131I-MIBG uptake in neuroblastoma is critical to the success of 

this therapy in clinic. Currently, patients receive this treatment as a Phase 1 or 2 medications and 

are eligible only if they had a relapse or refractory disease that was unresponsive to conventional 

therapies.  These patients tend to have minimal clinical response that is likely due to developed 

resistance (Matthay et al., 2007). Additionally, this project research may provide rationale for 

using 131I-MIBG earlier in the treatment process. 

Our translational research can be used to provide better outcomes for children with 

relapsed or refractory neuroblastoma. HSV1716 is already in clinical trials at Nationwide 

Children’s Hospital (NCT00931931) and the hospital now has an operating 131I-MIBG room. 

The preclinical data gathered in this project will be the first step towards getting this combination 

therapy in a clinical trial. In addition to improving neuroblastoma susceptibility to targeted 

radiotherapy, the ultimate goal of this project is to provide rationale for using oncolytic 

viroradiotherapy in other cancer types.  

 

Definitions of Key Terms  

Oncolytic virotherapy- A treatment using a virus that infects and kills cancer cells but not normal 

cells.   

Attenuated virus- A viable virus that is no longer harmful made possible by deletion of virus 

genes.  

Radiation Therapy- The use of high-energy rays to kill cancer cells 
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Targeted Radiation- The use of tumor-seeking molecules to deliver radiation directly to the 

cancer   

Metastatic disease- When cancer has spread from its original location to other locations in the 

body 

Refractory disease- When cancer resists treatment and is never improved 

Relapse disease- The return of the disease after a period of improvement 

Neural crest-  A temporary structure in embryonic development that gives rise to structures 

associated with the nervous system 

Norepinephrine- A hormone and neurotransmitter in the body 

Transgene- A gene that has been transferred from one organism to another 

Endogenous- Originating from within an organism or cell 

Exogenous- Originating from outside an organism or cell 

 

Background  

The human body is made up of many types of cells that are highly regulated. However, 

cells can sometimes being to replicate and divide with little or no control. When this happens, the 

uncontrolled cell growth can destroy nearby cells and start to invade other parts of the body, 

becoming what is known as cancer. Unfortunately, this unregulated replication can occur in 

children. Although pediatric cancer only accounts for 1% of all cancer cases, it is the second 

leading cause of death in children, exceeded only by accidents (Howlader et al., 2011). 

Childhood cancer spans all racial, ethnic, and socio-economic groups, ending the life of one in 

every five children affected.  
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Pediatric cancers can be separated into 3 main categories: leukemias, lymphomas, and 

solid tumors. A solid tumor arises from cells that usually make an organ. Neuroblastoma is the 

most common extra-cranial solid tumor, counting for roughly 10% of all childhood cancer cases 

(Park et al., 2010). The average age of neuroblastoma diagnosis is 17 months (Maris, 2010). 

Neuroblastoma is derived from neural crest cells, or progenitor cells of the sympathetic nervous 

system. The mechanism of cancer formation is unknown, but it is speculated to be due to defects 

in embryonic genes controlling the neural crest development. Neuroblastoma can be located 

anywhere along the sympathetic nervous system, but it occurs most frequently in the abdominal 

cavity, and more specifically the adrenal gland. At time of diagnosis, 50% of patients present 

with metastases, or tumor spread (Park et al., 2010). Neuroblastoma is often diagnosed through 

presenting symptoms, pathological confirmation of tissue sample, or through tumor-selective 

imaging.  

Upon diagnosis, patients with neuroblastoma are classified by a staging system called the 

International Neuroblastoma Staging System. Patients are placed into pretreatment risk groups 

based on a combination of factors: age, tumor histology, MYCN amplification status, and the 

presence of other genetic aberrations (Park et al., 2010). For example, patients older than 18 

months are associated with poorer outcomes. Poorer outcomes are also associated with patients 

that have amplified MYCN, a known neuroblastoma oncogene. The risk groups determine which 

treatment a patient will receive. Event free survival rates correlate with each risk group and 

determines how intense of a therapy regimen is needed to achieve the best outcomes while 

minimizing side effects.  

