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ABSTRACT
A planetary microlensing event is characterized by a short-lived perturbation to the standard micro-

lensing curve. Planetary perturbations typically last from a few hours to a day, have maximum ampli-
tudes, of ^5%È20% of the standard curve, and come in two classes : major and minor imaged',
perturbations. There exist a subset of binary-source events that can reproduce the main features of major
image perturbations, which are likely to represent more than half of all planetary events, and thus mas-
querade as planetary events. These events require a binary source with a small Ñux ratio, vD 10~2 to
10~4, and a small impact parameter for the fainter source, The detection probability ofb2[ v/d'.
events of this type is and can be as high as D30%; this is comparable to planetary detection rates.Db2,Thus a sample of planetary-like perturbations could be seriously contaminated by binary-source events,
and there exists the possibility that completely meaningless physical parameters would be derived for
any given major image perturbation. Here I derive analytic expressions for a binary-source event in the
extreme Ñux-ratio limit and use these to demonstrate the basic degeneracy between binary-source and
planet perturbations. I describe how the degeneracy can be broken by dense and accurate sampling of
the perturbation, optical/infrared photometry, or spectroscopic measurements.
Subject headings : gravitational lensing È planetary systems

1. INTRODUCTION

To date more than 100 microlensing events have been
detected toward the Galactic bulge by four groups,
MACHO et al. OGLE et al.(Alcock 1997a), (Udalski 1997),
DUO and EROS et al. Some of(Alard 1996), (Ansari 1996).
these events have been detected in real time ; both MACHO
and OGLE issue ““ alerts,ÏÏ notiÐcation of ongoing events
that have been detected before the peak. These alerts have
enabled two follow-up groups, PLANET (Albrow et al.

and GMAN et al. to organize1996 ; 1998) (Alcock 1997b),
worldwide networks devoted to making densely sampled
observations of ongoing events. One of the main goals of
these groups is to discover planets by searching for short-
duration, often small, perturbations on the light curves of
alerted events. These perturbations are the signatures of
planetary events. While standard microlensing events last
from one week to a few months, planetary perturbations are
only expected to last a day or less. Thus the need for the
intensive, nearly round-the-clock monitoring.

Previous work on planetary microlensing has focused on
characterization of the light curves of planetary pertur-
bations the criteria for detection of(Wambsganss 1997),
these perturbations & Paczyn� ski &(Mao 1991 ; Gould
Loeb & Falco & Rhie1992 ; Bolatto 1994 ; Bennett 1996),
and the number of systems one might hope to detect based
on these criteria Unfortunately, mere detection(Peale 1997).
of a perturbation is not sufficient ; to have any conÐdence
that a planet has actually been detected, one must deter-
mine with reasonable accuracy the physical parameters of
the planetary system that can be derived from the event, the
planet/star mass ratio q, and the planet/star projected
separation in units of the Einstein ring y. Dominik (1997)
discusses ambiguities in the Ðts of binary lenses, of which
planetary systems are a subset. & GouldGaudi (1997b)
demonstrated that there exist several degeneracies which
hamper the determination of q and y, including a severe
degeneracy that can result in an uncertainty in the derived

mass ratio of a factor of D20.
Here I discuss an additional degeneracy : a special subset

of binary-source events can produce light curves that closely
resemble those produced by more than half of planet/star
lens systems. This subset, which I will call extreme Ñux-ratio
binary-source events, can produce standard light curves
with small, short-duration, positive perturbations. These
perturbations can reproduce the gross features of one class
of planetary perturbations : major image perturbations. As I
discuss in the other class of planetary perturbations,° 5.1,
minor image perturbations cannot be reproduced by binary
sources. However, minor image perturbations are likely to
represent considerably less than half of all detected planet-
ary perturbations. For a binary-source event to mimic a
planetary event, the sources must have a small Ñux ratio, v,
and the fainter source must pass close to the lens, with an
impact parameter where is the maximumb2[ v/d', d'fractional deviation from the unperturbed light curve. The
detection probability for these events is For vD 0.01Db2.and the probability is D20%. This is compara-d'D 0.05,
ble to the detection probability of Jupiter-mass planets

& Loeb As I discuss in 40% of all sources(Gould 1992). ° 6,
may be binaries with Ñux ratios consistent with those
required to mimic planetary perturbations. Thus binary
stars could seriously contaminate a sample of suspected
planetary events. Furthermore, for any given perturbation,
there exists the possibility that one could derive completely
meaningless physical parameters, since one would not know
a priori whether the perturbation was due to a binary
source or a planet. For these reasons, it is essential to break
this degeneracy and determine the true cause of the pertur-
bation (binary source or planet).

