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ABSTRACT

A planetary microlensing event is characterized by a short-lived perturbation to the standard micro-
lensing curve. Planetary perturbations typically last from a few hours to a day, have maximum ampli-
tudes, 0,,.,, Oof +5%-20% of the standard curve, and come in two classes: major and minor image
perturbations. There exist a subset of binary-source events that can reproduce the main features of major
image perturbations, which are likely to represent more than half of all planetary events, and thus mas-
querade as planetary events. These events require a binary source with a small flux ratio, e ~ 1072 to
10~% and a small impact parameter for the fainter source, B, < €/d,,... The detection probability of
events of this type is ~ f8,, and can be as high as ~30%; this is comparable to planetary detection rates.
Thus a sample of planetary-like perturbations could be seriously contaminated by binary-source events,
and there exists the possibility that completely meaningless physical parameters would be derived for
any given major image perturbation. Here I derive analytic expressions for a binary-source event in the
extreme flux-ratio limit and use these to demonstrate the basic degeneracy between binary-source and
planet perturbations. I describe how the degeneracy can be broken by dense and accurate sampling of
the perturbation, optical/infrared photometry, or spectroscopic measurements.

Subject headings: gravitational lensing — planetary systems

1. INTRODUCTION

To date more than 100 microlensing events have been
detected toward the Galactic bulge by four groups,
MACHO (Alcock et al. 1997a), OGLE (Udalski et al. 1997),
DUO (Alard 1996), and EROS (Ansari et al. 1996). Some of
these events have been detected in real time; both MACHO
and OGLE issue “alerts,” notification of ongoing events
that have been detected before the peak. These alerts have
enabled two follow-up groups, PLANET (Albrow et al.
1996; 1998) and GMAN (Alcock et al. 1997b), to organize
worldwide networks devoted to making densely sampled
observations of ongoing events. One of the main goals of
these groups is to discover planets by searching for short-
duration, often small, perturbations on the light curves of
alerted events. These perturbations are the signatures of
planetary events. While standard microlensing events last
from one week to a few months, planetary perturbations are
only expected to last a day or less. Thus the need for the
intensive, nearly round-the-clock monitoring.

Previous work on planetary microlensing has focused on
characterization of the light curves of planetary pertur-
bations (Wambsganss 1997), the criteria for detection of
these perturbations (Mao & Paczynski 1991; Gould &
Loeb 1992; Bolatto & Falco 1994; Bennett & Rhie 1996),
and the number of systems one might hope to detect based
on these criteria (Peale 1997). Unfortunately, mere detection
of a perturbation is not sufficient; to have any confidence
that a planet has actually been detected, one must deter-
mine with reasonable accuracy the physical parameters of
the planetary system that can be derived from the event, the
planet/star mass ratio g, and the planet/star projected
separation in units of the Finstein ring y. Dominik (1997)
discusses ambiguities in the fits of binary lenses, of which
planetary systems are a subset. Gaudi & Gould (1997b)
demonstrated that there exist several degeneracies which
hamper the determination of g and y, including a severe
degeneracy that can result in an uncertainty in the derived
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mass ratio of a factor of ~ 20.

Here I discuss an additional degeneracy: a special subset
of binary-source events can produce light curves that closely
resemble those produced by more than half of planet/star
lens systems. This subset, which I will call extreme flux-ratio
binary-source events, can produce standard light curves
with small, short-duration, positive perturbations. These
perturbations can reproduce the gross features of one class
of planetary perturbations: major image perturbations. As I
discuss in § 5.1, the other class of planetary perturbations,
minor image perturbations cannot be reproduced by binary
sources. However, minor image perturbations are likely to
represent considerably less than half of all detected planet-
ary perturbations. For a binary-source event to mimic a
planetary event, the sources must have a small flux ratio, e,
and the fainter source must pass close to the lens, with an
impact parameter , < €/d,.,, where 0, is the maximum
fractional deviation from the unperturbed light curve. The
detection probability for these events is ~ f,. For € ~ 0.01
and 6,,,, ~ 0.05, the probability is ~20%. This is compara-
ble to the detection probability of Jupiter-mass planets
(Gould & Loeb 1992). As I discuss in § 6, 40% of all sources
may be binaries with flux ratios consistent with those
required to mimic planetary perturbations. Thus binary
stars could seriously contaminate a sample of suspected
planetary events. Furthermore, for any given perturbation,
there exists the possibility that one could derive completely
meaningless physical parameters, since one would not know
a priori whether the perturbation was due to a binary
source or a planet. For these reasons, it is essential to break
this degeneracy and determine the true cause of the pertur-
bation (binary source or planet).