Due to advances in therapy, the survival rates of neuroblastoma patients with low- or 

intermediate-risk tumors are above 50%, with the survival rate above 85% for very low-risk 
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patients (Cohn et al., 2009). Standard therapies for these children with neuroblastoma include a 

combination of observation, surgery, chemotherapy, or radiation therapy with varying intensities. 

Surgical resection is typically the first step in patients who have localized tumors, and it is often 

the only treatment necessary. However, if the cancer is not all removed with surgery or there are 

metastases at the time of diagnosis, the patient will usually receive chemotherapy or radiation 

therapy.  

Although many pediatric patients with neuroblastoma benefit from standard therapies, the 

survival rate of high-risk patients remains low at less than 50% (Cohn et al., 2009). The high risk 

is dependent on the age of the patient, whether the tumor is MYCN amplified, and how much of 

the tumor can be removed by surgery. Compared to the lower risk groups, patients in this group 

receive intensive multi-modal therapies that include chemotherapy, radiation therapy, and stem 

cell transplant. Despite using the most intensive therapies for these patients, the outcomes remain 

poor. 50% of high-risk neuroblastoma patients will develop relapsed or refractory disease  (Park 

et al., 2010).  

As mentioned, neuroblastoma tumors can be diagnosed with tumor-selective imaging 

using meta-iodobenzylguanidine (MIBG), a tumor-seeking molecule that can be tagged with 

radioactive iodine. MIBG is an analog of the catecholamine norepinephrine and enters cells 

through the norepinephrine transporter (NET), a transmembrane protein expressed on the surface 

of neuroblastoma cells. MIBG is shuttled across the membrane by NET in a process that is 

energy dependent. The uptake is proven to be NET specific shown by decreased uptake in the 

presence of competitive inhibitors, such as DMI (Smets, L.A., Loesberg, C., Janssen, M., 

Metwally, E.A., and Huiskamp, R. 1989). 123I-MIBG is used for imaging and 131I-MIBG is used 

for treatment, due to differences in radiation emissions. Once inside the cells, 131I-MIBG exhibits 
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cytotoxic effects by emitting β and γ radiation, which damages the DNA of the cells. 131I-MIBG 

also induces cytotoxicity through the radiation induced bystander effect (RIBE). RIBE are 

effects that occur in cells that have not been directly irradiated, but experience cytotoxic effects 

due to the signals released from neighboring irradiated cells (Mothersill & Seymour, 2004). 131I-

MIBG is currently in use as a therapy for relapsed or refractory neuroblastoma patients.  

Even though 90% of patients have a positive 123I-MIBG scan, a recent study found that 

only about 30% of children who receive 131I-MIBG therapy respond to the treatment, and it is 

usually a partial response (Matthay et al., 2009). A report by the Children’s Oncology Group 

found that high-risk patients had lower NET protein expression and usually had 123I-MIBG non-

avid scans, indicating that the level of NET is important in mediating uptake of MIBG (Dubois, 

S.G., Geier, E., Batra, V., Yee, S.W., Neuhaus, J., Segal, M., Martinez, D., Pawel, B., Yanik, G., 

Naranjo, A., London, W.B., Kreissman, S., Baker, D., Attiyeh, E., Hogarty, M.D., Maris, J.M., 

Giacomini, K., and Matthay, K.K., 2012). 131I-MIBG is currently used at maximum dose in 

treatment, therefore finding a way to increase NET in high-risk patients will improve the efficacy 

of the current doses used in 131I-MIBG therapy. 