In I derive analytic expressions for the perturbation° 2
due to a binary source in the extreme Ñux-ratio limit. I use
these expressions in to illustrate the basic degeneracy. In° 3

I estimate the detection probability for extreme Ñux-° 4
ratio binary-source events, in I describe methods of° 5
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breaking the degeneracy, and in I describe how a binary-° 6
source event can be used to extract additional information
about the lens.

2. BINARY-SOURCE MICROLENSING IN THE EXTREME

FLUX-RATIO LIMIT

2.1. Basic Formalism
The basic formalism for binary-source events has been

described in detail by & Hu for static binariesGriest (1992)
and by & Gould for rotating binaries. Here IHan (1997)
brieÑy review the general formalism and use this formalism
to derive the equations for the extreme Ñux-ratio limit.

The Ñux of a point source being microlensed by a point
mass is given by where is the umagniÐed ÑuxF\ AF0, F0and A is the magniÐcation. (Here I ignore any contribution
from unresolved sources.) The magniÐcation is a function of
the distance of the lens from the observer-source line of
sight projected on the lens plane, u, which is in turn a func-
tion of time :

A[u(t)]\ u2] 2
u(u2] 4)1@2]

1
u

, u(t)2\
C(t [ t0)

tE

D2] b2 .

(2.1)

The limit applies when u > 1. Here the impact parameter, b,
and u are in units of the Einstein ring,

rE2\ 4GM
c2

DolDls
Dos

, (2.2)

where M is the mass of the lens, and and are theDol, Dls, Dosdistances between the observer, lens, and source. The char-
acteristic timescale is where v is the transversetE \ rE/v,velocity of the lens relative to the observer-source line of
sight.

For a binary source, the resulting light curve is simply a
superposition of two standard light curves, F\ A1F0,1& Hu Henceforth I will assume] A2F0,2 (Griest 1992).
that and refer to sources 1 and 2 as the primaryF0,2 \ F0,1and secondary, respectively. I deÐne Thev4F0,2/F0,1.total magniÐcation is thus

Atot\
A1] vA2

1 ] v
. (2.3)

I deÐne b to be the separation of the sources projected onto
the lens plane in units of and h to be the angle betweenrE,the path of the primary and the binary-source axis.
Assuming the binary is static, the position of the primary is
given by and the position of the secondary isequation (2.1),

u22\
C(t [ t0)

tE
] b cos h

D2] (b1] b sin h)2 , (2.4)

where is the time of maximum magniÐcation of thet0primary, and is the impact parameter of the primary.b1Without loss of generality, I will assume that t0\ 0.
I now concentrate on cases such that v> 1, i.e., where the

magniÐcation of the secondary produces a small pertur-
bation to the primary light curve. The fractional deviation
of such a binary-source event from the best-Ðt single-source
curve is deÐned to be where is thed \ (Atot [ Abf)/Abf, Abfbest-Ðt curve. For v> 1, implies that d ^equation (2.3)

For d to be signiÐcant, and the secondaryvA2/A1. A2? A1,must therefore pass very close to the lens, i.e., o b2 o\
In this limit, implies thato b1] b sin h o> 1. equation (2.1)

and thus when d is signiÐcant, TheA2D 1/u2, d ^ v/u2A1~1.
maximum fractional deviation, occurs whend' ^ v/b2A1,at time The half-maximumu2\b2, t' \[b(cos h)tE.occurs when or For per-d \ d'/2, u2\ 2b2A1(b2)/A1(u2).turbations with short durations, the magniÐcation of the
primary changes only very slowly during the course of the
peturbation. Thus is roughly the same at and atA1 dmaxThus and the full-widthd'/2 : A1(b2)DA1(u2). u2\ 2b2,half-maximum (FWHM) of the perturbation is qeff ^The equations governing binary sources in the121@2b2 tE.extreme Ñux limit are

d \ v
u2

1
A1

, d'\ v
b2

1
A1(t')

, qeff \ 121@2b2 tE ,

t'\ [b(cos h)tE . (2.5)