In § 2 I derive analytic expressions for the perturbation
due to a binary source in the extreme flux-ratio limit. I use
these expressions in § 3 to illustrate the basic degeneracy. In
§ 4 T estimate the detection probability for extreme flux-
ratio binary-source events, in § 5 I describe methods of
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breaking the degeneracy, and in § 6 I describe how a binary-
source event can be used to extract additional information
about the lens.

2. BINARY-SOURCE MICROLENSING IN THE EXTREME
FLUX-RATIO LIMIT

2.1. Basic Formalism

The basic formalism for binary-source events has been
described in detail by Griest & Hu (1992) for static binaries
and by Han & Gould (1997) for rotating binaries. Here I
briefly review the general formalism and use this formalism
to derive the equations for the extreme flux-ratio limit.

The flux of a point source being microlensed by a point
mass is given by F = AF,, where F is the umagnified flux
and A is the magnification. (Here I ignore any contribution
from unresolved sources.) The magnification is a function of
the distance of the lens from the observer-source line of
sight projected on the lens plane, u, which is in turn a func-

tion of time:
u? + 2 1 , =) _,
e ANl vl I

Alu(r)] =

(2.1)

The limit applies when u < 1. Here the impact parameter, f3,

and u are in units of the Einstein ring,

4GM D, D,
¢ D, ~’

os

ri = 2.2)
where M is the mass of the lens, and D, D, and D, are the
distances between the observer, lens, and source. The char-
acteristic timescale is ty = rg/v, where v is the transverse
velocity of the lens relative to the observer-source line of
sight.

For a binary source, the resulting light curve is simply a
superposition of two standard light curves, F = 4, F ,
+ A, F, , (Griest & Hu 1992). Henceforth I will assume
that F, , < F, ; and refer to sources 1 and 2 as the primary
and secondary, respectively. I define e = F, ,/F, ;. The
total magnification is thus

A+ €4,

Ao = 1+e

(2.3)
I define b to be the separation of the sources projected onto
the lens plane in units of g, and 0 to be the angle between
the path of the primary and the binary-source axis.
Assuming the binary is static, the position of the primary is
given by equation (2.1), and the position of the secondary is

2

uj = [w + b cos 9:| + (B, + bsin )>, (24)
E

where t, is the time of maximum magnification of the

primary, and B, is the impact parameter of the primary.

Without loss of generality, I will assume that ¢, = 0.

I now concentrate on cases such that € < 1, i.e., where the
magnification of the secondary produces a small pertur-
bation to the primary light curve. The fractional deviation
of such a binary-source event from the best-fit single-source
curve is defined to be 6 = (A, — Ayg)/Ape, Where A, is the
best-fit curve. For € < 1, equation (2.3) implies that ¢ ~
€A,/A;. For 6 to be significant, A, > A4,, and the secondary
must therefore pass very close to the lens, ie., |f,]| =
| B; + b sin 0] < 1. In this limit, equation (2.1) implies that
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A, ~ 1/u,, and thus when ¢ is significant, § ~ €/u, A; *. The
maximum fractional deviation, d,,,, ~ €/f, A, occurs when
u, = f,, at time t,,, = —b(cos 0)tg. The half-maximum
occurs when 6 = d,,,,/2, or u, = 28, A,(B,)/A(u,). For per-
turbations with short durations, the magnification of the
primary changes only very slowly during the course of the
peturbation. Thus A4, is roughly the same at d,,,, and at
Omax/2: A1(B,) ~ A4(u,). Thus u, = 2f,, and the full-width
half-maximum (FWHM) of the perturbation is 7. ~
12'2B, t. The equations governing binary sources in the
extreme flux limit are

e 1 € 1
=——, =— =121/2 t’
u, 4, max = 84 (to) Tesf Bate
tmax = —b(cos O)tg . (2.5)