One possible way to increase the expression of NET on the surface of neuroblastoma 

cells is through gene transfer. Oncolytic virotherapy may be the needed therapeutic combination 

to targeted radiotherapy because a virus can be used as a vector for gene transfer and the virus 

will also aid in cell killing. Herpes simplex virus, type-1 (HSV-1) can be employed as an 

oncolytic virotherapy by attenuation through genetic engineering. HSV-1 is an enveloped 

double-stranded DNA virus that belongs to the virus family herpesvidae (Shen & Nemunaitis, 

2006). HSV-1 can enter a cell through interaction with proteins on the cell membrane.  HSV-1 is 

also an ideal virus for therapy because of its ability to vastly propagate itself once inside a cell. 
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Once the virus enters the cell, it is transported to the cell nucleus. There it uses the host cell’s 

machinery to make more virus particles from virus DNA, making 80 new viruses from just the 

one virus that originally entered the cell (Shen & Nemunaitis, 2006).  

HSV1716 is an attenuated version of the wild type, or naturally occurring, HSV-1. This 

clinically safe virus was created through the deletion of both copies of a critical gene RL1, or 

ICP34.5 (MacLean, A.R., Ul-Fareed, M., Robertson, L., Harland, J., and Brown, S.M.,1991). 

ICP34.5 is a necessary gene for HSV-1 infection of normal cells. This gene counteracts the 

effects of PKR signaling, which is a defense mechanism activated by the host cell upon virus 

infection. PKR signaling normally leads to inhibition of viral replication in a host cell, and 

therefore HSV-1 contains a gene to overcome the replication inhibition. Without ICP34.5, 

HSV1716 is unable to cause infection in normal cells because it cannot overcome the cell’s 

defense mechanism. Cancer cells are constantly dividing and replicating and have no need for an 

internal virus defense mechanism.  Because most cancer cells have defective PKR signaling, 

ICPd34.5 is not necessary for HSV-1 infection of cancer cells (Hammill, A.M., Conner, J., and 

Cripe, T.P., 2010; Friedman, G.K., Pressey, J.G., Reddy, A.T., Markert, J.M., and Gillespie, 

G.Y., 2009). Therefore, HSV1716 will be able to cause infection in cancerous cells inside the 

body while not affecting normal cells.  

HSV1716 is known for its broad tropism, and other oncolytic HSV’s have been shown to 

be an effective oncolytic virus for preclinical models of neuroblastoma (Parikh et al., 2005). 

Additionally, HSV1716 has 150 bp (basepairs) of non-coding genes, rendering the virus an ideal 

candidate for cancer gene therapy (Shen & Nemunaitis, 2006). Therefore, HSV1716 can be used 

as a delivery agent of the NET transgene for use in combination with 131I-MIBG. Quigg et al. 

first engineered HSV1716 with the bovine NET transgene, resulting in HSV1716/NET. The 
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bovine NET transgene cassette was added in place of both deleted copies of the RL1 gene in 

HSV1716. HSV1716/NET was proven as a suitable vector for transgene delivery, and its 

combination with 131I-MIBG increased cell killing in a non-NET expressing tumor (Quigg, M., 

Mairs, R.J., Brown, S.M., Harland, J., Dunn, P., Rampling, R., Livingstone, A., Wilson, L., and 

Boyd, M., 2005). HSV1716/NET followed by exposure to 131I-MIBG exhibited anti-tumor 

efficacy in a human xenograft model of non-NET expressing cancers (Sorenson, A., Mairs, R.J., 

Braidwood, L., Joyce, C., 2012). The previous HSV1716/NET studies serve as rationale to 

investigate the translational application of the combination therapy in neuroblastoma as a way to 

enhance NET expression.  

 

 

Research Aims and Related Hypotheses 

Aim 1: Evaluate HSV1716/NET cytotoxicity and replication in neuroblastoma cell lines. A 

panel of neuroblastoma cell lines will be tested with the oncolytic virus HSV1716/NET and 

HSV1716 to verify viral replication and cell killing. It is important to determine that 

HSV1716/NET is a viable virus in neuroblastoma cell lines. The toxicity and viral production 

will be measured using cell survival (MTS) assays to determine how well the cancer cells are 

killed and how well the virus is propagated. The hypothesis for Aim 1 is neuroblastoma cell lines 

are susceptible to HSV1716/NET infection.  