2.2. Finite Source Size E†ects and Binary Rotation
The analysis of ° 2.1 implicitly assumed point sources.

The point-source approximation breaks down, however,
when u is O(o), where o is the radius of the source projected
onto the lens plane in units of In particular, forrE. u [ o,
the magniÐcation of a Ðnite source di†ers substantially from
that of a point source & Wick-(Gould 1994 ; Nemiro†
ramasinghe & Mao Since, for1994 ; Witt 1994 ; Witt 1995).
a Ðxed perturbation size a smaller Ñux ratio requiresd',
that the secondary approach closer to the lens, there will be
a lower limit on v below which are no longerequations (2.5)
valid.

Given the small Ñux ratios involved, the secondary source
will likely be a main-sequence star of solar luminosity or
less. Thus I adopt a source radius of which at a distanceR

_
,

of 8 kpc, for a typical bulge self-lensing event with tED 20
days, vD 200 km s~1, and kpc, translates toDolD 6
o D 10~3. Thus are not valid for thoseequations (2.5)
events with In order to produce perturbationsb2 [ 10~3.
with the secondary must have an impactd'[ 0.05,
parameter Thus are not valid forb2[ 20v. equations (2.5)
binary sources with For Ñux ratios larger thanv2[ 10~4.
this, Ðnite source e†ects can be safely disregarded, and

are valid.equations (2.5)
The e†ects of the rotation of the binary source for pertur-

bations of this type can be entirely disregarded. The justiÐ-
cation for this is as follows. To Ðrst order, the curvature of
the path of the secondary due to rotation during the pertur-
bation can be ignored. Thus the only e†ect is that the trans-
verse velocity is now given by where is nowv\ o ¿0] ¿2 o, ¿0the transverse velocity of the primary and is the velocity¿2of the secondary relative to the primary. The timescale of
the perturbations will be changed, since qeff \ 121@2b2 rE/v.However, this e†ect can be reproduced by simply changing
the value of The observed value of can then beb2. d'reproduced by changing v. Therefore a perturbation with
observables and can be produced by a static binaryqeff d'with parameters given by or by a rotatingequation (2.5),
binary with slightly di†erent values of v and Thus, tob2.Ðrst order, the e†ect of rotation is entirely unobservable.
The second-order e†ect is the curvature of the path of the
secondary during the perturbation, which will produce
e†ects that cannot be reproduced by parameter variations
as they can for the Ðrst-order e†ect. This curvature is given
by the square of the amount the binary source rotates
during the course of the perturbation, t2\ (2nqeff/P)2^

where P is the period of the binary source.(22b2 tE/P)2,
Toward the Galactic bulge, the typical event timescale is
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days et al. For bulge self-lensingtED 20 (Alcock 1997a).
events, vD 200 km s~1, and thus AU. UsingrED 2.3
KeplerÏs law, and assuming a binary source with separation

at 8 kpc and total mass M \ 2 and a lens at 6b \ rE M
_

,
kpc, I Ðnd a binary source separation projected into the
source plane of 3 AU, and a period of PD 3.7 yr. Thus

The perturbations considered here requiret2D 0.1b22.and thus the amount the binary source rotatesb2> 1,
during the perturbations is entirely negligible.

3. PLANETARY MICROLENSING AND THE BASIC

DEGENERACY

Planetary microlensing events are a subset of binary
microlensing events with small mass ratio of the binary,
q > 1. These are characterized by small perturbations to the
standard microlensing curve. The exact solution to the
magniÐcation of a binary lens has no analytic form, and is
therefore difficult to study systematically. However, as

& Loeb and have shown,Gould (1992) Dominik (1996)
when q ] 0, the binary lens reduces to a Chang-Refsdal lens
(single lens plus external shear ; see & RefsdalChang 1979).
Thus for q > 1, a binary lens can be approximated by a
Change-Refsdal lens. With this approximation, it is possible
to obtain analytic expression for two of the quantities of
interest, and This vastly simpliÐes the comparisonqeff t'.
between the binary-source perturbations discussed here and
planetary events. For q ^ 10~3 and most binary separa-
tions, this is a fair approximation. Furthermore, the
approximation improves as q decreases, and is exactly in the
limit q ] 0 Since I am only concerned with(Dominik 1998).
obtaining approximate relations between binary-source
and planetary perturbations, and in gaining some insight
into the nature of the degeneracy between them, I will use
this approximation throughout.