2.2. Finite Source Size Effects and Binary Rotation

The analysis of § 2.1 implicitly assumed point sources.
The point-source approximation breaks down, however,
when u is O(p), where p is the radius of the source projected
onto the lens plane in units of rg. In particular, for u < p,
the magnification of a finite source differs substantially from
that of a point source (Gould 1994; Nemiroff & Wick-
ramasinghe 1994; Witt & Mao 1994; Witt 1995). Since, for
a fixed perturbation size J,,,,, @ smaller flux ratio requires
that the secondary approach closer to the lens, there will be
a lower limit on € below which equations (2.5) are no longer
valid.

Given the small flux ratios involved, the secondary source
will likely be a main-sequence star of solar luminosity or
less. Thus I adopt a source radius of R, which at a distance
of 8 kpc, for a typical bulge self-lensing event with tz ~ 20
days, v ~200 km s~ !, and D, ~ 6 kpc, translates to
p ~ 1073, Thus equations (2.5) are not valid for those
events with f, < 1073, In order to produce perturbations
with d.,, > 0.05, the secondary must have an impact
parameter f§, < 20e. Thus equations (2.5) are not valid for
binary sources with €, < 10~ #. For flux ratios larger than
this, finite source effects can be safely disregarded, and
equations (2.5) are valid.

The effects of the rotation of the binary source for pertur-
bations of this type can be entirely disregarded. The justifi-
cation for this is as follows. To first order, the curvature of
the path of the secondary due to rotation during the pertur-
bation can be ignored. Thus the only effect is that the trans-
verse velocity is now given by v = | v, + v, |, where v, is now
the transverse velocity of the primary and v, is the velocity
of the secondary relative to the primary. The timescale of
the perturbations will be changed, since t.; = 12128, rg/v.
However, this effect can be reproduced by simply changing
the value of f8,. The observed value of J,,, can then be
reproduced by changing e. Therefore a perturbation with
observables 7. and J,,,, can be produced by a static binary
with parameters given by equation (2.5), or by a rotating
binary with slightly different values of € and f,. Thus, to
first order, the effect of rotation is entirely unobservable.
The second-order effect is the curvature of the path of the
secondary during the perturbation, which will produce
effects that cannot be reproduced by parameter variations
as they can for the first-order effect. This curvature is given
by the square of the amount the binary source rotates
during the course of the perturbation, ¥ = 2nt,/P)* ~
(22B, tx/P)*, where P is the period of the binary source.
Toward the Galactic bulge, the typical event timescale is
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tg ~ 20 days (Alcock et al. 1997a). For bulge self-lensing
events, v ~ 200 km s~ !, and thus rg ~ 2.3 AU. Using
Kepler’s law, and assuming a binary source with separation
b =rg at 8 kpc and total mass M =2 M, and a lens at 6
kpc, I find a binary source separation projected into the
source plane of 3 AU, and a period of P ~ 3.7 yr. Thus
Y? ~ 0.183. The perturbations considered here require
p, <1, and thus the amount the binary source rotates
during the perturbations is entirely negligible.

3. PLANETARY MICROLENSING AND THE BASIC
DEGENERACY

Planetary microlensing events are a subset of binary
microlensing events with small mass ratio of the binary,
q < 1. These are characterized by small perturbations to the
standard microlensing curve. The exact solution to the
magnification of a binary lens has no analytic form, and is
therefore difficult to study systematically. However, as
Gould & Loeb (1992) and Dominik (1996) have shown,
when g — 0, the binary lens reduces to a Chang-Refsdal lens
(single lens plus external shear; see Chang & Refsdal 1979).
Thus for g < 1, a binary lens can be approximated by a
Change-Refsdal lens. With this approximation, it is possible
to obtain analytic expression for two of the quantities of
interest, 7. and t,,,,. This vastly simplifies the comparison
between the binary-source perturbations discussed here and
planetary events. For g ~ 10~ and most binary separa-
tions, this is a fair approximation. Furthermore, the
approximation improves as q decreases, and is exactly in the
limit ¢ — 0 (Dominik 1998). Since I am only concerned with
obtaining approximate relations between binary-source
and planetary perturbations, and in gaining some insight
into the nature of the degeneracy between them, I will use
this approximation throughout.

