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Abstract 

 

Many real-world phenomena, such as article citations and social interactions, can be 

viewed in terms of a set of entities connected by relationships. Utilizing this abstraction, 

the system can be represented as a network. This universal nature of networks, combined 

with the rapid growth in scope of data collection, has caused significant focus to be 

placed on techniques for mining these networks of high-level information. However, 

despite the strong temporal dependencies present in many of these systems, such as social 

networks, substantially less is understood about the evolution of their structures. A 

dynamic network representation captures this additional dimension by containing a series 

of static network “snapshots.” The complexity and scale of such a representation poses 

several challenges regarding storage and analysis. This research explores a novel bit-

vector representation of node interactions, which offers advantages in its ability to be 

compressed and manipulated through established methods from the fields of digital signal 

processing and information theory. The results have demonstrated high-level similarity 

between the considered datasets, giving insights into efficient representations. By way of 

the discrete Fourier transform, this research has also revealed underlying behavioral 

patterns, particularly in the social network realm. These approaches offer improved 

characterization and predictive capacity over that gained from analyzing the network as a 

static system, and the extent of this descriptive power obtainable through the bit-vector 

representation is a question which this research aims to address. 
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Introduction 

The ubiquity of digital communications, along with the advancement of storage 

technology, has introduced the ability to gather and store information on a scale 

exponentially greater than before. Social networks, search engines, and e-retailers are all 

examples of new innovations which have capitalized upon the ability to collect and 

utilize data. These data contain a wealth of knowledge that it not immediately evident, 

but by leveraging methods found in fields such as statistics and artificial intelligence, one 

is able to sift out patterns and rules. The resulting information provides the descriptive 

and predictive insight that is the aim of data mining [1] [2]. In the case of social 

networks, for example, this knowledge can then be used to suggest recommended 

connections or provide relevant advertising. 

 

 

Figure 1: A simple network 

For a subset of applications within data mining, representing the system as a network can 

prove useful. These networks consist of a set of points with connections between them, 

Node 

Edge 
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which are referred to as nodes and edges respectively. For the case of a social network, 

the people can be treated as nodes and the relationships between them as edges. A simple 

network is depicted in Figure 1; these networks correspond to a well-studied concept in 

mathematics called graphs [3]. 

 

Whereas many networks can be considered as fairly static, e.g., report structure 

hierarchies within businesses, others possess inherent flux. These dynamic networks are 

therefore represented as dynamic graphs, and are the subject of this research. A static 

graph can be compared to a freeze-frame snapshot of the state of a system, while dynamic 

graphs would be analogous to a movie composed of many static graph frames. By 

combining the knowledge gained from these static states with information from the time-

based view, the structure and behavior of these dynamic graphs can be described and 

predicted. 

 

The vast size and complexity of these graphs pose several problems related to computer 

representation and analysis methods, which are the subject of this research. Due to these 

complications, the study of dynamic graphs has not yet reached the maturity of their 

static counterparts. This research proposes a novel representation which treats edge 

evolutions as sequences of bits, and explores the storage and analysis of the resulting 

data. 
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An improved understanding of dynamic graphs would be immediately applicable across 

many domains. For example, protein-protein interactions are often modeled as a network, 

the description of which can improve medical capabilities. Further, the structure and 

evolution of social networks impacts the spread of phenomena such as information and 

disease. Capturing the temporal aspects of the graph can also improve the prediction of 

ebbs and flows in activity, along with the development of communities. 

 

In the social realm, individuals follow general daily and weekly schedules. It is thus 

natural to expect these cycles to imprint themselves upon the behavior of the 

corresponding nodes in a social network, such as in email activity patterns. Knowledge of 

such tendencies could aid in server load prediction or in the detection of erratic behavior. 

Additionally, improved knowledge of edge formations can also allow for improved 

connection recommendations, for example, in suggesting additional email accounts to 

carbon-copy. 

 

The representation and modes of analysis for a dynamic graph mutually inform each 

other. By introducing a new way of expressing this network data, this research invites the 

exploration of alternate perspectives of knowledge discovery in their behavior through 

time. 

Related Work 

In the context of dynamic graph representation, Sulo et al. detailed a method for 

representing a dynamic graph data stream with a resolution which balances noise 
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reduction and information loss for a given graph statistic [4]. Barbay et al. developed a 

labeled graph representation that approaches the information-theoretic lower bound of 

storage cost [5]. The TimeArr storage manager developed by Soroush and Balazinska 

handles queries of past versions of an array database, using a backward-delta storage 

method in combination with array tilting and variable-length encoding [6]. A similar 

platform, DeltaGraph, was developed by Khurana and Deshpande which allows for 

retrieval of historical graph data and auxiliary information, such as in subgraph matching 

[7]. 