Aim 2: Characterize endogenous NET expression and exogenous NET expression upon 

HSV1716/NET infection in neuroblastoma cell lines. The panel of neuroblastoma cell lines 

will be evaluated for baseline NET expression, which will be confirmed through detection of 

RNA expression using quantitative RT-PCR (qRT-PCR). After establishing the baseline NET 
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expression, the same panel of neuroblastoma cell lines will be used to determine NET gene 

transfer. The cell lines will be infected with HSV1716/NET and post viral infection, the increase 

in NET transgene expression will be measured. It is important to investigate whether any 

increase in the NET transgene is from the virus-derived NET transcript. HSV1716/NET contains 

the bovine NET transcript; thus, post viral infection, the bovine NET and human NET transgenes 

will be compared. The hypothesis for Aim 2 is infection with HSV1716/NET will deliver the 

NET transgene and increase the exogenous NET expression in NB cell lines.   

Aim 3: Determine 131I-MIBG uptake and cytotoxicity in neuroblastoma cell lines in 

combination with oHSV therapy. Three neuroblastoma cell lines will be chosen for MIBG 

studies based upon low, intermediate, and high levels of NET expression and viral production, 

determined by the results of Aim 1 and Aim 2. 131I-MIBG uptake will be measured post viral 

infection at varying time points to evaluate optimal timing of 131I-MIBG exposure after infection. 

Half of the cells will also be treated with DMI (a competitive inhibitor of NET) to evaluate 

whether 131I-MIBG uptake is NET specific. 131I-MIBG uptake will also be measured after 

infection with both HSV1716/NET and HSV1716 to determine if the viral NET gene mediates 

uptake. Additionally, the cytotoxicity of 131I-MIBG will be measured in combination with 

HSV1716/NET to evaluate whether there is a combined effect. The hypothesis for Aim 3 is 131I-

MIBG uptake is NET specific and is enhanced upon HSV176/NET viral infection in 

neuroblastoma cells. The second hypothesis is the cytotoxicity of radiation and virotherapy will 

be greater in combination than either therapy alone.  
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Methodology 

 This research study will be completed in the research laboratory of Timothy Cripe, MD 

PhD in the Center of Childhood Cancer and Blood Diseases in the Research Institute at 

Nationwide Children’s Hospital. The Center of Childhood Cancer and Blood Diseases is 

affiliated with the James Comprehensive Cancer Center at The Ohio State University Wexner 

Medical Center. This research is being completed under the supervision of Pin-Yi Wang and 

Keri Streby. The technical methodology of each Aim is explained below.  

 

Aim 1: Cell survival/MTS assay and virus production. A panel of neuroblastoma cancer cell 

lines was used for the experiments in this study (CHLA-20, CHLA-90, CHLA-119, CHLA-136, 

CHP-134, IMR-32, NB-1643, NB-EBc1, SK-N-AS, SK-N-BE(2), SK-N-SH, and SH-SY5Y). 

The cell lines were obtained from the Pediatric Preclinical Testing Program (PPTP) database 

(directed by Dr. Peter Houghton, NCH) and from ATCC. The cell lines were confirmed with 

STR and mycoplasma negative. Vero, African Green Monkey kindey, cell line was purchased 

from ATCC and used in plaque assay. All cell lines were maintained in the media recipies 

recommended by ATCC. The oncolytic viruses, HSV1716 and HSV1716/NET, were provided 

by Virttu Biologics (Glasgow, UK). NB cell survival was measured by MTS assay. All 12 cell 

lines were seeded into a 96-well plate at a density of 3000 cells per well and cultured overnight. 