As with binary-source perturbations, the gross features of
planetary lens perturbations can be described by three
parameters: the maximum deviation, d,,,,; the FWHM;
and the time of maximum deviation, t,,,,. In general, §,,, is
a function of the geometry of the event; the FWHM is given
roughly by 7. ~ q'/*tg, where t; is the timescale of the
main light curve; ¢, is a function of the planet-star project-
ed separation y in units of the Einstein ring, and the
geometry of the event, ¢, ~ y~ '(y> — 1) cos (¢)tg, where
¢ is the angle between the planet-star axis and the direction
of source motion. Thus, a planetary event is described by
(Gaudi & Gaudi 1997b)

Tetr ™~ qllztE s tmax = y—l(yZ - 1) Cos (¢)tE s (31)

along with ¢,_,,, which specifies the exact geometry. To be
precise, the expression for ¢,,,, in equation (3.1) is the time
when the trajectory exactly crosses the center of the planet-
ary caustic in the Chang-Refsdal limit. A better approx-
imation can be obtained by replacing y in equation (3.1) by
y + o, where « is specified by d,,,,. However, for ,,,, = 0.05,
o < 0.1, and hence I will ignore it here.

Here I have ignored finite-source effects. For g < 10™#
(Neptune mass or smaller), finite-source effects become sig-
nificant; however, as I discuss in § 5.1, the severity of the
degeneracy is reduced when finite-source effects are taken
into consideration. Thus, for Jupiter-mass planetary pertur-
bations, the following analysis is entirely applicable,
whereas for perturbations arising from planets of Neptune
mass or smaller, the analysis makes the degeneracy seem
somewhat worse than it actually is.
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Consider, for example, a perturbation with observables
Togr = 0.03tg, Opmax = 0.16, and t,,,, = 0.37ty, superimposed
on a primary light curve with g = 0.37. Then, from equation
(3.1), a planetary event with g ~ 1073,y ~ 1.3, and ¢ ~ 45°
will reproduce the observed values of 7., J,,.,, and .. On
the other hand, using equation (2.5), a binary-source event
with e ~5x 1073, b~ 0.5, and 6 ~ —44° would also
reproduce the observables. Thus, at the level of the gross
features (0,,,> tmax> a0d Teg), the binary-source and planet-
ary models will provide equally satisfactory fits to the
observed perturbation. This is the basic degeneracy, and the
example above is illustrated in Figure 1. Note that the
maximum difference between the planetary and binary-
source light curves is ~4%. Also shown in Figure 1 is the
light curve obtained using the exact binary formalism, with
binary parameters g = 1073, = 45, and b = 1.12 (the dis-
crepancy in the value of b is due to the term o discussed
above). Obviously the difference between the light curves
obtained using the Chang-Refsdal approximation and the
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F1G. 1.—(a) Magnification as a function of time in units of the Einstein
ring crossing time, t;, for a planet/star system (solid curve) with a mass
ratio ¢ = 1073, a separation in units of the Einstein ring of y = 1.3, and
angle between the planet-star axis and direction of source motion ¢ = 45°,
and for a binary-source system (short-dashed curve) with flux ratio
€ =5 x 1073, projected separation in units of the Einstein ring b = 0.5,
and angle between the binary-source axis and the direction of source
motion 0 = 44°. The inset shows a detail of the light curves around the
time of the perturbation. Also shown is the magnification for the planet/
star system calculated using the full binary formalism (long-dashed curve).
(b) Fractional deviation from the main point-mass point-lens light curve as
a function of time in units of t; for the two light curves in (a). Both
planetary (solid curve) and binary-source (short-dashed curve) perturbations
have the same observables 7., = 0.03t, the full-width half-maximum of
the perturbation, d,,, = 0.16, the maximum fractional deviation, and
tmax = 0.37t, the time of maximum deviation. Also shown is the fractional
deviation for the planet/star system calculated using the full binary formal-
ism (long-dashed curve).
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full binary formalism is negligible in comparison to the
effect discussed here.