As with binary-source perturbations, the gross features of
planetary lens perturbations can be described by three
parameters : the maximum deviation, the FWHM;d' ;
and the time of maximum deviation, In general, ist'. d'a function of the geometry of the event ; the FWHM is given
roughly by where is the timescale of theqeff D q1@2tE, tEmain light curve ; is a function of the planet-star project-t'ed separation y in units of the Einstein ring, and the
geometry of the event, wheret'^ y~1(y2[ 1) cos (/)tE,
/ is the angle between the planet-star axis and the direction
of source motion. Thus, a planetary event is described by

& Gaudi(Gaudi 1997b)

qeff D q1@2tE , t'^ y~1(y2[ 1) cos (/)tE , (3.1)

along with which speciÐes the exact geometry. To bed',
precise, the expression for in is the timet' equation (3.1)
when the trajectory exactly crosses the center of the planet-
ary caustic in the Chang-Refsdal limit. A better approx-
imation can be obtained by replacing y in byequation (3.1)
y ] a, where a is speciÐed by However, ford'. d' Z 0.05,

and hence I will ignore it here.a [ 0.1,
Here I have ignored Ðnite-source e†ects. For q [ 10~4

(Neptune mass or smaller), Ðnite-source e†ects become sig-
niÐcant ; however, as I discuss in the severity of the° 5.1,
degeneracy is reduced when Ðnite-source e†ects are taken
into consideration. Thus, for Jupiter-mass planetary pertur-
bations, the following analysis is entirely applicable,
whereas for perturbations arising from planets of Neptune
mass or smaller, the analysis makes the degeneracy seem
somewhat worse than it actually is.

Consider, for example, a perturbation with observables
and superimposedqeff \ 0.03tE, d'\ 0.16, t'\ 0.37tE,on a primary light curve with b \ 0.37. Then, from equation

a planetary event with q D 10~3, y D 1.3, and /D 45¡(3.1),
will reproduce the observed values of and Onqeff, d', t'.
the other hand, using a binary-source eventequation (2.5),
with vD 5 ] 10~3, b D 0.5, and h D [44¡ would also
reproduce the observables. Thus, at the level of the gross
features and the binary-source and planet-(d', t', qeff),ary models will provide equally satisfactory Ðts to the
observed perturbation. This is the basic degeneracy, and the
example above is illustrated in Note that theFigure 1.
maximum di†erence between the planetary and binary-
source light curves is D4%. Also shown in is theFigure 1
light curve obtained using the exact binary formalism, with
binary parameters q \ 10~3, h \ 45, and b \ 1.12 (the dis-
crepancy in the value of b is due to the term a discussed
above). Obviously the di†erence between the light curves
obtained using the Chang-Refsdal approximation and the

FIG. 1.È(a) MagniÐcation as a function of time in units of the Einstein
ring crossing time, for a planet/star system (solid curve) with a masstE,ratio q \ 10~3, a separation in units of the Einstein ring of y \ 1.3, and
angle between the planet-star axis and direction of source motion /\ 45¡,
and for a binary-source system (short-dashed curve) with Ñux ratio
v\ 5 ] 10~3, projected separation in units of the Einstein ring b \ 0.5,
and angle between the binary-source axis and the direction of source
motion h \ 44¡. The inset shows a detail of the light curves around the
time of the perturbation. Also shown is the magniÐcation for the planet/
star system calculated using the full binary formalism (long-dashed curve).
(b) Fractional deviation from the main point-mass point-lens light curve as
a function of time in units of for the two light curves in (a). BothtEplanetary (solid curve) and binary-source (short-dashed curve) perturbations
have the same observables the full-width half-maximum ofqeff \ 0.03tE,the perturbation, the maximum fractional deviation, andd'\ 0.16,

the time of maximum deviation. Also shown is the fractionalt'\ 0.37tE,deviation for the planet/star system calculated using the full binary formal-
ism (long-dashed curve).
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full binary formalism is negligible in comparison to the
e†ect discussed here.