The cultures were then infected with HSV1716/NET or HSV1716 at MOI’s (molecules of 

infection) of 0.001, 0.01, 0.1, and 1. The cell survival was determined after 2, 4, and 6 days 

compared to uninfected controls. For the viral production assay, cells were seeded in a 12-well 

plate at a density of 1 x 105 neuroblastoma cells per well and cultured over night. The cells were 

then infected with low concentrations of HSV1716/NET (MOI= 0.01). At 2, 24, 48, and 72 hours 
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post infection, the cell lysates were collected and titered by standard plaque assay on vero cells 

(Dulbecco & Vogt, 1953). 

Aim 2: mRNA expression and gene transfer. Total RNA was isolated from ~1 x 106 cells of 

each neuroblastoma cell line in culture using the RNeasy Plus Mini Kit (Qiagen, Valencia, CA, 

USA). cDNA was generated from RNA through reverse transcription using SuperScriptII 

Reverse Transcriptase (Life Technologies). The cDNA of each cell line will be used to perform 

quantitative polymerase chain reaction (qPCR) with Power SYBR Green PCR Master Mix (Life 

Technologies) and human NET primer. The reaction was performed using Appiled Biosystems 

7900 Real-Time PCR system (Life Technologies). The samples were run at 50°C for 2 minutes, 

95°C for 5 minutes, 40 cycles of 94°C for 15 seconds, 58°C for 35 seconds, and 72°C for 35 

seconds followed by a standard dissociation stage to determine the melting temperature of each 

amplification product. The resulting mRNA detection was presented as expression fold relative 

to an internal standard, the house keeping gene glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH). For the gene transfer study, select neuroblastoma cell lines (CHLA-20, CHLA-90, 

CHLA-119, CHLA-136, NB-1643, SK-N-AS, and SK-N-BE(2)) were seeded in a 6-well plate at 

a density of 1 x 105 NB cells per well and cultured overnight. Cells were either uninfected (as 

control) or infected with HSV1716/NET (MOI= 0.1) in duplicate. 24 h post virus infection. RT-

qPCR was performed on the 7 samples from the gene transfer as described above, except the 

cells were also tested with the bovine NET primer in addition to the human NET primer.  

Aim 3: 131I-MIBG uptake and cytotoxicity. Neuroblastoma cell lines CHLA-20, SK-N-BE (2), 

and SK-N-AS were chosen for the 131I-MIBG studies based on levels of NET expression and 

viral production. For the uptake studies, cells were either uninfected (as control) or infected with 

HSV1716/NET (MOI=0.5). 24, 48, or 72 hours post infection, the cells were exposed to 1 MBq 
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of 131I-MIBG for 2 hours. Half of the cells were treated with 2mM DMI (desmethyimipramine), 

a competitive inhibitor of NET. 131I-MIBG cellular uptake was measured on a gamma counter 

(counts per million per cell). To prove viral gene mediated uptake, cells were either uninfected 

(as control), infected with HSV1716/NET (MOI= 0.3), or infected with HSV1716 (MOI= 0.3). 

All cells were exposed to 1 MBq of 131I-MIBG at the same time point of 24 hours. 131I-MIBG 

and oHSV cytotoxicity was measured either in combination or separately. Cells were seeded in 

96-well plates at an intial density of 3000 cells per well and were cultured over night. Cells were 

infected with HSV1716/NET (MOI = 0, 0.01, 0.1, or 1). 24 h post infection, cells were exposed 

to 0, 0.1, 0.5, or 1 MBq of 131I-MIBG for 2 hours. MTS assay at day 2, 4, and 6 was performed to 

determine cell survival as described in Aim 1. The percent survival was compared to uninfected 

controls.  