From the example above and the discussion in § 2, it is
apparent that the basic requirements for a binary-source
light curve to mimic that of a planetary event are a small
flux ratio € and a specific geometry, i.e., one in which the
fainter source passes very close to the lens. More specifi-
cally, from equations (2.5), the binary-source parameters
required to reproduce an event with observables 7., 6
andt,,, are

max
_ Tett Omax A1 [U1(tmax)] b= lmax
. 12172 ’ tg cos 0’

0 = tan~ ! <ﬁ> , (32)

max

max?>

where, as before, A, is given by equation (2.1) evaluated at
tmax> and where now t, = 0. It is apparent that the value of b
required to fit an observed perturbation is fixed by the
geometry through the observables f, and ¢,,,. The required
value of €, however, depends not only on the geometry, but
also on the observed §,,,, and 7. Furthermore, since the
geometry of the event affects € only through u,(t,,,), and
U1 (tma)” = (Emax/te)* + B3, changing ¢, /tz has the same
effect on € as changing f3;.

Figure 2 shows contours of the difference in magnitude
between the two sources, AV = —2.5 log €, required to
reproduce the given 7 and ¢,,,, for three different geome-
tries: (1) B; = 0.3, t,,.« = 0.3tg; (2) B, or t,../tg smaller by
0.05; (3) B, or t,../tg larger by 0.05. A large range of magni-
tude differences, AV ~ 9-5, can produce perturbations with
Omax and T in the ranges produced by planetary micro-
lensing events. For clump giant primaries (spectral type K

~ -~

Toff

6max

Fic. 2—Contours of the difference in magnitude between the two
sources, AV, required to produce perturbations with the given full-width
half-maximum, 7., and maximum fractional deviation, J,,,,. The contours
have spacings of 1 mag. The solid contours are for the geometry where the
primary source has a impact parameter f; = 0.3 and the time of maximum
fractional deviation in units of the Einstein ring crossing time is ¢, /t; =
0.3. The dotted contours are for the geometry where either f, or ¢/t is
smaller by 0.05, and the dashed contours are for the geometry where either
B, ort,,./tgis larger by 0.05.
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III, M, ~ 1), this range in AV corresponds to secondaries
of spectral type anywhere from solar (G V) to late dwarfs
MV).

4. EXTREME FLUX RATIO BINARY-SOURCE EVENT
PROBABILITIES

For a binary source with € < 1 to be detected, the lens
must pass close to the secondary. The probability that a
trajectory with any 8, < 1 will pass within f, of the second-
ary is ~f3,. Consider a binary source with AV = 5. The
secondary must have f, < 0.1 to produce perturbations
with 6., = 0.05. Thus the detection probability for a
binary source with AV = 5is ~20%. A more careful treat-
ment must take into account the fact that the magnitude of
the perturbation depends on the time of the perturbation
relative to the primary light curve (see equations [2.5]). This
effect will serve to reduce the detection probability relative
to the naive estimate. To quantify this, I calculate, for a
given € and b, the fraction of binary-source events that lead
to detectable perturbations. Although planetary events can
produce a wide range of maximum deviations, events with
Omax < 5% are unlikely to be detected. I therefore assume
that the event is detected if J,,, > 0.05. I place the addi-
tional constraint that ¢, /tg > —1, since perturbations are
unlikely to be detected before the main event begins. To
calculate the fraction, I integrate over 0 < 8 < 2w and 0 <
B1 < 1.0. The detection probability is simply the number of
events that satisfy the detection criteria divided by the total
number of trial events. Figure 3 shows the fraction of events
that lead to perturbations with parameters given above, for
AV =4-9, and b = 0-3.0. For AV = 4, the detection prob-
ability can be quite high, ~30%. Even for AV =7, the
probability is nonnegligible and is a few percent.