 

With respect to graph analysis, Eagle represented the cell phone usage of a group of 

participants in terms of a dynamic graph, and applied probabilistic analysis in addition to 

a Fourier Transform on a specific graph point characteristic, identifying so-called 

eigenbehavioral classes of nodes [8]. In [9], Leskovec et al. explore the pattern of activity 

of blog graphs, in addition to common cascade patterns of influence spread. Asur et al. 

explored event detection in dynamic graphs and the analysis of resulting behavior-based 

measurements, with applications to link prediction [10]. Sun et al. explored the 

identification of communities and their evolution in the context of dynamic graphs with 

the development of the GraphScope framework [11], a compressed storage representation 

which also enables the detection of discontinuities and anomalous activity. Berlingerio et 

al. examined the recurrence of small-scale patterns in dynamic graphs, and used these to 

reason about the evolution of the whole through the creation of graph evolution rules 

[12]. 
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Methodology 

Bit Stream Representation 

Without loss of generality, a dynamic graph can be considered as a discrete sequence of 

graph states, where each state is separated by a variable time interval. If the node set is kept 

constant, the graph at time   can be represented as          where   represents the set of 

nodes and    represents the set of edges at time  . For a given  , it can be determined whether 

    . Thus,   can be represented as a bit stream where the state of each bit is determined by 

the presence of   in the graph at the given time. In this manner, the temporal aspect of the 

graph can be captured by storing a set of bit streams, one for each edge. An example of this 

representation is given in Figure 2, along with the corresponding graph snapshots. 

 

Figure 2: Sample bit stream edge representation and corresponding graph snapshots 
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In the framework that was created during this research to process these graphs, the length 

between successive snapshots,  , is treated as a constant parameter throughout the graph. As 

such, increasing   results in a temporal coarsening of the graph, which enables improved 

storage and processing performance at the expense of a loss of information. As with the 

original graph, within the coarsened graph edge existence remains binary; that is, for a given 

snapshot   
 ,      

   implies that for at least one snapshot    in the original graph,       

where         . 

Datasets 

Four datasets were used during the course of this research, statistics of which are given in 

Table 1. Being that the representation and analysis performed during this research is intended 

to apply across a variety of networks, these datasets were chosen due to their difference in 

size, time scale, and nature. The DBLP dataset is a citation network from articles in the field 

of computer science dated 1938-2006. This network is represented as a set of authors (nodes) 

connected by citations (edges). For the purposes of this research, the edges from all datasets 

are treated as undirected, e.g., a citation in the DBLP dataset from author   to author   at 

time   is treated in the same manner as would be a citation from author   to author   at 

time  . 

Table 1: Summary statistics for the datasets considered 

Dataset 
Number of nodes 

(approx.) 

Number of connections 

(approx.) 

DBLP [13] 400,000 600,000 

Enron [14] 9,500 115,000 

Facebook [15] 60,000 840,000 

Infection [16] 14,000 230,000 
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The Enron dataset represents emails involving Enron Corporation accounts during the span of 

January 1999-July 2002, for which each node represents an email account and each edge an 

email. The Facebook dataset consists of wall posts between users in the New Orleans 

network from September 2006-January 2009. The infection dataset consists of contact during 

a simulation carried out over a span of three months as an exhibit at the Science Gallery in 

Dublin, Ireland, in collaboration with SocioPatterns [17]. Each participant wore an RFID 

emitter which would record any other emitter in range (approx. 1.5m) along with a timestamp 

window of 20s. All contacts were recorded regardless of the infected status of the participants 

involved; node infection status is also disregarded for the purposes of this research. 

 

Timestamps of the DBLP dataset correspond to the year of publication, thus the value of 

       was used in processing. Likewise, the infection simulation dataset was treated using 

the resolution of the dataset,       For the Enron and Facebook datasets the timestamps 

have an accuracy of   , but except where otherwise noted,          was used during 

processing, which was selected based on the time-scale of the interactions within the datasets. 

Results 

Encoding Scheme 

The strength of the compression scheme used for a dynamic graph is dependent upon the 

properties of the individual bit-streams; for example, the space efficiency gains from a 

run-length encoding strategy are highly dependent upon the frequency of repeating values 

in a string. In order to determine the general nature of the bit-streams, the number of 

‘true’ bits was counted for each stream in a given graph, resulting in the Hamming weight 
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of the stream. Bins were then created for these weights, and the resulting bin counts 

calculated. For each dataset, these values are plotted on a log-log scale in Figure 3. 

 

Aside from the infection dataset, the bin distributions appear to follow a power-law 

distribution. It is likely that the more rapid drop-off in the infection plot is due to the 

restricted duration of a given node’s activity, as the time required for participants to form 

excessive connections would exceed the normal amount of time to traverse the 

exhibition. The form for a power-law distribution follows     , where   is a scaling 

factor; an increase in this factor thus implies an increase in the ratio of sparse to dense bit 

streams within the graph. For the three plots that followed this distribution, the scaling 

factor for a best-fit approximation is given in Table 2, along with the corresponding 

values for the coefficient of determination. 