 

 

Results 

HSV1716/NET exhibits a wide range of virus replication and exhibits cytotoxic effects in 

neuroblastoma cell lines. It has been previously shown that HSV1716 effectively replicates in 

preclinical models of neuroblastoma (Parikh et al., 2005). The oncolytic virus HSV1716 with the 

added bovine NET transgene, HSV1716/NET, showed similar replication in neuroblastoma cells 

as the parent virus (viral constructs shown in fig.1).  The replication assays performed on the 

panel of 12 neuroblastoma cell lines (6 cell lines shown) revealed varied viral production 

between all samples (fig. 2). At 72 hours post virus infection, the neuroblastoma cells showed 

between 0 and 4 logs increase of viral production across all cell lines. SK-N-SH had a 4-fold 

increase in viral production after 72 hours, whereas NB-1643 had no viral production.  
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HSV1716/NET is effective in neuroblastoma cell line killing (6 cell lines shown). Some 

cell lines were more susceptible, like SK-N-SH, and some were more resistant, like NB-1643 

(fig. 3). The HSV1716/NET cell survival results followed a similar trend to that of HSV1716 

(data not shown).  

 

Endogenous NET mRNA varies across neuroblastoma cell lines. Most neuroblastoma 

endogenously expresses NET. We evaluated the baseline NET mRNA expression of all 12 cell 

lines (fig. 4). The results show a range of baseline NET expression; the fold expression varies 

from 0.0001 to 0.05 relative to GAPDH.  

 

HSV1716/NET effectively delivers the NET transgene. In the gene transfer assay, we 

compared the mRNA expression of human NET transgene and the bovine NET transgene post 

infection (fig. 5). The results confirm that the NET transgene is transferred to the neuroblastoma 

cells by the virus. The uninfected controls express no bovine NET, indicating the enhanced 

expression is due to the virus.  

 

HSV1716/NET enhances 131I-MIBG by NET gene transfer. Three neuroblastoma cell lines 

(CHLA-20, SK-N-BE(2), and SK-N-AS) were chosen for the 131I-MIBG in vitro studies based 

on varying endogenous NET expression, HSV1716/NET cytoxicity, and viral production. In both 

CHLA-20 and SK-N-BE(2) cells, 131I-MIBG uptake was enhanced at 24 and 48 hours post viral 

infection compared to the uninfected controls (fig. 6). 131I-MIBG uptake begins to diminish at 72 

hours in both cell lines. NET specific uptake is also demonstrated by minimal 131I-MIBG uptake 

in cells treated with DMI.  
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To further examine that the viral NET transgene mediates the enhanced uptake, 

neuroblastoma cells (SK-N-AS, SK-N-BE(2), and CHLA-20) were exposed to 131I-MIBG post 

viral infection with HSV1716/NET and HSV1716 (fig 7.). One group was uninfected to serve as 

a control. At 24 hours post infection, cells infected with HSV1716/NET displayed a 2-3 fold 

increase in 131I-MIBG uptake compared to uninfected cells or cells infected with the virus 

without the NET transgene. The uninfected control and HSV1716 had very similar 131I-MIBG 

uptake. 

 

131I-MIBG and HSV1716/NET exhibit varying cytotoxicity in neuroblastoma cells. To 

determine the additive effect of targeted radiation and an oncolytic virus, two neuroblastoma cell 

lines (CHLA-20 and SK-N-AS) were exposed to varying doses of 131I-MIBG post 

HSV1716/NET infection at varying MOIs (fig. 8). CHLA-20 demonstrated an additive cytotoxic 

effect when exposed to both virus and radiation, but it was not synergistic. CHLA-20 was very 

susceptible to radiation as nearly all cells were killed at 0.5 and 1 MBq exposure, regardless of 

the HSV1716/NET infection. The additive effects seen in CHLA-20 were not present in SK-N-

AS. SK-N-AS cells were resistant to viral infection, except at an MOI of 1. Resistance to 

radiation was evident in SK-N-AS because there was minimal cell death when the cells were 

only exposed to 131I-MIBG and not HSV1716/NET. 
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Figures 

 

 

A. 

B. 

C. 

Figure 1. Schematic representation of the (a) HSV17syn+ genome, (b) the HSV1716 
genome, and (c) the HSV1716/NET genome.  

!