A number of authors have calculated the detection prob-
ability for planets based on similar detection criteria. Gould
& Loeb (1992) found that, for Jupiter-mass planets with

Detection Probability

0 1 2 3
b (binary separation)

Fi1G. 3.—Fraction of binary-source events that will be detected for the
given values of the difference in magnitude between the sources, AV, as a
function of the projected separation b of the sources in units of the Finstein
ring, for AV = 4-9. A binary source is considered detected when the per-
turbation meets the detection criteria for the maximum fractional devi-
ation, d,,,, = 0.05, and the time of maximum deviation, ¢, /ty > —1.

> Ymax =
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projected separations 0.5 <y < 1.5, the probability is
~15%-20%. For Earth-mass planets with 0.5 <y < 1.5,
Bennett & Rhie (1996) found detection probabilities of
~1%-3%. Since these detection probabilities are of the
same order of magnitude as the detection probabilities for
binary-source perturbations with AV =4-7and 0.5 2 b 2
1.5, if binary sources with these flux ratios and projected
separations are at least as ubiquitous as the planets the
monitoring campaigns hope to detect, they will provide a
serious contaminating background.

5. BREAKING THE DEGENERACY

As shown, in § 4, it is likely that binary sources will
provide a significant contaminant in a sample of suspected
planetary events. It is therefore essential that efforts be
made to resolve this degeneracy. Here I discuss three pos-
sible methods to do this: detailed light curves, color infor-
mation, and spectroscopic information. Each method has
significant limitations. It is therefore essential that, when-
ever possible, all the following methods be used to ensure
that this degeneracy is broken and that any planet detection
is secure.

5.1. Detailed Light Curves

The most obvious way to break the degeneracy is to
obtain accurate and dense sampling of the light curve. As is
apparent from Figure 1, although a binary source and a
planetary lens can produce perturbations with the same
basic features (o, Oay and t,,,,), the detailed light curves
are dissimilar. In particular, during the wings of the pertur-
bation, a planetary event often produces negative devi-
ations of a few percent, whereas binary-source
perturbations produce only positive perturbations. For
planets of g < 10~ 4, finite source effects serve to increase
the magnitude of the negative deviations during the wings
of the perturbation, thereby making the binary-source and
planetary perturbation more dissimilar. Thus, if one could
resolve the observed light curve to better than the ~4%
level during the wings of the perturbation, the degeneracy
would be broken. One would require dense and regular
sampling of the curve, however, since the two cases are
significantly (>4%) different only during the first wing, and
then only for a short time (~0.1¢g, or ~1 day for typical
parameters).

In fact, there exist two types of planetary perturbations:
those which perturb the major image of the source formed
by the primary lens, and those which perturb the minor
image. Minor image perturbations are characterized by
large (5%—20%) negative deviations. Binary-source pertur-
bations are therefore incompatible with minor image plan-
etary perturbations, and there exists no degeneracy.
Unfortunately, minor image perturbations are likely to rep-
resent considerably less than half of all detected planetary
perturbations, since minor image perturbations have a
much smaller intrinsic detection probability for large mass
ratio planetary systems (Gould & Loeb 1992). For smaller
mass ratios, finite source effects will decrease the fraction of
minor image perturbations even further (Bennett & Rhie
1996).

5.2. Color Information

A second way to break the degeneracy is to use color
information. If the perturbation is due to a binary source,
and the sources have different colors, there will be a color
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change during the course of the perturbation. Suppose that
the binary source has an (unlensed) magnitude difference
AV =(V,—V;) in V-band and AH=(H,— H,;) in
H-band. Then I define €, = 107 %44 and e, = 10~ %-42H,
The color change during the event is, A(V—H) = 2.5
log (Ao, a/Aor,v), Where A, and A, g are given by
equation (2.3), with the appropriate €. Using the relation
0 ~ (A, — Ay)/A4, this becomes

Sy +1
og+1°

Using the relation for ¢ from equation (2.5), and defining
r = egy/ey, I rewrite this for the two casesr < 1andr > 1:

AV —H) ~ 2.5 log (5.1)

5, + 1
2.510gr;-:_1 r<tl,
AV —H) = 5 ;H L (5.2)
2.5 1og’37 >1.
H+1

Note that 2.5 log r = (V—H), — (V—H),, i.e, the ratio r, is
simply related to the color difference between the secondary
and the primary. The maximum color change occurs at the
peak of the perturbation and can be found by replacing d;
in equation (5.2) by d,,,, v- In particular, note that for r < 1,
A(V —H) ~ 2.5(n 10)dy, ~ . Similarly, when r > 1, A(V
—H) ~ —dy. Thus the largest possible color change (in
magnitudes) is equal to the maximum (V- or H-band)
fractional perturbation.