Table 2: Best-fit exponential scaling factor for edge activity magnitudes 

Dataset      

DBLP 3.37 0.97 

Enron 1.65 0.93 

Facebook 2.06 0.94 

 

One class of possible compression methods involves the encoding of bit streams. 

Decompression of a given graph state thus involves decoding the data for each bit-stream. 

In [18], the compression of sparse binary data is analyzed for a memory-less signal model 

described by the probability   of a ‘true’ bit occurring, which was found to give similar 

performance as a linear predictive coding method. For bit stream encoding, the average 
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percentage of ‘true’ bits for the nonzero streams of each dataset for a given granularity 

can be considered an estimate of  .  

 

Three encoding schemes were tested: run length encoding [19], coordinate encoding, and 

a block-encoding method developed by Zeng and Ahmed [18] within the image 

processing domain. This block-encoding method resembles that developed by Kunt [20], 

with the distinction that Kunt’s method stores the entire sequence of a nonzero block, 

whereas Zeng’s stores the location of the nonzero values within the block. This method 

outperforms Kunt’s within the range of   values that the datasets in this experiment fall 

[18], thus Kunt’s method was not tested. Representative space savings for each bit stream 

of the Enron dataset are given in Figure 4. It can be seen that the storage space required is 

correlated with the number of ‘true’ bits of the bit stream. Overall compression statistics 

for the datasets are given in Table 3; the DBLP dataset was omitted from this analysis 

because the small number of snapshots, 68, allows for only marginal bit stream 

compression. 

Table 3: Bit stream encoding results 

   

Post-encoding Space Savings (%) 

Dataset   
Average ‘true’ 

bits (%) 
Run Length Coordinate Block 

Enron 30 min 0.27 91.83 95.61 97.14 

Infection 20 s 1.87 45.24 71.43 83.33 

Facebook 30 min 0.11 96.93 98.22 98.76 

 



17 

 

 

Figure 3: Bit stream Hamming weight distributions for each dataset
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Figure 4: Space savings across encoding schemes for bit streams of Enron dataset 

Fourier Analysis 
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Fourier transform (DFT) was calculated for each bit stream. This algorithm, popular in 

the digital signal processing community, decomposes a signal into its constituent 

frequencies, each with an amplitude and phase. The magnitudes of each frequency 

component were totaled across the bit streams. The frequency values were then inverted 

to allow for direct interpretation of time spans.  In the subsequent DFT plots, the 
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In Figure 5, a DFT plot is given of the DBLP dataset with       , which results in no 

coarsening of the graph. The Nyquist frequency thus lies at 2 yr
-1

, frequencies within the 

data above this value are aliased, and thus their magnitudes cannot be determined. The 

graph demonstrates a generally consistent magnitude until approximately 6 years, at 

which point there is an increasing trend that continues into the long time-span (low 

frequency) values. The phenomenon of high magnitude values at low frequencies is 

mirrored by the other datasets, and is a reflection of the large number of sparse edges 

within the graph, each of which contributes low-frequency terms.

 

Figure 5: Cumulative DFT values for DBLP dataset with     yr 
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In Figure 6 the cumulative DFT values for the Facebook and Enron datasets with 

        are plotted. The frequencies were then normalized to 1 day
-1

; Figure 7 depicts 

cumulative DFT results for the Facebook and Enron datasets with         . 

 

Figure 6: Cumulative week-scale DFT magnitudes for Facebook and Enron datasets 
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Figure 7: Cumulative DFT frequency magnitudes for Facebook and Enron datasets 
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applied to each bit-stream of the Facebook dataset. In Figure 8, a subset of the cumulative 

DFT plot is given after processing without a windowing function, along with that 

resulting from processing with the application of a Hanning window and with a 4-term 

Blackman-Harris window [21]. It can be seen that the peaks survive both windowing 

procedures. Additionally, a value of   – namely, 1751 – relatively prime to the number of 

seconds in a day was also used to perform the DFT, the magnitudes of which again 

displayed these peaks. This was done in order to account for the presence of resonance or 

aliasing effects of the sampling frequency with respect to the peak frequencies; the plots 

are omitted for brevity. 

 

Figure 8: Effects of windowing on Facebook DFT 
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Discussion 

The power-law distributions seen in Figure 3 can be interpreted as a temporal analog of 

the established result that many real-world static graphs exhibit a scale-free property with 

respect to node degrees [22]. These distributions indicate that many of the node 

connections in the data occur a very few number of times. Their consistency also allows 

for prediction of unmeasured values; for example, knowledge of the prevalence of highly 

active pairs on Facebook would be sufficient in predicting the number of low-activity 

pairs. 