Viral Schematic Representation 

Figure 2. HSV1716/NET infected neuroblastoma cell were plated on Vero cells for 2, 24, 48 
and 72 hours and amount of virus produced was determined by plaque assay. 
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HSV1716/NET exhibits a wide range of virus replication in neuroblastoma cell lines 
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MOI$

Figure 3. Cells were infected with HSV1716/NET  at varying MOIs. MTS assays day 6 is shown. 
The percent survival was compared to uninfected controls. 
 

HSV1716/NET exhibits cytotoxic effects in neuroblastoma cell lines 

d"

Figure 4. RT-qPCR analysis for mRNA expression of NET. Data are presented relative to GAPDH. 

"

Endogenous NET mRNA varies across neuroblastoma cell lines 
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Figure 5. (a) RT-qPCR analysis for RNA expression of human NET and (b) virus-
derived (bovine) NET post virus infection. Data are presented relative to GAPDH. 

!

HSV1716/NET effectively delivers the NET transgene  

Figure 6. Cells were either uninfected (as control) or infected with HSV1716/NET (MOI=0.5). 24, 
48, or 72 hours post virus infection, the cells were exposed to 1 MBq of 131I-MIBG for 2 hours. 
Half of the cells were treated with 2mM DMI (DMI competitively inhibits NET). 

!

HSV1716/NET enhances 131I-MIBG uptake 
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Figure 7. Cells were either uninfected (control), infected with HSV1716/NET (MOI=0.3), or HSV1716 
(MOI=0.3). 24 hours post virus infection, the cells were exposed to 1 MBq of 131I-MIBG for 2 hours. 
Half of the cells were treated with 2mM DMI (DMI competitively inhibits NET). 

!

HSV1716/NET enhances 131I-MIBG uptake by NET gene transfer 

With!DMI!

Figure 8. Cells were infected with HSV1716/NET at varying MOIs. 24 hours post virus infection, cells 
were exposed to 131I-MIBG for 2 hours. MTS Assays day 4 is shown. The percent survival was 
compared to uninfected controls. 

!

131I-MIBG and HSV1716/NET exhibit varying cytotoxicity in neuroblastoma cells 
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Discussion  

 Targeted radiation is a promising approach to neuroblastoma because it can greatly 

increase the therapeutic ratio and limit the normal-tissue toxicity typically associated with 

radiation. However, radionuclide therapy is only available for high-risk patients as a last option 

and is likely limited by radiation resistance developed from previous therapies. 

 This research evaluated the use of oncolytic virotherapy (HSV1716/NET) as a cancer 

gene therapy to deliver the NET transgene to preclinical models of neuroblastoma. The in vitro 

data confirmed the heterogeneity of neuroblastoma across several cell lines. HSV1716/NET 

replication and cytotoxicity assays were similar to the parent virus, thus indicating the transgene 

does not inhibit viral efficacy in neuroblastoma cells. We confirmed our initial hypothesis that 

HSV1716/NET can induce neuroblastoma cytotoxicity by viral infection. However, the cell lines 

varied in sensitivity to the virus, even though the cell lines were all the same tumor type. We also 

show variation in HSV1716/NET viral production/replication among the different neuroblastoma 

cell lines. Further research could investigate why such variation exists among cell lines of the 

same cancer in an in vitro setting. The diverse panel of neuroblastoma cells gives a 

representative sample that may resemble what is often seen in patients in the clinic.  

We also determined each cell line had a different amount of endogenous NET. As 

neuroblastoma cell lines are serially passaged in culture, NET expression declines; thus, the NET 

expression we found may not accurately reflect the endogenous NET expression of the primary 

tumor sample at the time it was removed from a patient. The establishment of a varied NET 

expression prior to viral infection is important so we can determine if HSV1716/NET can 

increase NET expression in neuroblastomas with low NET expression as well as neuroblastomas 
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with high NET expression. If we can increase NET across all levels of NET expression, this will 

further enhance the selectivity of 131I-MIBG uptake in tumor cells as compared to normal cells. 