Figure 4 shows the contours of A(V —H) for §,,, =
0.05-0.20 and (V —H), — (V—H); = —2to 2. For ~1 mag
differences in the unlensed source colors, color changes of
= 0.05 mag are produced for all measurable perturbations.
Even if the difference in source color is only ~0.2 mag,

Omaxy  (501id); 8oy (dashed)

- A(V—H)=0.06 R
.05 I I | | | 11 ..‘{ | | 111 1

-2 -1 0 1 2
(V=H)z=(V=H),

F1G. 4—Contours of the maximum color shift A(V' —H) in a binary-
source event, as a function of the difference in colors of the two sources,
(V—H), — (V—H), and the size of the maximum fractional deviation,
Omax- The solid contours are for a shift to the blue, A(V —H) > 0, and
dotted contours are for a shift to the red, A(V — H) < 0. If the secondary is
redder than the primary, (V —H), > (V — H),, then A(V —H) < 0, and the
maximum deviation will be in the H-band. Similarly, if the secondary is
bluer than the primary, then the maximum deviation will be in the ¥-band.
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substantial (2 0.05) color differences are produced for per-
turbations with J,,,,, = 0.1. For perspective, I note that for a
clump giant primary (KO III, M, ~ 1, V — H ~ 2), with a
solar-type secondary (G V, M, ~5, V—H~1), the
unlensed color difference is ~1 mag. For most binary-
source pairs, therefore, a significant color shift will occur
during the perturbation.

A color shift also occurs for planetary events with a small
mass ratio. The form of this shift differs significantly from
that of a binary source. At the beginning of the planetary
perturbation, the color first shifts to the red; during the
peak, it shifts to the blue; at the end of the perturbation, it
shifts again to the red (see, e.g., Fig. 9 of Gaudi & Gould
1997b). This is in contrast to binary-source perturbations,
where the shift is always to either the red or the blue. Thus,
a color shift for a binary source can be easily distinguished
from that of a planetary event, and a measurement of a
color shift during a perturbation would allow one to unam-
biguously distinguish between the two cases, and therefore
break the degeneracy.

For planetary events with a large mass ratio, only a very
small color shift is produced. Only a small color shift is
produced for a binary source in which both sources have
very similar colors. Thus if no color shift is detected it may
appear that the degeneracy remains. In fact, this is not nec-
essarily true, as there is likely to exist a correlation between
the flux ratio and the color shift. Assume, for example, that
the primary is known to be a K giant. Then, if the event is
due to a binary source, the secondary is likely to be a main-
sequence star. The color-magnitude relationship for main-
sequence stars translates into a relationship between €, and
r. This relationship, along with the value of €, measured
from the observed light curve, allows one to estimate the
expected color shift. If the observed color shift is inconsis-
tent with this estimate, then the observed perturbation
cannot be due to a binary source and the degeneracy is
broken. There are situations, however, where even this
argument would fail. For example, if the measured value of
r were consistent with the secondary being a K dwarf, one
would expect no color shift, and therefore both binary-
source and planetary origins of the perturbation would be
consistent with the data, and the degeneracy would remain.
In this situation, one would be forced to rely on either the
detailed light-curve information, or, as described in the next
section, spectroscopic information.

5.3. Spectroscopic Methods

If the methods suggested in §§ 5.1 and 5.2 fail, there
remain other methods to break the degeneracy. One pos-
sible method is to take spectra of the source both during
and after the perturbation. If the perturbation is due to a
binary source, both sources will be contributing to the spec-
trum during the perturbation, whereas after the pertur-
bation, only the primary will contribute significantly to the
spectrum. Thus, if the binary source is a giant-dwarf pair (as
it is likely to be), then the equivalent widths of pressure-
sensitive spectral features will differ between the two
spectra.