From the example above and the discussion in it is° 2,
apparent that the basic requirements for a binary-source
light curve to mimic that of a planetary event are a small
Ñux ratio v and a speciÐc geometry, i.e., one in which the
fainter source passes very close to the lens. More speciÐ-
cally, from the binary-source parametersequations (2.5),
required to reproduce an event with observables qeff, dmax,and aret'

v\ qeff
tE

d' A1[u1(t')]
121@2 , b \ t'

tE cos h
,

h \ tan~1
A[b1tE

t'

B
, (3.2)

where, as before, is given by evaluated atA1 equation (2.1)
and where now It is apparent that the value of bt', t0\ 0.

required to Ðt an observed perturbation is Ðxed by the
geometry through the observables and The requiredb1 t'.
value of v, however, depends not only on the geometry, but
also on the observed and Furthermore, since thed' qeff.geometry of the event a†ects v only through andu1(t'),

changing has the sameu1(t')2\ (t'/tE)2] b12, t'/tEe†ect on v as changingb1.shows contours of the di†erence in magnitudeFigure 2
between the two sources, *V \ [2.5 log v, required to
reproduce the given and for three di†erent geome-qeff d',
tries : (1) (2) or smaller byb1\ 0.3, t'\ 0.3tE ; b1 t'/tE0.05 ; (3) or larger by 0.05. A large range of magni-b1 t'/tEtude di†erences, *V D 9È5, can produce perturbations with

and in the ranges produced by planetary micro-d' qefflensing events. For clump giant primaries (spectral type K

FIG. 2.ÈContours of the di†erence in magnitude between the two
sources, *V , required to produce perturbations with the given full-width
half-maximum, and maximum fractional deviation, The contoursqeff, d'.
have spacings of 1 mag. The solid contours are for the geometry where the
primary source has a impact parameter and the time of maximumb1\ 0.3
fractional deviation in units of the Einstein ring crossing time is t'/tE\
0.3. The dotted contours are for the geometry where either or isb1 t'/tEsmaller by 0.05, and the dashed contours are for the geometry where either

or is larger by 0.05.b1 t'/tE

III, this range in *V corresponds to secondariesM
V

D 1),
of spectral type anywhere from solar (G V) to late dwarfs
(M V).

4. EXTREME FLUX RATIO BINARY-SOURCE EVENT

PROBABILITIES

For a binary source with v> 1 to be detected, the lens
must pass close to the secondary. The probability that a
trajectory with any will pass within of the second-b1¹ 1 b2ary is Consider a binary source with *V \ 5. TheDb2.secondary must have to produce perturbationsb2[ 0.1
with Thus the detection probability for ad'Z 0.05.
binary source with *V \ 5 is D20%. A more careful treat-
ment must take into account the fact that the magnitude of
the perturbation depends on the time of the perturbation
relative to the primary light curve (see Thisequations [2.5]).
e†ect will serve to reduce the detection probability relative
to the naive estimate. To quantify this, I calculate, for a
given v and b, the fraction of binary-source events that lead
to detectable perturbations. Although planetary events can
produce a wide range of maximum deviations, events with

are unlikely to be detected. I therefore assumed'\ 5%
that the event is detected if I place the addi-d'[ 0.05.
tional constraint that since perturbations aretmax/tEº [1,
unlikely to be detected before the main event begins. To
calculate the fraction, I integrate over 0¹ h \ 2n and 0 ¹

The detection probability is simply the number ofb1¹ 1.0.
events that satisfy the detection criteria divided by the total
number of trial events. shows the fraction of eventsFigure 3
that lead to perturbations with parameters given above, for
*V \ 4È9, and b \ 0È3.0. For *V \ 4, the detection prob-
ability can be quite high, D30%. Even for *V \ 7, the
probability is nonnegligible and is a few percent.