 

The representation explored, which compresses individual bit streams, has several 

advantages over compressing the graph snapshots; firstly, bit streams are likely to show 

temporal locality and therefore lend themselves to direct compression. Additionally, this 

approach allows the bit stream data of individual edges to be stored contiguously, 

enabling more efficient analysis of an edge's behavior throughout time. This also enables 

straightforward real-time recording, which could be distributed across systems or 

delegated to the nodes themselves. 

 

Although the data sets considered were small enough to be memory-resident during 

processing, systems that contain many interacting nodes or that are extended through 

time will require compression. A block-encoding scheme was shown in Table 3 to offer 

strong space-savings. The scheme also allows for efficient querying, as blocks can be 

quickly traversed, only decompressing the relevant locations. 
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In examining the frequency spectra, the transformations of the Facebook and Enron 

datasets reveal particularly interesting behavior. Figure 6 exhibits several peaks, 

including at 7 days and 3.5 days, along with multiple peaks between 1 and 2 days. This 

seems to indicate a rhythmic behavior having period of approximately one week present 

in both datasets. Additionally, the 3.5 day peak represents a frequency at the first 

harmonic of the 7 day peak. This harmonic pattern is more evident on the day-scale, as 

depicted in Figure 7. It can be seen that the major peaks lie at the harmonics, e.g., 

 

  
    ,  

 

 
    , etc. with sub-peaks present at  

 

 
  sub-harmonics of these values. The 

windowing results of Figure 8, along with the variations in   outlined in the previous 

section, imply the existence of these sub-peaks within the data, rather than as artifacts of 

the DFT method. 

Conclusions and Future Work 

This research introduced a novel bit stream representation of dynamic graphs, and 

explored resulting methods of storage and analysis. Despite the enormous range of 

possible behavior for a dynamic graph, the bit streams for each of the datasets considered 

show similar properties, allowing for an efficient encoding method for use across 

systems. The encoding method explored results in lossless compression, although one 

could also utilize lossy storage; for example, by storing the   most dominant frequencies 

of the Fourier transform for each bit stream, a variable compression mechanism could be 

created. This representation would also enable analysis to be performed directly in the 
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frequency domain which could, in turn, show similarities that result from phase-shifts of 

edge activity patterns, which would be non-apparent under alternate representations. 

 

The analysis performed demonstrates high-level regularity in node behavior within social 

contexts. This could be used in server load prediction or in the detection of erratic 

behavior. Additionally, an understanding of edge formations can also allow for improved 

connection recommendations, for example, in suggesting additional email accounts to 

carbon-copy, or which walls for a user to post on. The location of peak frequency values 

on the harmonics of the day also suggest the ability to use sound as a novel representation 

method for dynamic networks, where an audible frequency of the standard musical scale 

could represent the 
 

  
     frequency, with harmonics of that tone scaled according to 

the data. 

 

Due to the holistic nature of the characterizations performed, further analysis would 

likely benefit from a decrease in scaling, considering community and node-level 

behaviors. For example, a modified version of the oscillator model found in Arenas et al. 

[23] could be applied to edges, using nodes as couplers and edge ‘true’-bits for oscillator 

excitations. By obtaining the amplitude and phase of dominant frequencies for individual 

bit streams, one could provide seed values for the oscillators. By monitoring the 

synchronization of these oscillators within subgraphs, community structures could be 

obtained in a manner similar to that developed by Arenas. Through the dynamic nature of 

this representation, one could extend such results by modeling information propagation 
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through imparting a pulse to a given oscillator and examining the resulting impact to the 

system. 

 

This representation can also be viewed as an ultra-high dimensional dynamical system 

[24], where each node has many degrees of freedom in the target and time of its 

connection formations. The corresponding state of the graph can be visualized as tracing 

a complex path through such a space, where the periodic patterns explored in this 

research correspond to identifying loops within projections of this path onto certain 

dimensions. There are likely more complex aspects of the system’s evolution, e.g. 

attractors which the state trajectory tends to trace. The key step to finding these lies in the 

determination of a suitable dimensionality restriction to the graph. This could entail 

focusing upon individual communities or motif structures, such as Triangle K-Cores [25], 

which can be efficiently extracted to provide an indicator of the structural makeup of the 

graph.  

 

Through this lower-dimensional description, it would then become possible to make 

quantitative claims as to the stability of substructures in the network, which would result 

in improved predictions of link formations and other aspects of the network’s evolution. 

In particular, examining the Lyapunov stability [24] of community structures could 

enable the discrimination between growing and stable social groups. Notions of stability 

and synchronization such as these are only samples of a large class of analysis techniques 

that are supported through the novel stream-based representation described in this work.  
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