Finally, one could monitor the source both photo-
metrically and spectroscopically after the event and search
for any signs of binarity induced by orbital motion and/or
eclipses. Given that there will likely be only a handful of
candidate planetary perturbations, this should not require a
substantial amount of telescope resources.
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If it is determined that an observed perturbation is due to
a binary source rather than a planet, one can derive addi-
tional information about the lens. From the observed light
curve, of a binary-source event, one can obtain the observ-
ables tg, B4, B2, to and t,,,,. These observables are related to
the physical projected separation, I, by (Han & Gould

1997):
tO _ tmax 2
I= fEi|:<7> + (B, £ 132)2] , (6.1)

lg

where 7y = rg(D,s/D,,) is the Einstein radius projected onto
the source plane. If [ can be mesured by follow-up spectros-
copy, then 7 can be determined. As equation (6.1) stands,
however, there exists a twofold degeneracy in the determi-
nation of 7 due to the ambiguity in the impact parameter
difference Af . = | B, *+ B,|. However, for the binary-source
events considered here, f; > f,, and thus A, ~Af_ ~ B,
and there exists no degeneracy.

I now discuss further the issue of determining I from
follow-up spectroscopy. In order to determine I, the orbital
elements (intrinsic physical separation, eccentricity, true
anomaly, etc.) must be determined, as must the inclination
angle i (see Han & Gould 1997). The orbital elements can be
determined from a complete radial velocity curve. After the
microlensing event, only the spectral lines of the primary
will be visible. For a circular orbit, the maximum velocity
shift of these lines is

=30km s~ ! (sin )b~ /2

-12/ 2 \-1/2 1/2
% 2y Te & . (62)
Iy +1 AU M,

Here 2,, = M,/M,, and M, and M, are the masses of the
primary and secondary, respectively. For a K giant primary
with a solar-type secondary, M; ~ M, and 2,, ~ 1. For
typical bulge self-lensing events, 7y ~ 3 AU. From Figure 3,
the binary-source detection rate peaks at b ~ 1. Thus, for
typical binary-source events of this type, the expected
maximum velocity shift is v, ~ 12 km s~ ! sin i. The
period of such a system is P ~ 3.7 yr. Excepting nearly
face-on orbits, measurement of a complete radial velocity
curve for such a system, while not trivial, is within current
capabilities. The masses of the sources are known approx-
imately from their luminosities and colors (see § 5.2). The
masses can be further constrained if a spectrum is taken at
the time of the perturbation, since the lines of both sources
will be apparent and the radial velocities of these lines give a
direct measurement of the mass ratio 2,,. These masses
along with the orbital elements determined from the
observed radial velocity curve determine i and thus yield a
complete solution and a measurement of I. This, combined
with the event observables tg, f;, B,, to, and ¢, yield a
measurement of 7 via equation (6.1).

The fraction of events for which it is possible to measure
75 by this method is likely to be small, O(1%). I estimate this
as follows. From Figure 3, the average detection rate for
binary sources with 8 SAV <4 and 05<5b <15 is
~15%. In a study of the multiplicity of F and G stars in the
solar neighborhood, Duquennoy & Mayor (1991) found
that ~40% of these stars had companions with masses
from 0.1 to 1.1 times the mass of the primary. These types of
systems will evolve into the giant/dwarf binaries relevant

Umax
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here. Of these multiple systems, they find that ~10% have
separations in the range where the binary-source detection
probability is high, 0.5 < b < 1.5. Thus I estimate that
~0.15 x 0.4 x 0.1 ~ 1% of events should display binary-
source perturbations that can be used to measure 7.

The determination of 7, along with parallax information
gathered from either the Earth’s motion (Gould 1992;
Alcock et al. 1995; Buchalter & Kamionkowski 1997) or
from a parallax satellite (Refsdal 1966; Gould 1995;
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Boutreux & Gould 1996; Gaudi & Gould 1997a), yields a
complete solution of the lens parameters: mass, distance,
and velocity (Gould 1996).
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