A number of authors have calculated the detection prob-
ability for planets based on similar detection criteria. Gould
& Loeb found that, for Jupiter-mass planets with(1992)

FIG. 3.ÈFraction of binary-source events that will be detected for the
given values of the di†erence in magnitude between the sources, *V , as a
function of the projected separation b of the sources in units of the Einstein
ring, for *V \ 4È9. A binary source is considered detected when the per-
turbation meets the detection criteria for the maximum fractional devi-
ation, and the time of maximum deviation,d' º 0.05, t'/tEº[1.
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projected separations the probability is0.5[ y [ 1.5,
D15%È20%. For Earth-mass planets with 0.5[ y [ 1.5,

& Rhie found detection probabilities ofBennett (1996)
D1%È3%. Since these detection probabilities are of the
same order of magnitude as the detection probabilities for
binary-source perturbations with *V \ 4È7 and 0.5 Z b Z

1.5, if binary sources with these Ñux ratios and projected
separations are at least as ubiquitous as the planets the
monitoring campaigns hope to detect, they will provide a
serious contaminating background.

5. BREAKING THE DEGENERACY

As shown, in it is likely that binary sources will° 4,
provide a signiÐcant contaminant in a sample of suspected
planetary events. It is therefore essential that e†orts be
made to resolve this degeneracy. Here I discuss three pos-
sible methods to do this : detailed light curves, color infor-
mation, and spectroscopic information. Each method has
signiÐcant limitations. It is therefore essential that, when-
ever possible, all the following methods be used to ensure
that this degeneracy is broken and that any planet detection
is secure.

5.1. Detailed L ight Curves
The most obvious way to break the degeneracy is to

obtain accurate and dense sampling of the light curve. As is
apparent from although a binary source and aFigure 1,
planetary lens can produce perturbations with the same
basic features and the detailed light curves(qeff, d', t'),
are dissimilar. In particular, during the wings of the pertur-
bation, a planetary event often produces negative devi-
ations of a few percent, whereas binary-source
perturbations produce only positive perturbations. For
planets of Ðnite source e†ects serve to increaseq [ 10~4,
the magnitude of the negative deviations during the wings
of the perturbation, thereby making the binary-source and
planetary perturbation more dissimilar. Thus, if one could
resolve the observed light curve to better than the D4%
level during the wings of the perturbation, the degeneracy
would be broken. One would require dense and regular
sampling of the curve, however, since the two cases are
signiÐcantly ([4%) di†erent only during the Ðrst wing, and
then only for a short time or D1 day for typical(D0.1tE,parameters).

In fact, there exist two types of planetary perturbations :
those which perturb the major image of the source formed
by the primary lens, and those which perturb the minor
image. Minor image perturbations are characterized by
large (5%È20%) negative deviations. Binary-source pertur-
bations are therefore incompatible with minor image plan-
etary perturbations, and there exists no degeneracy.
Unfortunately, minor image perturbations are likely to rep-
resent considerably less than half of all detected planetary
perturbations, since minor image perturbations have a
much smaller intrinsic detection probability for large mass
ratio planetary systems & Loeb For smaller(Gould 1992).
mass ratios, Ðnite source e†ects will decrease the fraction of
minor image perturbations even further & Rhie(Bennett
1996).

5.2. Color Information
A second way to break the degeneracy is to use color

information. If the perturbation is due to a binary source,
and the sources have di†erent colors, there will be a color

change during the course of the perturbation. Suppose that
the binary source has an (unlensed) magnitude di†erence

in V -band and in*V \ (V2[ V1) *H \ (H2[ H1)H-band. Then I deÐne andv
V

\ 10~0.4*V v
H

\ 10~0.4*H.
The color change during the event is, *(V [H) \ 2.5

where and are given bylog (Atot,H/Atot,V), Atot,V Atot,Hwith the appropriate v. Using the relationequation (2.3),
this becomesd ^ (Atot [ A1)/A1,

*(V [H) ^ 2.5 log
d
V

] 1
d
H

] 1
. (5.1)

Using the relation for d from and deÐningequation (2.5),
I rewrite this for the two cases r \ 1 and r [ 1 :r 4 v

H
/v

V
,

*(V [H)\g
2.5 log

d
V

] 1
rd

V
] 1

2.5 log
d
H
/r ] 1
d
H`1

,
r \ 1 ,

r [ 1 .
(5.2)