HSV1716/NET not only induces cytotoxicity, but increases the exogenous NET 

expression in the neuroblastoma cells. As HSV1716/NET contains the bovine NET transgene, 

we compared human and bovine NET transcripts post viral infection to determine whether any 

observed change was due to increased endogenous NET or production of exogenous NET. We 

confirmed the increase in NET transcripts is due to the successful gene transfer of NET by 

HSV1716/NET, and not due to a viral infection-induced increase of the endogenous NET. This 

confirms our hypothesis that HSV1716/NET effectively delivers the NET transgene and 

increases exogenous, not endogenous, NET expression  

We next proved our hypothesis that HSV1716/NET enhances 131I-MIBG uptake in 

neuroblastoma cell lines. The enhanced uptake peaked at 48 hours post-viral infection and then 

declined. The increase in uptake from 24 to 48 hours suggests the virus was able to increase the 

NET transgene with more replication cycles. However, the increase is not consistent with the 

decreased uptake seen at 72 hours. The decrease was possibly due to neuroblastoma cell death 

before exposure to 131I-MIBG, either caused by viral cell killing or over-crowding of the cells in 

the plates due to insufficient cell-killing/cell overgrowth. Further studies are necessary to 

investigate the optimal timing of the combined therapy. We then demonstrated that the observed 

increase in 131I-MIBG uptake was mediated by the viral transgene in HSV1716/NET. 

Neuroblastoma cells had similar 131I-MIBG uptake when uninfected or infected with the virus 

without the NET transgene (HSV1716), but had enhanced uptake when infected with 

HSV1716/NET. This confirms that the enhanced 131I-MIBG uptake seen in cells infected with 

HSV1716/NET is due to an increase in exogenous NET. 
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When the cytotoxicity of the combined therapies was examined, an additive effect was 

observed in the CHLA-20 cell line. This cell line was very sensitive to both the virus and 

radiation, but the observed additive effect was not synergistic. Alternatively, the SK-N-AS cell 

line was only slightly sensitive to the virus at an MOI of 1 and not sensitive to radiation at all. 

The results indicate that SK-N-AS is resistant to radiation, but because no synergy was observed 

in either cell line, another model might be necessary to further investigate cytotoxicity and 

synergy. The majority of cytotoxicity from 131I-MIBG is thought to be due to the radiation 

induced bystander effect (RIBE), which is diminished in the 2D (2 dimensional) model used in 

our study. Previous findings show that 3D models have 80% cell kill after exposure to 131I-

MIBG, likely due to RIBE (Mothersill & Seymour, 2004). The initial cytotoxicity results are 

promising with one cell line, but in order to determine the true synergistic effect of the combined 

therapies, we will investigate a 3D model, either in vitro or in vivo.  

 There are various ways to increase NET expression in neuroblastoma cells through gene 

transfer, but the use of oncolytic virotherapy is unique in that the virus itself can contribute an 

additional cytotoxic effect to the cells. The oncolytic virus is thought to enhance the efficacy of 

131I-MIBG radiotherapy, but 131I-MIBG might also enhance the cytotoxic effect of the virus. 

Advani et al. found that ionizing radiation enhances the replication of an oncolytic HSV-1 

(Advani, S.J., Sibley, G.S., Song, P.Y., Hallahan, D.E., Kataoka, Y., Roizman, B., and 

Weichselbaum, R.R. 1998). We are currently investigating the effects of ionizing radiation from 

131I-MIBG on the viral replication of HSV1716/NET.  

The current research found HSV1716/NET to effectively deliver the NET transgene and 

enhance 131I-MIBG uptake. Additional work is needed to further investigate additive and 

synergistic effects of the combined therapies as well as the effect of ionizing radiation on viral 
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reproduction. The current findings will also be investigated in vivo to continue gathering 

preclinical data with the goal of bringing oncolytic viroradiotherapy into clinical trials to 

improve the outcomes of children with neuroblastoma. In the future, HSV1716/NET can be used 

to treat tumors that do not have NET and bring targeted radiotherapy to more cancer types. 
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