Note that i.e., the ratio r, is2.5 log r \ (V [H)2[ (V [H)1,simply related to the color di†erence between the secondary
and the primary. The maximum color change occurs at the
peak of the perturbation and can be found by replacing d

Vin by In particular, note that for r > 1,equation (5.2) d',V.
Similarly, when r ? 1,*(V [H)^ 2.5(ln 10)d

V
D d

V
. *(V

Thus the largest possible color change (in[H) D[d
H
.

magnitudes) is equal to the maximum (V - or H-band)
fractional perturbation.

shows the contours of *(V [H) forFigure 4 d'\
0.05È0.20 and to 2. For D1 mag(V [H)2 [ (V [H)1\ [2
di†erences in the unlensed source colors, color changes of

mag are produced for all measurable perturbations.Z0.05
Even if the di†erence in source color is only D0.2 mag,

FIG. 4.ÈContours of the maximum color shift *(V [H) in a binary-
source event, as a function of the di†erence in colors of the two sources,

and the size of the maximum fractional deviation,(V [H)2[ (V [H)1The solid contours are for a shift to the blue, *(V [H)[ 0, andd'.
dotted contours are for a shift to the red, *(V [H) \ 0. If the secondary is
redder than the primary, then *(V [H)\ 0, and the(V [H)2[ (V [H)1,maximum deviation will be in the H-band. Similarly, if the secondary is
bluer than the primary, then the maximum deviation will be in the V -band.
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substantial color di†erences are produced for per-(Z0.05)
turbations with For perspective, I note that for ad'Z 0.1.
clump giant primary (K0 III, V [ H D 2), with aM

V
D 1,

solar-type secondary (G V, V [H D 1), theM
V

D 5,
unlensed color di†erence is D1 mag. For most binary-
source pairs, therefore, a signiÐcant color shift will occur
during the perturbation.

A color shift also occurs for planetary events with a small
mass ratio. The form of this shift di†ers signiÐcantly from
that of a binary source. At the beginning of the planetary
perturbation, the color Ðrst shifts to the red ; during the
peak, it shifts to the blue ; at the end of the perturbation, it
shifts again to the red (see, e.g., Fig. 9 of & GouldGaudi

This is in contrast to binary-source perturbations,1997b).
where the shift is always to either the red or the blue. Thus,
a color shift for a binary source can be easily distinguished
from that of a planetary event, and a measurement of a
color shift during a perturbation would allow one to unam-
biguously distinguish between the two cases, and therefore
break the degeneracy.

For planetary events with a large mass ratio, only a very
small color shift is produced. Only a small color shift is
produced for a binary source in which both sources have
very similar colors. Thus if no color shift is detected it may
appear that the degeneracy remains. In fact, this is not nec-
essarily true, as there is likely to exist a correlation between
the Ñux ratio and the color shift. Assume, for example, that
the primary is known to be a K giant. Then, if the event is
due to a binary source, the secondary is likely to be a main-
sequence star. The color-magnitude relationship for main-
sequence stars translates into a relationship between andv

Vr. This relationship, along with the value of measuredv
Vfrom the observed light curve, allows one to estimate the

expected color shift. If the observed color shift is inconsis-
tent with this estimate, then the observed perturbation
cannot be due to a binary source and the degeneracy is
broken. There are situations, however, where even this
argument would fail. For example, if the measured value of
r were consistent with the secondary being a K dwarf, one
would expect no color shift, and therefore both binary-
source and planetary origins of the perturbation would be
consistent with the data, and the degeneracy would remain.
In this situation, one would be forced to rely on either the
detailed light-curve information, or, as described in the next
section, spectroscopic information.

5.3. Spectroscopic Methods
If the methods suggested in and fail, there°° 5.1 5.2

remain other methods to break the degeneracy. One pos-
sible method is to take spectra of the source both during
and after the perturbation. If the perturbation is due to a
binary source, both sources will be contributing to the spec-
trum during the perturbation, whereas after the pertur-
bation, only the primary will contribute signiÐcantly to the
spectrum. Thus, if the binary source is a giant-dwarf pair (as
it is likely to be), then the equivalent widths of pressure-
sensitive spectral features will di†er between the two
spectra.

Finally, one could monitor the source both photo-
metrically and spectroscopically after the event and search
for any signs of binarity induced by orbital motion and/or
eclipses. Given that there will likely be only a handful of
candidate planetary perturbations, this should not require a
substantial amount of telescope resources.

6. PROPER MOTIONS

If it is determined that an observed perturbation is due to
a binary source rather than a planet, one can derive addi-
tional information about the lens. From the observed light
curve, of a binary-source event, one can obtain the observ-
ables and These observables are related totE, b1, b2, t0 t'.
the physical projected separation, l, by & Gould(Han
1997) :

l\ rü EB
CAt0[ t'

tE

B2] (b1^ b2)2
D

, (6.1)

where is the Einstein radius projected ontorü E\ rE(Dos/Dol)the source plane. If l can be mesured by follow-up spectros-
copy, then can be determined. As stands,rü E equation (6.1)
however, there exists a twofold degeneracy in the determi-
nation of due to the ambiguity in the impact parameterrü Edi†erence However, for the binary-source*b

B
\ o b1^ b2 o.

events considered here, and thusb1? b2, *b
`

^*b~^ b1and there exists no degeneracy.
I now discuss further the issue of determining l from

follow-up spectroscopy. In order to determine l, the orbital
elements (intrinsic physical separation, eccentricity, true
anomaly, etc.) must be determined, as must the inclination
angle i (see & Gould The orbital elements can beHan 1997).
determined from a complete radial velocity curve. After the
microlensing event, only the spectral lines of the primary
will be visible. For a circular orbit, the maximum velocity
shift of these lines is

v'\ 30 km s~1 (sin i)b~1@2

]
A Q

M
Q

M
] 1
B~1@2A rü E

AU
B~1@2AM1

M
_

B1@2
. (6.2)

Here and and are the masses of theQ
M

\ M1/M2, M1 M2primary and secondary, respectively. For a K giant primary
with a solar-type secondary, and ForM1D M

_
Q
M

D 1.
typical bulge self-lensing events, AU. From Figure 3,rü ED 3
the binary-source detection rate peaks at b D 1. Thus, for
typical binary-source events of this type, the expected
maximum velocity shift is km s~1 sin i. Thev' ^ 12
period of such a system is P^ 3.7 yr. Excepting nearly
face-on orbits, measurement of a complete radial velocity
curve for such a system, while not trivial, is within current
capabilities. The masses of the sources are known approx-
imately from their luminosities and colors (see The° 5.2).
masses can be further constrained if a spectrum is taken at
the time of the perturbation, since the lines of both sources
will be apparent and the radial velocities of these lines give a
direct measurement of the mass ratio These massesQ

M
.

along with the orbital elements determined from the
observed radial velocity curve determine i and thus yield a
complete solution and a measurement of l. This, combined
with the event observables and yield atE, b1, b2, t0, t',
measurement of viarü E equation (6.1).

The fraction of events for which it is possible to measure
by this method is likely to be small, O(1%). I estimate thisrü Eas follows. From the average detection rate forFigure 3,

binary sources with and is8 [*V [ 4 0.5[ b [ 1.5
D15%. In a study of the multiplicity of F and G stars in the
solar neighborhood, & Mayor foundDuquennoy (1991)
that D40% of these stars had companions with masses
from 0.1 to 1.1 times the mass of the primary. These types of
systems will evolve into the giant/dwarf binaries relevant
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here. Of these multiple systems, they Ðnd that D10% have
separations in the range where the binary-source detection
probability is high, Thus I estimate that0.5[ b [ 1.5.
D0.15] 0.4] 0.1D 1% of events should display binary-
source perturbations that can be used to measure rü E.The determination of along with parallax informationrü E,gathered from either the EarthÏs motion (Gould 1992 ;

et al. & Kamionkowski orAlcock 1995 ; Buchalter 1997)
from a parallax satellite (Refsdal 1966 ; Gould 1995 ;

& Gould & Gould yields aBoutreux 1996 ; Gaudi 1997a),
complete solution of the lens parameters : mass, distance,
and velocity (Gould 1996).
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